17 research outputs found

    IPv6 : prospects and problems : a technical and management investigation into the deployment of IPv6

    Get PDF
    Masteroppgave i informasjons- og kommunikasjonsteknologi 2003 - Høgskolen i Agder, GrimstadIPv4 has been used for over twenty years, and will most likely be used in many years ahead. However, we are now experiencing that the IPv4 address space is running out, resulting in restrictions on who will be able to get these types of addresses assigned to them. Methods such as Network Address Translator (NAT) have been developed and implemented in order to save the IPv4 address space. It is said that this is not a good enough solution, as such techniques introduce new problems at the same time solving some. A new version of the Internet Protocol, IPv6, has been developed and is likely to replace IPv4. IPv6 has been developed to solve the address problem, but also new features are designed to supposedly enhance network traffic. In our thesis we give an overview of the problems with IPv4. This includes the limited address space and the limited quality of service. Further we present the features of IPv6 that are meant to solve these problems and add new possibilities. These are: New address format, the IPv6 header and Extension headers to mention some. Further we have investigated and here present how the transition from IPv4 to IPv6 is expected to take place, followed by a thorough description of the transition mechanisms. One of the original intentions on the development of IPv6 was that IPv4 and IPv6 have to be able to coexist for a long period of time. Transition mechanisms have therefore been designed to make this possible. There are three main types of mechanisms: - Tunnelling - Translation - Dual-stack. Each of these mechanisms requires different configuration and implementations in hosts and network. Technical research on transition mechanisms states that these are not good enough for all IPv6/IPv4 scenarios and need improvements in order to make IPv4 and IPv6 coexist smoothly. There are a lot of transition mechanisms that are agreed upon as being good for general use and then there are transition mechanisms that are good for certain scenarios and not for others. Some scenarios still lack a good translation mechanism. As a result of this, IPv6 networks are being built separately from IPv4 networks. In Asia commercial IPv6 networks are offered, while the process is slower in other parts of the world. The reasons for not building IPv6 networks are many, and not agreed upon. Some believe it is because of economical restrictions, while others claim it is technical reasons and that it exists far too few applications supporting IPv6. The number of IPv6 enabled applications is growing. Large companies like; Microsoft Corporation, Cisco Systems Inc, Apple Computers Inc., Sun Microsystems Inc and various versions of Linux include support for IPv6. The deployment of IPv6 is expected to happen at different times in different parts of the world. We have investigated the status of IPv6 globally and in Norway. The main results are that the roll-out has reached the furthest in Asia where commercial IPv6 networks already are offered. The activity in Norway is still small, but growing. It was desired to run an experiment in order to prove or disprove some of the information we gathered on how IPv6 interoperates with IPv4, but because of limitations in the network at Heriot-Watt University we were not able to do this. Instead we have focused on a project by Telenor R&D; “IPv6 migration of unmanaged networks-The Tromsø IPv6 Pilot”. We also gathered some information from people working at Norwegian ISPs in order to address some of the aspects of the upgrading

    Internet Protocol version 6 and the future of home networking

    Get PDF
    Home networking will be more of a necessity in the future than it is today. The homes of the future will make our lives easier in many ways. As microprocessors become less expensive and require less power they will be implanted into many of the common household items used everyday. Appliances and components will evolve into smart devices that communicate with each other. Connecting these devices will become more important as devices incorporate new technologies. It will be necessary to build a network that can handle the needs of this type of computing environment. The home networks of the future will require many of the same features that can be found in today\u27s corporate networks. However, there will be four issues that will determine the level of success of implementing home networks. The first issue is the increase in volume of the devices accessing and utilizing the Internet. Security will be a high priority for homeowners, since the data that accumulates and circulates in and out of the home is sensitive and personal. The third critical issue is ease of use, because the average homeowner does not have the skills necessary to configure and maintain networks. The last issue that will be important in the home is the increased need for bandwidth and the ability to accommodate all types of data traffic. There is no doubt that the Internet Protocol will be important in future home networks. Some proponents of IP say IP over everything The trend has been finding new ways of making IP the answer to all types of voice and data communications. Initially the Internet Protocol was designed for a specific application. Over time, IPv4 has been able to successfully adapt to the changing needs and demands of the Internet. At one point in the early 90\u27s, it was feared that IPv4 would not be able to meet the future needs. As a result, The Internet Engineering Task Force (IETF) developed a next generation Internet Protocol, referred to as Internet Protocol version 6. In the meantime, new fixes to old IPv4 problems have been temporarily halted. The implementation of IPv6 has been extremely slow since the imminent danger of declining address space has been temporarily addressed. IP version 6 has many new features built into the protocol that will streamline and enhance many aspects of the network, but these features alone may not be enough to cause the displacement of the massive infrastructure of IPv4. Will IPv6 be better at handling the demands of the home networks of the future, or will the additions and updates for IPv4 be sufficient? What are some of the resolutions that are being developed or are already implemented for the key issues in home networks- the increasing number of devices, security, ease of use and data flow

    Análisis del protocolo Ipv6 su evolución y aplicabilidad

    Get PDF
    El cambio de Internet 4 a Internet 6 es necesario conforme el espacio de direcciones asignables se reduce y crecen los sitios y aplicaciones que requieren les sea asignada una IP propia, por lo tanto es necesario que desde ya se empiece a desarrollar una metodología de migración en las redes locales, al igual que se desarrolla políticas de seguridad, de compartición de recursos, etc.Descripción de IPv4.- Organización de internet.- Modelo de referencia OSI frente a TCP/IP.- Problemas con IPv4.- Historia del IPv6.- Características de IPv6.- Notación IPv6.- Tipos de direcciones IPv6.- Datagrama IPv6.- DNS para IPv6.- principales protocolos en IPv6.- Seguridad en IPv6.- Organización administradores, políticas de distribución y asignación de direcciones Ipv6.- Funciones de DSTM.- Túneles .- Traductores.- Implementación de una isla IPv6 y conexión con el 6bone

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    Integração de IPv6 em um ambiente cooperativo seguro

    Get PDF
    Orientador: Paulo Licio de GeusDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: A Internet cresceu na comunidade acadêmica, de modo que mecanimos de segurança não eram parte do protocolo original IP e do projeto de serviços. Durante a discussão de redefinição do atual Protocolo Internet (1Pv4), se tomou claro que o novo projeto (1Pv6) deveria incorporar algumas características básicas de segurança. A intenção era que estas características provessem autenticidade, privacidade e um nível mínimo de segurança contra muitos ataques baseados no IP. A provisão de características de segurança em 1Pv6 (IPSec) é um passo importante em direção a prover segurança nativa na Internet. Entretanto, IPSec não é a solução para todos os problemas de segurança. O objetivo deste trabalho é analisar as implicações da adoção de 1Pv6 em Ambientes Cooperativos Seguros, particularmente do IPSec, que provê um framework nativo de segurança para a camada IP, assim como para as camadas acima. Será visto que a característica de criptografia fim-a-fim do IPSec impossibilita a utilização efetiva de vários mecanismos de segurança consolidados em Ambientes Cooperativos Seguros atuais (1Pv4). Considerando que uma rede IPv6 não será efetivamente útil se não permitir a ocorrência de comunicação com outras redes na Internet, tanto 1Pv4 quanto 1Pv6, este trabalho também objetiva estudar os cenários de integração entre redes 1Pv6 e 1Pv4 bem como os mecanismos de transição aplicáveis a cada cenárioAbstract: The Internet grew up within the academic community in such a manner that security mechanisms were neither required nor incorporated into the original IP protocol. During the discussions to redefine and improve the actual internet protocol (IPv4), it became clear that the new project (IPv6) should incorporate some basic security characteristics. The intention was that these characteristics would provide authentication, privacy and a minimum level of security against attacks based on the protocol IP. Providing security characteristics in IPv6 (IPSec) is an important step in the direction of providing native security on the Internet. However, IPSec, does not provide a solution for all security problems that might happen when accessing the Internet. The aim of this work is to analyze the implications of the adoption of IPv6 in Secure Cooperative Environments, in particular IPSec, which provides the native security framework in the network layer, as well as the layers above it. It will be seen that the adoption of IPSec and its characteristic of end-to-end encryption, does have drawbacks since it is incompatible with the consolidated security mechanisms used currently in Secure Cooperative Environrnents (IPv4). Considering that IPv6 networks must be compatible with the existing IPv4 networks used in the Internet in order to have a gradual transition between both protocols, this work also discusses the scenarios involved when integrating the two protocols and the transition mechanisms that are relevant to each scenarioMestradoMestre em Ciência da Computaçã

    Diameter Base Protocol

    Full text link

    Local area [pye]-calculus

    Get PDF
    All computers on the Internet are connected, but not all connections are equal. Hosts are grouped into islands of local communication. It is the agreed conventions and shared knowledge that connect these islands, just as much as the switches and wires that run between them. The power and limitation of these conventions and shared knowledge and hence their effectiveness can be investigated by an appropriate calculus. In this thesis I describe a development of the 7r-calculus that is particularly well suited to express such systems. The process calculus, which I call the local area n-calculus or Ian, extends the 7r-calculus so that a channel name can have within its scope several disjoint local areas. Such a channel name may be used for communication within an area or it may be sent between areas, but it cannot itself be used to transmit information from one area to another. Areas are arranged in a hierarchy of levels which distinguish, for example, between a single application, a machine, or a whole network. I present a semantics for this calculus that relies on several side-conditions which are essentially runtime level checks. I show that a suitable type system can provide enough static information to make most of these checks unnecessary. I examine the descriptive power of the /a7r-calculus by comparing it to the 7r-calculus. I find that, perhaps surprisingly, local area communication can be encoded into the 7T-calculus with conditional matching. The encoding works by replacing communication inside an area with communication on a new channel created just for that area. This is analogous to replacing direct communication between two points with a system that broadcasts packets over a background ether. I show a form of operational correspondence between the behaviour of a process in lan and its 7r-calculus translation. One of my aims in developing this calculus is to provide a convenient and ex¬ pressive framework with which to examine convention-laden, distributed systems. I offer evidence that the calculus has achieved this by way of an extended case study. I present a model of Internet communication based on Sockets and TCP over IP and then extend this system with Network Address Translation. I then 4 give a model of the File Transfer Protocol that uses TCP/IP to communicate between networks. Traces of the model show that FTP, run in its normal mode, will fail when the client is using Network Address Translation, whereas, an alternative mode of FTP will succeed. Moreover a normal run of the model over NAT fails in the same way as the real life system would, demonstrating that the model can pick up this failure and correctly highlight the reasons behind it

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Strategic Planning in the College and University Ecosystem Outlook 2012: Chickens or Eggs? lT Trends on Campus: 2012 Best Practices in Deploying a Successful University SAN Beyond Convergence: How Advanced Networking Will Erase Campus Boundaries Distributed Computing: The Path to the Power? Cell Phones on the University Campus: Adversary or Ally? lnstitutional Excellence Award Honorable Mention: Wake Forest University Interview President\u27s Message From the Executive Director Here\u27s My Advic
    corecore