
THE UNIVERSITYof EDINBURGH

Title Local area [pye]-calculus

Author Chothia, Tom

Qualification PhD

Year 2004

Thesis scanned from best copy available: may
contain faint or blurred text, and/or cropped or

missing pages.

• numbered blank pages removed from digital copy.

Scanned as part of the PhD Thesis Digitisation project
htto://libra rvblogs.is.ed.ac.uk/phddigitisation

The Local Area 7r-Calculus

Tom Chothia

Doctor of Philosophy

Laboratory for Foundations of Computer Science
Division of Informatics

University of Edinburgh
2003

Abstract

3

All computers on the Internet are connected, but not all connections are

equal. Hosts are grouped into islands of local communication. It is the agreed
conventions and shared knowledge that connect these islands, just as much as the
switches and wires that run between them.

The power and limitation of these conventions and shared knowledge and
hence their effectiveness can be investigated by an appropriate calculus. In this
thesis I describe a development of the 7r-calculus that is particularly well suited to

express such systems. The process calculus, which I call the local area n-calculus
or Ian, extends the 7r-calculus so that a channel name can have within its scope

several disjoint local areas. Such a channel name may be used for communication
within an area or it may be sent between areas, but it cannot itself be used to

transmit information from one area to another. Areas are arranged in a hierarchy
of levels which distinguish, for example, between a single application, a machine,
or a whole network. I present a semantics for this calculus that relies on several
side-conditions which are essentially runtime level checks. I show that a suitable

type system can provide enough static information to make most of these checks

unnecessary.

I examine the descriptive power of the /a7r-calculus by comparing it to the
7r-calculus. I find that, perhaps surprisingly, local area communication can be
encoded into the 7T-calculus with conditional matching. The encoding works by

replacing communication inside an area with communication on a new channel
created just for that area. This is analogous to replacing direct communication
between two points with a system that broadcasts packets over a background
ether. I show a form of operational correspondence between the behaviour of a

process in lan and its 7r-calculus translation.
One of my aims in developing this calculus is to provide a convenient and ex¬

pressive framework with which to examine convention-laden, distributed systems.

I offer evidence that the calculus has achieved this by way of an extended case

study. I present a model of Internet communication based on Sockets and TCP
over IP and then extend this system with Network Address Translation. I then

4

give a model of the File Transfer Protocol that uses TCP/IP to communicate
between networks.

Traces of the model show that FTP, run in its normal mode, will fail when
the client is using Network Address Translation, whereas, an alternative mode of
FTP will succeed. Moreover a normal run of the model over NAT fails in the

same way as the real life system would, demonstrating that the model can pick
up this failure and correctly highlight the reasons behind it.

5

Declaration

I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

(Tom Chothia)

6

To my parents, and my academic parents.

7

Acknowledgements
I would like to thank Ian Stark. He has been an ideal supervisor. His com¬

ments and suggestions always showed his great intelligence. He often went out of
his way to help me and always made himself available, for which I am eternally
grateful.

My parents provided immeasurable support, both intellectual and emotional.
They made helpful comments on my thesis and were always there for me when I
needed them.

I am indebted to Stephen Gilmore for reading through an earlier draft of this
thesis. His comments made it much more readable.

I would also like to thank my friends. They have made my time in Edinburgh
enjoyable as well as worth while. I would especially like to thank Cath and Marco,
without the constant diversions they provided I would either have finished my

Ph.D. months earlier or more likely not finished it at all.

8

Think Globally, Act Locally.

Table of Contents

1 Introduction 13

1.1 An Attempt at Local Communication in the 7r-calculus 14
1.2 Local Areas 16

1.3 Levels 16

1.4 Outline of Thesis 19

2 General Background and Related work 21
2.1 Background on Process Calculi 21

2.1.1 The Calculus of Communicating Systems 21
2.1.2 The 7r-calculus 24

2.1.3 The Asynchronous 7r-calculus 26
2.2 Encoding Between Calculi 27
2.3 Related Work 32

2.3.1 The Join Calculus 33

2.3.2 The Seal Calculus 36

3 The Basic Local Area 7r-calculus 39

3.1 Syntax 39
3.2 Scope and Areas 41
3.3 Operational Semantics 42
3.4 Examples 45

3.4.1 Internet Server Daemon 45

3.4.2 Load Management System 48
3.4.3 Data Caching 49

9

10 TABLE OF CONTENTS

3.5 Correctness of the Untyped Semantics 52
3.6 Non-Total Orders 57

4 Types for Local Areas 59

4.1 The Type System 60
4.1.1 Properties of Well Typed Processes 61
4.1.2 Linking Typed and Untyped Processes 67

4.2 Channel Types for the Examples 69

4.3 Correctness of the Typed Semantics 71
4.4 Sorts 79

5 Encoding the /a7r-calculus into the 7r-calculus 85
5.1 Encoding Local Areas 86
5.2 Example Encodings 90

5.2.1 Load Management System 90
5.2.2 The Inet Daemon 95

5.3 Correctness of the Encoding 98
5.3.1 Evaluation Contexts 100

5.4 The Proof of Correctness 103

5.4.1 Proof that lair Processes are Simulated by Their Encodings 103
5.4.2 Proof that lair Processes Simulate Their Encodings 106

6 Modelling FTP over NAT 115
6.1 Program Syntax 116

6.1.1 Channel Coercion 117

6.2 The Internet Communication Model 118

6.2.1 Router Model 121

6.2.2 Linking IP Packets to Sockets 123
6.2.3 Network Address Translation 128

6.3 File Transfer Protocol 131

6.3.1 Introduction to FTP 131

6.4 Fitting it all Together 138
6.4.1 A Basic FTP Network 138

TABLE OF CONTENTS 11

6.4.2 An FTP Network Client Side NAT 140

6.5 The Running System 141
6.5.1 Active FTP without NAT 142

6.5.2 Active FTP with NAT 150

6.5.3 Passive FTP with NAT 153

6.6 Extending the Model with Initialising Connections 158

7 Conclusion and Further Work 163

7.1 Conclusion 163

7.2 Further Work 165

7.2.1 The Extension of the /a7r-calculus with Mobility 165
7.2.2 Equivalence Methods for Local Areas 171
7.2.3 Model Checking an Extended Case Study 172
7.2.4 A Language Based on the /o7r-calculus 173
7.2.5 Levels and Areas in other Calculi 174

Bibliography 175

A Full Case Study Models 183
A.l Basic FTP 183

A.2 FTP with Client Side NAT 184

A.3 Network Level 185

A.4 Transport Level 186
A.5 Application Level 187

B Full Model Trace 189

B.l Active Mode without Nat 189

B.2 Active Mode with Nat 193

B.3 Passive Mode with Nat 196

Chapter 1

Introduction

This thesis aims to make a process calculus that is well suited to express the con¬

ventions, uniform local resources and other shared idiosyncrasies that hold large
networks together. Real life systems have made use of the physical boundaries
imposed by network hardware until ultimately the local conventions have become
the salient features of these systems.

The calculus presented here, the local area ir-calculus, extends the 7r-calculus
with explicit areas and levels in such a way that a channel name may be used for
communication within an area or it may be sent between areas, but it cannot itself
be used to transmit information from one area to another. Areas are arranged in
a hierarchy of levels which distinguish, for example, between a single application,
a machine, or a whole network.

This introduction first outlines exactly what I mean by "local resources and
conventions". I then introduce the notions of areas and levels. Finally I give an

outline of the thesis.

Most computer programs make assumptions about the environment in which

they operate: the facilities available, and how to use them. A C programmer

will freely use the function printf, and expect that wherever their compiled code
is executed an appropriate library will be dynamically linked to print formatted
text. The Java model of lightweight applets travelling over the web relies on

every browser supporting a standard interface to a large collection of known
libraries. Even more dynamically, the notion of "mobile agents" [L099] has

13

14 Chapter 1. Introduction

programs hopping from place to place, and everywhere they land, interrogating
local directories and using local services through known access methods.

The common theme here is the use of globally-known names to access local
resources. But how do names become globally known, and what counts as local?

Typically this is a static and non-computational affair: user manuals list library
calls, or services are offered at "well-known" addresses. It is exactly this informal
use of conventions that makes these systems so powerful but yet hard to model.

1.1 An Attempt at Local Communication in the 7r-

calculus

The 7r-calculus has become the standard process calculus in which to examine
distributed systems. Attempting to model local communication in this calculus
will give us some insight into the problem.

Processes in the 7r-calculus may broadcast channel names over a given channel
or listen for channel names over a given channel. Processes may also generate

entirely new names. Any number of processes can be placed in parallel and, if
two processes try to perform an input and an output on the same name, then
the names being communicated are substituted for the names being listened for
in the receiving process. Processes may also replicate themselves an arbitrary
number of times. This allows recursion and so adds the computational power
needed for more complex behaviours.

One of the original observations behind the 7r-calculus is that many issues
associated with mobile code can be studied by looking simply at mobile names.

A full description of the 7r-calculus is given in Section 2.1.2.
An example of the kind of systems I am interested in is the operation of the

service protocol that directs requests made to machines which serve a number of
different applications, simultaneously. This application is known as the Internet
Dcemon Server.

When a browser contacts a web server to fetch a page, or a person invokes

finger to list the users on a machine, both connect to a numbered "port" on the

1.1. An Attempt at Local Communication in the ir-calculus 15

remote host: port 80 for the web page; port 79 for the finger listing. Of course,
this only works if both sides agree on the assignment of ports to services. A port

number becomes "well-known" when enough systems agree on it [IAN].

Under Unix, the file /etc/services holds a list mapping numbers to services.
This usually includes an abundant litter of port numbers which never became suf¬

ficiently "well-known". There is also a further level of indirection: most machines
run only a general meta-server inetd, the Internet daemon, which listens on all
ports. When inetd receives a connection, it looks up the port in /etc/services,
and then consults a second file which identifies the program to provide that ser¬

vice. The inetd starts the program and hands it a connection to the caller. A
7r-calculus model of the procedure might look like this:

Client Carp = vc.(pike(finger, c) | c(x).print(x))
Server Pike = \pike(s,r).s(r) |!finger(y).y(PikeUsers)

| \ daytime (z) .z(PikeDate)

System (Carp \ Pike)

This example is written in the syntax of the 7r-calculus that is presented in
the next chapter. In English, this system consists of two processes, Pike and

Carp, running in parallel. The client machine Carp wishes to contact a server

Pike with a finger request. The client has two components: the first transmits
the request, the second prepares to print the result. The server, Pike, comprises
three replicating processes: a general Internet daemon, a Finger daemon and a

time-of-day daemon. Channel pike is the Internet address of the server machine,
while the free names finger and daytime represent well-known port numbers.
In operation, Carp sends its request to Pike naming the finger service and a

reply channel c. The Internet daemon on Pike handles this by retransmitting the
contact c over the channel named finger. The Finger daemon collects this and

passes information on PikeUsers back to the waiting process at Carp.

16 Chapter 1. Introduction

1.2 Local Areas

This is a fair model, very much in the style of the 7r-calculus, but it has some

shortcomings. Because the names finger and daytime are visible everywhere,
even when the Internet daemon on Pike has collected the request there is no

protection against a finger daemon on some different server actually handling it
— perhaps even one on the "client" Carp itself. So it is not only difficult to
scale up the size of this model, it also misses many of the salient features of the
Internet daemon. If, however, we restrict the scope of finger to host Pike, then
Carp cannot formulate the request because it must know the name of the service.
What we need is a restriction that stops communication on finger but allows it
be communicated on the channel pike, written below as [].

[Carp] | [Pike]

It is useful to nest these area restrictions inside each other. A large envi¬
ronment will have inside it a number of smaller sub-environments. These sub-

environments will be able to access all the facilities available to the larger envi¬
ronment and more specialised local resources too. They may even include their
own sub-environments. However, we are then left with the problem of working
out which areas should block communications on which names and, at the same

time, how to allow names to be sent between areas.

1.3 Levels

To state explicitly which names will be blocked by which areas, I introduce an

ordering of levels and assign a level to each channel and area. A channel of a

given level is then restricted within an area of that level. I also require nested
areas to descend the order. This enforces a standard use of areas across a system
and so allows names created in one place to be used in a uniform way in another

part of the same system.

1.3. Levels 17

For the Inetd example given above and many of the other simple networking
examples we use the ordering:

app < host < net

where app is short for the application level and contains the processes that model
the applications. The host level will be used for uniform communication across

a machine and similarly the net level will be used for communication across a

whole network.

Now we have our levels, we can explicitly label the areas and channels of the
Inetd example of Section 1.1. The system is now:

net[host[Carp] | host[Pike]]

which represents the fact that Carp and Pike are separate hosts residing on a

single network. Each of the names in the system is identified as operating at net
or host level:

c@net, pike@net, finger@host, daytime@host, print@host

Thus communication on the finger, daytime or print channels can span only a

single host, while channels c and pike operate over the whole network. This
is distinct from the scope of names, given by z/-binding, that determines where
a name is known, not how it is used. In particular, the finger name in this

example has a wide scope, but identical finger daemons on different hosts will
never interfere.

It has become clear that when looking at different systems it is convenient to

give the levels of the ordering names that are appropriate to whatever system we

are looking at. Indeed, by looking at a few systems we can see that a multitude
of orderings are already informally in use.

It is common practice to split the workings of distributed protocol into levels.
One example is the TCP/IP Reference Model [CK74], that is used to model
Internet communication. It defines 4 levels:

application < transport < network < physical

18 Chapter 1. Introduction

The idea of this model is that each level would deal with a different aspect of
the communication process. The Application level deals with the user's programs,
the Transport level processes the data into TCP packets for the Network level to
send through the Physical level using IP protocol.

Communication is only allowed to take place between two adjacent levels.
This means that a process can only address its surrounding layer and hence may

use uniform names in all locations to pass data back and forth.
When a process uses one of these names to communicate with a different level

it would automatically communicate with the appropriate handler for whatever
kind of communication it was making. Communication on port numbers will
be local inside any network area. Socket names inside any transport block and
communication on IP addresses will be global, across the system.

The more complex OSI reference model [DZ83] is a generalisation of the
TCP/IP model.

application < presentation < session
< transport < network < datalink < physical

This stack aims to model all possible protocols, rather than just TCP/IP. It
does this by filling out two holes in the TCP/IP model. It adds a presentation

level, to parse data into the form expected by the applications, and a data link

level, to control the physical connections between hosts.
Unix sets a number of variables at the start of each individual user session,

such as the user's home directory, their access privileges, etc. This arrangement
adds in another kind of environment. These session environments are clearly sub-
environments of the computers they are running on, but each application will be
run in a given session environment, so this adds a new level between the host
machine and the individual applications:

application < user session < host < network

Levels such as host and network represent clearly distinguishable, physical
boundaries. The user session level is a more abstract partition.

1.4. Outline of Thesis 19

An abstract order of levels would be more useful, than a concrete set, when

looking at processes that run on a single multi-user machine. In the app < host <
net ordering all the processes would be applications running inside a single host.
A better ordering, to focus on the workings of the user sessions, would be:

user < session < system

with the processes representing the users' applications running at the user level,

processes to handle the control of each session running at the session level and
processes that control how the host runs and communicates with other hosts,

running at the system level.
Introducing levels distinguishes between different uses of concurrency and

communication in a single system and allows us to fine-tune the area restrictions
in a uniform way. These simple extensions give us all the additional expressivity
we need to begin exploring network conventions and local communication.

1.4 Outline of Thesis

The rest of this thesis is devoted to extending the 7r-calculus with local areas and
levels and exploring the system this produces.

After going over some background material and related work in the next

chapter I describe an untyped version of the local area 7r-calculus in Chapter 3.

Having outlined its syntax and semantics, I present a number of examples that
illustrate different aspects of the calculus. I also prove that the semantics given
matches the idea of local areas outlined in this chapter.

However, this untyped calculus relies on several side-conditions in the opera¬

tional semantics which are essentially runtime level checks. So, in Chapter 4, I
show that a suitable type system can provide enough static information to make
most of these checks unnecessary. Chapters 3 and 4 are an expanded version of a

paper that appeared at the High-Level Concurrent Languages workshop: HLCL
00 [CS00].

In Chapter 5 I examine the expressive power of the /a7r-calculus by comparing
it to the 7r-calculus. I find that, perhaps surprisingly, local area communication

20 Chapter 1. Introduction

can be encoded into the 7r-calculus with conditional matching. The encoding
works by replacing communication inside an area with communication on a new

channel created just for that area. As well as sending the original data, an en¬

coded output also sends the channel name. In a way, this is replacing direct
communication between two points with a system that broadcasts packets over

an Ethernet. There is a close match between the behaviour of a process in lair
and its 7r-calculus translation, that I show by way of an operational correspon¬
dence. An earlier version of this encoding was published in the proceedings of
the EXPRESS '01 workshop [CS01],

In Chapter 6, I present an extended model in the /a7r-calculus. I provide a

model of Internet communication based on sockets and TCP over IP [CK74] and
then extend this system with Network Address Translation [EF94].

I then give a model of the File Transfer Protocol (FTP) and show how this
protocol can sometimes fail when used with NAT and how the steps taken to

correct these problems are successful to varying degrees.

My conclusions and suggestions for further work are presented in Chapter
7. One possible new direction would be to extend the /a-zr-calculus with mobile
areas. An equivalence method that encompasses local areas could also be useful.
A logic or a bi-simulation that can be focused at particular areas or levels are

possibilities. It might also be possible to apply the ideas of local areas at levels
to extend other distributed process calculi with similar abilities.

Chapter 2

General Background and Related
work

In the first section, I give details of the process calculus work on which this thesis
builds. Specifically, I give details of CCS and the 7r-calculus. Next, I look at how
the relative descriptive power of process calculi can be understood by encoding
them into each other. Finally, I turn to work which is similar to my own. After

giving a brief overview I focus on two calculi, the Join Calculus and the Seal
Calculus, as particularly relevant.

2.1 Background on Process Calculi

2.1.1 The Calculus of Communicating Systems

Relatively speaking, CCS [Mil89] is one of the earlier theories for concurrent

systems. At the time that this calculus was introduced the semantics of a program
was often taken to be a function from one memory state to another. The idea
was that, given a configuration of a computer's memory, running the program

would have the same effect on that state as applying the function. However, this
model breaks down as soon as more than one program has access to the memory

at the same time.

The idea behind CCS was that concurrent processes could be modelled purely

21

22 Chapter 2. General Background and Related work

in terms of their inputs and outputs, rather than the effect that they had on the
machine on which they ran. To this end the two basic actions of CCS are input
and output. Processes could also branch and be placed in parallel. Names could
be dynamically relabelled and communication on a name could become blocked at
some point. Recursion added the additional computing power needed to handle
complex or persistent systems. This led to the following syntax:

Process P, Q a.P output on name a

a.P input on name a

0 inactive process

P | Q parallel composition
P + Q the summation of P and Q

fix(X = P) recursion
P\a restriction of the name a

P[f] relabelling of the names by the function /
The semantics for these processes is given in Figure 2.1. These rules allow

an input and an output on a channel to propagate through the system until
they meet when the two actions are replaced with a r action representing a

communication. This r action is then passed up and out of the process, indicating
that a communication has taken place. The system then continues to reduce.
The meaning of the recursion fix(X = P) is the least fixed point of the equation
X = P. Generally X will appear in P at least once.

Basic CCS only uses communication to release guards to other communication.
However, the ability to pass data can easily be added by a simple encoding that
makes a new name for every guard that one might wish to pass.

This encoding starts with a set, V, of all the channels used in a process and
another D of all the pieces of data. An output is encoded as a new channel
manufactured from the communication channel indexed with the data passed.
The set of new channel names can be defined as {a^a e V,b € D}. This blows
up the number of channels used in a process from to x #D.

[S(6).PJ =

2.1. Background on Process Calculi 23

IN/OUT_SEM ot.P P

P P'
PARJSEM1

PAR-SEM2

COMM_SEM

SUM_SEM1

SUMJSEM2

RELJ3EM

REC.SEM

P\Q-^P'\Q

Q-^Q'
P\Q^P\Q'

P -A P' Q-^Q
P\Q-^P'\Q'

P-^rP'

P + Q -—>■ P'

Q^Q'
P +Q-^Q'

P-^P'
RES.SEM a £ L

P\L P'

PAP

pi/1 P,

P{/ax(X = P)/Jf } P
fix(X = P) P'

Figure 2.1: Operational semantics for CCS

24 Chapter 2. General Background and Related work

Inputs expand to listen for all possible names that might be sent by these

proxy channels.

[a(x).P] = T,vevav\p{v/x}l

The other encoding rules proliferate these changes. Despite the blow up this
causes in process size, this encoding tells us that the value passing form can

be used as a shorthand with which to write the non-value passing processes.

However, value passing CCS, as this flavour has become known, is usually taken
as the standard.

CCS, along with a similar action based calculus CSP [Hoa85], started an

avalanche of process calculi aimed at exploring different aspects of concurrent
and distributed systems. Its great contribution was to formalize the idea of using
input and output actions to look at the communications of a concurrent system
to define its meaning and to blaze a path for future attempts.

2.1.2 The 7r-calculus

For all its power, CCS had one major drawback. It lacked the ability to evolve.
There was no way for a process to pass data to another process it did not know
about at the start. This makes the modelling of any system with arbitrarily

changing connections, and especially any form of mobility, almost impossible.

The answer was simple: allow channels to carry channel names, not just data

[Mil91, MPW92], So a process can learn an entirely new connection. Restriction
and relabeling were dropped in favour of the ability to create new names. Recur¬
sive definition was replaced with the replication operator !P, which would behave
as an infinite number of copies of P running in parallel.

2.1. Background on Process Calculi 25

Process P, Q ::= ab.P output b on name a

a(x).P input on name a

0 inactive process

P | Q parallel composition
P + Q the summation of P and Q
IP recursion

(vx)P x in P is a new name

The semantics is given in Figure 2.2. P{z/y} denotes the process P with
every occurrence of y replaced with a z, with any necessary rename to avoid
variable capture. Structural Congruence, =, equates processes that have only

syntactic differences. It is defined as the smallest congruence relation containing
the following equations:

P\Q = Q\P (P\Q)\R = P\(Q\R)
P|0 = P a[b).P = a(c).(P{c/b}

P + Q ee Q + P P + 0 = P

(;ux)P = (uy)(P{y/x}) (vx){yy)P = (.vy)(vx)P
(ux)0 = 0

It is standard practice to drop a trailing 0, so ahO, is written as just ab.
The ability to pass channels not only allows systems a much greater degree of
flexibility, it also adds a form of mobile processes. In this abstract setting, it
is possible to look at the location of a process as defined by the communication
channels open to it. So by dropping one channel name and using another for
communication a process can be thought of as having moved.

Milner presents a system for regulating the uses of channels [Mil91]. This
system, known as Sorts, ensures that polyadic channels are always used to send
the same kind of data and, more importantly, the same number of channels. This
avoids the problematic situation where, for instance, one process is transmitting
three names on a channel and another process is trying to receive five.

Each process has a set of subject sorts, which are effectively labels. Each name

is then given a sort that describes its behaviour. Object sorts are sequences of

26 Chapter 2. General Background and Related work

■COMM
(■ ■ ■ + x(y).P) |(- —h xz.Q) —> P{z/y} | Q

P^ P' P-tP'
PAR RES

P\Q^ P' Q {vx)P -4 (vx)P'

Q = P P P' P' = Q'

Q —t Q'
-STRUCT

Figure 2.2: 7r-calculus semantics

sorts and a sorting maps each subjective sort to an objective sort. The idea here
is that each name is given a sort and the sorting will then map to the sorts of the
data carried by that channel. So, to check that a process always passes the right
number of values over each channel you just have to ensure that each input and

output respects the sorting. An additional advantage of using a sorting function
is that a channel can broadcast itself without having to resort to infinite types.

Sorts are just one example of the use of types to structure the "expected" use

of 7r-calculus. Sangiorgi's notion of uniform receptiveness [San97] types the 7r-

calculus to ensure that there will always be a process listening on a given channel
and the listening processes will always treat the input in a uniform way. Dynamic
session types [THK94, GH99] specify the exact types and order of names that will
be sent and received over a channel. Abadi [Aba99] shows how types can be used
to check cryptographic protocols. While Gordon and Jeffrey [GS01] show how to
check authentication in security protocols. A survey paper by Sangiorgi [San99]
gives a good overview of others.

2.1.3 The Asynchronous 7r-calculus

The 7r-calculus has become a very popular tool to explain distributed systems

because it is so expressive. But in one particular aspect, it is too powerful.

2.2. Encoding Between Calculi 27

The most common kind of output signal sent across a network is asynchronous,

meaning that the sender will not know for sure when, or even if, the message has
arrived. Communication in the 7r-calculus is synchronous: as soon as an output

action happens, the process performs the output knows that it must have been
received. This mismatch made the 7r-calculus an inappropriate tool for many

asynchronous systems.

The deceptively simple solution, [ACS98, Bou92, HT91] was to stop the output
action from prefixing any other process. The idea being that if the output process
does not guard another process then no action is triggered by the output action
and so it is undetectable by the sender. Summation was also removed because
it allows a lack of an output action to be detected indirectly by placing it in a

choice i.e. given a + b you could tell that the a had not been transmitted if you
received the b.

In the absence of running mobile processes the simple reduction of the n-

calculus captures asynchronous communication perfectly. It quickly became a

standard calculus on which others would build.

2.2 Encoding Between Calculi

Encodings between two calculi can give us an insight into the exact differences
between them. For instance, the encoding of value passing CCS into plain CCS
mentioned above tells us that in the setting of CCS the ability to pass value adds
no real expressive power. It also shows us that we can think of value passing as

the same as passing a guard or key to the value we wish to pass.

There is no single definition of what is or is not a correct encoding between
calculi. Many of the calculi here are Turing complete and so it would be possible
to code a Turing machine in one calculus and use it to interpret the other. This
would be missing the point as it would not tell us anything about the relative
expressive power of each system. What we seem to lack is a complexity theory
of encodings.

Palamidessi suggests [Pal97] that the kind of encodings that tell us most about

28 Chapter 2. General Background and Related work

process calculi have two key properties. Firstly, they can be applied composition-
ally over the syntax of the calculus. This makes it impossible to use a brute
force approach, such as making an interpreter for one calculus in the other, or

computing every possible value and using the process you wish to encode as a

lookup value.

The second property is that the encoding preserves some form of semantics
from each system:

HP) 1 = <?(I P 1)

where a is a sensible map that connects a process to a set of meanings. What

exactly constitutes a sensible semantic map is left to the reader.

Palamidessi goes on to examine the difference between synchronous and asyn¬

chronous 7r-calculus. The latter can simulate both input and output guarded
choice but Palamidessi shows that it is impossible to simulate a choice function
that can handle both together i.e. mixed choice. As a corollary, she also shows
that the 7r-calculus cannot be encoded in CCS.

This negative result is proved using complexity theory, to show that in a

symmetric network it is impossible to solve the leader election problem in the

asynchronous 7r-calculus whereas it is possible in the synchronous 7r-calculus.
This tells us that the 7r-calculus really is more expressive than its asynchronous
variant. This means that we must take special care when using any result from
the 7r-calculus to talk about distributed systems that use asynchronous communi¬
cation. In fact, a lot of work on process calculi has dropped synchronous commu¬

nication altogether. Another possible conclusion is that mixed choice and truly

synchronous communication would be hard to implement on a real life network.
This has proved to be the case.

Sangiorgi [San93] defined the Higher Order 7r-calculus as a 7r-calculus variant
in which static processes could be passed over channels in the same way as names.

2.2. Encoding Between Calculi 29

Process P, Q ::= a(b).P output names on a

a(P).P output processes on a

a(x).P input names on a

a(X).P input processes on a

0 inactive process

P | Q parallel composition
P + Q the summation of P and Q

(,vx)P x in P is a new name

X (x) a process place holder
Once a process is passed over a channel it is set running. There is no way

that a running process could be captured and sent to a different location. So,
any process that is to be moved in this way must be predefined when the process

starts. A possible reduction in this system could be:

Q\d(P) \a(X).X -+Q\P

This Higher Order message passing can be encoded back into the basic 7r-

calculus by using a system of guards for each process that may be sent. Basically,
each process that might be passed in the Higher Order setting is replaced by a

process guarded with a token that can be used to set it running. The token is
then passed instead of the process.

The key rules from the encoding are:

{d(Q).Pj = {vm){a{m).\P\ \ \m{b).Q{b))
HX).Pj = a(x).{Pj
[X(a)J = x(a)

where x is a name unique to X. So, the process given above encodes to:

Q\(um)(a(m) \\m().P()) \a(x).x() ->• Q\(ism)(lm().P() | m())
-> Q\{vm){\m().P{) \P)

This rather neat encapsulation ofmobility relies on the fact that processes can
be run anywhere in the system with the same results. This uniform reduction

30 Chapter 2. General Background and Related work

environment is a direct result of the 7r-calculus approach to modelling location

by connections only.
Vivas and Dam [VD98] investigate the more complicated case, where not all

parts of a process offer exactly the same reduction environment. To achieve this

they reintroduce the CCS restriction on a name, or blocking operator, into the
7r-calculus.

Process P, Q ::= ab.P output names on a

aP.P output processes on a

a(x).P input names on a

a(X).P input processes on a

0 inactive process

P | Q parallel composition
P + Q the Summation of P and Q

P\a a blocked in P
[a = b\P matching, reduce if a = b
[a ^ b\P mismatching, reduce if a ^ b
X(x) an agent variable

The operator blocks communication on the single channel a without binding
it. So, if a process is sent from inside a part of the process that is blocked on a

name, to outside that blocking operator, it will be able to receive different inputs
and outputs. This breaks Sangiorgi's reduction of the higher-order 7r-calculus to
the first-order 7r-caicuius.

Matching and mismatching rules provide equality tests on names:

P P'

b\P P'
-{x = y)

P P'

7L-b]P P'
ix ^ y)

Vivas and Dam's encoding comes in two stages. The first removes the higher
order processes from the calculus and the second removes the blocking operator.
The second stage is the simpler of the two, so should be looked at first. The

blocking operators are removed one at a time by replacing communication on a

name inside a blocked area with communication on a new name created just for

2.2. Encoding Between Calculi 31

that blocked area. Of course, it is impossible to tell if a given variable will or will
not be instantiated to a name that is blocked. So, every encoded action is given
the option of using its original name or using the new name of each restriction.
Match and mismatch guards then ensure that the right one reduces. This effec¬

tively doubles each term under a restriction and so leads to an exponential blow
up in the size of the process.

Once the encoding meets a blocking operator, it carries two names. These are

the name of the channel being blocked and the name of the channel that is used to
replace it. Hence, there are two mutually recursive encodings, [_] which removes

all blocking operators and [-](«;,z) which replaces w for the blocked name z.

{xy-P\w,z) = [x = z}wy.{P\w,z) + [x ± z\xy.{P\[WtZ)
lx(y)-Pl(w,z) = [x = z]w{y')\P{y'/y}\WtZ) P[x^ z\x(y')\P{y'/y}\WtZ)

Following Sangiorgi's lead, a server process is spun off for each process that
may be sent. The sending of a process is then replaced by sending a token to
that process. Here Sangiorgi's encoding breaks down because in the presence of

operators processes must reduce in the right place, not just at the right time.
Vivas and Dam's solution is much more ingenious.

When the token is used, the spawning process actually sends a syntactic copy

of the process being sent. A given name represents which piece of syntax is being
sent, c for a parallel composition, i for an input etc. This is followed by the names

needed to construct the process at the new location.

[P\z] = V W.[P|(W)Z) w ^ names(P)

\v x.P\w,z) = V x'\P{x'/x}](u,)Z)
[■P\®](W,«) = [[^VIIk*)

y' £ fn(v y.P) U {w,z}
y' fn{u x.P) U {w, z}

32 Chapter 2. General Background and Related work

For instance:

sendvx(y).P = vi.vx.v(y).sendv(P)
or

sendv{P\ | Pi) = vc.vv\.vv2-sendvi(P\) \ sendv\(P\)

A receiving process then rebuilds the mobile process in the right place. Effec¬
tively, this achieves mobility by sending the source code of a process that is then
compiled and run at the new location.

Nestmann and Pierce give a good overview of what makes for a good encoding
in their work on deconstructing choice [NP96]. Among many examples, Fournet
and others have implemented Mobile Ambients in the JoCaml languages [FLSOO];
this translates one notion of distributed areas into another. Their focus is on pro¬

viding a basis for an implementation of Mobile Ambients; so, much attention is
paid to making it run efficiently. Sangiorgi describes in great detail a rather differ¬
ent encoding of locations in order to express non-interleaving semantics [San96].

2.3 Related Work

There are a range of projects addressing locations in the 7r-calculus, with some

similarities to local areas. On the whole their aims are complementary: for ex¬

ample, Sangiorgi investigates non-interleaving semantics and causality using lo¬
cations [San96], and Amadio models local failure in distributed systems [Ama99j.
Neither of these limit the range of communication.

Systems proposed for mobile agents often use locations to curtail communica¬
tion very strictly: agents may interact only with agents at the same location, and
must move to talk to others. This is the case for Cardelli and Gordon's Mobile

Ambients [CG98] where Ambients are the basic building blocks. Ambients may

make subjective moves to their parent Ambient or to a child Ambient or may
dissolve their boundaries and merge with the Ambient above. So the movement
of Ambients becomes the basic semantic step, rather than a communication as in
the 7r-calculus. This also means that a movement to a remote location must be

2.3. Related Work 33

negotiated step by step. Boxed Ambients [BCC01] replaces the ability to merge

with another Ambient with communications that may pass to a parent or child
location.

Dn of Hennessy and Riely [HR98b, HR98a] extends the 7r-calculus with lo¬
cations and processes that can migrate between them. A type system is used
to prevent agents accessing resources before they are granted the capability to
do so. Also with a security theme, Control Flow Analysis, [HVYOO, BDNN98]
prevents communication on high security names, that might be picked up, even

indirectly, on low security level names. Similarly, the Box-7r of Sewell and Vitek

[SVOO, SV99] examines causality dependencies with explicit locations.
Cardelli, Ghelli and Gordon take a different approach to limiting communi¬

cation with their notion of name groups [CGGOO]. Ingeniously, introducing these
into the type system allows one to check statically that a process never passes

out certain names. In our system, by contrast, names may be passed anywhere
— only their action is limited.

The word local is often used with a different meaning to the way in which I use
it here. Sewell [Sew98] uses local to describe a channel that is restricted to a single
space and Merro [MerOO] uses local to mean the ability to input names is restricted
to a single space. This is a very heavy-handed way of forcing communications
to stay in a given space and rules out many of the aspects I am most interested
in, such as use of local resources on predefined names handling connections on

ports. Sewell's approach is to type channels as global or local. Global channels
can be used to communicate between areas whereas local channels are restricted

to a predefined location. This approach is a two-level version of the /o7r-calculus

but, although a local name may be globally known, any process that attempts to

use it outside its predefined area will not type check.

2.3.1 The Join Calculus

The Join Calculus [FG96] allows one to state exactly where communication on

each channel is handled. Instead of matching input and output actions, an output
action is matched with a definition which describes what should happen when an

34 Chapter 2. General Background and Related work

output on a given channel is observed. These definitions are themselves part of
the process.

Names: x v

Processes: P.: — x{v\...vn) \ def D in P \ (P|P)
Join Patterns: J:: = x(v\...vn) | {J\J)
Definitions: Dr. = J > P \ D A D

This is an extension of the more basic chemical framework put forward by

Berry and Boudol [BB92],
Reductions take place in the presences of an environment which is used to

store the current reduction definitions. The process P running with definitions D
is written asfihP. The two key semantic rules allow definitions to be put into
the environment and for any pattern of outputs to be replaced by the appropriate

process.

str-def P def D in P ^ Do P Po¬
red JoPP Jo —>■ J > P P Po

where o is an appropriate substitution that will match the output data and avoid
variable capture. For example, passing on a message from x to y could be done
with the following definition:

def x(u) t> y(u)in P

The Distributed Join Calculus [FGL+96], extends the basic Join Calculus
with explicit locations and models of location failure and migration. Locations
are separated with a || symbol and each turnstile is tagged with a location name.

Term ::= D PQ P process P running with definitions D at a
Term || Term multiple locations in parallel

Syntactically, there is only one level of locations but a nested tree structure

is built up using compound names.

2.3. Related Work 35

For instance, a location name h with two sub-locations a and b would be
written as:

Dh \~hPh || Da \~ha Pa || Db \~hb Pb

A locations construct is added to the definitions to allow locations to migrate
and new locations to be spawned. Migration is triggered by a go command.
Failure is triggered by a halt action that marks a location construct to stop it
from reducing.

This system requires all channels to be located: while anyone may transmit

data, only a chosen process at a single site can receive. Remote communication
is handled by moving a message to the unique location where that message is
defined.

comm Da Fa x(v) || Db F& P —> Da ha 0 11 Db F& x(v) \P (x defined in Db)

This system is excellent when each location is offering unique resources to
a globally system but is inappropriate when each location can offer a different
resource on the same channel. Schmitt addresses this problem [Sch02] by adding
dynamically bound channels to the Distributed Join Calculus.

Schmitt's aim is very similar to my own. One of the stated motivations of
his work is to be able to reason about local libraries. Channels are split into two
distinct groups, static channels, that behave as the channels in the Distributed
Join Calculus and dynamic channels that may be defined at a number of different
locations and automatically moved to and matched with the nearest definition.

So a print channel, for example, could be defined at locations a and b. The
process go a9; print (uHello")] go bip] print ("World") would first move to a sub-
location of location a and then send "Flello" to the print function of the location a.

It would then move to a sub-location of b and send "World" to 6's print function.
Each process term carries around a set of imported dynamic names, a set of

locally defined dynamic names, a lookup function that maps dynamic names to
their locations, and the name of the current location. The reduction of a message

now becomes a three-phase process. First, the lookup function is used to find the

36 Chapter 2. General Background and Related work

location of the nearest definition. The message is then tagged with this location.
In the second step, a message that is tagged with a location is moved to that
location. Finally, the message is reduced using the local definitions.

One of the principal differences between dynamic channels in the Join Calculus
and the local areas presented here is that local areas give you a uniform way to

declare how channels will be used at a remote location. As the Join Calculus

does not use a uniform system, the semantics becomes somewhat heavy handed
due to the need to maintain up to date lookup functions of all dynamic channels.

Schmitt also presents a type system for dynamic channels that ensures there is

always a definition ready to reduce any dynamic message. This typing of channels
to be "Safe" works well in a situation where, for instance, you wish to ensure that
all hosts are able to offer all functions of a local library. It is not so helpful if

you want to be able to consider systems where a process may stop listening on a

name, say, to model a router that intermittently fails. With five different kinds
of typing judgment and seventeen rules, the type system is quite complex.

The Join Calculus has been extended into a language: JoCaml [CF99]. This
language provides a useful test bed to see how the ideas developed in the Join
Calculus work out in real life.

2.3.2 The Seal Calculus

The Seal Calculus [CV99, CGN01] introduces a seal as an area of computation.
A seal is a named group of processes and possibly other seals. Communication is
limited with each seal except when an action is explicitly tagged as communicating
with its parent "f" or a named child Seal.

2.3. Related Work 37

Process P, Q ::= a.P action

1 0 inactive process

1 P\Q parallel composition

1 (i/ x).P restriction

1 \P replication

1 x[P] seal

1 x[X\ abstract seal

Actions a : = xn{y) name output

1 xn(Xy) name input

1 xn{y} seal send

1 xn{y) seal receive

| opennx portal open

Locations n ::= x child seal names x

t the parent seal
* local.

Portals are a security mechanism used to limit communication between seals.
To perform a non-local communication xn(y) a portal must be explicitly opened
by the action opennx. Seals can be objectively moved to a parent or child location
by input and output actions distinguished with curly brackets.

In this model of communication, just as in Mobile Ambients, communication
is very fine grained. To communicate with a remote location it is necessary to

plot a course through an arbitrary number of named Seals. But whereas Mobile
Ambients takes mobility to be the basic semantic step, the Seal calculus retains
7T style communications.

The semantics given in [CV99] takes advantage of this small step style and
uses a reduction rule semantics, as opposed to a propagating action semantics
used by CCS.

The Seal Calculus does not allow any level of abstraction when it comes to

using channels. If we wish to use a channel name we must know and state exactly
how it is going to be used by tagging the communication with a location. This

38 Chapter 2. General Background and Related work

puts a considerable burden on the user. It is not enough to give a process a

channel and then to use that channel to access resources. It is necessary to know
if that channel is to be used to communicate with a parent process or a child

process, and if it is a child process, it must know the name of that process. It

might also be necessary to open a portal to allow communication.
While Sewell's global/local calculus [Sew98] allowed a channel to be uniformly

restricted across any system but with only one level of areas, seals allow for
many levels of nested environments but provides no way uniformly to define the
treatment of a name.

Chapter 3

The Basic Local Area 7r-calculus

This chapter describes the untyped local area 7r-calculus. After outlining its

syntax and semantics I present in Section 3.4 a number of examples that illustrate
different aspects of the calculus. These examples will be used to explore other
features of the calculus in later chapters. In the final section I prove that, in

keeping with the view of local areas outlined in the introduction, communication
on a channel can never transgress that channel's predefined area.

3.1 Syntax

The calculus is built around two classes of identifiers:

channels a, b, c, x, y, query, reply,... G Chan

and levels £, m, app, host, net,... G Level.

Channel names are drawn from a countably infinite supply, Chan. Syntactically,
they behave exactly as in the 7r-calculus. Levels are rather more constrained: they
assume a prior choice of some ordered set Level. The examples in this chapter
all use app < host < net. In the formal description of the calculus, take £ and m

as metavariables for these levels.

Processes are given by the following syntax, based on the asynchronous polyadic

39

40 Chapter 3. The Basic Local Area ir-calculus

7r-calculus [ACS98, Bou92, HT91].

Process P,Q ::= 0 inactive process

P | Q parallel composition
a(b) output tuple
a(b).P input tuple
\a(b).P replicated input

£[P\ local area at level £
va@£.P fresh channel a at level £

Most of these are entirely standard. The last two constructions are particular
to the local area 7r-calculus: thus £[P] represents a process P running in a local
area at level £, and the name binding va@£.P specifies at which level channel a

operates. Areas, like processes, are anonymous; this contrasts with systems for
locations, which are usually tagged with identifiers [CG98, FGL+96]. To ease the
example processes along, output tuples may contain strings and integers as well
as names.

Definition 1. An agent is any process of the form £[P]~, that is, a single enclosed
area.

Channel names may be bound or free in any process. The binding prefixes are as

usual the input prefixes a(b), \a(b) and restriction va@£. The set of free names of
process P is written as fn{P).

Definition 2. Process terms are identified up to a structural congruence
defined as the smallest congruence relation containing the following equations:

a(b).P = a(c).P{C/b}

\a(b).P = \a(c).P{c/b}

P\0 = P

P\Q = Q\P

(P\Q)\R = P\(Q\R)ua@£.P = vb@£.P{b/a}

ua@£. 0 = 0

£[isa@m.P] = va@m.£[P]

va@£.vb@m.P = vb@m.ua@£.P a ^ b

(ua@£.P) | Q = va@£.(P \ Q) a ^ fn(Q)

3.2. Scope and Areas 41

Here P{c/b} stands for capture-avoiding simultaneous substitution. This con¬

gruence allows for alpha-conversion of bound names, algebraic properties of par¬
allel composition '|and flexible scope for channel names. This last point means
that we can freely expand and contract the scope of any ZA-binding, provided of
course that it always includes every use of the name it binds.

3.2 Scope and Areas

One point to note in the structural congruence above is the equation t[va@m.P] =
ua@m.(£[P]), which commutes name binding and area boundaries. A consequence

of this is that the scope of a channel name, determined by z/-binding, is quite

independent of the layout of areas, given by £[—]. Scope determines where a

name is known, and this will change as a process evolves: areas determine how a

name can be used, and these have a fixed structure.

For a process description to be meaningful, this fixed structure of nested areas

must accord with the predetermined ordering of levels. For example, a net may
contain a host, but not vice versa; similarly a host cannot contain another host.
Write <i for the one-step relation in the order of levels. Every nested area must

be <i-below the one above.

Definition 3. The top-level agents of a process P are all the sub-terms m[Q\
not themselves contained in any intermediate area £[—]. Formally, define a set of
agents, tla(P) by induction on the syntax of P.

tla(0) =f {} tla{ P\Q) = tla(P) U tla{ Q)
tla{ a(b)) d= {} tla(a{h).P) d= tla(P)

tla{ \a(b).P) =f tla{ P) tla{ £[P}) = {£[P}}
tla{ va@£.P) =f tla(P)

For example, in the process a(b) \ m[Q] \ a(b).m[R] the top-level agents are m[Q\
and m[R],
Definition 4. A process P is well-formed at level i if for every top-level agent m[Q\
in P it is true that m <i £, and Q is itself well-formed at level m, recursively. An

agent £[P] is well-formed if P is well-formed at level £.

42 Chapter 3. The Basic Local Area n-calculus

It is now possible to formalize the distinction between the scope of a name

and its area of operation.

Definition 5. Given some occurrence of a mbound channel name a in a well-

formed process P, as the subject of some action a(—), a(—), or !a(—), the scope

of a is the enclosing z^-binding va@£.(—).

Definition 6. Given some occurrence of a bound channel name a of level I, in
a well-formed process P, as the subject of some action a(—), a(—), or !a(—), the
local area of this occurrence of a is the enclosing level £ area £[—\.

A single name may have several disjoint local areas within its scope. It is
also possible for a name to occur outside any local area of the right level; in this
case it can only be treated as data, not used for communication. The operational

semantics, and later the proposed type system, enforces this behaviour.

3.3 Operational Semantics

I give the local area 7r-calculus a late-binding, small-step operational semantics.
Much of this is standard from the regular 7r-calculus [MPW92]; the only refine¬
ment here is to make sure that communication on any channel is contained within
the appropriate local area.

Just what area is appropriate depends on the operating level of every channel,
and I capture that information in a level environment A: a finite partial map from
channel names to levels. I write level environments using the a@£ notation from
name binding. For example:

A = {pike@net, finger@host, daytime@host, print@host}

or, more simply:

A = pike@net] finger, daytime, print@host

This declares that pike is a channel used for remote communication over the

net, while finger, daytime and print, even when globally known, are restricted to

host-level interaction.

3.3. Operational Semantics 43

Definition 7. Given some level environment A, write A P to denote that

process P is well-formed at level i with fn(P) C dom(A).

When the process is in fact a single agent the annotation on the turnstile can

be omitted and written as A h f[P]
The operational semantics is given as an inductively defined relation on well-

formed processes, indexed by their level I and environment A. Transitions take
the form:

Ahf P^Q
where Ah P and a is one of the following.

Transition a ::= (vd@n)a(b) output

a(b) input
| t silent internal action

where (ud@n) is the set of bound names in the output action. When this is empty
—*

I will write the action as: a(b).
Transitions themselves have free and bound names, given by functions fn(a)

and bn(a) respectively, where

fn((ud@n)a(b)) = {a} U b\d fn{a(b)) = {a}

bn{{vd©n)d(j))) — d bn(a(b)) = b.

fn(r) = bn(r) — 0

Valid transitions are derived using the rules of Figure 3.1. I make the following
observations of these rules and the side-conditions attached to them.

• Active use of the structural congruence '=' is essential to make full use of
the rules: a process term may need to be rearranged before it can make

progress. For example, there is no symmetric form for the PAFLSEM rule

(and no need for one).

• In order to communicate a bound name to a process outside its original

binding it is either necessary to use structural congruence to expand the

scope of communicated names to cover both sender and recipient or to use

the OPEN_SEM rule to add the binder into the output action.

44 Chapter 3. The Basic Local Area n-calculus

0UTJ3EM A l~£ a(b) 0 i < A(a)

IN_SEM A \-t a(b).P P i < A (a) b D dom(A) = 0

IN!_SEM
a(6)A he !a(6).P-HP|!a(6).P £<A (a) 6nrfom(A) =

PARJSEM
A l~i P-^P'

Ah p|q p#|g

COMMJ3EM
A h< p
A 1-^ P | Q vd@n.P' | g'{c/6}

BIND.SEM
Ajflimh, P-^P'

A K va@m.P —> ua@m.P'
a <£ fh(a)

OPENJ3EM
A !_ D T<Li@n)a(b) ,A; c@m hi P —>• P

A K vc@m.P (vdMn,c@m)a(b)
c ^ a c (z b \ dom(A)

AREA.SEM
Ah P-^P'

A hm £[P] t[P']

if a is a(b) or a(b)
then m < A(a)

STRUC_SEM
P'==P AhPAg Q = Q'

Ah P' Q'

Figure 3.1: Operational semantics for the local area 7r-calculus

3.4. Examples 45

• Late binding is enforced by the side-condition b D dom(A) = 0 on the in¬

put rules. This ensures that input names are chosen fresh, ready for the
substitution Q{c/b} in the COMM rule.

All of these comments are simple (and well-known) tidying of the standard ix-

calculus. The following are specific to local areas:

• The side-condition i < A (a) on the OUT_SEM, IN_SEM and INLSEM
rules prevent channels being read or written at too high a level, for example,

trying to transmit on an application-level name in a host-level process. Any
process that attempts this becomes stuck.

• The side-condition m < A (a) on the AREA_SEM rule prevents communi¬
cations escaping from their local area. Notice that necessarily I <j m here,
because of the requirement that the left-hand side l[P] be well-formed at
level m.

3.4 Examples

In this section, I present three examples that illustrate the use of the local area
7r-calculus. In the first one, I fill out the Internet server daemon from the intro¬

duction. The second example presents a simple, agent-style load management

system. The third illustrates how a cache can be added to a system by replacing
a global call for a resource with a local call to a copy of the same data.

3.4.1 Internet Server Daemon

In the introduction we met a small model of Internet service provision. Figure 3.2
formulates this system as a term of the local area calculus. Recall that the host

Carp wishes to contact a Finger daemon running on host Pike, through a general

46 Chapter 3. The Basic Local Area n-calculus

Carp = host[vc@net. (pike (finger, c) \ c(x).print(x))\
Pike = host[Inet \ Finger \ Daytime]

Inet — \pike(s,r).s(r)

Finger = \finger(y).y("PikeUsers")

Daytime = \daytime(z).z("PikeDate")

A = pike@net\ finger, daytime, print©host

A \~net Carp | Pike

Figure 3.2: Example of processes using local areas: an Internet server dasmon

Inet daemon. We can now apply the operational semantics to see this in action.

A \~net (Carp \ Pike) = host[vc@net.(pike(ftnger,c)\c(x).print(x))]

|host[Inet \ Finger \ Daytime]
extend scope

of vc@net

expand Inet

communication

on pike@net

communication

on finger@host

vc@net. host[pike(finger,c) \c{x).print{x)\

|host[Inet | Finger \ Daytime]
= vc@net. host[pike(finger, c) \ c(x).print(x)]

\host[\pike(s,r).s(r) \ Finger \ Daytime]

vc@net. host[c(x).print(x)]

|host[finger(c) \ Inet | Finger \ Daytime]

expand Finger = ucmnet. host[c(x).print(x)]

|host[finger(c) | Inet \ \finger(y).y("PikeUsers")

| Daytime]

vc@net. host[c(x).print(x)]

|host[Inet | c("PikeUsers") | Finger | Daytime]

3.4. Examples 47

Figure 3.3: The communications made by the Internet Server Daemon

communication
—> vc@net. host[print("PikeUsers")]

on c@net

|host[Inet \ Finger | Daytime)

The areas of these reductions are illustrated in Figure 3.3. After a sequence of
internal communications at the net and host level, the first host Carp is ready to

print the information "PikeUsers" and the host Pike is restored to its original
configuration. To aid this reduction, structural congruence was used to extend
the scope of the new name c, an alternative to this would have been to use the
OPEN_SEM rules and to let the new name declaration ride up on the output

action.

Even this small example exhibits interesting scalability.

48 Chapter 3. The Basic Local Area n-calculus

Main = app[vc@host.(load(c) \c(y).link(z).print(y/z))]
Probe = app[vc@host.(load(c) | c(w).link(w))]
Load = app[\load(x).x(LocalLoad)]

A = load&host, link@net, print@host

A Tnet host[Main \ Load] \ host[Probe \ Load]

Figure 3.4: Example of processes using local areas: load management agents

• Pike can support multiple simultaneous finger or daytime requests, because

freshly-created channels like c provide private communication links.

• The system can support Finger and Daytime servers on several hosts, with
exactly the same agent code and protocol, because the finger and daytime
names are known globally but communicate locally.

3.4.2 Load Management System

One of the original motivations of the local area 7r-calculus was to provide a

dialect with which to explore agent systems. Figure 3.4 presents a very simple
model of an agent-style load management system. Two hosts both carry a load-
monitoring agent Load, which will report the current system load to any other
agent on the same host. A Main program on one host wants to compare the load
on the two machines, and does this using a Probe agent with which it shares a

channel link.

The processes execute with the following result:

A \~net host[Main\ Load] \host[Probe\ Load] —host[print(k) \ Load] | host[Load\

where k is the numerical ratio of the load on the two hosts. Output print (k) is
the residue of the Main agent, and the Probe is discharged entirely.

3.4. Examples 49

One purpose of a system arranged like this is the simplifications it allows in
the Load, agent:

• The two Load agents are actually identical: no parameters, no distinguish¬
ing identifiers.

• Both are addressed using the same globally-known channel name load.

• They only require host-level communication capabilities, and can operate

independently of firewalls or authentication.

These are the kind of advantages put forward for agent-based programming: the

example shows how the local area 7r-calculus can represent them. Of course, they
really take off when agents become mobile, but we can begin to evaluate their
properties even in static systems like these.

3.4.3 Data Caching

Accessing remote data can be a time consuming and even costly affair. So it is
common practice to keep a local copy of frequently requested information and

provide the local copy in response to a request for remote data. This is done in
most web browsers where the last few pages viewed are stored on the local hard
disk and can subsequently be loaded from the disk hence avoiding an unnecessary

download.

Figure 3.5 gives a model of a network in which data is not cached. Here
we have three hosts: Carp, Pike and Trout all of which hold a string of data

"carpdata", "pikedata" and Citroutdata" respectively. Each host will listen for
a request from anywhere in the entire system and then send a copy of the data
over the channel requested. This is done by the Forward applications.

To reduce the number of network level communications I add a cache for each

piece of data at each host. These new applications will store local copies of the
data pages from the other hosts and after an arbitrary time fetch a new copy of
the data.

The key change is to assign the channels on which data is requested the host
level instead of the net level. This single change is enough to ensure that any

50 Chapter 3. The Basic Local Area ir-calculus

Forward(chn, data) = app[\chn(n).n(data)]

Carp = host[Forward(getcarpdata, "carpdata") |...]
Pike = host[Forward(getpikedata, "pikedata") \...]
Trout = host[Forward(gettroutdata, 'froutdata") \..

A = getcarpdata, getpikedata, gettroutdata@net

A hnej Carp | Pike \ Trout

Figure 3.5: Example of processes passing data without caching it

processes running inside the host will seamlessly start to use the cached data.
Three new channels are introduced to handle the communication between hosts,
which I have called pike, carp and trout.

The cache process is parameterized on the name it uses to fetch data and
the name on which it receives requests. The cache uses a private name, cache,
to store the cached data. The update channel signals the process to update the
cache.

Cache(get, offer) = app[vupdate, cache@app.(update \ cache(data)
| \update.um@net.
get(m) \ m(data).(cache(f).cache(data) \ update))

| \offer(n).cache(data).(h(data) \ cache(data)))

In this system each host starts off with a cache for all the data it might
ever need. A more sophisticated system could dynamically create these caches
as needed. Each host must also make copies of its local data available to these
caches. This is done with the following link process.

Link (remote, local) = app[\remote(n)Mm@host.(local(m) \ m(data) .n(m))\

3.4. Examples 51

CarpCached =host[Cache(pike, getpikedata) \ Cache(trout, gettroutdata)

| Link (carp, getcarpdata)

| Foruiard(getcarpdata, "carpdata") |...]
Pikecached =host[Cache(carp, getcarpdata) \ Cache(trout, gettroutdata)

| Link(pike, getpikedata)

| Forward (getpikedata, "pikedata ") |...]
Troutcached =host[Cache(pike, getpikedata) \ Cache(carp, getcarpdata)

| Link(trout, gettroutdata)

| Forward(gettroutdata, litroutdata") |...]

Cache(get, offer) = app[vupdate, cache@app.(update | cache(data)
| \update.vm@net.
get(m) \ m(data).(cache(-).cache(data) | update))

| \offer(n).cache(data).(n(data) \ cache(data))]

Link (remote, local) = app[\remote(n).um@host. (local (m) \ m(data) .n(m))\

A = getcarpdata, getpikedata, gettroutdata@host ; carp, pike, trout@net

A Enet Carpcached | Pikecached | Troutcached

Figure 3.6: A system that caches data

/v
Uii

52 Chapter 3. The Basic Local Area ir-calculus

The final system is given in Figure 3.6. I now have a system in which the
data pages are called on the same channels from anywhere in the network and
if a local copy of the data exists it will be provided and the local copy will be

updated periodically.

3.5 Correctness of the Untyped Semantics
In this section I show that the operational semantics of Figure 3.1 does success¬

fully capture the intuition behind areas and levels: areas retain their structure
over transitions, and actions on a channel are never observed above their operat¬

ing level.

Proposition 8. If we can derive the transition AFP -—)■ Q then

• the process Q is well-formed at level £ with fn(Q) C dom(A) U bn(a);

• if the transition a is (ud@n)a(b) or a(b) then £ < A (a).

Proof. By structural induction on the derivation of A \~n P Q.
Base Cases:

• OUT_SEM rule: the derivation is of the form A a(b) 0. The
process 0 contains no agents and so is well formed at any level. fn(0) = {}
therefore is trivially a subset of dom(A) U bn(a) and £ < A (a) follows as a

side condition of OUT_SEM.

• IN_SEM rule: P = a(b).P' for some P'. The derivation is of the form
A \~i a(b).P' P'. It can be clearly seen, that P and P' have the same

set of top level agents and are at the same level. So P being well formed at

level £ is enough to tell us that P' is also well formed.

b are free names in P' but are bound in P, it is also possible that there are

no other references to a in P' therefore:

fn(P') U {a} = fn(P) U {&}
and so fn(P') C fn(P) U {6}

3.5. Correctness of the Untyped Semantics 53

We know that the free names of P are all in the domain of A because P is

well formed by A and we also know that bn(a(b)) = b. So:

fn(P') C dom(A) U bn(a).

Again £ < A(a) follows as a side condition of the reduction rule.

• INLSEM rule: P = la(b).P' for some P' and the derivation is of the form
A hz \a(b).P' P' | la(b).P'. As before the top level agents of P' are
exactly the top level agents of P. Therefore P' is well formed at level i.
As fn(a(b).P) = fn(\a(b).P) and bn(a(b).P) = bn(\a(b).P) the free names

condition follows in the same way as the IN_SEM case. Also as above:
£ < A (a) follows from the side condition on the reduction rule.

The Step cases.

• PAR_SEM rule: P = R\S. The tla(R) C tla(P) and tla(S) C tla(P)
therefore P being well formed is enough to tell us that R and S are well
formed. The final derivation step takes the form:

Ah, R-^R'
Ah, R\S ~^R'\S

Therefore, by the induction hypothesis, R' is well formed at level £, so,

R' | S is also well formed at level £. The induction hypothesis also tells us

that fn(R') C dom(A) U bn(a). As P is well formed in the environment
A we know that fn(P) = fn(R) U fn(S) C dom{A) and by dropping the
free names of R we can also see that fn(S) C dom(A). Combining these
inequalities we get fn(R' \ S) = fn(R') U fn(S) C dom(A) U bn{oi).

If the action a is an input or output then £ < A (a) will follow from the
induction hypothesis.

• COMM_SEM rule: P = R \ S.

The same argument as above implies that R and S are well formed at level
£. The final derivation step takes the form:

Chapter 3. The Basic Local Area n-calculus

A h< R '"fry m AI-, s s-

i21 5 vd@n.R! \ S'{c/b}

Therefore by the induction hypothesis R''k and S' are well formed at level
I. Observing that well formedness is preserved under the substitution of
names with the same level and when added a v prefixing, we can see that

vd@n.R'\S' {c/b} is well formed at level t.

The induction hypothesis tells us that:

fn(R') C dom(h) U bn((vd@n)d(c)) = dom(A) U d

and

fn(S') C dom(A) U bn(a(b)) = dom(A) U {b}

As c are free names of R and R is well formed, we know that c must be in
the domain of A. So, therefore fn(S'{c/b}) C dom(L) and fn(R'\S'{c/b}) C
dom(A)U{d}. From which we can conclude :fn(vd@n.R!\S'{c/b}) C dom(A).

• BIND_SEM rule: P = va@m.R and as above R is well formed at level t.

The final derivation step takes the form:

A; a@m h R R'
A h va@m.R va@m.R'

By the induction hypothesis R! is well formed at level t so va@m.R! is also
well formed. The induction hypotheses tells us that fn(R') C dom(A;a@m)U
bn(a).

Correctness of the Untyped Semantics 55

Therefore:

fn{va@m.R') U {a} = fn(R')
C dom(A; a@m) U bn(a)
= dom(A) U {a} U bn(a)
C dom(A) U bn(a)

AREAJ3EM rule: P = m[R\. Here, P is well formed at level i therefore
m <1 i and R is itself well-formed at level to. The final derivation step

takes the form:

A \~m R-^R!
A \~£ m[R\ m[R']

By the induction hypothesis R' is well formed at level to and as to <1 t we
can conclude that m[R'] is well formed at level i.

The free names of m[R] are the same as the free names of R and the induc¬
tion hypothesis tells us that the free names of R are a subset of the domain
of A and the names bound by the action. So clearly m[R] C dom(A)Ubn(a).

Finally we can observe that the side condition of the AREA.SEM rule
enforces that if a is a(b) or a(b) then t < A (a).

OPEN.SEM rule:

. (ud@n)a(b) .

A; C@TO \~e P 4 P'
a | D ("d@fi,c@m)a(b) ,A \-e vc@m.P —y P

with the side conditions c^a c £ 6\ dom(A).

The well formedness of P' follows from the induction hypothesis. It also
follows form the induction hypothesis that t < A; c@m(a) and as the side
condition guarantees c^awe can conclude that I < A (a). Finally:

fn(P') C dom(A] c@m) U bn((vd@n)a(b))
C dom(A) U {c} U dU bn(a(b))
C dom(A) U{d,c}U bn(a(b))
C dom(A) U bn((ud@n, c@m)a(b))

56 Chapter 3. The Basic Local Area ix-calculus

• STRUC-SEM rule:

P' = P A hP'AQ' Q = Q'
A he P Q

If A he P Q by this rule we know that there must exist some Q' and P'
such that P' = P, Q = Q' and A he P' Q'. Therefore, by the induction

hypothesis we know that:

— the process Q' is well-formed at level £ with fn(Q') C dom(A) U bn(a)~,
— if the transition a is (ud@n)a(b} or a(b) then £ < A (a).

Noting that structural congruence does not change the levels or the free
names of a process we can further concluded that:

— the process Q is well-formed at level £ with fn(Q) C dom(A) U bn(a).

□

My first theorem states that after any number of internal communications a well
formed process will still restrict a communication to its local area and will not
allow channels to be used outside their areas.

Theorem 9. If we can derive the sequence of transitions

A ht P Px ^ Pk Q

then

• the process Q is well-formed at level £;

• if the transition a is a(b) or a(b) then £ < A (a).

Proof. By repeated application of the Proposition 8. □

3.6. Non-Total Orders 57

3.6 Non-Total Orders

The examples in this section have all used a total ordering of levels. This condition
can be relaxed with interesting results. The semantics and the type system ensure

that channels are used in the correct area by checking that the level of the channel
is higher than or equal to the current level. This means that a channel that has
a level that is incomparable with the current level is treated in exactly the same

way as a channel that is assigned a lower level, i.e. it cannot be used. Partial
orderings could be used to give a model of incompatible systems. To study a

network with two different operating systems and three different types of process
we could use the following partial order:

Net

Host Host

APP App App

The type system will then ensure that linux application channels are only used
on linux hosts and windows applications channels are only used on windows hosts.
The Java app level is less than both the linux host and windows host level so
Java applications may be used on either type of host. If the calculus was ex-

58 Chapter 3. The Basic Local Area n-calculus

tended with mobile agents, a partial ordering could also be used to specify where
different types of agents might be sent. This could statically check that agents
are never sent to the wrong kind of host, for example.

Chapter 4

Types for Local Areas

The results at the end of the last chapter showed that local communications do
remain local: an action on a channel is never observed above its level of operation.

However, this relies on several side-conditions in the operational semantics in

Figure 3.1, of the form i < A(a), which are essentially runtime level checks.
In this chapter I show that a suitable type system can provide enough static
information to make most of these checks unnecessary.

The rule AREAJ3EM of Figure 3.1 deals with propagating actions once they
have happened. Its side-condition remains. The level tests accompanying OUT,
IN and IN! are different: they check to see if an action should be attempted at

—t

all. For example, the process a(b).P may not proceed if it is above a's level of
operation. Arguably, such processes should never be written: the reason it is not

entirely trivial to eliminate them, is that they can arise during execution as a

result of substitution. For example, the following system:

a@host]b@app F host[app[a(b)] | a(x).x()] host[b()] ■/—¥

Here, an application sends name b to a host-level process. This is fine as data,
but the host then tries to transmit on it, so the process halts as b is only intended
for communication within an application.

In the proposed type system channels are assigned types which specify not

just the operating level of that channel, but also the levels of the channel names

passed over it, and so on recursively. This type system is introduced in the next

59

60 Chapter 4. Types for Local Areas

section. I then go on to prove some useful properties of these types, including
that, well typedness is preserved by structural congruence. Erasures are defined,
to remove the types from a process and it is shown that the erasure of a well

typed process is a well formed (untyped) process. Section 4.2 gives the channel
types for the examples from the last chapter. The typed semantics is presented in
Section 4.3 along with a proof of subject reduction and correctness. An extended

type system, that allows recursive types is outlined in the final section of this
chapter, 4.4.

4.1 The Type System

Channels are assigned types specifying not just the operating level of a channel,
but also the levels of the channel names passed over it, and so on recursively.
Data types allow for the use of strings and integers. Types are given by the

following rather simple grammar:

Type o ::= o@£ Channel Type Datatype <5 ::= string
5 Data Types | int

A type declaration of the form a : a@£ states that a is a Alevel channel carrying

tuples of values whose types are given by the vector a. The type system ensures

that data types are used for data only and are not used for communication. The
second kind of base types are those with empty tuples: a channel of type ()@£ is
for synchronisation within a £-area. This type system does not allow recursive

types, Section 4.4 outlines how these may be added.
The only syntactic change required to introduce types into processes is at the

z^-binding:

Process P, Q ::= • • • | va.o.P fresh channel a of type o

where cr is a channel type. The other binding operation, input prefix a(b).P, does
not need any explicit type annotation, as the types of the b are fixed by the type

of the channel a.

4.1. The Type System 61

Type environments T replace level environments A. These are finite partial

maps from channel names to types. With these alterations, Figure 4.1 presents

the rules for deriving type assertions of the form F he P, which states that the

process P is well typed at level i in environment F.

4.1.1 Properties of Well Typed Processes

A simple induction on the type rules will show that: well-typedness is preserved

by the substitution of similarly typed names.

Proposition 10. IfFF^P and T(a) = a then for any name b of type a not in

r; it holds that T{b/a) Ft P{b/a}

A similar induction shows that if a process is well typed then any sub-term of
that process is also well typed. When dealing with sub terms, it is useful to have
a way to talk about the part of the process that surrounds the sub-term. This is
done using contexts.

Definition 11. Context

A lair Context is a process with a "hole". These can be built up using the

following rules:

C«-» = /[C«_)>]
I C«-»IQ
| ua:a.C((-))
I a(b)-C«-))
I

A 7r Context can be defined by dropping the i[C((_))] and the type on the u binder
from the above definition.

Any process can be placed inside a context; given a context C((_)) and a

process P, define:

C«P» = C«-»{P/_}

62 Chapter 4. Types for Local Areas

NULL_T rhfo

OUT_T r b a(b)
T(a) : B@m,
T(b) = B and £ <m

IN_T r-,b-.o\-ep
rh a(b).P

T(a) = B@m
and £ < m

INLT r-,b:o\-ep
r \-t \a(b).P

r(a) = B@m
and £ < m

PAR_T
T\-tp rheQ
T\-tP\Q

BIND_T
F,a : a \~(P
T l-£ va.o.P

AREA_T
rhtp
r hm i[p]

£ <i m

Figure 4.1: Well typed processes in the local area 7r-calculus

4.1. The Type System 63

A context naturally defines an extension of an environment i.e. the new name

bindings and the input name bindings that surround the hole. Adding the type
rule T Tt _ allows us to define well typed contexts.

It is now possible to state the key proposition about sub terms.

Proposition 12. Ifr\~gP and there exists a context C and process Q such that
P = C((Q)) then there exists an environment T', which is an extension ofF, and
a level m that types Q i.e. P bm Q.

Proof. By structural induction on the context.

Base Cases:

• C((P)) = P: We know that T Fg C((P)) so it follows that F Fg P

• C((F)) = 0: This follows trivially as null is well typed with any environment
and level.

Step cases:

• C((P)) = a(b).D((P)): In this case the IN_T rule must have been used,
therefore we can conclude that T;6 : D((P)) and apply the induction
hypothesis.

• C((P)} = m[D((P))}: In this case the AREA_T rule must have been used,
therefore we can conclude that T Fm £[P] and apply the induction hypoth¬
esis.

All the other step cases follow in a similar way. □

A useful follow up of this result is that well typedness is also preserved by the
substitution of similarly typed sub terms.

Proposition 13. IfFFgP and there exists a context C and processes Q and R
such that P — C((Q)) and F' Fm Q and F' Fm R then T C((R))

Proof. This proof follows the same pattern as the last proposition. Observe that
the only property of Q used in the proof of Proposition 12 is that it is well typed
at level m by environment T' therefore the proposition will hold with any similarly

typed term in the place of Q. □

64 Chapter 4. Types for Local Areas

This proposition is particularly useful when breaking down a process into a

part that can perform an action and the surrounding context. In this setting, Q
performs an action to become R.

The semantics of the /a7r-calculus includes the STRUC-SEM rule for the re¬

duction of structure congruent terms. There is no equivalent type rule. The lack
of a structural congruence rule means that the rules are type directed, i.e. there is
a unique type rule for each piece of lair syntax. So, given a well typed process, we

know which rule was applied to type it, and we can deduce that the precondition
of that rule must be true.

However, it is also possible to show that the well-typedness of a process is

enough to imply the well-typedness of any processes structurally equivalent to it.

Proposition 14. Well typedness is preserved by structural equivalence

If T \-£ P and P = R then T R.

Proof. I prove this by showing it holds for each structural congruence rule in
turn. Transitivity and reflexivity both follow and Proposition 13 shows that the
result is closed under any context and hence extends to the congruence relation.

• a(b).P = a(c).P{c/b)
If F hf a{b).P is typed by the IN_T rule then we know that T;b : a P
is well typed. Now, by Proposition 10 well typedness is preserved under
substitution of similarly typed names therefore T\c \ a \~e P{c/b} is well
typed. From which we may conclude that F \~£ a(c).P{c/b} is well typed
using the IN_rule.

The reverse direction is an instance of the forward direction.

• la(b).P = \a(c).P{c/b}
As the type rules IN_T and !IN_T are identical this case follows in the same

way as above.

• P\0 = P

If we know that T P \ 0 is well typed by the PAR_T rule then T P is
well typed.

4.1. The Type System 65

Whereas, if F \~e P is well typed, the NULL_T rule tells us that F P^ 0 is
also well typed, so we can use the PAR_T rule to tell us that T P^ P \ 0 is
well typed.

• P\Q = Q\P
If T P^ P | Q is well typed by the typing rule, PAFLT then F P^ P and
T l~£ Q must also be well typed and these are exactly the preconditions
needed by the PAR_T rule to type F \~e Q \ P.

The reverse direction is an instance of the forward direction.

• ua:aP = vb\a.P{b/a]
If F p£ ua@£.P is well typed by the BIND_T rule then F; a : a P P is well

typed. Now, as types are preserved by substitution, Proposition 10, we

know that T; b : a P P{b/a} is well typed and so T P^ vb:a.P{b/a} is well
typed by the BIND.T rule.

The reverse direction is an instance of the forward direction.

. (P\Q)\R = P\(Q\R)
If T \-£ (P | Q) | R is well typed then by the PAR_T rule T R is well typed
and T l-£ P | Q is also well typed. So by the same rule again, T P is well
typed, as is F \~i Q.

Observing that T Q and T P^ R are well typed we can then type F P^

Q\Rhy the PAR_T rule. Finally observing that T P^ P is well typed lets
us use the PAR_T rule to type: T P^ P |(Q | R)

A similar method will also prove the other direction.

• isa-.cr.O = 0

By the NULL_T rule T P^ 0 is well typed for all possible T and i therefore
it is also true that T; a : a P^ 0 for all possible T, a, a and £ from which
we may use the BIND_T rule to conclude that T P^ va\o.0 for all possible
T and £.

So both sides of the equivalence are always well typed.

66 Chapter 4. Types for Local Areas

• ua:o.ub\p.P = ub:p.ua\a.P a 7^ b

If F F£ ua:a.ub:p.P is well typed by the BIND_T rule then T; a : a \~t ub:p.P
is also well typed by the BIND_T rule and hence, as a 7^ b: F; a : o; b : p F^ P
is well typed.

Now, as T; a : a; b : p = T; b : p\ a : a it follows that T; b : p\ a : o F^ P.
So by the BIND_T rule F; b : p \~z ua:oP is well typed and with another
application we see that F ub:p.ua:a.P is also well typed.

The reverse direction is an instance of the forward direction.

• L[va:cr.P] = va:cr.L[P]
If T Fm £[ua\a.P] is well typed by the AREA_T rule then I <\ m and
T ua:o.P is well typed by the BIND_T rule. This in turn implies that

T] a : cr \~e P.

Now T;a : o \~£ P and I <\ m are the preconditions we need to apply the
AREA_T rule to get: T; a : o hm l[P] and then the BIND_T rule can be
applied to get T bm ua:o.£[P]
A similar method will also prove the other direction.

• (ua:a.P) \ Q = ua\o.(P \ Q) a fn(Q)

If T \~i (va\o.P) | Q is well typed by the PAR_T rule then T Q must be
well typed and T va.o.P must be well typed by the BIND_T rule. This
second point also tells us that F; a : o P is well typed. Now, as a is not
a free name of Q we can add it to T and still be able to type the processes:

T; a : o Q. So, by the PARJT rule T; a : o F^ P \ Q and finally by the
BIND_T rule: T ua:o.(P \ Q).

Reversing this proof will prove the reverse of the equivalence.

□

This proposition allows us to apply the type rules "backward" to show that
the rule's preconditions are true and also prove well typedness using structural
congruence.

4.1. The Type System 67

This result could also be stated in the following way:

Defining well typedness up to structural congruence is the same as defining well
typedness using the typing rules alone.

This is a non-trivial result and the equivalent proposition does not hold for
the semantics of most calculi, as it is often necessary to rearrange a process before
it can be reduced.

4.1.2 Linking Typed and Untyped Processes

To connect the typed calculus to the untyped one I use a notion of erasure. This
throws away the detail of type information, but keeps the basic level declaration.

Definition 15. If a = a@£ is a channel type, then its erasure [a\ is just the
level i. If a is a data type then the erasure is the empty set.

Definition 16. If P is a typed process, then its erasure [PJ is the same pro¬

cess with all types replaced by their erased versions: in particular name binding
ua:a@£.Q is replaced by va@£.Q.

Definition 17. The erasure of a type context T is the level context [TJ produce
by erasing each of the types in the name bindings and removing the data type

assignments.

As you would expect the erasure of a well typed process is a well formed
process, as this following proposition shows.

Proposition 18. If P is a well typed process at level £ in type environment F,
then its erasure [PJ is well formed at level £ in the level environment [FJ.

F htP =* LFJ b LPJ

Proof. The proof is by structural induction on the type derivation F \~e P.
Recall from Definitions 7 and 4 that A b^ P if and only if all free names used

in P are in the domain of A and the process P is well formed i.e. the areas are

68 Chapter 4. Types for Local Areas

properly nested.

Base cases:

• NULL_T rule: If we have applied this rule, then P = 0. The erasure of null
is null, which is trivially well formed.

• OUT_T rule: If we have applied this rule, then P = a(b). The side condition
on this rule ensures that F(a) = a&m for some a and m, with Y(b) = o.

Now domY = dom |_rj so a, b e dom(|_r_|) and therefore all the free names

in P are in the domain of [TJ.

As a(b) contains no agents it is trivially well formed.

Step cases

• COMP_T rule: If we have applied this rule, then P = R\Q where T \~i R
and T hf Q. So, by the induction hypothesis [rj [i?J and [_rj [QJ.
This means that the free names of [i?J and [5J are in the domain of [TJ.
So,

fn([R | Q\) = fn([R\) U fn([Q\) C dom(LTj) U dom([T\) = dom([T\)

We know by the induction hypothesis that the top level agents of R and Q
are well formed therefore ail the top level agents of R \ Q are well formed.

• BIND_T rule: If we have applied this rule then P = va\o.P' and B;a :

o P'. So, by the induction hypothesis [F;a : crj \-g [P'J and fn(P') C

dom([Fj U {a:|_crj}) but fn(P') \ {a} = fn(P) so fn(P) C dom([rj). And
as P' is well formed va\o.P' is well formed.

• AREA_T rule: If we have applied this rule, then P = m[P'] and T bm P'.
So by the induction hypothesis the free names of P' are in the domain of

[TJ and as P has the same free names as P' we also know that fn(P) C

dom([rj).

4.2. Channel Types for the Examples 69

The side conditions to the type rule imply that I <\ m and the induction

hypothesis implies that j_rJ Fm [P'J and so P' is well formed at level m.
Therefore P is well formed at level i.

—* —*

• IN_T rule: If we have applied this rule, then P = a(b).P' and T; b : a \~z P'
and T(a) = o@m and i < m. So by the induction hypothesis fn(P') C

dom{\T\ U {b : [o\}) but fn(P') \ {6} = fn(P) so fn(P) C dom([T\).

It follows that the induction hypothesis also implies that P' is well formed
and so a{b).P' will be well formed.

• INLT rule: Similar to the IN_T rule.

□

4.2 Channel Types for the Examples

I will now give types to the examples from Section 3.4, which sensibly reflect their
operation. First, the Internet Daemon of Figure 3.2 (page 46). The channels have
the following types:

c : string@net pike : (service, response)@net

finger : service where:

daytime : service service = response&host

print : string@host response = string@net

The type service for finger and daytime expands to (string@net)@host. This
means that the channels can be used only for host-level communication, but the
values carried will themselves be net-level names. The host-level communication

is between Inet and Finger or Daytime; the net-level communication is the re¬

sponse sent out to the original enquirer, in this case machine Carp. Channel pike
has a net-level type that acts as a gateway to this, reading the name of a service
and a channel where that service should send its reply.

70 Chapter 4. Types for Local Areas

In the second example of Section 3.4.2 (page 48), an agent compares the load
on two hosts. The channels have the following types:

c : int@host load : (int@host)@host
link : int@net print : int@host

The most interesting type here is that for load: it captures the fact that not
only must requests to load come from agents on the same host, but replies are

also host-limited. This characterises a purely local procedure call used within a

larger distributed environment.
The third example, presented in Section 3.4.3 (page 49), is a model of a simple

data cache. The first system in this section did not cache data. There are three

pieces of data, which are strings. The get channels are used to listen for a channel
over which the data can then be sent.

getcarpdata : (string@net)@net
getpikedata : (string@net)@net
gettroutdata : (string@net)@net

The principal difference in the typing of the cached system is that the channels
that get the data now operate at the host level. It is this change alone that
ensures that data is retrieved locally rather than from a remote source. Whereas,

before, the data channels would listen across the entire network for a channel on
which to broadcast the data again across the entire network, now these channels
listen locally for a local channel over which to send data. The network level
communications are now performed on the channels pike, carp and trout, hence
these channels can communicate at the net level.

getcarpdata :(string@host)@host carp :(string@net)@net
getpikedata :(string@host)@host pike :(string@net)@net
gettroutdata:(string@host)@host trout:(string@net)@net

The cache channel is used by the cache application to store a copy of a data

page and so therefore has the type string@app. The update channel is used by
the same agent to synchronise a timeout inside that application and so has the
type: ()@app.

4.3. Correctness of the Typed Semantics 71

4.3 Correctness of the Typed Semantics

The semantics for typed processes is given in Figure 4.2. The only difference from
the untyped semantics given in Figure 3.1 is that the typed semantics does not
have any side conditions on the OUT, IN and IN! rules.

This section proves that my type system and typed semantics really do enforce
local areas, just as the untyped semantics did. I prove the equivalent of Theorem
9 for typed processes. That is: a well typed process that is allowed to reduce
under the typed semantics will not use a channel outside its area nor will it allow
a communication on a channel to escape the area assigned to it.

The first step is to show that this operational semantics preserves types. I
then show that if I remove the types from a process and reduce it using the
untyped semantics the same reductions are possible. Finally, I apply Theorem 9
to get the result.

Proposition 19. Subject Reduction

If P is a well typed process at level I in an environment T and we can derive
the transition T \~t P Q, then:

1. if a = (vd:6)a(b) then T]d:d \~i Q and there exists some a and some m s.t.

T(a) = <j@m and T\d\d{fb) = a.

2. if a = a(b) then T; b\a \~i Q where T(a) = a@m.

3. if a = t then T Q

Proof. By induction on the derivation of the transition T \~e P Q.
Base Cases

• OUT_TSEM rule: The derivation is of the form: T a(b) 0 and null
is trivially well typed in any context. The only rule that could be used to

type P is the OUT_T rule, therefore the side condition of that rule must

apply, namely: there exists some m such that T(a) = a@m and T(6) = a.

• IN_TSEM rule: The derivation is of the form: F \~e a(b).Q Q with
P = a(b).Q.

72 Chapter 4. Types for Local Areas

OUT_TSEM T b a(b) 0

IN-TSEM E b a{b).P^P b fl dom(T) =

INLTSEM Eh \a(b).P P\\a(b).P bndom(T) =

PAR.TSEM
rh p-^p'

rh p\q-^p'\q

COMM.TSEM
rhp'^V rhg^C
r b p IQ | Q'{c/6>)

BIND.TSEM
r;a:ffht PP'

T hp ua:o.P ua:a.P'
a £ fn(a)

OPEN_TSEM
r UP Cd:0)a(b)i;c:o b -r —>■ r

r b vc-.o.p {vd-.e,c:o)a{b)
c^a c£{b}\dom(r)

AREA_TSEM
rb P^P'

r hm p[p] £[P']

if a is a(6) or a(6)
then m < f(a)

STRUC-TSEM
p' = p rb p^Q Q = Q'

r\-e p' q'

Figure 4.2: Operational semantics for the typed local area 7r-calculus

4.3. Correctness of the Typed Semantics 73

We know that F p£ P and as IN_T is the only rule that can type an input

process we know that the side and pre-conditions of these rules must apply.
I.e. F; b : 5 p£ Q for T(a) = o@m.

• !IN_TSEM rule: The derivation is of the form: F \~t \a(b).P' P' | \a(b).P'
we know that T h# \a{b).P' and as above F;b : d \~e P' therefore F; b : d p£
P' | \a(b).P'.

Step Cases

• PAFLTSEM rule: To apply this rule P must be of the form R \ S and the
derivation of the form:

rh r-^R'
r h£ RjS-^R'jS

As P is well typed and the only rule that can type a composition is the
PAFLT rule this rules precondition must apply i.e. that F he R and T S.
The result then follows from the induction hypothesis and the PAFLT rule.

• COMMLTSEM rule: To apply this rule P must be of the form R \ S and
the derivation of the form:

k r h, ^ S'

TF, R I S^ vd\9.(R' I S'{c/b})

The induction hypothesis then tells us that: F; d:9 \~e R' and : d \~i S'
where r(o) = d@m. Observing that well typedness is preserved under
substitution of names with the same type we see that F;i : a S'{c/b}
but b does not appear in S'{c/b} so T \~i S'{c/b} and by the PAFLT rule
T; d-9 Ft R! | 5'{c/6} and so F \-t vd:9.R' | S'{c/h}

• BIND_TSEM rule: To apply this rule P must be of the form va\o.R and
the derivation of the form:

Chapter 4. Types for Local Areas

T; o : a h< R-?+R'
r he ua\o.R va\oR!

The only possible rule that could be used to type P is the BIND_T rule.
So, the precondition of this rule tells us that: T; a:o he R and a is not free
in a the result then follows from the induction hypothesis.

AREA_TSEM rule: To apply this rule P must be of the form m[R] and the
derivation of the form:

Fhm R-^R'
r he m[R] m[R']

Again the result follows from there only being one possible type rule that
could apply to this process, in this case AREA_T. This rule's precondition
tells us that T bm R. The result then follows from the induction hypothesis
and the AREA_T rule.

OPEN_TSEM rule:

F;c:a\-t P P'

r h, vc:o.p p

with the side conditions c ^ a and c G {b}\ dom{T)

The induction hypothesis tells us that T; c:o; d:9 he P' and there exists some
o' and some m s.t. r;c:a(a) = o'@m and T; c:a\ d:9(b) — a'. So all that
remains to prove is that a can be typed without c in the enviroment and
this follows from the side condition c ^ a.

STRUC.TSEM rule:

P' = P TheP^Q Q = Q'

The P'^ Q'

4.3. Correctness of the Typed Semantics 75

The induction hypothesis, tells us that Q is well typed for each possible ac¬

tion. The preservation of well typedness, by structural congruence (Propo¬
sition 14) then tells us that Q' is well typed under the same conditions.

□

As expected, there is an extremely tight connection between the behaviour of
typed process terms and their untyped erasures, as I show in this next proposition.

Proposition 20. Suppose that T P is some well typed process.

1. J/ThPAP' then |TJ h LPJ ^ L^'J-

2. If [rj [PJ Q for some untyped Q, then there is a process P' such
that T U bn(a) P' and Q = [P'J and T\-tP-^P'.

Proof. By structural induction on the derivation of the transition.

1. The base cases follow from T(a) = cr@m and I < m implies I < [TJ (a). The
PAR_TSEM,COMM_TSEM,BIND_TSEM, STRUC_TSEM and OPEN_TSEM
cases do not make use of the extra information provided by the types or lev¬
els and so follow trivially. The AREA_SEM case follows from: T(a) = a@m

and I < m implying i < [PJ (a.)

2. Base cases:

• IN_SEM: In this case P = a(b).P' and a = a(b), so =

a(6).[P'J and the derivation tree is of the form:

in h, a(b).[P'\

The result follows by subject reduction and observing that: T

a(b).P' P'

• !IN_SEM: This case is similar to the IN_SEM case with the additional

observations that:

[!a(6).P'J = !a(6). [P'J and [P'J ||X&)-P'J = \P' \ \a(b).P'\.

Chapter 4. Types for Local Areas

• OUT_SEM: Output is asynchronous so in this case Q = 0 i.e.

|TJ h, a(b).[P'\

As the null process contains no types our result follows from Q = 0 =

LOJ ^ LQJ.

Step Cases

• PAR-SEM: In this case P = R \ S and observing that [R | SJ =

|_RJ | [RJ the derivation tree is of the form:

[rj b [Rj R'
Lrjh, L«|sj

So by the induction hypothesis there exists a well typed T such that

[T\ = R' and r \-t R T. So by the PAR.SEM rule r \-t R \ S
T | 5 and R! \ LSJ = L^J | LRJ = [T \ RJ, as required.

• COMM_SEM: In this case P = S \ R and the derivation tree is of the
form:

[rj b, [Sj S' |TJ b, [^
[rjb, |,s|ftj

So by the induction hypothesis there exists a well typed T and U such
that ITJ = R', \U\ = S',T\~eR^%T and T \-e S (i/d^\a(a) [/. So by
the COMMLTSEM rule we can conclude that:

r \-e S | R U | T{c/b}

And noting that [U \ T{c/b}\ = [R'J \ _R!{c/h}\ = [5" | -R'{c/5}J fin¬
ishes the case.

• BIND_SEM: In this case [RJ = va@m.[R\ therefore P = ua:o.R for
some cr' such that o = o'@m. The derivation tree is of the form:

[rj ;a@m \-e [RJ S
[rj va\m\R\ ua:m.S

4.3. Correctness of the Typed Semantics 77

where a ^ fn(ot). Now the erasure of o'@m is m so from [rj; a&m \~t
[R\ S it follows that [T; a : a'@m\ \~n [FJ S.
We can then apply the induction hypothesis which tells us that there
exists a well typed R! such that its erasure is S and T; a : a'@m \~t
R R'.

The typing rule BIND_T tells us that from T;a : o'@m R! we can

conclude T va:a'@m.R'. Observing that: T va\a'®m.R
ua:a'@m.R' finishes the case.

• AREA_SEM: In this case P = m[R] where t <\ m. and the derivation
tree is of the form:

irj [r\ s
Lrj hm £[[r\] -^t[s]

So the induction hypothesis tells us that there exists R' such that
T hm R', [77'J = S and T hm R R'. The type rule for areas tells
us that T \~i m[R] and observing that T \~£ m[R] -^A m[R'] finishes
the proof.

• OPEN_SEM: In this case [P\ = uc@m.[R\ therefore P = vc.a.R for
some a' such that a = a'@m. The derivation tree is of the form:

I -p | i | D | (fd@n)a(b)[TJ ;cam [jPJ V P
I "p | | ^ | Di (vd@n,c@m)a(b> ,[IJ vc@m\P\ •—> P

with the side conditions c / a and c E b \ dom([rj).
The binding of the name c can be moving inside the erasure to tell us
that: |_r; c : o\ [FJ ^ pi ^he induction hypothesis can be
applied to this to tell us that there exists a typed process R such that

F-,c:o-d:dheR and [R\ = P' and T; c : a P (,/dT^(6) R
The equivalence [i?J = P is enough to show that [^c:a.i?J = vc&m.P'
and the above reduction is the precondition the OPENJTSEM rule
needs to tell us that T \~e vc.a.P ^ dnfT}a^ which finishes the case.

• STRUC_SEM:

78 Chapter 4. Types for Local Areas

LP'] =P [rj b P -A Q Q = Q'
LFJ h, [P'J Q'

A subtlety in this step is that the STRUC-SEM rule says that there
exists an untyped process P that reduces to Q, however the induction
hypothesis only holds for the erasures of a typed process. A simple
lemma clears this up:

Lemma 1. If [P'J = P then there exists a typed process R such that
[PJ = P and R = P'.

Proof. Similar to Proposition 14. I show it holds for each structural

congruence rule in turn and that this can be extended to any context.
□

By this lemma [rj hf Q- So, applying the induction hy¬
pothesis we find that there exists some R' such that [P'J = Q and T
R R'. Observing that R = P', we can apply the STRUC-TSEM
rule to show that: T h* P' ——A R' and concluded by applying the

transitivity of structure congruence to show that [P'J = Q!■

□

I can now prove the second major theorem, the typed counterpart of Theorem
9, that a well typed system will never try to use a name outside its area and hence
the typed semantics does indeed enforce the local area conditions.

Theorem 21. For any well typed process P, if we can derive the sequence of
transitions

r\-e P^ ... -AAq

where a is (ud\9)a(h) or a(b) and T(a) = o@m then level £ < m.

Proof. We apply Proposition 19 for each r reduction. This shows that there
exists a well typed P' such that T \~i P' Q. Proposition 20 then tells us that:

[TJ f-£ [F'J —> L<2J- The result then follows from Proposition 8.
□

4.4. Sorts 79

This establishes that a well typed process will never attempt to use a channel
above its level of operation, without the need for explicit checks in the operational
semantics.

4.4 Sorts

The aim of the type system presented above is to remove the need for some of the
run time checks, while still keeping channels inside their areas. It also enforces a

number of other conditions, such as making sure that all uses of the same channel
have the same arity and that channels are used to transmit the same data types
each time they are used. These properties are highly beneficial; essentially they
guarantee that a process will be well behaved. In [Mil91] Milner conjectures
that any realistic application of the 7r-calculus may be disciplined in this way.

However, the type system also enforces a more problematic condition by limiting
the types to be finite. Hence, a channel cannot pass itself, even indirectly, as this
would require a recursive type.

To allow this more complex behaviour, while still removing the need for run¬
time checks, I have extended the notion of sorts [Mil91]. A sort is an identifier,
each channel is assigned a sort and a sorting maps each sort to a level and the
sorts that a channel may pass or a base type i.e. S is a sorting if:

S(sort) i-> (sorti,.., sortn)@£
or string
or int

Imagine that carp and pike want to exchange an arbitrary number of strings
across a network and keep them ordered. One way to do this would be to send
the name of a channel that would carry the next piece along with the data. This
would lead to two sorts, SEND that is the sort of the channels used to send the
data and DATA which is the sort of the data. The sorting would then map the
sorts SEND i-» (SEND, DATA)@net and DATA i-> string. Such a channel could
not be given a finite type without knowing exactly how many pieces of data are

going to be passed beforehand.

80 Chapter 4. Types for Local Areas

The only change needed to the syntax is to replace the type in the new name

operator with a sort:

Process P, Q ::= • ■ • | ua\SORT fresh channel a of sort SORT.

The sorting rules are given in Figure 4.3. The environments now include T
which maps names to sorts and the sorting S which maps sorts to their level
and the sorts they carry. The only change apart from this is to apply the sort¬

ing when finding the level of a name and what it carries. The semantic rules,
given in Figure 4.4, also carry the sorting. The only difference from the typed
semantic rules is a single use of the sorting to check the level of channels as they
leave an area. The examples for the previous section can also be given sorts.

For instance, the Inetd examples from Section 3.3 could be given the following
sorts: {C, PIKE, SERVICE, RESPONSE, PRINT} where the sorting makes the
following mappings:

C ^ string@net PIKE (SERVICE, RESPONSE)@net
SERVICE i-» (RESPONSE)@host PRINT >->• (string)@host

RESPONSE i-> (string)©net

The environment makes the following assignments:

c : C pike : PIKE

finger : SERVICE daytime : SERVICE

print : PRINT

The change from types to sorts effectively allows infinite types and so removes

the ability to use induction on the type of a channel as a proof technique. Luckily
none of the proofs of correctness of the type system uses induction on types, or

relies on types being finite in any way.

4.4. Sorts 81

NULL_S

OUT_S T,5h a(b)
S(T(a)) = a@m,

T (b) — a and £ < m

IN_S T-b:a,S\~eP
T,5 b a{b).P

5(T(a)) = <7@m

and £ < m

IN!_S T-,b:a,S\-tP
I\S\~e la(b).P

S,(T(a)) = a@m

and £ < m

PAR_S
r,shep r,sheQ

r,sh£p\Q

BIND_S
r; a : a, S he P
r,She va:o.P

AREA.S
r ,s\-ep
r hm £[P]

£ <i m

Figure 4.3: Type rules for sorted processes in the local area 7r-calculus

82 Chapter 4. Types for Local Areas

OUT_SSEM r, S \-e d(b) 0

IN_SSEM r,S\-e a{b).P^\p h fl dom(F) = 0

INLSSEM T,S\-e \a(b).P P\\a(b).P bndom{T)

PARJ3SEM
r,sh p^P'

r,S\rt P\Q-^P'\Q

COMM.SSEM
r, s \-t p (t/rf-^(5) p< r, 5 \-t Q Q'
r,s\-e p\q vd-.e.p'|q'{c/b}

BIND.SSEM
r,5,g:jh P-^P'

T, S \~e ua:a.p va.a.p'
a £ fn(a)

0PENJ3SEM
r:c.:a, S h, P p

r, S uc-.a.P
{ud\9 ,c:a)a{b)

c ^ a and
c E {6}\ dom(T)

AREAJSSEM
P.gR P^P'
r pm e\p] ^ i[P'}

if a is a(b) or a(b)
then m < S(r(a))

Figure 4.4: Operational semantics for the sorted local area 7r-calculus

4.4. Sorts 83

The erasure of a sort is as you would expect.

Definition 22. If SORT is a sort and S(SORT) — (SORT')@£ then its erasure

[SORT\ is just the level i. The sort system ensures that the level of data types

(string, int) is never queried.

The correctness of the well sorted /a7r-calculus can be proved in exactly the
same way as that of the well typed calculus.

Theorem 23. For any well sorted process P, if we can derive the sequence of
transitions

T,She P -^ ... r> °) Q
—> —^ t

where a is (ud:9)a(b) or a(b) and T(a) = a@m then level t < m.

Proof. Replace each application of F with an applications of ST in proofs Propo¬
sition 19 and Proposition 20. The result then follows from Proposition 8. □

Chapter 5

Encoding the Za7r-calculus into the
7r-calculus

In this chapter, I examine the expressive power of the Za7r-calculus by comparing
it to the asynchronous, polyadic 7r-calculus. I demonstrate that, perhaps surpris¬

ingly, I can encode local area communication into the 7r-calculus with conditional
matching.

The main challenge in producing the encoding has been to find a way to

prevent communication on a channel between different areas, while still preserving
the identity of names. The solution is to replace communication inside an area

with communication on a new channel created just for that area. The original
communication channel name is then sent across this new channel, along with a

name on which the original data can be found.

In a way, this replaces direct communication between two points with a system

that broadcasts packets over an Ethernet. This has turned out to be a useful

analogy and I will use the terminology of packet communication when motivating
this encoding. In this case, the tree of nested areas (applications, machines,

networks) gives rise to a hierarchy of ethers, with a process using a different ether
for each level of communication (local to an application; within a machine; over
the network).

In the next section I present each of the encoding rules. Section 5.2 returns

85

86 Chapter 5. Encoding the lan-calculus into the n-calculus

to the examples from Chapter 3. I first demonstrate how a process is encoded. I
then show how an encoded process reduces. There is a close match between the
behaviour of a process in Ian and its 7r-calculus translation; in Section 5.3, I show
a form of operational correspondence. However, there is some loss of information
as translated terms may make additional silent moves, as packets pass over the

ether, and an ether may indiscriminately accept and rebroadcast packets in which
no receiver is interested.

5.1 Encoding Local Areas

The evident motivation for this model is packet communication on an Ethernet:
instead of sending data directly to its destination, I drop a packet into the ether.

Listening processes pick up all packets and sift out the ones they are interested
in. Once a match has been found, the data is then transmitted. It might seem
more natural to include the data to be transmitted in the packet, along with the
channel name. But this is not possible in a polyadic setting, because the length
of the tuple carried by the ether will vary for different key channels.

The exact form of the 7r-calculus I use is an asynchronous, polyadic, late

version, similar to that used by Boudol [Bou92], To this, I add, a conditional on
names of the form: if a = b then P else Q, as proposed by Parrow in Handbook

of Process Algebra [BPS01]. Matching and mismatch are commonly used instead
of the if,then,else syntax [VD98]. Although semantically equivalent, this would
not be quite as tidy. I define recursive processes using explicit guarded recursion
of the form pX.P, as used by Amadio and Boudol [ABL99], with the semantic
rule:

P{pX.P/X} P'
pX.P P'

Using this form of recursion does not leave a litter of stopped processes and so

helps to keep things tidy. It is straight forward to encode this kind of recursion

using replication, see Turner [Tur96] for an example.

5.1. Encoding Local Areas 87

Structure:

|r h, o]A = o

(r H,f|Q]A = [r h,p]A | p h, q]a

|rht»[P]]4 = «.|rH.P]A„e ^ U cod(A)

[r h, va:i7.P]A = va.[T, a:a h, P]A

Actions, all with e = A(m) where T(a) = d@m:

[r he a(b)]A = ud.(e(a, d) \ d(b))

[r \-g a(b).PjA = giX.e{x, d).if x — a then c7(6).|T, b:o P]A else (e(x, d) \ X)
[r \a(b).P}A = /nX.e(x, d).(X | if x — a then d(6).[r, b:d P]A else e(x, d))

Figure 5.1: Rules for encoding Ian into the 7r-calculus

In the /a7r-calculus names act as unique identifiers and also as conduits for
data. This translation makes explicit these two different roles by mapping them
to two distinct sets of names. Communications are identified by the first element
of each packet, names like a and b and these names are never used to broadcast

data; whereas ether names and data channels like e and d, are only ever used for
communication. The scope of data names manages who knows what, while the
scope of ether names handles locality of communication.

The tuple output a(b) becomes the outputs e(a, d) where ether e varies ac¬

cording to the level of a and b is made available on the fresh name d. To keep
track of which ether to use, I maintain an environment A mapping levels to ether
names. The encoding is parameterised over this and takes the form

ir i-• P]a

where P is a well-typed term of level L in context T and A assigns ethers to
levels £ and above.

Figure 5.1 presents the full encoding, with one clause for each constructor. I
will explain these in sequence.

88 Chapter 5. Encoding the lair-calculus into the ir-calculus

The encoding leaves the null process, parallel composition and name restric¬
tion unchanged.

[rn, o]A = o

[ri-(P| 0]A = (r h, P]a | [r h, q]a
[r h, i/a:<r.P]A = a:o hj P]A

To place a process in a local area, I create a new ether name and assign it a

level in the environment A. A side condition ensures that I do not accidentally

capture any existing names when introducing the new ether.

[r h< m[Pj]A = ve\ThmP]Ai„e e i U cod(A)
Translating an output action uses the environment and the assignment of

levels to ethers to find the correct ether for the output channel. It then sends the

output channel over the ether name and follows it up with the data.

[T Ei a(6)|A = vd.(e(a, d) \ d(b)) with e = A(to) where T(a) = d@m
An encoded input also uses the environment and the assignment of levels to

ether names to find which ether it should listen on. When it receives a packet
over this ether, it tests the first element to see if it matches the input channel
name. If it does, then the packet is meant for this input, so the data is fetched
and execution continues as appropriate. If the names do not match, then this

packet is meant for some other channel in the same area. The packet is sent again
and the process restarts.

[r Ee a(b).P}A = pX.e(x, d).if x = a then d(f>).[T, b:o bi P]A else (e(x, d) \ X)
with e = A(m) where T(a) = cr@m.

Replicated input is the same, except that the process restarts whether or not
the input key is correctly matched.

|r Ei \a(b).P]A = pX.e(x; b).(X \ if x = a then [T, b:d Ei P]A else e(x; b))
with e = A (to) where T(a) = o@m.

5.1. Encoding Local Areas 89

The encoding is well-defined lip to structural congruence.

Proposition 24. For any lair terms P and Q, if P = Q then [P]A = |Q1A-

Proof. Because the encoding is compositional, it is enough to check that all of the
structural axioms for lair given in Section 3.1 translate to valid 7r-calculus equiv¬
alences. All of these are immediate. The only significant case is that £[va\o.P] =
ua:o.(£[P]) becomes exchange of name binders ve.va\P\^ = va.ue.\P\A for some
ether e. □

As noted above, this encoding uses 7r-calculus channels in a stereotyped man¬

ner. Names fall into three distinct classes: names like a and 6, which correspond

directly to lan channels, ether names like e and the single use names that actually
transmit the data. The lair names are never used as channels, while ether names
are never transmitted, nor do they appear in match tests.

The existence of this encoding raises the question of whether the local area
syntax is really needed. Would it be feasible to use the 7r-calculus format at all
times, as a kind of "programming style"? Doing so would have advantages; there
is a massive body of work on analysing the 7r-calculus, all this could be brought
directly to bare on a Ian term written in the 7r-calculus. This includes a number
of type systems and software tools.

Unfortunately, it seems impractical to consider anything but the simplest
lan terms in their 7r encoded form, as can be seen from comparing a system and
its encoding, Figures 3.2 and 5.3, for example. The 7r-calculus form is much more

complicated, bigger systems will quickly become unreadable. A further problem
is that processes are encoded with a mapping of levels to ether names and hence
when composing two processes it is not enough simply to place them in parallel
as it is in the plain 7r-calculus. For the process to behave as expected it is also

necessary to make sure the ether names match for all levels above the level of

encoding.
The most important aspect of the encoding process is that it introduces di¬

vergence. As any input may continually pick and drop outputs no, non trivial,
process can ever be guaranteed to terminate. This will invalidate any analysis

90 Chapter 5. Encoding the lan-calculus into the ir-calculus

that attempts to account for silent steps, such as strong bi-simulations, or exam¬
ining traces. It will, also make the problem of finding properties of systems using
a model checker intractable.

For this reason, the encoding sheds light on how the calculus functions and, in
some limited cases, may assist in the analysis of the calculus and systems written
in it, but it does not replace the calculus.

Carbone and Maffeis, suggest an alteration of the 7r-calculus to allow compound
names to be build from two other names [CM02]. For instance, the names a and b
may be combined to make a name a.b which can be used form input and output in
the normal way. They point out, also in [CM02], that this allows a non-divergent
encoding of the /cnr-calculus. Any analysis on the 7r-calculus with compound
names would have direct relevance to the /a7r-calculus.

5.2 Example Encodings

There are two distinct aspects of this encoding, both of which I demonstrate.
The first is, how the encoding actually works i.e. the way in which it turns a Ian
process into a ir process. The second is how an encoded process will then go on

to behave.

5.2.1 Load Management System

To illustrate the process of encoding I will work through the encoding of the load

management system, from Section 3.4.2 (page 48), step by step. This example
starts offwith the channels load, print and link in the environment. This encoding
is summarised in Figure 5.2.

I start encoding at the net level so I need an ether name for net level commu¬
nications. Define:

T = {print : int@host, link : int@net, load : (int@host)@host}
A = {net n}

5.2. Example Encodings 91

System = up. (Main \ Loadl)
uq.(Probe | Load2)

Main =umain.uc.ud.(p(load, d) | d(c)) \ pX.p(x, f).(if x = c then

f(y).pY.n(u,g).(if u = link then

g(z).ud.(p(print,d) \ d(y/z)) else h(u, g) \ Y)
else p(x,f)\X)

Probe —uprobe.uc.(ud.(q(load, d) \ d(c)) | pX.q(x, /).(
if x — c then f(w).ug.(h(link, g) | g(w)) else q(x, /) | X)

LoadMain =uloadM.gX.p(x, f).(X | if x — load then

f(v).ud.(p(v, d). | d(loadl)) e/se p(a;, w)

LoadProbe =uloadP.gX.p(x, f).(X \ if x = Zoad f/ien

f(v).ud.(p(v, d). | d(load2)) e/se i>)

Figure 5.2: Encoding of the load management agents

92 Chapter 5. Encoding the lair-calculus into the ir-calculus

The load management system can then be encoded with this environment and
ether mapping.

[T \~net host[Main | Load] | host[Probe \ Load]}A

This term is reduced using the composition encoding rule.

[T \~net host[Main | Load]]A |[T hnet host[Probe | Load]}A

The second step adds two new ether names for the host areas. So, defining
Am as {net i-» n,host p} and AP as {net h-» n,host q}. The encoding
becomes:

vp.\Y Ehost Main \ Load\AM \ vq.\T I-host Probe \ Load}Ap

Next, I apply the composition rule two more times to get:

vp-ilr I-host Main]AM |[T Phost Load}AJ
I vq.{[T \~host Probe\Ap |[T \~host Load]Ap)

I will now encode each of the four areas, individually.

• The Probe agent:

[r app[vc : int@host(load(c) | c(w).link(w))]]Ap
I apply the area encoding rule to this application. This rule will create a

new ether name even though it will never be used. The ether mapping is
extended with a new name and that name is declared in the process.

uprobe.{T \-app vc : int@host(load(c) \c(w).link(w))jApp
Where APP = {net h-* n, host i-» q, app probe}. The new name c has to
be added as a new name in the ir term and its type has to be added into
the environment.

vprobe.vc.\T-, c : int@host \~app load{c)\c(w).link(w)}A

Example Encodings 93

Applying the composition rule again, this becomes:

uprobe.uc. ([r; c : int@host Eapp load{c)\App
|[T;c : int@host \-app c(w).link(w)]App)

The output on load becomes a broadcast on the host's ether channel

vprobe.vc. (vd.(q(load, d) \d(c))
|[T; c : int@host \~app c(w).link(w)}App)

and the Ian input becomes a ir process that listens for inputs.

vprobe.vc. (vd.(q(load,d) \d(c))
| pX.q(x, x = c then

f(w).{T]c: int@host Eapp link{w)\App
else q{xj) | X)

Finally, I encode the output on link as another packet broadcast to give us

the true 7r-calculus term:

vprobe.vc. (ud.(q(load,d) \d(c))
| pX.q(x, x — c then

f(w).vg.(n(link,g) \ g(w))
else q(x, f) |X)

The Main agent:

fr F/josf app[uc : int@host.(load(c) \c(y).link(z).print(y/z))]]AM

The first five steps used to encode the Main agent are the same as the first
five steps used to encode the Probe agent. That is, firstly an ether name
is added for the app level, secondly, the new name c is created, thirdly the

composition rule is applied, and finally, the output and input signals are

encoded:

Chapter 5. Encoding the lan-calculus into the n-calculus

vmain.vc. (vd(p(load, d) \ d(c)) \ pX.p(x, /).(
if x = c then

f(y).[F;c: int@host happ link {z).print (y/z)]AMM
else p(x,f) \X)

where XMM = {net i-4- n,host i-> p,app h* main}. The second input is
then encoded to give:

vmain.vc. {vd.(p(load, d) | d(c)) | pX.p(x, /).(
if x = c then

f(y).p,Y.n(u,g).(if u = link then
g(z)[T\c: int@host Eapp print(y/z)]Amm

else n(u, g) | Y)
else p(x, f) |X)

The final encoding step translates the output on print into a packet broad¬
cast:

vmain.vc. vd.(p(load, d) \ d(c)) | pX.p(x, /).(
if x — c then

f(y).p,Y.n(u,g).(if u = link then
g(z).vd.(p(print,d) | d(y/z)) else h(u, g) \Y)

else p{x,f) \X)

• The main Load agent:

[r hh0St app[\load(x).x(LocalLoad)]]Ap
As with the other applications the first step of the encoding sequence is the

generation of an ether name:

vloadM.[T Eapp \load(x).x(LocalLoad)jAML
where Aml — {net M- n,host p,app i-> loadM}. The next step is to
encode the replicated input.

5.2. Example Encodings 95

uloadM.pX.p(x, f).{X \ if x — load then /(w).[F \~app v(loadl)]AML
else p(x, v)

Finally, the output is encoded.

uloadM.pX.p(x, f)-(X | if x = load then f(v).ud.(p(v,d). \d(loadl))
else p(x, v)

• The probe's Load agent. This is encoded in the same way as the main load
agent. The difference is produced by encoding with an ether mapping that
maps host to q rather than p.

5.2.2 The Inet Daemon

To illustrate how an encoding reduces, I return to the inetd example from Sec¬
tion 3.4.1. Translating that example results in the process shown in Figure 5.3.
The encoding uses three ethers, for which I take names n, p and q to cover the
network, the server host Pike and the client host Carp respectively. All Ian
channel names like finger map to themselves.

Figure 5.4 graphically represents the behaviour of the translated system. Grey
bars indicate the local ethers. This differs from the representation of the unen-

coded example, given in Figure 3.3, which has direct links between processes.

Reductions of the translated process closely match those of the original given
earlier.

Carp' | Pike' = (uq.uc.(h(pike, d) \ pX.n(x, d) . ..

| up.(Inet' | Finger' | Daytime'))

extend scope = up, q, c. (h(pike, d) | pX.n(x, d)...
of p, q and c | jnep | Finger' \ Daytime')

unroll Inet' = up, q, c. (h(pike, finger, c) \ pX.n(x, d)...

| n(x, d).(Inet' | if x = pike then d(s, r).uf

| Finger' | Daytime)

96 Chapter 5. Encoding the Icnr-calculus into the ir-calculus

[r hnet Carp | Pike]{nei^n} = Carp'\ Pike1

Carp' — vq.vc. (vd.(h(pike, d) | d(finger, c))

| pX.n[x, d).if x = c then d{y).vf.(q(print, f) \ f(y))
else (h(x, d) \ X))

Pike = vpfilnet' \ Finger' \ Daytime')

Inet' = yX.n(x, d).(X | if x = pike then d{s, r).vf.(p(s, f) | f(r))
else h(x, d))

Finger' = pX.p(x, d).(X \ if x — finger then d(y).vf.(h(y,f) \ f(uPikeUsers"))
else p(x, d))

Daytime' = pX.p(x, d).(X \ if x — daytime then d(z)vf.(h(y,f).f(uPikeDate"))
else p(s, r))

Ether names: n.p.q

Data names: pike, finger, daytime, print, c, r, s

Figure 5.3: A ir encoding of the lair Internet server daemon

5.2. Example Encodings 97

Daytime Finger Inetd

Communications:
— — Packet addressed to "Pike"
— • — Packet addressed to "Finger"

Packet addressed to "c"
—•••— Packet addressed to "print"

Figure 5.4: Ether-based encoding of inet daemon relaying finger service

98 Chapter 5. Encoding the lan-calculus into the n-calculus

communication

of pike over n

and data over d

up, q, c. (pX.n(x, d)...

I v5-Winger, /) | /(c))
| Inet' | Finger' \ Daytime')

unroll Finger' = np, q, c. (pX.n(x, d)...

I vf-Winger, f) | /(c))

communication

of finger over p
and data over /

communication

of c over n

and data over /

| p(x,d). (Finger' | if x = finger then d(y).uf....

| /ne£' | Daytime)

up, q, c. (p,X.n(x, d).if x = c then d(y).uf.(q(print, f)...

| uf.(n(c,f) \f(uPikeUsers"))

| Inet' | Finger' | Daytime')

up,q,c. (uf.(q(print, f) | f (uPikeUsers"))

| Inet' | Finger' | Daytime')

Comparison with the reduction given in Section 3.4.1, shows that communi¬
cation restricted to a local area ("communication on finger&host") is replaced by
communication on a local ether ("communication of finger over p").

Unlike the original lan term, other reduction sequences are possible, though

they will only add extra r-transitions. For example, the Daytime' server may
mistakenly pick up the finger request, but will always immediately rebroadcast
it.

5.3 Correctness of the Encoding

An lan process and its encoding behave in very similar ways. For each step an

lan process may take its encoding can take two steps to match it. The six parts
of the following proposition characterise exactly the possible actions of encoded
processes.

5.3. Correctness of the Encoding 99

Proposition 25. For any well-typed process F F£ P in the local area n-calculus
and any A, that maps all levels higher that I to different names that do not

appear in P, the following hold: In each case Q = \F h P1a and e = A(m)
where T(a) = d@m.

(vf :n)a(b) , {vd)e{a,d){uf)d{b) , , _ - _ ,,1. //rh{ P —^ P then Q ——> Q where Q = |[F; f:n \~t P]|A

2. //F F P P' then Q e-^4' Q' such that Q'{a, f /x,d} t Q" and for
any vector of names c we have Q"{c/b} = [F' F^ P'{c/6}]A.

3. If T l-£ P —^ P' then Q ■—* Q' where Q' = [r F^ P']A.

/. If Q Q< then either a G f or Q' Q" and
F hf P p, |p. ^ ~ |_^ p'j^ = Q" where T(g) = n.

5. If Q Q' then for all names a and f either Q'{a, f/x, d} = e(a, /} | Q
or F P P' and <5'{a> //x, d} Q" where /or any vector of names
c we have Q"{c/b} = [F \~t P'{c/b}jA

6. If Q ——*■ Q' then either Q = Q' or T F^ P —P' and Q' —Q"with
[r h, F']A = or.

This makes clear the close connection between Ian transitions and ether pack¬
ets. For output, it is possible for actions that should be bound in the Ian term

to be observed in the n term. These actions can be picked out by noticing that
their output bindings include the first piece of data carried, i.e. the lan channel
name. Further, it is impossible for a translated lan process to pick up these

communications, as no process will be able to match the channel name. Apart
from these packet snooping outputs, the correspondence is exact: a process can

perform an output if and only if its translation can.

For input, an encoded process reads a packet; it tests this packet and if un¬
suitable it retransmits the packet again and continues as before. This means that
an input in the encoded system may perform an output and revert to the original
process. Alternatively the input will be matched by a similar input in the system
it encodes, which is then followed up by the communication of the data.

100 Chapter 5. Encoding the lan-calculus into the n-calculus

This choice of two possible responses to any input action is carried over to
the case of an encoded process performing a r. This may either reflect a r in
the system it encodes or it may be a rejected communication, in which case the

process to which it reduces is congruent to the original.
In the terminology of Nestmann and Pierce [NP96], this is an operational

correspondence between the calculi: Transitions match, with the encoding sending
a follow up packet some time later, except that a single internal 7r transition may

map to zero lan transitions. Unfortunately this does introduce the possibility of

divergence: most translated terms can perform an unbounded sequence of r steps
as they collect and return ether packets. Divergence also arises in Nestmann and
Pierce's choice encoding, except that there it is inserted by design, to give a more

convenient full abstraction result; their initial encoding is divergence free. In my

system, divergence arises rather naturally from the mechanism of ethers.

5.3.1 Evaluation Contexts

If we know what action a process can perform, we can derive a little about its

structure, for instance if a process can output a value b on a channel a we know
that somewhere inside P there must be an a(b) action and furthermore there
must be such an action that is not under a guard.

To formalise this I use a version of Evaluation contexts (these are known
to other authors as reduction contexts [FF86], static contexts [Mil89], as well
as evaluation contexts [FC98]). Evaluation contexts are the same as normal
contexts, defined in Definition 11, except that the hole is not prefixed by any

guard actions.

Definition 26. Evaluation Context

A lan Evaluation Context is a process with a "hole" that does not appear

under a guard. These can be built up using the following rules:

c«-» = 4c«-)>]
i C«_»|Q
| ua:a.C((-))

5.3. Correctness of the Encoding 101

A 7r Evaluation Context can be defined by dropping the ^[C ((_))] and the type on

the v binder from the above definition.

Evaluation contexts are used in the main proof to break down a Ian pro¬

cess into the part that performs the action and whatever surrounds it. I then
encode these two parts so that the part that performs the action in the lan pro¬

cess encodes into the part that performs the equivalent action in the n process.

It is useful to refer to particular properties of contexts. To avoid long-winded
explanations I formalise them here:

Definition 27. Properties of evaluation contexts.

• The context level of C is the level at which the hole occurs.

• The levels of C is the set of all the levels of the agents in which the hole is
nested.

• The variables bound/free in C are the variables which are bound/free by
the context, at the hole.

Definition 28. Encoding of a context

lan contexts can be encoded into n contexts by the encoding rules above and

encoding a lan hole to a n hole: [Th^ _]a = -

I can now formally state my intuitions about actions and processes. The
first result breaks down a process that can perform an output into an evaluation
context and an output action.

Lemma 2. If E P ^ p> then there exists an evaluation context C((_))
such that P = C((a(b))) and P' — C'((0)), where C' = C with the binders of g
removed.

Proof. By induction on the derivation of: T \-e P pi j-j

A process that performs an input action can be broken down in the same way.

The only difference is the addition of the process that receives the input. To allow
for this I have to make a minor change to the base case.

102 Chapter 5. Encoding the lan-calculus into the n-calculus

Lemma 3. If F P P' then there exists an evaluation context C((_)) and a

process Q such that P = C((a(b).Q)) and P' = C((Q)) with a free in C.

Proof. By induction on the derivation of: T P a-$ P'
□

The next logical case to consider is that of a process that performs a r. Here I
break down such a process into two further processes, that perform an input and

output and an evaluation context that surrounds them. The two lemmas above
could then be used to break down these sub-processes and get at the actual guards
that perform the actions. This proof is on the derivation of the silent, r action, so
the base case is that of two communication processes and the step cases consider

any reduction rule that can pass up a r action.

Lemma 4. If T \~i P P' then there exists an evaluation context C((_}) and
processes R and T such that P = C((R \ T)) and

P l-m R R'PT 41 T
P' = C{{R\T{b/c\]}

where m is the level of C and T' = T © the variables bound in C

Proof. By induction on the derivation of: T F 4 F', a-converting any binders
of b. □

I can also define evaluation contexts for the 7r-calculus by removing the area

rule from the Ian definition. It is gratifying to note that the encoding would then
translate evaluation lan contexts to evaluation n contexts. As I will be encoding
contexts, it is helpful to note that encoding is transitive over contexts, which I
use in my final result.
Lemma 5. [F b£ C((P))JA = [F F, CJA ((I T' hm PJA,))

where A' is A extended with the assignment of new variables to the levels of
C, m is the level of C and T' is T extended with any new names declared in C.

Proof. By induction on the structure of the context C.
□

5.4. The Proof of Correctness 103

5.4 The Proof of Correctness

In this section, I prove the main result of operational correspondence. The first
three parts of this theorem show that for every possible action a Ian process can

perform, its encoding can perform the equivalent packet action and reduce to an

encoding of the new Ian process. The last three propositions consider the actions
an encoded process can perform and how these are simulated in the lan calculus.
It is not necessary to consider all possible actions. A simple induction shows that:

Lemma 6. A n process that is an encoding of a lan process can only perform a

packet output: e{a,d), a packet input: e(a,d) or a communication: r.

So, when showing that lan processes simulate their encodings, it is only necessary

to consider these packet communications.
The Propositions, 29 - 34, each make up part of Proposition 25 and so take

P to be a well-typed local area 7r-calculus process,A to be a mapping of levels to
ether names, Q = |F P]A and e = A(m) where T(a) = cr@m.

5.4.1 Proof that lan Processes are Simulated by Their En¬

codings

The proofs for each clause in this section follow a similar pattern. For clauses

(i)-(iii), I break down a process into the part that performs the action and a

surrounding context. Next, I use the encoding rules to encode these parts. Then
I show how the encoding of the part of the lan process that performs the action
can perform a matching n action. Finally, I show that the encoding of the context

allows this similar action to escape. There is a dependency, in that I must prove

parts (i) and (ii) before (iii).

Proposition 29. IfT P pi ^en q l^d)e{a,d)^f)d^) q wjiere

Q' = ir-,f:n\-t P']A.

Proof. Assume T h;P p> p js wep typed and the level of P is less than
or equal to F(a). By Lemma 2, we know that there exists an evaluation context
C such that:

104 Chapter 5. Encoding the lan-calculus into the n-calculus

P = C((d(b))) , r CeC((d(b)))M'^{b) C'((0)) and C"«0» = P'

As P can output on a, a must be free in P therefore A must assign some

name, e, to T(a). Further, Q is the encoding of P therefore:

q = [r \-t pja
= ir \-e c((a(b)))jA
= ir he C\A«[a<6)JA)} by Lemma 5
= [r \~e C\b.((yd.e(a, d) \ d(b))) by encoding rule

{vd)e{a,d) |p |—^ (7JA ((d(6))) by semantic rules

As the output on the ether name has opened the new name declarations of
d we know that d must be free and unguarded in C. As encoding preserves free
and bound names, we know that the bound names of C are also bound names of
its encoding. So, by applying the semantic rules of the 7r-calculus we get:

irh,cja«dW» [r;/:nt-,C")A<<0»
and [r;/:nh(C"]a«0» = [T;/: ft h, C'{(0))]A = [r h, /"]a.

□

The second case, of input similarity, is only very slightly more complicated.
It follows the same pattern as the above proof with the additional requirement to
show that the two processes the inputs guard will also behave in the same way.

Both calculi use a late semantics, i.e. the input value is only provided after the
communication takes place. Therefore, I must show that those input guarded
processes will behave in the same way for any value inputted.

Proposition 30. If r I~tP P' then Q e^4'> Q' such that Q'{a, f /x,d} ^4
Q" and for any vector of names c we have Q"{c/b} = [T' P'{c/b}jA-

Proof. Assume F P "-5 P' so, by Lemma 3, there exists an evaluation context
C such that:

p = C{{a(b).S)) , T by C((a{b).S)) ^ C((S)) and C{{S)) = P'

5.4. The Proof of Correctness 105

q = [r p]A
= [r \-tC{(a$).S))U
= [F Pi C]A(([r Pm a(b).S}A')) by Lemma 5
= [r Pi C}A((iJ,X.e(x,d).if (x = a) then by the encoding rule

d(6).[r; b:o Pm 5]A' else (e(x,d) | X))) for input

[r Pi C]A is an evaluation 7r-calculus context. P can input on a hence the
level of a is greater than or equal to the level of P. Therefore, the level of a will
be assigned a variable, e, in A and which is not bound in the encoding of C. So:

Q [T Pi CJA((«/ (x = a) then d(6).[T, b:a Pm S]A, else
(e(x, d) | iiX.if (x = a) then d(b).|T, b:d Pm 5]A, else (e(x, d) \ X))))

Which gives us our Q'. We can now substitute a in for x and / in for d.

Making the same observations as in the previous case, I continue the reduction.

Q'{a, f/x, d} = [T h, C]a«/(6).[r, b:a Pm 5]A,»
^%Q"= [rbc]A(([r,6:dhm5]A,))

Q" = ir,6:abC((5))]A

Substituting c for b finishes the proof.
□

To prove that an internal communication in a ia7r-calculus process is matched

by an internal communication in its encoding, I first use Lemma 2 to break the
t action into its constituent input and output parts. I then apply the above
two propositions to these two parts to show how the encoding can perform the

required action.

Proposition 31. IfTPiP —^ P' then Q Q' where Q' = [F Pi P'JA.

Proof. Assume F h| P 4 F' therefore, by Lemma 4, there exists a context C
and /o7r processes S and T such that P = C((S \ T)) and T' Pm S U and
F' PmT^V with P' = C((U I V{b/c})).

106 Chapter 5. Encoding the lair-calculus into the ir-calculus

q ee [r b c({t\s))]a
= [r b ClA«[r' b t I 5]A')) by Lemma 5
= [r b C]A(([r' b T]a# ||r' b S]a')> by encoding rule

We know from the two previous propositions that the encodings of T and
S can perform inputs and outputs on the ether name for a. Matching these
communications we get:

Q-^[T\-t C]A((T'{a,d/x,d'}\S'))

The previous two propositions also tell us that T' and S' can perform further
inputs and outputs on the channel d.

Q^Q" = [T b CJA«T>, d, b/x, d\ c} | S"))

There are no occurrences of d' or x free in T", as these disappear once the
data has been passed over d'. So I can drop the substitutions for these names.

Finally, the last two propositions tell us that T" and S" are equivalent to the
reduced lair terms.

S" = [r bm U]A, and T" = [F hm V]A,

and so:

Q' = [F Ee CjA{(T"{b/c} | S"))
= [r b c]A(([r' Fm v]A.{b/c} ir Fm l/|a'))
= [F b C((V\U))U
= ir b P'Ia

□

5.4.2 Proof that lait Processes Simulate Their Encodings

Given [T b P]a = Q our proofs that P simulates Q all follow a similar pattern
to the proofs of Q simulating P, but in the reverse direction. First I break
down Q, into the parts that perform the action and a context, then using this

decomposition I characterise P, finally I show that this P can perform the

required action and reduce to a process matching the reduction of Q.

5.4. The Proof of Correctness 107

The output case is again the simplest. I make use of the fact that if the encod¬

ing can perform a packet output then there must be an output action somewhere
in the original process. This could easily be proved by induction on the encoding
rules. Then all that remains is to show that this action can be performed and
that the resulting processes are also related.

Proposition 32. If Q q> then either a £ f or Q' q"and
T bf P pi yjtfo jp; ; fi |_f P'|A = Q" where T(g) = ft.

Proof. Q is an encoding of P. Only an output action on a channel of the level
assigned to e can be encoded to an output on e. Therefore there exists a context
C such that P = C((a(b))) for some b and A(F(a)) = e

As e is free in Q, e must be assigned a level by A that is greater than or equal
to that of P and hence the level of a is greater than or equal to I.

A binder in lair is encoded into a binder in tt so if a were bound in C it would

also be bound in Q and hence in /. Guards are also translated into guards. So, as
the encoding of C is an evaluation context, C must also be an evaluation context.

Therefore, T \~t P C((0)) and:

Q = [Th P]A
= [r h, C((a(b)))jA
= |T C]A((ud.e(a, d).d(b))) Lemma 5 and encoding rule

(vd)e{a4) q, ^ |p |_^ by semantics of output

q, T9)d(b) Q" = : ft \~e C"((0))|a by Lemma 5
Q" = [r;?:nhP']A

as required.
□

We do not get a strong bi-simulation result because an input action performed
by an encoding may or may not represent an input action in the process it encodes.
When an encoding process receives an input it checks the first argument to see if
it is being passed over the right channel, if it is not it will send it back out and
listen again. So, this leads to two possible cases for a process that performs an

input.

108 Chapter 5. Encoding the lair-calculus into the ir-calculus

Proposition 33. If Q Q' then for all names a and f either:

• Q'{a,f/x,d} = e(a, f) \Q
or

• P h; P P' and Q'{a, f /x, d} Q" where for any vector of names c

we have Q"{c/b} = [r hi P'{c/b}JA

Proof. Q is an encoding of P and only an input action on a channel of the level
assigned to e can produce an input action on e. So, there must exist a context

C, process S and names c,b such that P = C{(c(b).S)) and A(T(a)) = e Where,
for the same reasons as the last case, the encoding of C is an evaluation context
that does not bind a.

q = [r he pja
= (r h£ c((c(b).s))jA
= [r ht CjA((pX.e(x, d).if x = c then d(6).[r, b:a hi 5JA, else (e(x, d) \ X)

^ |p |_^ (7jA^y x _ c then d(6).|r, b:a hi SJA, else
(e(x, d) | pX.e(x, d).if x = c then d(6).[r, b:d hi S]A, else (e(x, d) | A))

So:

Q'{a,f/x, d} = [r ha CjA((if a — c then /(6).|r, b:a be else
(e(a, /) | pX.e(x, d).if x = c then d(6).[F, b:a bi 5JA, else

{e(x,d)\X))

where the internal d is not replaced with / because it is bound by the e(x, d)
input action. There are now two cases:

1. c a in which case:

Q'{a,f/x,d} = {T heC}A(((e(a,f)\pX.e(x,d). if x = c then d(b). ...
= fr hi C}A((pX.e(x, d).if x = a then rf(6).[T, b:d ht S]A,

else (e(x, d) \ X))) \ e(a, f)
= [rb< C((a(b).S))}A | e(o, /)
= Q | e(a, f)

5.4. The Proof of Correctness 109

2. c = a in which case:

Q' =[r i-(c]A«/(6).[r, b-.si-,s]a,»
A Q" = [r h, C]a«[r,i:CT h, SJa,»
Q"= [r h, c«s)}]A
= ir P'JA

and so: Q"{c/b} = fT P'{c/b}jA.

□

In the above two proofs I have broken down the encoded process in the main

proof instead of using a lemma, as I did in the proofs of encodings simulating
their Ian processes. This is because the decomposition could be done quite simply.
The case of breaking up an encoding process that performs a r is slightly more

complicated so I present it first as a lemma.
Given Q -A Q' it is easy enough to break it down into a part that can perform

some output action and another part that can perform the reciprocal input action.

However, it is also necessary to show that these parts are also encodings of some
lan process, in order to allow us to use lemmas 3 and 2 to in turn decompose
these parts.

Lemma 7. Given Q = [r \~e -P]A, if Q Q' then there exist lan processes Pi
and P2, an evaluation context C and a n process M such that

P = C«P, | P2»
and

Q = ua.({r bm Pi Ja' | r Kn P2Ja' I M)

where A' is A extended with new variable assignments for the levels of C, m
is the level of C, F' is T extended by the variables bound by C and a are the
bound names shared between all processes. The encodings of Pi and P2 can then
perform the following actions:

[r Fm Pi\a> ~e{^] Q\ and [r bm P2]A, e(^;) Q'2

110 Chapter 5. Encoding the lan-calculus into the n-calculus

Proof. By induction on the derivation of the r action.
Base Case:

• COMM_TSEM: P = R | S therefore Q = [B R]A ||T S]A- One of
[B \~i and |r \~i SjA performs an input and one an output.

For simplicity, let us assume that |r Sja performs the output and [r \~i
/?]a the input. Lemma 6 states that the only output action that can be
performed by S is of the form e(a, d) and that e(a, 6) are the only possible
input actions for R. Therefore:

[r SjA ~e{^d) Q[and [T h RjA^ Q'2

and the surrounding context contains any necessary binders.

Step Cases:

• AREA_TSEM: P = n[R\
Therefore Q = ve.\T \~n jR]A©{fr->e}- So by the induction hypothesis there
exists an evaluation context D and lan processes R\ and R2 and a n process

M such that:

R = D((R1\R2))
and

[T Em .RjAe^e} = ua.({r' Em i2ijA'©{«->e} Iffr' Lm i?2jA'©{4->e} I M)
[r' bm i?ljA'©{rh->e} ^ Q'\ and fr' hm -R2IA'©{<V->e} Q'2

so Q = ve.ua.(|r Em _RijA'©{r>->e} IP Em R2jA'©{rM-e} I Af)
and we can define C = m[D\ so that P = C((R\ \ R2)) = m[D((Ri | i?2))]

• BIND_TSEM: P = va:o.R.

In this case Q = va.\T; a:o hf R}A

So by the induction hypothesis there exists an evaluation context D and
lan processes Ri and R2 and a n process M such that:

5.4. The Proof of Correctness 111

R = D((RX | P2))
and

[r; a:o bm P]A = ua.([V ;a:ahm Pi]A, |[r';a : a bm P2]A, | M)

[r'; a : cr bm R,]A, Q; and [T'; a : a bm P2JA, e(^/} Ql,

so Q = ua.ua. ([r'; a : o bra Pi]A' |[r'; a : a bm P2JA/ | M)

and we can define C = ua:a.D so that P = C((R\ \ R2)) = ua:a.D((Ri | R2))]

• PAR_TSEM: P = R\S therefore Q = [T b£ PJA |[r h£ PJA.

Now, either [r b^ P]A performs a r or [r b^ performs a r. In the first
case we apply the induction hypothesis. This tells us that there exists an

evaluation context D and lair processes f?i and R2 and a n process M such
that:

R = d((ri | R2))
and

[r b, r]a, = ua.([r bm ry}a, |[r bm p2]A, \ m)

[T hm Rih>^ Q[and r R2]a> e{^] Q'2

and so:

Q=ua.([V bm Rx]a, I[r bm P2]A, I M) |[r he S]A
=ua.(ir bm i?!]A, ur bm p2]A, I(M |[r b, s]A))

and we can define C = £> |[r b£ SJA so that P = C^Pj | P2)) = P((Pi | P2» |[T b

The second case is symmetric.

The semantic rules for input, replicated input, output and null cannot be part
of the derivation of a r so they are not considered. □

112 Chapter 5. Encoding the lair-calculus into the ir-calculus

So, given an encoded process that performs a r we can use the above lemma
to break it into two parts that perform an input and output. We can then use

Lemmas 3 and 2, to show how the lair processes these parts encode perform
similar actions. Finally we recombine these lair parts to finish the proof.

Proposition 34. If Q —A- Q' then either

• Q = Q', so trivially |T P|A = Q'
or

• rhPA?' and, Q' Q"with [r h? P'JA = Q".

Proof. Lemma 7 tells us that we can find the subprocesses of Q and P that
perform the input and output actions that make up the r communication and
that the behaviour of these two parts will correspond i.e. there exist ir processes

Qi, Q2 and M such that

Q = va.(Qi \ Q2\M)
(i/f)e(a,d) „ e(a.S) ,Qi Q\ an(l Q2 ~~7* Q2

so Q —> va.{Q\ | Q'2{a, d/a, 5} | M)

and Qi and Q2 are encodings of evaluation subprocesses of P, Pi and P2 i.e. there
exists an evaluation context C such that for A' that extends A with new variable

assignments for the levels of C, m that is the level of C and T' that extends T
with the variables bound by C:

Qi = [r Km Pi]A» and Q2 = |L' hm Pi]A/
and P = C((Pi | P2))

So, by Proposition 32, we know that either a £ / or Q[ancj
T \~i Pi pi with [r l-£ Pj]A = Q'[and T(g) = n. And by Proposition 33
either

• (!) Q2{a' d/u, £} = e(«> d) | Q2
or

5.4. The Proof of Correctness 113

• (2) T b-£ P2 P2 and Q'2{a, d/a, <5} Q" where for any vector of names
c we have Q2{c/b} = jr \~e P2{c/b}]A

If the packet key a is bound in the output, i.e. in / then the process Q2
cannot know about this name and so the packet cannot pass the input test. So,

Q'2 will rebroadcast the packet. So, a G / =>• Q'2{a,d/a,5} = e(a,d) \Q2. So,
it is enough to consider the two possible outcomes of Proposition 33.

• (1) Q\2(a' d/a, = d(a, d) I ^is case, as Q\ and Q2 are asynchronous
7r-calculus terms we know that:

Qi Q[therefore Qi = Q[\ e(a, d) (i)

Q A Q' = ua.vf.{Q\ | Q'2{a,d/ajS} | M) by Lemma 7
= va.vf .{Q'x | Q2 | e(a, d) \ M)
= va.(Qi\Q2\M) by (i)
= Q by Lemma 7

• (2) In the second case, V bm P2 a-4 P2 which means that P' f-m Px | P2
P[| P2[b/j3\. And as C is an evaluation context: T \~i C((Pi\P2)) A
C((P[\P$/p}))

Q' = va.vf.(Q'x | Q'2{a, d/a, 5} | M)
Q' -d-t Q" = va.vf.vg.(Q" \ Q2{a, d, b/a, h, | M)

by reduction of Q\ & Q2
Q" = va.vf.vg.(Q'l \ Q2{b/f} \ M)

remove unused names,

and by Propositions 33 and 32, Q'[and Q2 are the encodings of P[and P2.

Q" = va.vf.hm p;yA|[r" \-'m I M)
D

Q" = (r ht r]a

Chapter 6

Modelling FTP over NAT

My main reason for investigating local areas is the belief that they are natural
notions with which to model any distributed systems that make use of conven¬
tions.

In this chapter, I offer evidence for this by presenting a large-scale model
of Internet communication and use it to examine the liveness properties of File
Transfer Protocol in the presence of Network Address Translation. Specifically I

investigate why and how the application may fail to make the required connection.

In the next section, I introduce an alternative syntax for the /a-zr-calculus
that aims to make larger processes easy to read. The first model is of Internet
communication based on sockets and TCP over IP [CK74], This gives me a

reusable framework in which to carry out further investigations. Next, I extend
the Internet communication model with Network Address Translation [EF94]. In
Section 6.3 I build a model of an FTP client and server that uses the TCP/IP
model to communicate. The results of running this model are given in Section
6.5. They show how FTP can sometimes fail when used with NAT and how the

steps taken to correct the problems are successful. In the final Section, 6.6, I look
at one of the ways in which the model may be extended.

115

116 Chapter 6. Modelling FTP over NAT

6.1 Program Syntax
The models in this chapter are significantly larger than those presented earlier.
The syntax of the io7r-calculus, like that of the 7r-calculus is wonderfully concise
when it comes to describing small systems but can become somewhat unreadable
with anything larger than half a side of A4. To remedy this I use a pinch of
syntactic sugar to make the calculus clearer. I refer to this new form as program

syntax. This is similar to the form used for the spi calculus from [GJ01].

Process P,Q ::= a list of terms separated by

in a(b)
out a(b)
new a:o

spawn {in a(b)
spawn {in a(b)
area nQ}

a name is written

Term ::= in a(b) input tuple
output tuple
fresh channel

[Q } spawn new thread

local area at level £

is that the input is a guard and so is a prefix to a continuation P whereas the
output is asynchronous and does not block the process P and so it is in parallel
with P. This gives a dual meaning: when following an input it represents a

prefix, and when following an output it represents a parallel composition. Indeed,
the fact that asynchronous output could be modelled in this way was one of the
original observations behind asynchronous 7r-calculus. The also represents

prefixing in the new name declaration: " new a:o ".
The spawn {in a(b) } { Q } ; P command starts a parallel process. This can

be interpreted as: spin off a parallel process which will perform Q when triggered
by an input on a. While waiting for this trigger, the process continues with the
"program" P. This command really has two uses, both of which relate to the use

of parallel, input guarded processes. Firstly, it can be used to spin off a thread to

perform a given job allowing the main program to continue. This is exactly what
is done with servers that will spin off a new thread to deal with each connection.

6.1. Program Syntax 117

[in a (6);P]
[out a (6);P]

a(b).{Pj
a(b)\{P}

I new a at cr;P 1
[spawn { a }{ Q };P 1
[spawn { a } repeat{ Q };P]
[area t { Q } ;P]

V-<*-Q]\[P]

va : o.P

[empty list | 0

Figure 6.1: Rules for translating program syntax into standard /a7rsyntax

Secondly, it can be used as a kind of switch statement. Where a name can be
compared to a number of others by outputting it, while spinning off processes to
listen and act on each of its possible values.

Adding repeat after the spawn command will make this a persistent process
that will keep going, after it gets the first trigger. Finally, areas are declared using
the key word area followed by the process for that area in curly brackets.

The translation between the lair syntax used in previous chapters and the

program syntax is given in Figure 6.1.

6.1.1 Channel Coercion

Polyadic channels can be used to pass a myriad of other channels. It is often the
case that I am only interested in the first few. Likewise, it is often the case that I
wish to communicate with a remote process in the knowledge that only the first
few values of the tuple passed will have an effect on the resulting process.

To avoid cluttering the process terms, in this extended example, I introduce
a shorthand, referred to here as channel coercion. This allows me to leave out

unnecessary channel names. If, for example, I have a channel name, o, which
carries five other names but I am only interested in the first three then I write
" in a (bj, b2, b3);P " for "a(bi, b2, b3, ci, c2).|P]" where C\ and c2 do not occur
in P.

118 Chapter 6. Modelling FTP over NAT

Formalising this for the general case of well sorted processes, I get:

| in a (6);P J = a(b,c).[P]

where 5(a) = (S(b), 5(c)) extending 5 with c if neseccary
and cfl fn(P) — 0

I can do the same thing with output actions but must first declare the channels
I am going to use as padding.

[out a(6);P 1 = uc:SORTS.d(b, c).[P|

where 5(a) = (5(6), SORTS)
and cnfn(P) — 0

I will also use brackets to mark out natural groups inside tuples. These
brackets are only used to make the longer tuples more readable and have no

semantic meaning in themselves. For example, the following IP packet consists
of a destination IP address and port, a source IP address and port and a data

payload:

(155.246.7.5 , 129.215.98.54 , 21 , 3022 , (port , 129.215.98.54 , 3021))

This is a tuple with seven elements but brackets are placed round the pay load
to make it easier to read.

Finally, when I am going to ignore a name received on an input, I will write
the channel name it is to be bound to as to avoid cluttering processes with
unused names.

6.2 The Internet Communication Model

Internet communication is built on a four level model. At the base is the link

level of real physical connections. On top of this the second level, the network
level, provides basic communication. This is done using Internet Protocol (IP)

6.2. The Internet Communication Model 119

[Pos81a] to transmit small packets of data between hosts. The use of packets to
communicate has many advantages. It makes multiplexing easy and it improves
the resilience of a network. If part of the network breaks, the packets can simply
take a different route to avoid the fault. However, applications often require a

steady stream of data. Packets may also be lost, or accidentally replicated. This is
where the third level of Internet communication comes in. This level implements
another protocol on top of IP that will provide user friendly connections to the

applications. While use of Internet Protocol is compulsory at the second level,
the third level may use a number of protocols. The most common is Transmission
Control Protocl [Pos81b] but User Datagram Protocol [Pos80] is not uncommon.
The last level in the Internet communication model is the application level; this
is the natural habitat of processes that may wish to use the connections provided

by the three other levels.

The primary aim of the model presented in this chapter is to establish live-
ness properties of single runs of the FTP protocol showing that connections are

correctly made or that data is lost. To this end, I have simplified the systems I
am looking at, removing features that are not relevant. For instance, my routers
do not lose packets as real life routers may do, therefore I do not need error

correction at the protocol level. Also, at the protocol level I have removed the
size restriction on IP packets, and therefore removed the need to keep track of

fragmented data.

I only look at the basic core of the protocols, therefore I do not consider

multiple sessions, multiplexing or any of the advanced features offered by FTP.
Also as I am only interested in the correct transfer of data I stop as soon as the
transfer has taken place or failed. So, I also ignore the ways in which connections
are terminated at the protocol level and I do not examine the ways in which
sessions end at the application level.

I drop all the error correction information from the IP packet, i.e. the check

sum, the length of the header, time-to-live fields, etc. I do the same with the
TCP packet. As a result, my data packets only contain the socket information
and the data payload:

120 Chapter 6. Modelling FTP over NAT

Packet = (Source IP, Destination IP, Source port, Destination port, Data)

As with any Ian model I must decide on the levels the model will use. The

previous examples have used three levels: app, host and net. In these models,
all the processes have been at the app level and the host and net levels have
just been used to provide boundaries. In this model, I use more abstract levels.
Processes that deal with specific jobs run at the level at which those job take
place. The levels are:

app < transport < network < link

The application processes all run at the app level. The transport level han¬
dles TCP command based communication for app level processes. The transport

level, in turn, uses the network level to handle the passing of IP packets to their
destinations. Assigning the transport or network level to the channels used by
these processes, ensures that all applications running inside these levels always
talk to the right handler. A single router process runs at each network level and
forwards packets to local hosts or other routers. The link level is only used by
the channel that the routers use to pass packets between networks.

In work similar to this, Serjantov, Sewell and Wansbrough [SSW01] have
built a more complex model of the User Data Protocol. This model is aimed at

providing realistic models of real software and so addresses many of the issues I
do not, such as packet loss, host failure and timeouts. These grander ambitions
lead to a more complex calculus. Amadio and Prasad [AP98] have made a model
of the next generation version of the IP protocol (IP version 6 [DH98]). This is
a single level model, which looks at just one layer of the TCP/IP stack. Indeed,
with a rearrangement into the 7r-calculus this model of IP version 6 could replace
the model of IP version 4 that runs at the network level of the model presented
here. Both of these models use purpose built calculi that lack the flexibility of
the Za7r-calculus.

6.2. The Internet Communication Model 121

6.2.1 Router Model

The routers handle the lowest level of communications between networks. My
routers listen for a packet being sent out on their names. Once a packet is received
the router refers to a lookup table to find where that packet should be passed.
Packets destined for local machines are then sent directly to those machines on

the machine's name. Packets for machines on remote networks are broadcast to

another router.

Router(name) =
spawn {in name (dip,sip,dport,sport,data)} repeat
{

new replyRouter:LOOKUPREP;
out lookup (replyRouter, dip);
in replyRouter (forward);
out forward (dip,sip,dport,sport,data)

}

The channels name and forward are router names. They communicate at the
link level, so they have the sorting:

S(ROUTERNAME) ^ (IP, IP, PORT, PORT, DATA)@link

The reply channel carries a router name between the lookup table and a router
and so must travel at the network level:

S(LOOKUPREP) ROUTERNAME@net

The lookup channel's sorting is also easily derived:

S(LOOKUP) (IP,LOOKUPREP)@net

The lookup table simply links a router or host name to each IP. Different
routers work off different tables of data.

122 Chapter 6. Modelling FTP over NAT

LookupTable =
spawn { in lookup (replyRouter, dip) } repeat
{ out dip (replyRouter) }

In my model of FTP, I have a client machine fetch a file from a server on

a different network. The client machine's IP address is 129.215.98.54 and it is

addressed with the name ftpCliHost. The host's address is 155.246.7.5 with the
name ftpSerHost. To make the journey between these two machines each host
first talks to the router on its own network. This router passes the packet to
the router on the other network. The second router then passes the packet to its
destination.

So, the client router passes packets for the client directly to the client and

packets for the server to the server's network router.

ClientTableData =

spawn { in 155.246.7.5 (replyRouter) } repeat
{ out replyRouter (routerFtpSer) };

spawn { in 129.215.98.54 (replyRouter) } repeat
{ out replyRouter (ftpCliHost) }

We can now see that IP addresses carry router reply channels. So, they will
have the sorting: S(IP) (LOOKUPREP)@net. In the same way, the server

router passes packets for the server directly to the server and packets for the
client to the client's network router.

ServerTableData =

spawn { in 155.246.7.5 (replyRouter) } repeat
{out replyRouter (ftpSerHost) };

spawn { in 129.215.98.54 (replyRouter) } repeat
{ out replyRouter (routerFtpCli) }

6.2. The Internet Communication Model 123

6.2.2 Linking IP Packets to Sockets

Now that IP packets can be sent and received a wrapper is needed to turn these

packets into sockets.
In the TCP/IP model, the transport level reassembles fragmented IP packets.

An entry in the IP packet header then dictates which network level protocol the

packet is using and hence the process the reassembled packet should be passed
to. The model presented here doesn't fragment IP packets. So, the transport

level's first task is to identify which port the incoming packet is destined for. So,
the whole data packet is rebroadcast on the destination port:

IPlinkSOCKET (routerIn,routerOut) =
spawn { in routerln (dip,sip,dport,sport,data) } repeat
{ out dport (dip,sip,dport,sport,data) }

TCP provides a reliable host to host protocol that will work over a possibly
unreliable packet switching network, usually IP. It presents six commands to the

application level with which to control these connections. The commands are:

Open, Close, Status, Abort, Send and Receive.
In my examination of FTP, I am only looking for the correct transfer of a file,

or rather a channel name representing that file. Therefore, I am not interested
in how the protocols terminate after that file has been transferred and so I have
no need to add the "close" or "abort" commands to my system, similarly the
"status" command is not used and so is not needed in the model. I will now go

over the implementation of the commands "open", "send" and "receive".

6.2.2.1 Open

Format:

OPEN (local port, foreign socket,active/passive [, timeout]
[,precedence] [,security/compartment] [,option])

Open performs the twin function of actively connecting to a remote computer

or passively listening for a connection. If the foreign socket is specified for a pas-

124 Chapter 6. Modelling FTP over NAT

sive call, the process will listen for a connection from that location only, ignoring
all others.

In my model, I remove all the optional features and split the format into two

commands: listen(local port, reply channel) listens for a connection on the given
local port and then returns the socket name on the reply channel;

connect (destination IP, destination port, source port, reply channel)

connects to a remote machine. So these names have the sorts:

S(LISTEN) ^ (PORT, SOCKETREP)@transport
S(CONNECT) i—y (IP, PORT, PORT, SOCKETREP)@transport

Once a connection is opened, the full socket information is made available on

the socket's name. Sockets are defined by the destination's IP number and port
and the source's IP number and port. This is exactly the information needed by
the "send" command to make up the IP packets to send to the router.

Open(sip) = spawn { in listen (portNo, reply) } repeat
{
new socket : SOCKET;
in portNo (dip, sip, dport, sport, data);
out reply (socket);
out portNo (dip, sip, dport, sport, data);
spawn { in socket (n) } repeat
{out n (sip, dip, sport, dport) }

};
spawn { in connect (dip, dport, sport, reply) } repeat
{

new socket : SOCKET;
out reply (socket);
spawn { in socket (n) } repeat
{ out n (dip, sip, dport, sport) }

}

6.2. The Internet Communication Model 125

This process shows how the port name is used to identify the packet and how
the socket name is used to show the information needed to make IP packets for
communication over that socket. These abilities are characterised by the following
sorts:

S(PORT) i—V (IP,IP,PORT,PORT,DATA)@transport
S(SOCKET) SOCKETREP@transport

S(SOCKETREP) (IP,IP,PORT,PORT)@transport

In this simplified setting the connect command does not initiate the connection
to the remote host. The connection is initiated when the first piece of data is
sent across the connection. This is not strictly in keeping with the specification
of TCP, as it means that the connection is not properly rejected if the destination
is not listening at the time the connection is made. It is also impossible for a

connection to be made and then for the host that is listening for the connection
to send the first piece of data. However, as I am assuming that the protocols are

always used correctly, these kinds of error will not arise. The connect command
can be extended to initiate the connection at the cost of a slightly more involved
model. I spell out the details in Section 6.6.

Sockets are identified by just the destination port, rather than the full desti¬
nation port, IP address, source port and IP address as is specified by the TCP

specification. This means that no host can have more than one connection per

port. This is not a problem for the limited runs I am looking at here. The full
ability to multiplex connections over ports, as long as some part of the socket is

unique, could be added by an additional three checks on each incoming packet to
match up all the port and IP numbers.

6.2.2.2 Send

Format:

SEND (local socket name, buffer address, byte count, PUSH flag,
URGENT flag [,timeout])

126 Chapter 6. Modelling FTP over NAT

This model uses the simplified form: S(SEND) (SOCKET, DATA)@transport
to send the data tuple, over the named socket. The send process gets the socket
information from the socket name. It then uses this information to build the data

packet and pass the fully formed packet to the router:

Send(routerOut) =
spawn { in send (socket, data) } repeat
{

new n : SOCKETREP;
out socket (n);
in n (dip, sip ,dport,sport);
out routerOut (dip,sip,dport,sport,data)

}

6.2.2.3 Receive

Format:

RECEIVE (local socket name, buffer address, byte count)

The receive command finds the socket information from the socket name, just
as the send command did. It then listens on the local port for a data packet.
Once it receives a packet, it strips off the header and sends the data to the user,

over the reply channel:

Receive =

spawn { in receive (socket, reply)} repeat

{
new n : SOCKETREP

out socket (n);
in n (_,_,_ ,sport);
in sport (_ , data);
out reply (data)

}

6.2. The Internet Communication Model 127

Model call Equivalent TCP call Function

connect OPEN(active) connect to a remote machine

listen OPEN(passive) listen for a connection

send SEND send data over an already open socket
receive RECEIVE receive data from a remote host over an

already open socket

Figure 6.2: TCP calls and their model counterparts

The receive channel has the sorting:

S(RECEIVE) ^ (SOCKET, DATAREP)@transport

6.2.2.4 The Transport Level

The TCP calls and their model counterparts are summarised in Figure 6.2. Each

piece of the transport level runs in parallel. A host's entire transport level is

parameterised by its own IP address, the name on which packets will be sent to

it, and the name of a router to which it can send packets.

TCP(sip,routerIn,routerOut) =
IPlinkSOCKET(routerln);
Open(sip);
Send(routerOut);
Receive

128 Chapter 6. Modelling FTP over NAT

6.2.3 Network Address Translation

The 32 bit IP address length allows for over four billion possible addresses. At
the time the Internet was conceived this was considered more than enough. Even
with rapid growth of the Internet the addition of the 4 billionth host is a long
way off. However, IP addresses have been handed out in a manner designed for
efficient routing, rather than efficient usage. The system of handing out addresses,
used until recently was known as the classfull addressing system. This used the
first few bits of an address as a label for the network and the remaining bits as a

number for a host on that network.

There were three different sizes of "network" The biggest were the Class A
addresses, which are marked with a 0 as the first bit followed by a 7 bit network
address. This allowed for 127 possible networks, with slightly over 16 million
hosts. Class A addresses have been assigned to major organisations, such as the
US navy that has the addresses 26.0.0.0 to 26.255.255.255. Also using Class A
addresses are the original founding sights of the Internet, such as M.I.T., 18.0.0.0
to 18.255.255.255, and any company lucky enough to get in on the act early,
such as IBM 9.0.0.0 to 9.255.255.255 and quite bizarrely the British Department
of Social Security, which has the addresses 51.0.0.0 to 51.255.255.255 to share
between its 93,000 staff.

The second largest address group is the Class B network addresses. These start
with the bits 10, hence the addresses are 128.0.0.0 to 191.255.255.255. These use

14 bits for the network number and so allow for roughly sixteen thousand networks
each with sixty five thousand hosts. The smallest network group, Class C, allows
for roughly 2 million networks with up to 256 hosts each.

Addresses starting with the bits 1110 were used for multicasting and those

starting 1111 were reserved for future uses, hence stopping five hundred million
addresses being used as host names.

It is easy to see how this system leads to inefficiencies, M.I.T. has nowhere
near 16 million computers, but still has 16 million addresses reserved for its

personal use. The real problem however, is the Class B addresses. Almost no
small company or organisation starts life planning to remain small for long, so

6.2. The Internet Communication Model 129

very few ever opted for a Class C network, instead going for the much larger Class
B network. This has led to many Class B networks using less than 100 of their

64,000 address space.

This system has recently been replaced by a classless addressing system known
as Classless Inter-Domain Routing (CIDR), [FLYK93]. This system hands out
addresses more efficiently, at the cost of a very slight increase in routing complex¬

ity. But much of the damage is already done; we are running short of addresses.
A permanent fix is planned by way of a complete new Internet Protocol: IP ver¬

sion 6. But as it is incompatible with the current IP version 4 many authors

[WeiOl, Duc02] suggest it may never be rolled out.
At the same time, it is common for machines on some networks to have no

direct contact with the outside world, especially when webpages are delivered
through a proxy and email through a local mail server. Most of the time these
machines are just using up an IP address that is not needed.

Network Address Translation, as defined in [EF94, SE01], increases the num¬

ber of hosts that can have an IP address by allowing a restricted set of IP addresses
to be reused in mutually exclusive networks. Three sets of IP addresses have been

put aside for local use:

10.0.0.0 - 10.255.255.255

172.16.0.0 - 172.31.255.255

192.168.0.0 - 192.168.255.255

The local routers are the only ones to have the local routing information for
these addresses. Although it is possible for these machines to transmit IP packets
it will be impossible for any packet to find its way back.

Generally, a network that is running most of its machines with internal ad¬
dresses would have a small number of normal IP addresses that it had not assigned
to any given host. When one of the hosts that had been configured to use a local
address wished to access the outside world, it would be assigned one of the ex¬

ternal addresses. It could then use this address for as long as the connection was

needed. Once the process was finished it would return the external IP address
for another host to use and go back exclusively to using its internal address.

130 Chapter 6. Modelling FTP over NAT

A more advanced version of NAT allows a number of different hosts to commu¬

nicate over the same IP address and use their source port as identification. Known
as Network Address Port Translation or NAPT [SE01], this has the advantage of
allowing a large number of hosts to connect through the same address at the same

time. However, it has several disadvantages such as not working with transport

protocols that do not use port numbers. So breaking the "Internet model" that
the workings of one level should not effect another.

The following model examines the basic version of NAT, I also assume that
all necessary address translation has been set up. When a packet arrives at a

router on a network that is running NAT the router gives the lookup table the

option of substituting the IP addresses in the packet's header.

NATLookupTable =
spawn { in lookup (replyRouter, dip, sip) } repeat
{

new same : LOOKUPREPJMAT;
new swap : LOOKUPREP_NAT;
out dip (same, swap);
spawn { in same (forward, newdip) }
{ out replyRouter (forward, newdip, sip) };

spawn { in swap (forward, newdip) }
{
out sip (same);
in same (_, newsip);
out replyRouter (forward, newdip, newsip)

}
}

6.3. File Transfer Protocol 131

ClientNATtableData =

spawn { in 155.246.7.5 (same, swap) } repeat
{ out swap (routerFtpSer, 155.246.7.5) };

spawn { in 129.215.98.54 (same, swap) } repeat
{ out same (ftpCliHost, 192.168.32.26) };

spawn { in 192.168.32.26 (same, swap) } repeat
{ out same (ftpCliHost, 129.215.98.54) }

ServerNATtableData = ServerTableData

The added functionality requires extended sorts for IP addresses and look up

channels:

S(LOOKUP_NAT) i-> (LOOKUPREP,IP,IP)@net
S(IP_NAT) (LOOKUPFLAG,LOOKUPFLAG)@net

S(LOOKUPREP_NAT) (ROUTERNAME,IP)@net

These new sorts can be coerced into the old sorts. What is more, the behaviour
of the channels with or without NAT is exactly the same when no actual address
translation is taking place. Therefore, NAT routers and normal routers can, quite

happily, coexist in the same system.

6.3 File Transfer Protocol

6.3.1 Introduction to FTP

File Transfer Protocol is one of the original Internet protocols that dates back
to the days of the APRAnet. As such, it has been revised and updated many

times leading to a system of downloading that isn't exactly instinctive. From a

design point of view the protocol's most interesting feature is that it uses separate
socket connections to send the protocol commands and to transfer the file. These
connections can even be between different hosts making it possible to use FTP to
transfer files between two remote sites. This little-used feature dates from a time

132 Chapter 6. Modelling FTP over NAT

when remotely logging into sites was complicated and when it was also considered
useful to have the ability to send files directly to "dumb" remote devices such as

printers.

FTP provides many commands to identify and authenticate users, navigate
remote file structures, transfer files and even provide help. The three key com¬

mands involved in file transfer are data port (PORT), passive (PASV) and retrieve
(RETR).

The data port command is used to specify the IP address and port number
that the data connection is to use. The command also indicates that the server

should be running in active mode. It is common practice for FTP clients to

dispense with this command and reply on a series of defaults but in this simplified

system, I have chosen to make it compulsory.

The passive command requests that the server listens for a data connection.
The client can then initiate the connection to the server. The port the server will
listen on is returned in reply to this command.

Once the information necessary to make a data connection has been provided,
the client can then ask for a given file to be sent by using the retrieve command.

FTP requires that an explicit acknowledgment is given to each command.
This dramatically reduces the number of states any given run of the protocol

may reach. It also allows both sides to keep a fairly good idea of the exact
state of the other side. These acknowledgments take the form of a three digit
number followed by a string. The number defines the type of response whereas
the string is intended to be a friendly message to the user, or may carry additional

information, if required.

There are numerous commonly used acknowledgements including many to

help recover from erroneous, out of order or incomplete commands. Given that
I am assuming that the protocol is always used correctly only three are useful.

They are shown in the following table.

6.3. File Transfer Protocol 133

Number String Meaning

200 Command ok
used in reply to

the port command

227 Switch to passive mode using IP:PORT
used in reply to

the pasv command

150 File status ok, about to open data socket
used in reply to
the retr command

6.3.1.1 FTP Client Model

The FTP client is started by a call on the channel name ftp. This call specifies
the IP address of the FTP server, the name of the file that is to be downloaded, a

flag to indicate if the protocol is to be run in passive or active mode and a return
channel for the downloaded file.

The client's first job is to connect to the FTP server. It does this by requesting
a connection from its transport level on the channel connect. It then selects either
active or passive mode.

FTPclient = area app {in ftp (ip, filename, mode, filerep);
new socketReply at SOCKETREP;
out connect (ip , 21, 3022, socketReply);
in socketReply (socket); new replyCli at DATAREP;
out mode ();
spawn { in active () }
Active Mode;

spawn { in passive () }
Passive Mode

}

134 Chapter 6. Modelling FTP over NAT

The sort of the ftp channel provides all the information needed to find and re¬

turn the hie, S(FTP) ^ (IP, FILENAME, MODE, DATAREP)@transport. The
mode indicators passive and active are used for synchronisation at the application
level: S[MODE) ^ [)@app.

In active mode the client issues the port command and instructs the transport
level to listen on a port. Finally, both modes then send the server the retr

command and listen on this data connection for the hie.

Active Mode = out send

out receive

in replyCli
out send

out receive

in replyCli
out listen

in socketReply
out receive

(socket, (port, ip , 3021));
(socket, replyCli);
(200);
(socket, (retr , filename));
(socket, replyCli);
(150);
(socketReply, 3021);
(dataSocket);
(dataSocket, hlerep)

This is the hrst time I have specihed the data that is sent across the network.
It consists of an FTP command, port, pasv or retr, and arguments that might
be needed by these commands, i.e. an IP address and a port number, more

formally: DATA = [COMMAND, IP, PORT). The reply channels are therefore
sorted as carrying DATA at the transport level. To avoid further coercion I give
the hlename the same sort as IP addresses, so it can be carried as the second part
of the data.

If the client is in passive mode it sends the passive command and then opens

the data connection to the server.

6.3. File Transfer Protocol 135

out send (socket, (passive));
out receive (socket, replyCli);
in replyCli (227, serverIP, serverPort);
out send (socket, (retr , filename));
out receive (socket, replyCli);
in replyCli (150);
out connect (serverIP , serverPort, 3020,
in socketReply (dataSocket);
out send (dataSocket);
out receive (dataSocket, filerep)

With a little more coercion I can match up the sorts of the file reply and data

reply channels by giving the file the sort COMMAND.

6.3.1.2 FTP Server Model

The server's job is more complicated than the client's. It must be able to handle
each of the three commands in the reduced File Transfer Protocol. To simplify

things, this server only handles one connection at a time.
The IP address and the port number for the data connection are stored on the

names storelP and storePort and the mode the server is running in is represented

by the flag passive or active.
When a message is received by the server, it is broadcast on the command's

name. It will then be picked up by whichever process deals with that command.

Command Link = spawn { in replySer (command, argl, arg2) } repeat
{
out command (argl, arg2);
out receive (serverSocket, replySer)

}

136 Chapter 6. Modelling FTP over NAT

The Data Port Command When the PORT command is received the IP ad¬

dress and port number for the data connection are set, as is the flag active.

Port Command = spawn { in port (newIP, newPort) } repeat
{
out storelP (newIP);
out storePort (newPort);
out active ();
out send (serverSocket, 200)

}

The Passive Command When the PASV command is received the new port

number is chosen and set as the stored value; the passive flag is set, and finally
the data port number and IP address are returned to the client.

Passive Command = spawn { in pasv () } repeat
{
out storelP (3021);
out passive ();
out send (serverSocket , (227, ftpip , 3021))

}

The Retrieve Command The retrieval process can run in two possible ways

depending on whether the passive or active flag is set. Either way the process

first finds the stored port number and then checks the mode flag to see which
mode to use. Running in active mode, the process finds the stored IP address
and requests the transport level for a connection to the client and then sends the
file across that connection. In passive mode it listens on the stored port and then
sends the file once the client has connected.

Retrieve Command = spawn { in retr (filename) } repeat
{
in storePort (port);
new rep at SOCKETREP ;

6.3. File Transfer Protocol 137

out send (serverSocket, 150);
spawn { in active () }
{
in storelP (ip);
out connect (ip, port, socketReply);
in socketReply (dataSocket);
out send (dataSocket, datafile)

}
spawn { in passive () }
{
out listen (port, socketReply);
in socketReply (dataSocket);
out receive (dataSocket, replySer);
out send (dataSocket, datafile)

}
}

Combining the three command-handling processes above, the command for¬
warding process and the commands to listen on the assigned FTP server port,
finishes the server:

FTPserver = area app { new socketReply at SOCKETREP;
new replySer at DATAREP;
out listen (21, socketReply);
in socketReply (serverSocket);
out receive (serverSocket, replySer);
Command Link;
Port Command;
Passive Command;
Retrieve Command

138 Chapter 6. Modelling FTP over NAT

6.4 Fitting it all Together

The components presented in the last few sections comprise a building set from
which I can construct many different systems. Having one router per network
and a properly configured transport level is enough to give me TCP style com¬

munication between hosts on any network topology. Clients and servers can then
be dropped into any host and run, seamlessly.

6.4.1 A Basic FTP Network

FTP is most commonly used to transfer a file from a server on one network to a

client on another.

System = FTPServerNetwork;
FTPClientNetwork

Each network must contain a router with a unique router name: routerFtpCli
is used for the FTP client's network router. To support the router each network
must also have a lookup table with properly configured data.

FTPClientNetwork

area net { Router (routerFtpCli);
LookupTable;
ClientTableData;
area transport { TCP(129.215.98.54,ftpCliHost,routerFtpCli);

FTPclient } }

There can be any number of hosts on a network, but in this example, I only
have one on each network. The TCP process needs to know its own IP address
and the name it should respond to as well as the name of a router that will deliver

packets for it. The server network differs only by a slight change in the configu¬
ration data and the replacement of the FTPclient application with the FTPserver.

6.4. Fitting it all Together 139

hardware

net

(35ataTabkT) (^Lookup) (^Router

transport

TCP

app

FTPclient

(User)

net

Router^) (^Lookup) ((DataTable^)

transport

TCP

app

FTPserver

(/port/) (/pasv) (/retr/)

: Process : Area

Figure 6.3: FTP on TCP/IP

FTPServerNetwork

area net { Router(routerFtpSer);
LookupTable;

ServerTableData;
area transport { TCP(155.246.7.5),ftpSerHost,routerFtpSer);

FTPserver } }
The overall set up is displayed graphically in Figure 6.3. All that remains to

make a running process is to define the sorts of the free names.

T = { Network level names,
Transport level names,

Application level names }

140 Chapter 6. Modelling FTP over NAT

Network level names

lookup : LOOKUP
129.215.98.54: IP

routerFtpSer:ROUTERNAME

ftpSerHost :ROUTERNAME

155.246.7.5 : IP

192.168.32.26: IP

ftpCliHost :ROUTERNAME
routerFtpCli :ROUTERNAME

Transport level names 21 : PORT
3021: PORT

listemLISTEN

send: SEND

3020 : PORT

3022 : PORT

connect:CONNECT

receive: RECEIVE

Application level names ftp : FTP pasv :COMMAND
port :COMMAND retr :COMMAND

data.tex: IP datafile:COMMAND

active : MODE passive: MODE

200 :COMMAND 227 :COMMAND

150 :COMMAND

6.4.2 An FTP Network Client Side NAT

The simplest possible instance of Network Address Translation in this network
would be for the client to use NAT while the server sticks to the normal router

and IP address.

NatSystem = FTPServerNetwork;
NatFTPClientNetwork

6.5. The Running System 141

A NAT router and lookup table replace their counterparts in the client net¬
work and the transport level is run off the internal IP address: 192.168.32.26.
What really makes this address internal to the client network is not the level

binding of the name but, rather, that only the client's lookup table has an entry
that passes packets for this IP address towards the client's host. So, packets sent

to 192.168.32.26 from external hosts will not make it to the client.

NatFTPClientNetwork =

area net { NatRouter(routerFtpCli);
NatLookupTable;

NatClientTableData;
area transport { TCP(192.168.32.26,ftpCliHost,routerFtpCli);

FTPclient } }

Although the new server network is syntactically the same as the old one,

there is in fact a subtle change. The NAT router extends the lookup channel to
carry the source IP address as well as the destination. The IP address carries
two reply channels and a lookup reply channel now also carries an IP address.
However, all these changes can be coerced out of the process so the basic non-

NAT router works quite happily with the extended channels. The free names

for the NAT process are the same as those of the basic process except with IP,
LOOKUP and LOOKUPREP updated to their extended NAT versions.

6.5 The Running System
In this section, I present three traces of the FTP model that show how the protocol
works with and without Network Address Translation. The first trace shows

an active request for a file running over a network without address translation.
Address translation is added in the second trace, and it is seen that the attempt
to open the data connection fails. In the final trace, the FTP client switches to

passive mode and the file transfer succeeds.
In this simplified model, only one outcome is possible for each run. However,

142 Chapter 6. Modelling FTP over NAT

the order in which certain acts take place may vary. For instance, when a con¬

nection is being opened the client and the server will both be taking their own
steps to establish the connection at the same time. As these steps take place in
different areas and as they do not interfere with each other, they may interleave
until the connection is made and the traces synchronise. For this reason, and
for reasons of clarity, I present the traces as a number of small sections, some of
which may overlap.

If these processes were encoded into the 7r-calculus with the encoding of Chap¬
ter 5 there would no longer be a single outcome for each trace, since packets could
be endlessly picked up and rejected. As pointed out in Section 5.1, this would
mean that these systems could no longer be analysis by examining all possible
traces and so some other way would have to be found to explore these systems.

Much of the trace of each system is repetitive, especially the passing of a
packet from one host to another which only differs by the packet's payload. So,
I just present the highlights of each trace. The full version of each trace can be
found in Appendix B.

6.5.1 Active FTP without NAT

This is the classic case: the network is as shown in Figure 6.3. A normal router is

being used and the FTP user issues an active request for a file. Figure 6.4 shows
a sketch of the connections made during this run.

The first step is for the FTP user to issue the command to get the file and for
the FTP client to make its connection to the server.

1 FTPuser —> client App
: ftp(155.246.7.5,data.tex,active,filerep)

2 client App —> client Transport
: connect(155.246.7.5,21,3022,socketReply)

3 client Transport —> client App
: socketReply(ftpCliSocket)

6.5. The Running System 143

Figure 6.4: FTP running on TCP/IP

144 Chapter 6. Modelling FTP over NAT

The line marked 2 spins off a process to link the name ftpCHSocket to the
socket information (155.246.7.5 , 129.215.98.54 , 21 , 3022). The client then
selects its mode and issues the first command.

client App —> client App : active
client App —>■ client Transport

: send(ftpCliSocket,(port , 129.215.98.54 , 3021))

We now come to the first possible branch in the trace. After the port command
is passed to the transport level, by the line marked the transport process

will carry this message to the server. At the same time, the client will request
that the transport level listens for a reply. The request to listen is made up of
three actions.

client App client Transport : receive(ftpCliSocket,replyCli)
client Transport —>• client Transport : ftpCliSocket(n)
client Transport —>• client Transport

: n(155.246.7.5 , 129.215.98.54 , 21 , 3022)

This part of the trace will then block while waiting for the reply to the port

command, when the traces will synchronise. While this is happening, the packet
containing the port command is passed to the server. The packet's first stop is
the FTP client's network router. After consulting its lookup table, the client's
router passes the packet across to the server's router. This router then hands off
the packet to the FTP server's host.

6.5. The Running System 145

client Transport
client Transport

5 client Transport

6 client Router

7 client Lookup

8 client Lookup

9 client Router

10 server Router

11 server Lookup

12 server Lookup

13 server Router

A server Transport

—» client Transport : ftpCliSocket(n)
—» client Transport

: n(155.246.7.5 , 129.215.98.54 , 21 , 3022)
—> client Router

: routerFtpCli(155.246.7.5 , 129.215.98.54 , 21 , 3022 ,

(port , 129.215.98.54 , 3021))

-> client Lookup
: lookup(replyRouter , 155.246.7.5)

-> client Lookup
: 155.246.7.5(replyRouter)

—» client Router

: replyRouter(routerFtpSer)
—► server Router

: routerFtpSer(155.246.7.5 , 129.215.98.54 , 21 , 3022
(port , 129.215.98.54 , 3021))

—» server Lookup
: Lookup (replyRouter , 155.246.7.5)

—)■ server Lookup
: 155.246.7.5(replyRouter)

—» server Router

: replyRouter(ftpSerHost)
—»• server Transport

: ftpSerHost(155.246.7.5 , 129.215.98.54 , 21 , 3022 ,

(port , 129.215.98.54 , 3021))
► server Transport

: 21(155.246.7.5 , 129.215.98.54 , 21 , 3022 ,

(port , 129.215.98.54 , 3021))

Before this packet can be received, the server must listen on port 21. Indeed,
the line marked <0, where this happens, can occur at anytime from the start of
the trace. The server then picks up the packet and spins off a thread to execute

146 Chapter 6. Modelling FTP over NAT

the port command.

0 14 server App —> server Transport : listen(21 , replySocket)
j server Transport —> server Transport

: 21(155.246.7.5 , 129.215.98.54 , 21 , 3022 ,

(port , 129.215.98.54 , 3021))

15 server Transport —» server App : replySocket(ftpSerSocket)
16 server App —» server Transport

: receive(ftpSerSocket , replySer)
server Transport —> server Transport : ftpSerSocket(n)
server Transport —>• server Transport

: n(129.215.98.54 , 155.246.7.5 , 3022 , 21)
server Transport —>• server Transport

: 21(155.246.7.5 , 129.215.98.54 , 21 , 3022 ,

(port , 129.215.98.54 , 3021))
17 server Transport —» server App

: replySer(port , 129.215.98.54 , 3021)
18 server App —> server App : port(129.215.98.54 , 3021)

The line marked | spins off a process to link the name ftpSerSocket to the
socket information (129.215.98.54 , 155.246.7.5 , 3022 , 21). At this point, the
command connection has been established between the client and the server. The

client can send and receive data on the socket name ftpCUSocket and the server

can do the same on the socket name ftpSerSocket.

The port command does not produce any visible signs of execution but it
does output the IP address and port number of the client and a flag to indicate
that the server should run in active mode. These three outputs are picked up by

inputs much later in the trace, after the retr command has been issued. These

outputs are being used as a memory with which to store the values needed later

by another process. The server passes back the acknowledgement 200, "command
ok".

6.5. The Running System 147

server App —>■ server Transport : send(ftpSerSocket , 200)
server Transport -> server Transport : ftpSerSocket(n)
server Transport —> server Transport

: n(129.215.98.54 , 155.246.7.5 , 3022 , 21)

server Transport server Router

: routerFtpSer(129.215.98.54 , 155.246.7.5 ,

3022 , 21 , 200)
server Router -»• server Lookup

: Lookup(replyRouter , 129.215.98.54)
server Lookup -> server Lookup : 129.215.98.54(21 , replyRouter)
server Lookup -» server Router : replyRouter(routerFtpCli)
server Router -> client Router

: routerFtpCli(129.215.98.54 , 155.246.7.5 ,

3022 , 21 , 200)
client Router —> client Lookup : lookup(replyRouter , 129.215.98.54)
client Lookup -> client Lookup : 129.215.98.54(replyRouter)
client Lookup -> client Router : replyRouter(ftpCliHost)
client Router —>• client Transport

: ftpCliHost(129.215.98.54 , 155.246.7.5 ,

3022 , 21 , 200)
client Transport client Transport

: 3022(129.215.98.54 , 155.246.7.5 , 3022 , 21 , 200)
client Transport client App : replyCli(200)

After receiving this acknowledgement the FTP client sends the retr command.
This is the actual request for the file. Again, much of this trace is taken up with
the transport and host levels passing the packet between the client and the server.

As I have already shown this trace for the port command above, I cut it out here.

148 Chapter 6. Modelling FTP over NAT

client App —)■ client Transport
: send(ftpCliSocket , (retr , data.tex))

server Transport -» server App : replySer(retr , data.tex)
server App —> server App : retr(data.tex)

From this point or at anytime later in the trace, the FTP server can ask the

transport level for another FTP command, even though another command will
never arrive.

server Transport —> server Transport : ftpSerSocket(n)
server Transport —>• server Transport

: n(129.215.98.54 , 155.246.7.5 , 3022 , 21)

The FTP server processes the retr command by first picking up the informa¬
tion on the data connection, stored for it by the port command.

server App —> server Transport : receive(ftpSerSocket , replySer)

server App —> server App : storePort(3021)
QQ server App —» server Transport : send (ftpSerSocket , 150)

The server may enter active mode at any time after QQ. But while it is
entering active mode the acknowledgement 150, "File status ok; about to open

data connection " will be passed back to the client.

6.5. The Running System 149

server Transport —>■

server Transport —>

server Transport -»

server Transport : ftpSerSocket(n)
server Transport
: n(129.215.98.54 , 155.246.7.5 , 3022 , 21)
server Router

: routerFtpSer(129.215.98.54 , 155.246.7.5 ,

3022 , 21 , 150)

client Transport —>• client Transport
: 3022(129.215.98.54 , 155.246.7.5 , 3022 , 21 ,

client Transport —»■ client App : replyCli(150)

The server now opens the data connection and sends the file while the client
listens for the connection.

server App —> server App : active ()
server App -> server App : storeIP(129.215.98.54)
server App -» server Transport

: connect(129.48.32.2 , 3021 , 3020 , reply)
server Transport -» server App : reply(ftpSerDataSocket)
server App server Transport

: send(ftpSerDataSocket , dataFile)

client Router -> client Transport
: ftpCliHost(129.215.98.54 , 155.246.7.5 ,

3021 , 3020 , dataFile)
client App —> client Transport : listen(3021 , socketReply)
client Transport -> client App : socketReply(ftpCliDataSocket)

150 Chapter 6. Modelling FTP over NAT

client App

client Transport
client Transport

client Transport

client Transport

client Transport
: receive(ftpCliDataSocket , filerep)
client Transport : ftpCliDataSocket(n)
client Transport
: n(155.246.7.5 , 129.215.98.54 , 3020 , 3021)
client Transport
: 3021(129.215.98.54 , 155.246.7.5 ,

3021 , 3020 , dataFile)
outside processes : fileReply(dataFile)

Of course, the listen command may be issued as soon as the client receives
the 150 acknowledgement, but it cannot happen later than at the point indicated
in the trace above.

The final action successfully passes the file to the user as requested.

6.5.2 Active FTP with NAT

Section 6.5.1 presented a successful, normal run of FTP. This section shows what

happens when an active FTP request is made on a network that is using Network
Address Translation. In this model the client's router has been replaced by the
NAT router of Section 6.2.3 and the lookup table has been updated with the
new internal and external addresses. The client now uses the internal IP address

192.168.32.26 which is mapped to the external address 129.215.98.54. The server

remains on 155.246.7.5.

The trace starts in the same way as the last one, with the user issuing the

ftp command to the FTP client and the client opening a connection to the
server. But this time the name ftpCHSocket is linked to the socket information

(155.246.7.5 , 192.168.32.26 , 21 , 3022).

6.5. The Running System 151

client App —» client Transport
: send(ftpCliSocket , (port , 192.168.32.26 , 3021))

client Transport —» client Transport : ftpCliSocket(n)
client Transport —> client Transport

: n(155.246.7.5 , 192.168.32.26 , 21 , 3022)

When the packet containing the port command is passed to the client's router
the router replaces the internal IP with 129.48.32.2:

client Transport —> client Router
: routerFtpCli(155.246.7.5 , 192.168.32.26 , 21 , 3022

(port , 192.168.32.26 , 3021))
client Router -¥ client Lookup

: lookup(replyRouter , 155.246.7.5 , 192.168.32.26)
client Lookup -» client Lookup : 155.246.7.5(same , swap)
client Lookup -> client Lookup : swap(routerFtpSer , 155.246.7.5)
client Lookup -> client Lookup : 192.168.32.26(same)
client Lookup -> client Lookup : same(_129.215.98.54)
client Lookup client Router

: replyRouter(routerFtpSer , 155.246.7.5 , 129.215.98.54)

client Router —» server Router

: routerFtpSer(155.246.7.5 , 129.215.98.54 , 21 , 3022 ,

(port , 192.168.32.26 , 3021))

The server's router processes the packet as normal.

152 Chapter 6. Modelling FTP over NAT

server Router server Lookup
: lookup(replyRouter , 155.246.7.5)

server Lookup -» server Lookup : 155.246.7.5(replyRouter)
server Lookup —>■ server Router : replyRouter(ftpSerHost)
server Router -» server Transport

: ftpSerHost(155.246.7.5 , 129.215.98.54 , 21 ,

(port , 192.168.32.26 , 3021))
server Transport —> server Transport

: 21(155.246.7.5 , 129.215.98.54 , 21 , 3022 ,

(port , 192.168.32.26 , 3021))
Although the packet has been successfully delivered to the server, we can now

catch our first glimpse of the forthcoming problem. The server now believes that
it should use the client's private internal address, an address unknown to the
server network's router. However, the command connection is fully operational
so the server can use this socket to return the acknowledgement. The client then
requests the file.

I pick up the trace again as the server selects active mode and attempts to

send the file.

—*■ server App : active ()
—> server App : storeIP(192.168.32.26)
—» server Transport

: connect(192.168.32.26 , 3021 , 3020 , reply)
—> server App : reply(ftpSerDataSocket)
—> server Transport

: send(ftpSerDataSocket , dataFile)
—> server Transport : ftpSerDataSocket(n)
—» server Transport

: n(192.168.32.26 , 155.246.7.5 , 3021 , 3020)
—> server Router

: routerFtpSer(192.168.32.26 , 155.246.7.5 , 3021 ,

3020 , dataFile)
server Lookup : lookup(replyRouter , 192.168.32.26)

server App
server App
server App

server Transport
server App

server Transport
server Transport

server Transport

server Router

6.5. The Running System 153

At this point, we see that the FTP server has requested a connection to the
FTP client using its internal address. Once this packet reaches the router, it is
found that this address is not in the lookup table and the model blocks. A real
life system would issue an Internet Control Message Protocol (ICMP) [Pos81a]
message stating that the network is unreachable. However, the problem would
be exactly the same as the one illustrated here. The client is unaware of the IP
address that should be used to talk to it from outside the network and so it has

no way of giving this information to an external process. Therefore, any attempt
by the server to open a data connection is doomed to failure.

6.5.3 Passive FTP with NAT

In the last section, we saw the problems caused by adding NAT to a network on

which users were running FTP clients. Now we can see what is done about it.
This time the user issues a passive command rather than an active one.

The set up is the same as before; the client uses the internal address 192.168.32.26
that is mapped to the external address 129.215.98.54. The server remains at

155.246.7.5. The only difference this time is that the FTP user requests that the
client uses passive mode.

The FTP clients starts and connects:

FTPuser —>• client App
: ftp(155.246.7.5 , data.tex , passive , filerep)

1 client App —> client Transport
: connect(155.246.7.5 , 21 , 3022 , socketReply)

client Transport —»■ client App : socketReply(ftpCliSocket)
client App —» client App : passive

The selection of passive mode is the first difference between this trace and
the last. As a result, the client will send the pasv command rather than the port
command.

154 Chapter 6. Modelling FTP over NAT

XX client App —> client Transport : send(ftpCliSocket,pasv)
client Transport —> client Transport : ftpCliSocket(n)
client Transport —> client Transport

: n(155.246.7.5 , 192.168.32.26 , 21 , 3022)
client Transport —> client Router

: routerFtpCli(155.246.7.5 , 192.168.32.26 , 21 ,

3022 , pasv)

server Router —» server Transport
: ftpSerHost(155.246.7.5 , 129.215.98.54 , 21 ,

3022 , pasv)
A server Transport —»• server Transport

: 21(155.246.7.5 , 129.215.98.54 , 21 ,

3022 , pasv)

At XX the client may start to listen for a reply. The server then listens for
the command. After processing it the 227 acknowledgement is returned, with the

string: "entering passive mode using 155.246.7.5:3021".

6.5. The Running System 155

server App —> server Transport
: send(ftpSerSocket , (227 , 155.246.7.5 , 3021))

server Transport —> server Transport : ftpSerSocket (n)
server Transport —» server Transport

: n(129.215.98.54 , 155.246.7.5 , 3022 , 21)
server Transport —» server Router

: routerFtpSer(129.215.98.54 , 155.246.7.5 , 3022 ,

21 , (227 , 155.246.7.5 , 3021))

client Router —» client Transport
: ftPCliHost(192.168.32.26 , 155.246.7.5 , 3022 ,

21 , (227 , 155.246.7.5 , 3021))
client Transport —> client Transport

: 3022(192.168.32.26 , 155.246.7.5 , 3022 ,

21 , (227 , 155.246.7.5 , 3021))
After receiving the information for the data socket the client sends the retr

command to the server. The first thing the server does after getting this com¬

mand is to read off the port information and then send the acknowledgement.

server App —>

QQ server App —>

server Transport —>

server Transport —»

server Transport —»

client Router

D client Transport

server App : storePort(3021)
server Transport : send (ftpSerSocket , 150)
server Transport : ftpSerSocket(n)
server Transport
: n(129.215.98.54 , 155.246.7.5 , 3022 , 21)
server Router

: routerFtpSer(129.215.98.54 , 155.246.7.5 ,

3022 , 21 , 150)

client Transport
: ftpCliHost(192.168.32.26 , 155.246.7.5 , 3022 , 21 , 15(
client Transport
: 3022(192.168.32.26 , 155.246.7.5 , 3022 , 21 , 150)

156 Chapter 6. Modelling FTP over NAT

The server may enter passive mode at any time after QQ. On receipt of this

acknowledgement the FTP client opens the data socket and sends a packet to
initiate the connection.

client App

client Transport
client App

-» client Transport
: connect(155.246.7.5 , 3021 , 3021 , socketReply)

-» client App : socketReply(dataSocket)
—» client Transport : send(dataSocket)

server Router -» server Transport
: ftpSerHost(155.246.7.5 , 129.215.98.54 , 3021 , 3020)

A server Transport —> server Transport
: 21(155.246.7.5 , 129.215.98.54 , 3021 , 3020)

The FTP server listens for the data connection:

0 server App

5 server Transport

server Transport

server Transport
: listen(3021 , replySocket)
server Transport
: 3021(155.246.7.5 , 129.215.98.54 , 3021 , 3020)
server App
: replySocket(ftpSerDataSocket)

The server then discards the initiation packet and sends the file.

server App —»■ server Transport
: receive(ftpSerSocket , replySer)

6.5. The Running System 157

G server Transport

G server Transport

G server Transport

server App

server Transport
: fpSerSocket(n)
server Transport
: n(129.215.98.54 , 155.246.7.5 , 3022 , 21)
server Transport
: 3021(155.246.7.5 , 129.215.98.54 , 3021 , 3020)
server Transport
: send(ftpSerDataSocket , dataFile)

client Router

E client Transport —>

client Transport
: ftpCliHost(192.168.32.26 , 155.246.7.5 , 3020 ,

21 , dataFile)
client Transport
: 3020(192.168.32.26 , 155.246.7.5 , 3020 ,

3021 , dataFile)

The lines marked G discard the packet used to open the connection and so

the communications may happen later than given. The client listens for the data
file:

client App —>•

client Transport —»

client Transport —»

E client Transport —>

client Transport —t

client Transport
: receive(ftpCliDataSocket , filerep)
client Transport
: ftpCliDataSocket(n)
client Transport
: n(155.246.7.5 , 129.215.98.54 , 3020 , 3021)
client Transport
: 3020(129.215.98.54 , 155.246.7.5 , 3020 ,

3021 , dataFile)
outside processes

: fileReply(dataFile)

158 Chapter 6. Modelling FTP over NAT

With the final action above, the requested file is passed to the FTP user.

This signifies that, within the bounds of this model, the theoretical problems of
running FTP on a network using NAT are, indeed, overcome by using the passive
mode.

6.6 Extending the Model with Initialising Connec¬
tions

The main limit on the expressiveness of this model is the need to make the

process terms easily presentable and to work the traces through by hand. One

example of the kind of extensions that could easily be added would be to identify

incoming packets on the destination and source IP addresses and ports, not just
the destination port. This would automatically allow multiplexing over ports.

Perhaps a more natural extension would be to make the TCP connect com¬

mand (active OPEN) initiate the connection. A result of this would be that a

process using the connect command would not get a socket name back before the
remote host had performed the listen command and that the listening process

could send the first piece of data down the connection. This would bring the
model nearer real life TCP at the cost of tens of extra actions per trace.

To see how the connections can be developed I return to the TCP specification.
When establishing a connection to a remote host the connecting process will send
a packet to that host to ask if an appropriate process is listening. On receiving
this query, the listening process will assume the connection is ready to be used
and report its success to who or what ever requested the connection. At the same

time, an acknowledgement is sent back to the host that requested the connection.

Only once this acknowledgement of success has arrived back will the connecting

process consider the connection open.

A problem faced both by the designers of TCP and by me was that the listen¬

ing process considers the connection ready to use before the acknowledgement has
reached the connecting process. Therefore, it is possible that the first real data
packet may overtake the acknowledgement packet. TCP overcomes this problem

6.6. Extending the Model with Initialising Connections 159

by placing an (almost) unique identifier in the header of each packet and by ex¬

plicitly flagging the header of all acknowledgement packets. If a data packet is
then received when an acknowledgement was expected the data is discarded. The

packet will then be re-requested if and when the connection is properly estab¬
lished.

Following this same pattern, I have added a packet identifier and an acknowl¬

edgement flag to the header of my packets.

Packet = (Source IP, Destination IP, Source port, Destination port, Packet
identifier, Acknowledgement flag, Data)

To make processing of a packet easy in the absence of Booleans, I set the

acknowledgement flag to equal the packet identifier if the packet carries data.
Whereas, if the packet is an acknowledgement to a previous packet, the flag is
set to the identifier of that previous packet.

The connection process now sends a packet to the remote machine to establish
the connection. After sending this packet off, the process waits for a signal on the

acknowledgement flag before returning the socket name to the user and making
the socket information available to other processes.

Connect = spawn { in connect (dip, dport, sport, rep) } repeat
{
new socket at Socket;
new ack at ACK;
out router (dip, sip, dport, sport, ack, ack,_);
in ack ();
out rep (socket);
spawn { in socket (n) } repeat
{ out n (dip, sip , dport, sport) }

}

where ACK has the sorting ()@transport. On receiving this first packet,
the listening process returns the socket name to its user. It also sends its own

160 Chapter 6. Modelling FTP over NAT

acknowledgement to the connecting process using that process's acknowledgment
flag.

Listen = spawn { in listen (portNo, rep) } repeat
{
new socket at SOCKET;
in portNo (dip, sip, dport, sport, ack, ackflag);
new ack at ACT ;

out router (dip, sip, dport, sport, ack, ackflag);
out reply (socket);
spawn { in socket (n) } repeat
{out n (sip, dip, sport, dport) }

}
The link process checks the acknowledgement flag of any incoming packet. If

this flag is the same as the packet ID the whole packet is passed to the port in
the usual way. Otherwise, the ack channel is used to release the blocked part of
the connect process.

IPlinkSOCKET (router) =
spawn { in router (dip, sip, dport, sport,ack, ackflag, data) } repeat
{
out ackflag ();
in ack ();
out dport (dip, sip, dport, sport, ack, ackflag, data)

}

The only changes required to the send and receive commands are the addition
of the packet ID and acknowledgement flag to the packet header.

6.6. Extending the Model with Initialising Connections

Send (router) = spawn { in send (socket, data) } repeat
{
new n at SOCKETREP;
out socket (n);
in n (dip, sip, dport, sport);
new ack at ACK;
out router (dip, sip, dport, sport, ack, ack, data)

}

Receive = spawn { in receive (socket, rep) } repeat
{
new n at SOCKETREP;
out socket (n);
in n (_,_,_, sport);
in sport (,_ ,_ ,_ ,_ , data);
out rep (data)

}

Chapter 7

Conclusion and Further Work

7.1 Conclusion

The motivation for this work was to develop a system in which it is possible to

express globally known names that are used to access local resources. It was

also my aim to make this system as simple as possible without sacrificing any

expressiveness. These ideas are filled out in the introduction.
In Chapter 3, I expand on the differences between scope and area and intro¬

duce the local area 7r-calculus. This chapter contains a simple, untyped opera¬

tional semantics and I prove that it correctly captures the ideas outlined in the
introduction. This operational semantics makes use of runtime checks to stop
channels being used outside the area to which they are restricted. Illustrative
examples include an Internet Service Protocol, a pair of distributed agents and a

data cache.

The runtime checks are removed by a type system proposed in Chapter 4. This

type system types a channel with the level at which it operates and the types of
the channels it may transmit. I prove that this type system does indeed remove

the need for runtime checks on some of the rules. Subject reduction holds for
this type system, i.e. well typed processes always reduce to well typed processes.

The channel types from the examples in Chapter 3 are given in full.
It is observed that the type system forbids channels that transmit their own

163

164 Chapter 7. Conclusion and Further Work

name, even indirectly by way of another channel. This ability is useful when

identifying a message by some data it carries or when two remote parties are

negotiating for a connection. A second type system is then presented that uses

recursive sorts, in the style of [Mil91]. This type system allows channels to pass

themselves recursively. The correctness proofs for the original type system do not
make use of the fact that types are finite. So, the correctness of this second type

system follows easily from the proofs of the correctness of the first.

I have translated the /a7r-calculus back into the 7r-calculus. At the core of this

encoding is the technique of replacing communication on a channel name with
communication over an ether associated with the appropriate local area for that
name. Two of the examples that have run through the previous two chapters
are encoded and an illustration given of how an encoded process reduces in the
7r-calculus. It is shown that a single direct communication in the /a7r-calculus
system is replaced by a packet communication on an ether, using the original
channel name as a key.

An operational correspondence result shows that there is a close relation be¬
tween the actions of processes and their translations.

This result is composed of six parts, three of which show how an encoded
process behaves when the process it encoded performs an input, output or a

communication. The other three describe how a lair process behaves when its

encoding performs one of these 3 actions.

My main motivation for investigating local communication on global names
was that it provides a useful abstraction to model the kind of distributions that
are used in real life networks. I offered evidence for this in Chapter 6 by present¬

ing a model of TCP/IP network communication protocol and the File Transfer
Protocol, FTP. I investigated how this protocol works in the presence of Network
Address Translation.

This model makes use of several key features of the calculus. Levels are used
to distinguish physical boundaries such as networks and hosts as well as more ab¬
stract boundaries, such as the levels of the TCP/IP hierarchy. The result is a plug
and play arrangement where highly modular processes can be happily swapped

7.2. Further Work 165

as long as they keep the same level, i.e. an application can use the TCP/IP com¬

mands on any host and automatically get its local handler and the only change
needed to switch from normal routing to Network Address Translation is to swap

the routers.

I examine traces of the different modes of FTP and find that passive mode
FTP works with network address translation but active mode does not. Further,
I find that the active mode fails because the FTP server tries to open the data
connection to an IP address that is only accessible from inside the client's own

network. Although these properties of the FTP protocol are well known, the fact
that they are so easily picked up in a Za7r-calculus model suggests that it is a

useful system with which to examine and check distributed protocols.

7.2 Further Work

Well-known names that mean different things in different places are reminiscent
of dynamic binding in programming languages; that slippery concept whereby
the meaning of a local variable at a program point depends on how we got there.
While there seems to be no direct connection, it would be interesting to know how
local areas affect the classic encoding of functions as 7r-calculus processes [San95].

Another possible direction would be to investigate the degree to which the
encoding of Chapter 5 preserves and reflects equivalences between processes. I
would expect adequacy, but not full abstraction, as encoding local areas by ethers
exposes them to probing by general 7r-calculus terms. For example, it is possible
to eavesdrop on all top-level communications, even ones involving private names

("packet-snooping").
As well as extending the work presented in this thesis, many new directions

suggest themselves.

7.2.1 The Extension of the Za7r-calculus with Mobility

One direction that may be worth pursuing is the step from static agents to prop¬

erly mobile ones. The fixed arrangement of local areas in Ian does not lend itself

166 Chapter 7. Conclusion and Further Work

to a dynamic runtime structure. There is however some flexibility: where ar¬

eas appear under replication, they will be freshly created during execution, and
empty areas are indistinguishable from the null process. I have looked at various
ways to incorporate full mobility into the calculus while retaining the separate

handling of scope and area. An advantage of using a system with such clear levels
to examine mobile agents is that mobile agents are intrinsically level based. It
makes no sense to send a process designed to run on a computer to run on a

network.

Syntax, Semantics and Types

There are many important issues that I would need to consider when deciding on

the exact form of mobility that I might use. Among them would be...

• ...whether processes should be passed over channels or by an explicit "go"
command. The passing of processes over channels has been extensively used
for the Higher Order 7r-calculus and to my knowledge has not been used in
a distributed setting.

• ...whether the dynamic cloning of agents should be allowed. Static agents
can be cloned using replication (!) but allowing a running agent to be cloned
could add a new level of complexity to the system.

• ... how I might mark out the location I wish to move. This leads to the
question of whether I should use subjective or objective forms of movement
and if they are interchangeable in my system.

Introducing a "go" command would add another method of communication
beyond that of passing data over channels. So to keep the model as simple as

possible the best option maybe to pass areas over channels.
The mobile primitives I have considered are send i a and receive a. The first

orders the enclosing £ level agent to be sent over the channel a and the receive a

receives an agent that has been sent over the channel a and then runs it.

Process P, Q:: = send £ a I receive a

7.2. Further Work 167

AREA1_MTS
T h(P P' if a is a(b) or a(b)

f hm £[P] -—t £[P'\ then m < F(a)

SEND_MTS
send, m a

T send, m a
ii a

■» 0

r \-e P
send t a

P'
AREA2_MTS

r hm £[P] 0

RECE_MTS fbP
r \~i receive a P

Figure 7.1: Mobile Typed Semantics for the local area 7r-calculus

I have a first draft of semantics for mobile primitives with an extended type

system that preserves the correctness of the calculus with regard to local areas.
The types are extended with levels. An area of level i has type £ and a channel
that can pass a I level area across the host level has type £@host. The type system

presented in Chapter 4 extends effortlessly to cover mobility. The two extra rules
needed are given in Figure 7.2. All the other type rules remain unchanged because
the mutually exclusive types of channels that pass processes and the channels that

pass names keep them apart.

The two new rules are for the send and receive actions. The send type rule
checks that the channel being used is of the right type to transport the enclosing
area. The receive type rule restricts the names on which the receive command
can listen to names which can only receive areas of the appropriate level.

The semantics uses a two-stage process of mobility. When a send action is

performed, it works its way up until it reaches the level it wishes to send. That
area is then packaged up and broadcast over the named channel. The receive
command uses an early communication to match a process being sent. The use

of early communication avoids the need to substitute processes. The three extra

semantic rules are given in Figure 7.1.

168 Chapter 7. Conclusion and Further Work

Sendr T(g) = o@n and i < n < n and m <\ o
T send m a

Recr T(a) = E@m and I <\ m
T receive a

Figure 7.2: Types for mobile processes in the local area 7r-calculus

Further work along these lines would first have to establish that the send
and receive commands outlined above would provide a useful form of mobility.

Truly mobile processes are still at a fledgling stage so great care must be taken
when modelling a technology that is still to come into its own. It would also be

necessary to prove the correctness of any system with mobility.

Encoding Mobile Areas into the 7r-Calculus

The encoding given in Chapter 5 does not extend to handle mobility, because
the encoding assumes that each process has direct access to the ethers for every

containing level. A possible solution here may be to use an encoding with a net¬
work of controllers. Within an area, each process communicates only through its
immediate local area controller. Each controller knows the name of the controller

for its parent location and packets are routed from one controller to another until

they reach their destination. Mobile areas can be represented by reprogramming
the parent location of the area's controllers.

7.2. Further Work 169

[r he m[Q\]{n',nUp'} = u n, nUp.{Control | nUp(ri') |[r hm Q]{„,nf/P})
[r he a{b)]{ntnup} = n(a; T(a); up; b~ out; n; n)
|r he a(b).P]{n,nUp} = F X.n(cv, Ifj, dir, b) dcitch).([a, — o:].(|r I-e Pj{n,nt/p})

|[a / a].(n(o;; la; dir; 6; data) | .X))
[r (-/ fa:cx.P]{„!nC/p} = i/a.[r © {a@a} f-/ P]{„,„irp}
[r I-/ P I <5l{n,nC/p} = [r he P] {n,nUp} I P Ke Q]{n,nt/p}
[r he 0]{nint/p} = 0

[r he send m a]n = n(a; m; up; T(a); send; n; n)
[r he receive ajn = p X.n(a\ la', dir; nt/p'; data).

([a = a]nC/p(x).(nf/p(x) |n£/p'(x))
| [a 7^ a]n(o;; la\ dir; nUp'\ data) | X)

A controller may get a packet from its parent agent. It may also send a packet
up to its parent, given the correct level checks. A controller can time out any
communication by sending the action back to its agent and replacing the lock.
Finally, a controller can redirect to a new location.

Control = GetFromAbove

| p X.n'(a\ la\ dir; data; type; tOut; n).([dir = up][la ^ lv\SendUp
| [dir = up][la = lv]TryMove
| [dir = doum]Timeout) | X

Send signals only move up to their level therefore it is only necessary to look
for move signals and output at the level above:

170 Chapter 7. Conclusion and Further Work

GetFromAbove — pX.nUp' (above) .(nUp' {above)
| above(a; ia\dir\ data).nUp'(check).(nUp'{check)

{[check = above]n(a\ ia; down; data)
|[check ^ above]above(a; £a; down; data)) \ X)

SendUp= nUP'(above).(nUP'(above)
| above(a; £a; dir; data; type; tOut; n))

TimeOut = [fOuf = n]n(a; £a; up; data; type; tOut; n)
[tOuf / n]n(a; tOut] up; £a; send; n; n) | data(tOut)

Move = [type = send]n[/p(a6owe).n'(a; data; up; nt/p; above; Iw, n)
[type ^ send]n'(a; £a; dir\ data; type; tOut; n)

The encoding uses a controller process for each location. All communications
in a given agent in the local area 7T-calculus are replicated by communications to
and from the controller for this agent in the 7r-calculus. The controller may pass

a communication up to the controller for the agent above it or it may match two
communications having first made the appropriate checks. Packets travel up the
routers and then switch and travel down the location tree. This ensures that a

packet cannot traverse a network forever without timing out and returning to its

original area. The packets include a channel they can use to look up the location
of the area it started out from, rather than the actual name of the area. This
means that the packet can look up the current location of its area, even if it has
moved, and so does not get lost when their agents move. Encoding the typed
calculus would allow me to dispense with some of the runtime checks I would
have had to perform for the untyped calculus.

In this encoding an output packet may be dropped into the ether, the area may

then move before the output packet finishes its communication. It is even possible
that the output packet may synchronise with an input that is only available
because the area moved. This is different to the purposed behaviour for the mobile
Za7r-calculus. Where, although communication is asynchronous, an output signal

7.2. Further Work 171

must remain in its area until the communication has happened. Which of these is
a better model of asynchronous communication in the presence ofmobility would
have to be investigated and the mobile calculus and the encoding made to match.

Even with a completed mobile calculus and encoding, a proof of correctness
will be no easy feat. A large bi-simulation relation would seem to be the best

possibility, with a mobile fcwr-calculus process related to its encoding and all the

possible house-keeping stages that the encoded process might reach.
An encoding of a system of cloneable mobile agents would be not as easy but

may be more interesting to look into.

A Mobile Case Study

One of the reasons for making these mobility extensions of the calculus would
be to produce a convenient and powerful system that could be used to examine
real life systems. This would call for a case study, like the one for the basic
Za7r-calculus presented in Chapter 6, as this would be a good way to justify this
work. Part of the motivation of the work in this thesis has been to examine the

way in which a mobile process can interact with the environment when arriving
at a new location. Therefore, it might be possible to make a detailed model of an
industrial mobility package, such as General Magic's Odyssey [LSMLOO], Sun's
JavaSpaces [Mic98] or IBM's Aglets [Lea97]. The Local Area calculus is ideally
suited to this, as all of these packages tend to make heavy use of standard libraries
and uniform system resources.

7.2.2 Equivalence Methods for Local Areas

With channels operating at distinct levels — network, host, application — the

possibility arises of tuning observations of a process to inspect a single level of
interest. It would be useful to have a corresponding notion of bi-simulation that
filters out actions at some levels and focuses attention on others. Local areas give
an opportunity for this to capture spatial information too.

In Chapter 6 we saw that the passive model of FTP behaved in a similar way
whether or not it was run over a NAT router. In a way the process with the NAT

172 Chapter 7. Conclusion and Further Work

router is bi-similar to the process with the normal router when you only look at

actions that take place at the app and protocol levels. It would also be useful to
detect properties such as a protocol level successfully providing a communication
medium for a level above it, or two given levels behaving in the same way and
hence being interchangeable.

The major problem with using bi-simulation for a distributed system that
encloses some of its actions is that, in any large enough distributed system, all the
interesting transitions will be internal. This means that the traditional notions
of bi-simulation will miss the very details I am most interested in.

A solution to this may be to let the relation choose which of the commu¬

nications to observe and which to let happen as silent communication, perhaps

tagging rs with the channel and data they pass.

Another alternative might be to look at the actions that could be observed at
a number of given points inside the system. This is similar to the idea of Modal
Logic that has been applied to the Ambient Calculus [CGOO]. If it were possible
to get the right level of abstraction, a comparable logic might be interesting.

7.2.3 Model Checking an Extended Case Study

The case study in Chapter 6 was limited in size by what could be presented easily
and what could be worked through by hand. Hence, some features had to be cut
out of the model. For instance, sockets were identified by their destination port
rather than the destination IP address, destination port, source IP address and
source port. The application protocols were also cut down in a similar way.

Model Checking software, can automatically check properties of systems mod¬
elled using process calculi. Using such an automated system, it would be possible
to check more interesting properties of more realistic models. Modifying an ex¬

isting model checker to handle the /a7r-calculus could provide a useful tool with
which to examine distributed systems. An excellent starting place might be the
SPIN model check [Hol97], The specification language, PROMELA, has the abil¬
ity to send and receive over channels and to run processes in parallel, and so

seems to be a good match for 7r like calculi.

7.2. Further Work 173

An alternative to adapting a model checker to use the /a7r-calculus would be
to use the encoding of Chapter 5 to translate models into the 7r-calculus and
then to check these 7r-calculus models, in a model checker, such as Edinburgh
Concurrency Workbench [CPS93]. However, this would require adaptation to
avoid the inherent divergence in the encoding.

7.2.4 A Language Based on the Za/jr-calculus

The /u7r-calculus aims to capture some of the fundamental ideas used to make
distributed computing manageable and convenient. This would seem to make it
an excellent basis for a language that would make distributed computing man¬

ageable and convenient. The calculus could then be used as a rigorous framework
with which to examine programs written in this language. Similar work has been
done for the join calculus to make JoCaml [CF99] and the 7r like Pict [PTOO]

The program syntax of Section 6.1 could show the way to turn the calculus into
a language. The command like syntax could either form a basis of a language,
or, on a smaller scale, an extension to an already existing package. The most

interesting question here would be to determine how levels would be classified.
One possibility would be to split the levels above and below the host level. A

single Ian server would run on each host. Levels below the host level would be
administered by this server and could be used to control threads, resource access,

user sessions etc. Levels above the host level would be used to control network

structure. These levels could be used to control communication to local and

remote hosts in a uniform way. A single local area network could be split into
a number of areas that defined, say, which printer is local to each host, which
remote backup device a host will use by default. A group of people working on

the same project could be defined as being in the same area to give each of their
computers access to the same local environment. Areas above the host level could
also be used to define Virtual Private Networks or router paths.

174 Chapter 7. Conclusion and Further Work

7.2.5 Levels and Areas in other Calculi

The local area 7r-calculus is the 7r-calculus extended with ideas of areas organised
into levels. It is possible to see areas and levels as separate from the 7r-calculus
so it might be interesting to see how this idea could be used with other calculi.
Such work might be able to build up Levels and Areas as a design paradigm that
could stand alone. It might also provide greater insight into what design decisions
should be made for future process calculi.

Bibliography

[Aba99] Martin Abadi. Secrecy by typing in security protocols. Journal of the
ACM, 46(5):749-786, 1999.

[ABL99] Roberto M. Amadio, Gerard Boudol, and Cedric Lhoussaine. The
receptive distributed 7r-calculus. In Proc of FST-TCS99, volume 5th
Mobile Objects Systems Workshop,LNCS 1738. Springer, 1999.

[ACS98] Roberto Amadio, Ilaria Castellani, and Davide Sangiorgi. On Bisim-
ulations for the Asynchronous 7r-Calculus. Theoretical Computer Sci¬

ence, 195:291-324, 1998.

[Ama99] Roberto Amadio. On Modelling Mobility. Theoretical Computer Sci¬
ence, 1999. Available electonically from Elsevier Preprint.

[AP98] Roberto M. Amadio and Sanjiva Prasad. Modelling IP mobility. In In¬
ternational Conference on Concurrency Theory, pages 301-316, 1998.

[BB92] G Berry and G Boudol. The Chemical Abstact Machine. Theoretical
Computer Science, 1992.

[BCC01] M. Bugliesi, G. Castagna, and S. Crafa. Boxed Ambients. TACS '01,
2001.

[BDNN98] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis
Nielson. Control flow analysis for the pi-calculus. In International

Conference on Concurrency Theory, pages 84-98, 1998.

175

176 Bibliography

[Bou92] Gerard Boudol. Asynchrony and the 7r-Calculus. Rapport de
recherche 1702, INRIA, Sophia Antipolis, 1992.

[BPS01] Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. Hand¬
book of Process Algebra. Elsevier, 2001.

[CF99] Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile Agents
for Objective-Caml. In First International Symposium on Agent Sys¬
tems and Applications (ASA'99)/Third International Symposium on

Mobile Agents (MA'99), Palm Springs, CA, USA, 1999.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. In Foun¬
dations of Software Science and Computation Structure: Proceedings
of FoSSaCS '98, number 1378 in Lecture Notes in Computer Science,

pages 140-155. Springer-Verlag, 1998.

[CG00] Luca Cardelli and Andrew D. Gordon. Anytime, Anywhere, Modal
Logics for Mobile Ambient. In POPL'OO, Boston, Massachusetts,

pages 365-377. ACM Press, 2000.

[CGG00] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Secrecy and
Group Creation. In CONCUR '2000: Concurrency Theory. Proceed¬

ings of the 11th International Conference, number 1877 in Lecture
Notes in Computer Science, pages 365-379. Springer-Verlag, 2000.

[CGN01] Giuseppe Castagna, Giorgio Ghelli, and Francesco Zappa Nardelli.
Typing mobility in the Seal Calculus. Lecture Notes in Computer

Science, 2154:82-101, 2001.

[CK74] V. Cerf and R. Kahn. A Protocol for Packet Network Interconnection.
IEEE trans, on commun. vol COMM-22, 1974.

[CM02] Marco Carbone and Sergio Maffeis. On the expressive power

of polyadic synchronisation in 7r-calculus. In Proceedings of EX¬
PRESS '02: Expressiveness in Concurrency, Electronic Notes in The¬
oretical Computer Science. Elsevier, 2002.

Bibliography 177

[CPS93] Ranee Cleaveland, Joachim Parrow, and Bernhard Steffen. The con¬

currency workbench: A semantics-based tool for the verification of
concurrent systems. ACM Transactions on Programming Languages
and Systems, 15(1):36—72, January 1993.

[CSOO] Tom Chothia and Ian Stark. A Distributed 7r-Calculus with Local Ar¬
eas of Communication. In Proceedings of HLCL '00: High-Level Con¬
current Languages, Electronic Notes in Theoretical Computer Science.
Elsevier, 2000.

[CS01] Tom Chothia and Ian Stark. Encoding Distributed Areas and Local
Communication into the 7r-calculus. In Proceedings of EXPRESS '01:

Expressiveness in Concurrency, Electronic Notes in Theoretical Com¬
puter Science. Elsevier, 2001.

[CV99] Giuseppe Castagna and Jan Vitek. Seal: A Framework for Secure
Mobile Computations. In Internet Programming Languages, number
1686 in Lecture Notes in Computer Science, pages 47-77. Springer-

Verlag, 1999.

[DH98] S. Deering and R. Hinden. Internet protocol, version 6 (ipv6) specifi¬
cation. RFC 2460, 1998.

[Duc02] Daniel Duchamp. The Discrete Internet and What to do About It. In
Proceedings of the Second New York Metro Area Networking Work¬

shop, September 2002.

[DZ83] J.D. Day and H. Zimmermann. The OSI Reference Model. Proc. of
the IEEE, vol 71, 1983.

[EF94] K. Egevang and P. Francis. The IP Network Address Translator
(NAT). RFC 1631, 1994.

[FF86] Matthias Felleisen and Daniel P. Friedman. Control operators, the
SECD-machine and the A-calculus. In Formal Description of Pro¬

gramming Concepts III, pages 193-217, 1986.

178 Bibliography

[FG96] Cedric Fournet and Georges Gonthier. The Reflexive CHAM and
the Join-Calculus. In Conference Record of POPL '96: 23rd ACM

Symposium on Principles of Programming Languages, pages 372-385.
ACM Press, 1996.

[FG98] Cedric Fournet and Georges Gonthier. A hierarchy of equivalences for
asynchronous calculi (extended abstract). In Proceedings of the 25th
International Colloquium on Automata, Languages and Programming,
volume LNCS 1443, pages pages 844-855. Springer Verlag, July 1998.

[FGL+96] Cedric Fournet, Georges Gonthier, Jean-Jacques Levy, Luc Maranget,
and Didier Remy. A Calculus of Mobile Agents. In Proceedings of the
7th International Conference on Concurrency Theory (CONCUR'96),
pages 406-421. Springer-Verlag, 1996.

[FLS00] Cedric Fournet, Jean-Jacques Levy, and Alain Schmitt. An Asyn¬
chronous Distributed Implementation for Mobile Ambients. In Theo¬
retical Computer Science: Proceedings of TCS 2000, number 1872 in
Lecture Notes in Computer Science, pages 348-364. Springer-Verlag,
August 2000.

[FLYK93] V. Fuller, T. Li, J. Yu, and K.Varadhan. Classless Inter-Domain
Routing (CIDR). RFC 1519, 1993.

[GH99] Simon J. Gay and Malcolm Hole. Types and subtypes for client-server
interactions. In European Symposium on Programming, volume LNCS

1576, pages 74-90, 1999.

[GJ01] Andrew D. Gordon and Alan Jeffrey. Authenticity by Typing for
Security Protocols. In n Proc. IEEE Computer Security Foundations

Workshop,, pages 145-159. IEEE Press, 2001.

[GS01] Andrew D. Gordon and Don Syme. Typing a multi-language inter¬
mediate code. ACM SIGPLAN Notices, 36(3):248—260, 2001.

Bibliography 179

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[Hol97] Gerard J. Holzmann. The model checker SPIN. Software Engineering,

23(5) :279—295, 1997.

[HR98a] Matthew Hennessy and James Riely. Resource Access Control in Sys¬
tems of Mobile Agents. In Proceedings of HLCL '98: High-Level Con¬
current Languages, number 16.3 in Electronic Notes in Theoretical

Computer Science, pages 3-17. Elsevier, 1998.

[HR98b] Matthew Hennessy and James Riely. A Typed Language for Dis¬
tributed Mobile Processes. In Conference Record of POPL '98: 25th
ACM Symposium on Principles of Programming Languages. ACM
Press, 1998.

[HT91] Kohei Honda and Mario Tokoro. An Object Calculus for Asyn¬
chronous Communication. In ECOOP '91: Proceedings of the Eu¬

ropean Conference on Object-Oriented Programming, number 512 in
Lecture Notes in Computer Science, pages 133-147. Springer-Verlag,
July 1991.

[HVYOO] Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida.
Secure information flow as typed process behaviour. In European

Symposium on Programming, pages 180-199, 2000.

[IAN] IANA, the Internet Assigned Numbers Authority. Protocol Numbers
and Assignment Services: Port numbers, http://www.iana.org/
numbers.html#P.

[Lea97] Danny B. Lange et al. Aglets:programming mobile agents in java. In
Worldwide Computing and Rs Applications, volume 1274 of Lecture
Notes in Computer Science. Springer-Verlag, 1997.

[L099] Danny B. Lange and Mitsuru Oshima. Seven Good Reasons for Mobile
agents. Communications of the ACM, 42(3):88-89, March 1999.

180 Bibliography

[LSMLOO] Jeffrey Lewis, Mark Shields, Erik Meijer, and John Launchbnry. Im¬
plicit Parameters: Dynamic Scoping with Static Types. In Proceedings

of the 27th Annual ACM SIGPLAN-SIGACT Symposium on Princi¬

ples of Programming Languages, Boston, Massachusetts, pages 108-

118, Jan 2000.

[MerOO] Massimo Merro. Locality in the n-Calculus and Applications to Dis¬
tributed Objects. PhD thesis, Ecole des Mines, France, October 2000.

[Mic98] Sun Microsystems. Javaspace specification, 1998.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil91] Robin Milner. The Polyadic 7r-Calculus — a Tutorial. Technical
Report ECS-LFCS-91-180, Laboratory for Foundations of Computer
Science, University of Edinburgh, 1991.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of
Mobile Processes, Parts I and II. Information and Computation,
100:1-77, 1992. Also Laboratory for Foundations of Computer Science
Technical Report, ECS-LFCS-89-85 & ECS-LFCS-89-86, 1989.

[NP96] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings.
In Ugo Montanari and Vladimiro Sassone, editors, CONCUR '96:

Concurrency Theory, 7th International Conference, volume 1119,

pages 179-194, Pisa, Italy, 1996. Springer-Verlag. Also BRICS Tech¬
nical Report RS-99-42.

[Pal97] Catuscia Palamidessi. Comparing the expressive power of the syn¬

chronous and the asynchronous pi-calculus. In Symposium on Prin¬

ciples of Programming Languages, pages 256-265, 1997.

[Pos80] Jon Postel. User Datagram Protocl. RFC 768, 1980.

[Pos81a] Jon Postel. Internet Protocl. RFC 791, 1981.

[Pos81b] Jon Postel. Transmission Control Protocl. RFC 793, 1981.

Bibliography 181

[PTOO] Benjamin C. Pierce and David N. Turner. Pict: A Programming
Language Based on the Pi-Calculus. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language and Interaction: Essays in Honour

of Robin Milner. MIT Press, 2000.

[San93] Davide Sangiorgi. From pi-calculus to higher-order pi-calculus - and
back. In TAPSOFT, pages 151-166, 1993.

[San95] Davide Sangiorgi. Lazy Functions and Mobile Processes. Rapport de
Recherche 2515, INRIA, Sophia Antipolis, November 1995.

[San96] Davide Sangiorgi. Locality and Non-Interleaving Semantics in Calculi
for Mobile Processes. Theoretical Computer Science, 155:39-83, 1996.

[San97] Davide Sangiorgi. The Name Discipline of Receptiveness. In Au¬
tomata, Languages and Programming: Proceedings of the 2fth Inter¬
national Colloquium ICALP 97, number 1256 in Lecture Notes in

Computer Science. Springer-Verlag, 1997.

[San99] Davide Sangiorgi. Reasoning about Concurrent Systems using Types.
In Foundations of Software Science and Computation Structure: Pro¬

ceedings of FoSSaCS '99, number 1578 in Lecture Notes in Computer
Science, pages 31-40. Springer-Verlag, March 1999.

[Sch02] A. Schmitt. Safe Dynamic Binding in the Join Calculus. In 2nd IFIP
International Conference on Theoretical Computer Science. Kluwer,
2002.

[SE01] P. Srisuresh and K. Egevang. Traditional IP Network Address Trans¬
lator (Traditional NAT). RFC 3022, 2001.

[Sew98] Peter Sewell. Global/Local Subtyping and Capability Inference for a

Distributed 7r-Calculus. In Automata, Languages and Programming:
Proceedings of the 25th International Colloquium ICALP 98, number
1442 in Lecture Notes in Computer Science. Springer-Verlag, 1998.

182 Bibliography

[SSW01] Andrei Serjantov, Peter Sewell, and Keith Wansbrough. The UDP
Calculus: Rigorous Semantics for Real Networking. TACS '01, 2001.

[SV99] Peter Sewell and Jan Vitek. Secure composition of insecure com¬

ponents. In PCSFW: Proceedings of The 12th Computer Security
Foundations Workshop. IEEE Computer Society Press, 1999.

[SV00] Peter Sewell and Jan Vitek. Secure composition of untrusted code:
Wrappers and causality types. In PCSFW: Proceedings of The 13th

Computer Security Foundations Workshop. IEEE Computer Society
Press, 2000.

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-
based language and its typing system. In Parallel Architectures and
Languages Europe, pages 398-413, 1994.

[Tur96] David N. Turner. The Polymorphic Pi-Calculus: Theory and Imple¬
mentation. PhD thesis, Edinburgh University, 1996.

[VD98] Jose-Luis Vivas and Mads Dam. From Higher-Order 7r-Calculus to
7r-Calculus in the Presence of Static Operators. In CONCUR '98:

Concurrency Theory. Proceedings of the 9th International Conference,
number 1466 in Lecture Notes in Computer Science. Springer-Verlag,
1998.

[WeiOl] Mark Weiser. Whatever happened to the next-generation Internet?
Communications of the ACM, 44(9):61-69, 2001.

Appendix A

Full Case Study Models

1 Basic FTP

System = FTPServerNetwork;
FTPClientNetwork

FTPClientNetwork = area net { Router(routerFtpCli);
LookupTable;
ClientTableData;
area transport { TCP(129.48.32.3,ftpCHHost,routerFtpCli);

FTPclient } }

FTPServerNetwork = area net { Router(routerFtpSer);
LookupTable;
ServerTableData;
area transport { TCP(168.32.16.5),ftpSerHost,routerFtpSer)

FTPserver } }

F = { Network level names,
Transport level names,
Application level names }

Network level names lookup : LOOKUP 168.32.16.5 : IP
129.48.32.3 : IP 255.0.0.1 : IP

routerFtpSer:ROUTERNAME ftpCliHost :ROUTERNAME
ftpSerHost iROUTERNAME routerFtpCli:ROUTERNAME

Transport level names 21 : PORT 3020 : PORT
3021: PORT 3022 : PORT

listemLISTEN connect:CONNECT
send: SENT receive: RECEIVE

183

184 Appendix A. Full Case Study Models

Application level names ftp : FTP
port :COMMAND

data.tex: IP
active : MODE

200 :COMMAND
150 :COMMAND

pasv :COMMAND
retr :COMMAND

datafile:COMMAND

passive: MODE

227 :COMMAND

A.2 FTP with Client Side NAT

NatSystem = FTPServerNetwork;
NatFTPClientNetwork

FTPClientNetwork = area net { NatRouter(routerFtpCli);
NatLookupTable;
NatClientTableData;
area transport { TCP(255.0.0.1,ftpCliHost,routerFtpCli);

FTPclient } }

r = { Network level names,
Transport level names,
Application level names }

Network level names lookup : LOOKUP-NAT 168.32.16.5 : IP-NAT
129.48.32.3 : IP_NAT 255.0.0.1 : IP_NAT

routerFtpSer:ROUTERNAME ftpCliHost :ROUTERNAME
ftpSerHost :ROUTERNAME routerFtpCli:ROUTERNAME

Transport level names 21 : PORT 3020 : PORT
3021: PORT 3022 : PORT

listen:LISTEN connect:CONNECT
send : SENT receive: RECEIVE

Application level names ftp : FTP
port :COMMAND

data.tex: IP-NAT
active : MODE

200 :COMMAND
150 :COMMAND

pasv :COMMAND
retr :COMMAND

datafile:COMMAND

passive: MODE

227 :COMMAND

A.3. Network Level

A.3 Network Level

Router(name) = spawn { in
—r~

new

out

is
out

name (dip, sip, dport, sport, data) } repeat

replyRouter at ROUTERNAME;
lookup (replyRouter, dip);
replyRouter (forward);
forward (dip, sip, dport, sport, data)

LookupTable= spawn { in lookup (replyRouter, dip, sip) } repeat
{ out dip (replyRouter) };

TableData

ClientTableData= spawn { in 168.32.16.5 (replyRouter) } repeat
{ out replyRouter (routerFtpSer) };

spawn { in 129.48.32.3 (replyRouter) } repeat
{ out replyRouter (ftpCliHost) }

ServerTableData = spawn { in 168.32.16.5 (replyRouter) } repeat
{ out replyRouter (ftpSerHost) } ;

spawn { in 129.48.32.3 (replyRouter) } repeat
{ out replyRouter (routerFtpCli)}

186 Appendix A. Full Case Study Models

NATLookupTable = spawn { in lookup (replyRouter, dip, sip) } repeat
new same at LOOKUPREP.NAT;
new swap at LOOKUPREP.NAT;
out dip (same, swap, .);
spawn { in same (forward, newdip) }

{ out replyRouter (forward, newdip, sip) } ;
spawn { in swap (forward, newdip) }

out

in
out

};
TableData;

sip (same);
same (_, newsip);
replyRouter (forward, newdip, newsip)

ClientNATtableData = spawn { in 168.32.16.5 (same, swap) } repeat
{ out swap (routerFtpSer, 168.32.16.5) };

spawn { in 129.48.32.3 (same, swap) } repeat
{ out same (ftpCliHost, 255.0.0.1) };

spawn { in 255.0.0.1 (same, swap) } repeat
{ out same (ftpCliHost, 129.48.32.3) }

ClientNATtableData = ServerTableData

A.4 Transport Level

IPlinkSOCKET(routerIn,routerOut) = spawn { in routerln (dip, sip, dport, sport, data) } repeat
~T~

out dport (dip, sip, dport, sport, data)
}

Open(sip) = spawn { in listen (portNo, reply) } repeat
r~

new socket at SOCKET;
in portNo (dip, sip, dport, sport, data);
out reply (socket);
out portNo (dip, sip, dport, sport, data);
spawn { in socket (n) } repeat

{out n (sip, dip, sport, dport)}
};

spawn { in connect (dip, dport, sport, reply) } repeat

new socket at SOCKET;
out reply (socket);
spawn { in socket (n) } repeat

{out n (dip, sip, dport, sport)}

5. Application Level

Send(routerOut) = spawn { in send (socket, data) } repeat
~T~

new n at SOCKETINFO;
out socket (n);
in 11 (dip, sip, dport, sport);
out routerOut (dip, sip, dport, sport, data)

}

Receive = spawn { in receive (socket, reply) } repeat
~~~

new n at SOCKETINFO
out socket (n);
in n (_, -, sport);
in sport data);
out reply (data)

}

TCP(sip,routerIn,routerOut) = IPlinkSOCKET(routerln);
Open(sip);
Send(routerOut);
Receive

.5 Application Level
FTPclient = area app { in ftp (ip, filename, mode,filerep);

new socketReply at SOCKETREP;
out connect (ip, 21, 3022, socketReply);
in socketReply (socket);
new replyCli at DATAREP;
out mode ();
spawn { in active () }
~T~

out send (socket, (port, ip, 3021));
out receive (socket, replyCli);
in replyCli (200);
out send (socket, (retr, filename));
out receive (socket, replyCli);
in replyCli (150);
out listen {socketReply, 3021);
in socketReply (dataSocket);
out receive (dataSocket, filerep)

};
spawn { in passive () }
V

out send (socket, (passive));
out receive (socket, replyCli);
in replyCli (227, serverlp, serverPort);
out send (socket, (retr, filename));
out receive (socket, replyCli);
in replyCli (150);
out connect (serverlp, serverPort, 3020, socketReply)
in socketReply (dataSocket);
out send (dataSocket);
out receive (dataSocket, filerep)

}



188 Appendix A. Full Case Study Models

FTPserver(ftpip) = area app {
new socketReply at SOCKETREP;
new replySer at DATAREP;
out listen (21, socketReply);
in socketReply (serverSocket);
out receive (serverSocket, replySer);
spawn { in replySer (command, argl, arg2) } repeat

{
out command (argl, arg2);
out receive (serverSocket, replySer)

};
spawn { in port (newlp, newPort) } repeat

{
out storelp (newIP);
out storePort (newPort);
out active ();
out send (serverSocket, 200)

};
spawn { in pasv () } repeat
___

out pastive ();
out send (serverSocket, (227,ftpip, 3021))

};
spawn { in retr (filename) } repeat

~

In storelp (ip);
In storePort (port);
new rep at SOCKETREP;
out send (serverSocket, 150);

active () }

storelP (3021);
connect (ip,port, 3020, socketReply);
socketReply (dataSocket);
send (dataSocket, file)

passive () }

listen (port, socketReply);
socketReply (dataSocket);
receive (replySer);
send (dataSocket, file);

}

spawn { in
{

out

out

in
out

);
spawn { in

{
out

in
out

out

}; ~



Appendix B

Full Model Traces

B.l Active Mode without NAT

The following is the full trace of the file transfer between a client running on host 168.32.16.5 and a server at
129.48.32.3

Numbers indicate output actions and spawned processes that are picked up later in the trace. Letters are

points of synchronisation between traces and mark the order in which the traces may happen. The FTP client
starts and connects:

FTP user client App
client App ->• client Transport
client Transport -» client App
client App -> client App
client App -> client Transport
client Transport -» client Transport
client Transport client Transport
client Transport ->• client Router

client Router -> client Lookup
client Lookup -» client Lookup
client Lookup -> client Router
client Router -»• Server router

server Router -* server Lookup
server Lookup -> server Lookup
server Lookup -> server Router
server Router -> server Transport

A server Transport —> server Transport

ftp(168.32.16.5 , data.tex , active , filerep)
connect(168.32.16.5 , 21 , 3022 , socketReply)
socketReply(ftpCliSocket)
active

send(ftpCliSocket , (port , 129.48.32.3 , 3021))
ftpCliSocket(n)
n(168.32.16.5 , 129.48.32.3 , 21 , 3022)
routerFtpCli(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 129.48.32.3 , 3021))
lookup(replyRouter , 168.32.16.5)
168.32.16.5(replyRouter)
replyRouter(routerFtpSer)
routerFtpSer( 168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 129.48.32.3 , 3021))
lookup (replyRouter , 168.32.16.5)
168.32.16.5(replyRouter)
replyRouter(ftpSerHost)
ftpSerHost(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 129.48.32.3 , 3021))
21(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 129.48.32.3 , 3021))

At jtUt the client may start to listen for a reply. The server listens for a connection:

189



190

0 server App -> server Transport
A2 server Transport -> server Transport

server Transport -> server App
server App -> server Transport
server Transport -> server Transport
server Transport -> server Transport
server Transport server Transport

server Transport -» server App
W3 server App -> server App

Appendix B. Full Model Traces

listen(21 , replySocket)
21(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 129.48.32.3 , 3021))
replySocket (ftpSerSocket)
receive(ftpSerSocket , replySer)
ftpSerSocket(n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
21(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 129.48.32.3 , 3021))
replySer(port , 129.48.32.3 , 3021)
port(129.48.32.3 , 3021)

<0: may happen at any time between the start and when it is given. The two traces above synchronise on
A. At TT the server may start to listen for new command. The acknowledgement is then passed back to the
client:

B

server

server

server

server

server

server

server

server

client
client
client
client
client

App
Transport
Transport
Transport
Router

Lookup
Lookup
Router
Router

Lookup
Lookup
Router

Transport

server

server

server

server

server

server

server

client
client
client
client
client
client

Transport
Transport
Transport
Router

Lookup
Lookup
Router
Router

Lookup
Lookup
Router

Transport
Transport

send(ftpSerSocket , 200)
ftpSerSocket (n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
routerFtpSer(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 200)
lookup(replyRouter , 129.48.32.3)
129.48.32.3 , 21 (replyRouter)
replyRouter(routerFtpCli)
routerFtpCli(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 200)
lookup (replyRouter . 129.48.32.3)
129.48.32.3(replyRouter)
replyRouter (ftpCliHost)
ftpCliHost(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 200)
3022( 129.48.32.3 , 168.32.16.5 , 3022 , 21 , 200)

The client listens for an acknowledgement:

X client App —¥ client Transport
X client Transport —> client Transport
X client Transport —> client Transport
B client Transport -» client Transport

client Transport —» client App

receive(ftpCliSocket , replyCli)
ftpCliSocket(n)
n(168.32.16.5 , 129.48.32.3 , 21 , 3022)
3022( 129.48.32.3 , 168.32.16.5 , 3022 , 21 , 200)
replyCli(200)

X •' may happen at any time between XX and when it is given. The two traces above synchronise on B.
The client sends the retr command:



B.l. Active Mode without NAT 191

66

C

client App -4 client Transport
client Transport -4 client Transport
client Transport -4 client Transport
client Transport -4 client Router

client Router -4 client Lookup
client Lookup -4 client Lookup
client Lookup -4 client Router
client Router -4 server Router

server Router -4 server Lookup
server Lookup -4 server Lookup
server Lookup -4 server Router
server Router -4 server Transport

server Transport -4 server Transport

send(ftpCliSocket , (retr , data.tex))
ftpCliSocket(n)
n(168.32.16.5 , 129.48.32.3 , 21 , 3022)
routerFtpCli(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(retr , data.tex))
lookup (replyRouter , 168.32.16.5)
168.32.16.5(replyRouter)
replyRouter(routerFtpSer)
routerFtpSer(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(retr , data.tex))
lookup(replyRouter , 168.32.16.5)
168.32.16.5(replyRouter)
replyRouter (ftpSerHost)
ftpSerHost( 168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(retr , data.tex))
21(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(retr , data.tex))

At 66 the client may start to listen for a reply. The server listens for a FTP command:

receive(ftpSerSocket , replySer)
ftpSerSocket(n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
21(168.32.16.5 , 129.48.32.3 , 21 , 3022(retr , data.tex))
replySer(retr , data.tex)
retr(data.tex)

Q server App -4 server Transport
9 server Transport -4 server Transport
T server Transport -4 server Transport
C server Transport -4 server Transport

server Transport -4 server App
server App -4 server App

T : may happen at any time between TT and when it is given. The two traces above synchronise on C.
At anytime from this point on the FTP server can ask the transport level for another command, that never comes:

server App —> server Transport : receive(ftpSerSocket , replySer)
server Transport -4 server Transport : ftpSerSocket(n)
server Transport -4 server Transport : n(129.48.32.3 , 168.32.16.5 , 3022 , 21)

The FTP server now processes the retr command:

server App —» server App : storePort(302l)
QQ server App —> server Transport : send(ftpSerSocket , 150)

The server may enter active mode at any time after QQ. The acknowledgement is passed back to the client:

D

server Transport
server Transport
server Transport
server Router
server Lookup
server Lookup
server Router
client Router
client Lookup
client Lookup
client Router
client Transport

-4 server

—> server

—» server

-4 server

-4 server

—> server

-4 client
-4 client

client
client
client
client

Transport
Transport
Router

Lookup
Lookup
Router
Router

Lookup
Lookup
Router

Transport
Transport

ftpSerSocket(n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
routerFtpSer(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 150)
lookup(replyRouter , 129.48.32.3)
129.48.32.3(replyRouter)
replyRouter(routerFtpCli)
routerFtpCli(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 150)
lookup(replyRouter , 129.48.32.3)
129.48.32.3(replyRouter)
replyRouter(ftpCliHost)
ftpCliHost(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 150)
3022( 129.48.32.3 , 168.32.16.5 , 3022 , 21 , 150)

The client listens for an acknowledgement:



192 Appendix B. Full Model Traces

receive(ft,pCliSocket , replyCli)
ftpCliSocket(n)
n(168.32.16.5 , 129.48.32.3 , 21 , 3022)
3022( 129.48.32.3 , 168.32.16.5 , 3022 , 21 , 150)
replyCli(150)
listen(3021 , socketReply)

4 : may happen at any time between 64* and when it is given. The two traces above synchronise on D.
The server (which is processing the retr command) now selects active mode. This trace can happen at anytime
between now and QQ:

6 client App -> client

6 client Transport client

6 client Transport client
D client Transport -> client

client Transport -> client
client App -> client

server App -» server App : active()
server App -> server App : storeIp(129.48.32.3)
server App -» server Transport : connect(129.48.32.2 , 3021 , 3020 , reply)
server Transport -» server App : reply (ftpSerDataSocket)

file is now sent to the client:

server App -> server Transport send(ftpSerDataSocket , dataFile)
server Transport -> server Transport ftpSerDataSocket (n)
server Transport -» server Transport n(129.48.32.3 , 168.32.16.5 , 3021 , 3020)
server Transport -> server Router routerFtp3er(129.48.32.3 , 168.32.16.5 ,

3021 , 3020 , dataFile)
server Router server Lookup lookup(replyRouter , 129.48.32.3)
server Lookup server Lookup 129.48.32.3(replyRouter)
server Lookup ->• server Router replyRouter (routerFtpCli)
server Router -> client Router routerFtpCli(129.48.32.3 , 168.32.16.5 ,

3021 , 3020 , dataFile)
client Router —>■ client Lookup lookup (replyRouter , 129.48.32.3)
client Lookup -> client Lookup 129.48.32.3(replyRouter)
client Lookup -> client Router replyRouter(ftpCliHost)
client Router -> client Transport ftpCliHost(129.48.32.3 , 168.32.16.5 ,

3021 , 3020 , dataFile)
client Transport -> client Transport 3021(129.48.32.3 , 168.32.16.5 , 3021 , 3020 , dataFile)

The data connection is opened and the file received:

E

client Transport
client App
client Transport
client Transport
client Transport
client Transport

client App
client Transport
client Transport
client Transport
client Transport
outside processes

socketReply (ftpCliDataSocket)
receive(ftpCliDataSocket , filerep)
ftpCliDataSocket (n)
n(168.32.16.5 , 129.48.32.3 , 3020 , 3021)
3021(129.48.32.3 , 168.32.16.5 , 3021 , 3020 , dataFile)
fileReply(dataFile)

The two traces above synchronise on E.

Output and links:
• 1 links ftpCliSocket to (168.32.16.5 , 129.48.32.3 , 21 , 3022)
. 2 links ftpSerSocket to (129.48.32.3 , 168.32.16.5 , 3022 , 21)
• 3 outputs 129.48.32.2 on storelP , 3021 on storePort and sets the active flag.
• 4 links ftpSerDataSocket to (129.48.32.2 , 168.32.16.5 , 3021 , 3020)
«. 5 links ftpCliDataSocket to (168.32.16.5 , 129.48.32.2 , 3020 , 3021)



B.2. Active Mode with NAT 193

B.2 Active Mode with NAT

In this section, the client network is using Network Address Transation. The internal address 255.0.0.1 is
mapped to the external address 129.48.32.3. The server remains at 168.32.16.5. Numbers indicate output ac¬
tions and spawned processes that are picked up later in the trace. Letters are points of synchronisation between
traces and mark the order in which the traces may happen. The clients starts and connects:

FTP user

client App
client Transport
client App
client App
client Transport
client Transport
client Transport

client Router
client Lookup
client Lookup
client Lookup
client Lookup
client Lookup
client Router

server Router
server Lookup
server Lookup
server Router

A server Transport

client App
-t client Transport
-> client App
-> client App
-» client Transport
-> client Transport
-» client Transport

client Router

-> client Lookup
-> client Lookup
->• client Lookup
->■ client Lookup
-t client Lookup
-> client Router
->■ server Router

-t server Lookup
-> server Lookup
-» server Router
->• server Transport

-» server Transport

ftp(168.32.16.5 , data.tex , active)
connect(168.32.16.5 , 21 , 3022 , socketReply)
socketReply(ftpCliSocket)
active

send(ftpCliSocket , (port , 255.0.0.1 , 3021))
ftpCliSocket(n)
n(168.32.16.5 , 255.0.0.1 , 21 , 3022)
routerFtpCli(168.32.16.5 , 21 , 255.0.0.1 , 21 , 3022 ,

(port , 255.0.0.1 , 3021))
lookup (replyRouter , 168.32.16.5 , 255.0.0.1)
168.32.16.5(same , swap)
swap(routerFtpSer , 168.32.16.5)
255.0.0.1(same)
same(_129.48.32.3)
replyRouter(routerFtpSer , 168.32.16.5 , 129.48.32.3)
routerFtpSer(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 255.0.0.1 , 3021))
lookup (replyRouter , 168.32.16.5)
168.32.16.5(replyRouter)
replyRouter(ftpSerHost)
ftpSerHost(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 255.0.0.1 , 3021))
21(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 255.0.0.1 , 3021))

At the client may start to listen for a reply. The server listens for a connection:

0 server App server Transport listen(21 , replySocket)
A2 server Transport -> server Transport 21(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 255.0.0.1 3021))
server Transport -> server App replySocket (ftpSerSocket)
server App ->• server Transport receive(ftpSerSocket , replySer)
server Transport -> server Transport ftpSerSocket (n)
server Transport -» server Transport n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
server Transport ->• server Transport 21(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(port , 255.0.0.1 3021))
server Transport -» server App replySer(port , 255.0.0.1 , 3021)

W3 server App -> server App port(129.48.32.3 , 3021)

•(>: may happen at any time between the start and when it is given. The two traces above synchronise on A.
AtW the server may start to listen for a new command. The acknowledgement is then passed back to the client:



194

B

server

server

server

server

server

server

server

server

client
client
client
client
client
client

App
Transport
Transport
Transport
Router

Lookup
Lookup
Router
Router

Lookup
Lookup
Lookup
Router

Transport

server

server

server

server

server

server

server

client
client
client
client
client
client
client

Transport
Transport
Transport
Router

Lookup
Lookup
Router
Router

Lookup
Lookup
Lookup
Router

Transport
Transport

Appendix B. Full Model Traces

send(ftpSerSocket , 200)
ftpSerSocket(n)
11(129.48.32.3 , 168.32.16.5 , 3022 , 21)
routerFtpSer(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 200)
lookup (replyRouter , 129.48.32.3)
129.48.32.3 , 21(replyRouter)
replyRouter (routerFtpCli)
routerFtpCli(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 200)
lookup (replyRouter , 129.48.32.3 , 168.32.16.5)
129.48.32.3(same , swap)
same(ftpCliHost , 255.0.0.1)
replyRouter(ftpCliHost , 255.0.0.1 , 168.32.16.5)
ftpCliHost(255.0.0.1 , 168.32.16.5 , 3022 , 21 , 200)
3022(255.0.0.1 , 168.32.16.5 , 3022 , 21 , 200)

The client listens for the acknowledgement:

* client App —> client Transport
* client Transport —> client Transport
* client Transport —> client Transport
B client Transport —> client Transport

client Transport —> client App

receive(ftpCliSocket , replyCli)
ftpCliSocket(n)
n(168.32.16.5 , 255.0.0.1 , 21 , 3022)
3022(255.0.0.1 , 168.32.16.5 , 3022 , 21 , 200)
replyCli(200)

X : may happen at any time between Jjkjk and when it is given. The two traces above synchronise on B.
The client then sends the retr command:

client App —> client Transport
client Transport -» client Transport
client Transport client Transport
client Transport -+ client Router

client Router -> client Lookup
client Lookup client Lookup
client Lookup —> client Lookup
client Lookup -* client Lookup
client Lookup client Lookup
client Router -> client Lookup
client Lookup -» client Router
client Router -t server Router

server Router -> server Lookup
server Lookup -t server Lookup
server Lookup -> server Router
server Router -> server Transport

C server Transport server Transport

send(ftpCliSocket , (retr , data.tex))
ftpCliSocket(n)
n(168.32.16.5 , 255.0.0.1 , 21 , 3022)
routerFtpCli(168.32.16.5 , 255.0.0.1 , 21 , 3022 ,

(retr , data.tex))
iookup(replyRouter , 168.32.16.5 , 255.0.0.1)
168.32.16.5(same , swap)
swap(routerFtpSer , 168.32.16.5)
255.0.0.1(same)
same(-129.48.32.3)
lookup (replyRouter , 168.32.16.5)
replyRouter(routerFtpSer)
routerFtpSer(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(retr , data.tex))
lookup(replyRouter , 168.32.16.5)
168.32.16.5(replyRouter)
replyRouter(ftpSerHost)
ftpSerHost(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(retr , data.tex))
21(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(retr , data.tex))

At the client may start to listen for a reply. The server listens for a FTP command:



B.2. Active Mode with NAT 195

9 server App server Transport
9 server Transport -> server- Transport
9 server Transport -> server Transport
C server Transport -> server Transport

server Transport -> server App
server App -> server App

receive(ftpSerSocket , replySer)
ftpSerSocket(n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
21(168.32.16.5 , 129.48.32.3 , 21 , 3022
replySer(retr , data.tex)
retr(data.tex)

(retr , data.tex))

9 : may happen at any time between and when it is given. The two traces above synchronise on C.
At this point or at anytime later in the trace the FTP server can ask the transport level for another command,
that never comes:

server App —» server Transport : receive(ftpSerSocket , replySer)
server Transport —» server Transport : ftpSerSocket(n)
server Transport —> server Transport : n(129.48.32.3 , 168.32.16.5 , 3022 , 21)

The FTP server now processes the retr command:

server App —> server App : storePort(3021)
QQ server App -» server Transport : send(ftpSerSocket , 150)

The server may enter active mode at any time after QQ. The acknowledgement is then passed back to the
client:

D

server

server

server

server

server

server

server

client
client
client
client
client
client

Transport
Transport
Transport
Router

Lookup
Lookup
Router
Router

Lookup
Lookup
Lookup
Router

Transport

—> server

server

—>• server

—> server

—>■ server

—> server

—► client
—> client
—>• client
—>■ client
—» client
—>■ client
—► client

Transport
Transport
Router

Lookup
Lookup
Router
Router

Lookup
Lookup
Lookup
Router

Transport
Transport

ftpSerSocket(n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
routerFtpSer(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 150)
lookup (replyRouter , 129.48.32.3)
129.48.32.3(replyRouter)
replyRouter (routerFtpCli)
routerFtpCli(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 150)
lookup(replyRouter , 129.48.32.3 , 168.32.16.5)
129.48.32.3(same , swap)
same(ftpCliHost , 255.0.0.1)
replyRouter(ftpCliHost , 255.0.0.1 , 168.32.16.5)
ftpCliHost(255.0.0.1 , 168.32.16.5 , 3022 , 21 , 150)
3022( 255.0.0.1 , 168.32.16.5 , 3022 , 21 , 150)

The client listens for a

4k client App
4k client Transport
4k client Transport
D client Transport

client Transport

i acknowledgement:

—> client Transport
—» client Transport
—>• client Transport
—>• client Transport
—> client App

receive(ftpCliSocket , replyCli)
ftpCliSocket(n)
n(168.32.16.5 , 255.0.0.1 , 21 , 3022)
3022( 255.0.0.1 , 168.32.16.5 , 3022 , 21 , 150)
replyCli(150)

4k : may happen at any time between 4k4k and when it is given. The two traces above synchronise on D.
The server selects active mode and attempts to send the file:



196 Appendix B. Full Model Traces

server App -4 server App active ()
server App -4 server App storeIP(255.0.0.1)
server App -4 server Transport connect(255.0.0.1 , 3021 , 3020 , reply)
server Transport -4 server App reply (ftpSerDataSocket)
server App -4 server Transport send (ftpSerDataSocket , dataFile)
server Transport -4 server Transport ftpSerDataSocket(n)
server Transport -4 server Transport n(255.0.0.1 , 168.32.16.5 , 3021 , 3020)
server Transport -4 server Router routerFtpSer(255.0.0.1 , 168.32.16.5 ,

3021 , 3020
server Router -4 server Lookup lookup (replyRouter , 255.0.0.1)

The server now blocks on the output of 255.0.0.1. The client may still execute the 3 actions needed to listen
for the connection, but the packet from the server will never arrive.

Output and links:

• 1 links ftpCliSocket to (168.32.16.5 , 255.0.0.1 , 21 , 3022)
• 2 links ftpSerSocket to (129.48.32.3 , 168.32.16.5 , 3022 , 21)
• 3 outputs 255.0.0.1 on storelP , 3021 on storePort and sets the active flag.
• 4 links ftpSerDataSocket to (255.0.0.1 , 168.32.16.5 , 3021 , 3020)

B.3 Passive Mode with NAT

In this section, the client uses passive mode to overcome the problems posed by NAT. The set up is the same
as before; the client uses the internal address 255.0.0.1 which is mapped to the external address 129.48.32.3.
The server remains at 168.32.16.5. The only difference, this time, is that the user request that the client uses
passive mode. The clients starts and connects:

user

1 client App
client Transport
client App

-4 client App
—> client Transport
—> client App
—> client App

ftp(168.32.16.5 , data.tex , passive , filerep)
connect(168.32.16.5 , 21 , 3022 , socketReply)
socketReply (ftpCliSocket)
passive

The selection of passive mode is the fist difference between this trace and the last. As a result the client will
send the pasv command rather than the port command:

** client App
client Transport
client Transport
client Transport

client
client
client
client
client
client
client

Router

Lookup
Lookup
Lookup
Lookup
Lookup
Router

A

server Router
server Lookup
server Lookup
server Router
server Transport

-4 client Transport
-4- client Transport
-4 client Transport
-4 client Router

—> client Lookup
-4 client Lookup
—» client Lookup
-4 client Lookup
-4 client Lookup
-4 client Router
—> server Router

-4 server Lookup
—> server Lookup
-4 server Router
—> server Transport
—> server Transport

: send (ftpCliSocket , pasv)
: ftpCliSocket(n)
: n(168.32.16.5 , 255.0.0.1 , 21 , 3022)
: routerFtpCli(168.32.16.5 , 21 , 255.0.0.1 ,

: 21 , 3022 , pasv)
: lookup(replyRouter , 168.32.16.5 , 255.0.0.1)
: 168.32.16.5(same , swap)
: swap(routerFtpSer , 168.32.16.5)
: 255.0.0.1 (same)
: same(. , 129.48.32.3)
: replyRouter(routerFtpSer , 168.32.16.5 , 129.48.32.3)
: routerFtpSer(168.32.16.5 , 129.48.32.3 ,

: 21 , 3022 , pasv)
: lookup (replyRouter , 168.32.16.5)
: 168.32.16.5(replyRouter)
: replyRouter(ftpSerHost)
: ftpSerHost(168.32.16.5 , 129.48.32.3 , 21 , 3022 , pasv)
: 21(168.32.16.5 , 129.48.32.3 , 21 , 3022 , pasv)



B.3. Passive Mode with NAT 197

At JltJIt the client may start to listen for a reply. The server listens for a connection:

0 server App -> server Transport
A, 2 server Transport -» server Transport

server Transport server App
server App -> server Transport
server Transport -4 server Transport
server Transport -4 server Transport
server Transport -> server Transport
server Transport -4 server App

W , 3 server App -4 server App

listen(21 , replySocket)
21(168.32.16.5 , 129.48.32.3 , 21 , 3022 , pasv)
replySocket (ftpSerSocket)
receive(ftpSerSocket , replySer)
ftpSerSocket (n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
21(168.32.16.5 , 129.48.32.3 , 21 , 3022 , pasv)
replySer(pasv)
pasvQ

0: may happen at any time between the start of the trace and when it is given. The two traces above syn¬
chronise on A. At <v"v> the server may start to listen for a new command. The server then stores 3021 as the future
data port choice, and sends back the 227 acknowledgement: "entering passive mode using 168.32.16.5:3021":

server App -4 server Transport

server Transport -4 server Transport
server Transport -4 server Transport
server Transport -4 server Router

server Router -4 server Lookup
server Lookup -4 server Lookup
server Lookup -4 server Router
server Router -4 client Router

client Router -4 client Lookup
client Lookup -4 client Lookup
client Lookup -4 client Lookup
client Lookup -4 client Router
client Router -4 client Transport

client Transport -4 client Transport

send (ftpSerSocket ,

(227 , 168.32.16.5 , 3021))
ftpSerSocket (n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
routerFtpSer(129.48.32.3 , 168.32.16.5 , 3022 , 21 ,

(227 , 168.32.16.5 , 3021))
lookup (replyRouter , 129.48.32.3)
129.48.32.3 , 21 (replyRouter)
replyRouter (routerFtpCli)
routerFtpCli(129.48.32.3 , 168.32.16.5 , 3022 , 21 ,

(227 , 168.32.16.5 , 3021))
lookup(replyRouter , 129.48.32.3 , 168.32.16.5)
129.48.32.3(same , swap)
same(ftpCHHost , 255.0.0.1)
replyRouter(ftpCliHost , 255.0.0.1 , 168.32.16.5)
ftpCliHost(255.0.0.1 , 168.32.16.5 , 3022 , 21 ,

(227 , 168.32.16.5 , 3021))
3022(255.0.0.1 , 168.32.16.5 , 3022 , 21 ,

(227 , 168.32.16.5 , 3021))

The client listens for the acknowledgement:

* client App -4 client Transport
* client Transport -4 client Transport
* client Transport —4 client Transport
B client Transport -4 client Transport

client Transport —4 client App

receive(ftpCliSocket , replyCli)
ftpCliSocket(n)
n(168.32.16.5 , 255.0.0.1 , 21 , 3022)
3022(255.0.0.1 , 168.32.16.5 , 3022 , 21 ,

(227 , 168.32.16.5 , 3021))
replyCli(227 , 168.32.16.5 , 3021)

X : may happen at any time between and when it is given. The two traces above synchronise on B.
The client sends the retr command:



198 Appendix B. Full Model Traces

66

C

client App -» client Transport
client Transport client Transport
client Transport -» client Transport
client Transport ->■ client Router

client Router client Lookup
client Lookup -> client Lookup
client Lookup -» client Lookup
client Lookup -» • client Lookup
client Lookup -» client Lookup
client Router -> client Lookup
client Lookup -> client Router
client Router server Router

server Router -¥ server Lookup
server Lookup -» server Lookup
server Lookup —> server Router
server Router -> server Transport

server Transport -> server Transport

send(ftpCliSocket , (retr , data.tex))
ftpCliSocket(n)
n(168.32.16.5 , 255.0.0.1 , 21 , 3022)
routerFtpCli(168.32.16.5 , 255.0.0.1 , 21 , 3022 ,

(retr , data.tex))
lookup(replyRouter , 168.32.16.5 , 255.0.0.1)
168.32.16.5(same , swap)
swap(routerFtpSer , 168.32.16.5)
255.0.0. l(same)
same(. , 129.48.32.3)
lookup(replyRouter , 168.32.16.5)
replyRouter (routerFtpSer)
routerFtpSer(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(retr , data.tex))
lookup (replyRouter , 168.32.16.5)
168.32.16.5(replyRouter)
replyRouter(ftpSerHost)
ftpSerHost(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(retr , data.tex))
21(168.32.16.5 , 129.48.32.3 , 21 , 3022 ,

(retr , data.tex))

At 66 the client may start to listen for a reply. The server listens for a FTP command:

Q server App -» server Transport
Q server Transport server Transport
Q server Transport server Transport
C server Transport -> server Transport

server Transport -> server App
server App server App

receive(ftpSerSocket , replySer)
ftpSerSocket(n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
21(168.32.16.5 , 129.48.32.3 , 21 , 3022(retr , data.tex))
replySer(retr , data.tex)
retr(data.tex)

Q : may happen at any time between QQ and when it is given. The two traces above synchronise on C. At
this point or at anytime later in the trace, the FTP server can ask the transport level for another command,
that never comes:

server App server Transport : receive (ftpSerSocket , replySer)
server Transport —> server Transport : ftpSerSocket (n)
server Transport -> server Transport : n(129.48.32.3 , 168.32.16.5 , 3022 , 21)

The FTP server now processes the retr command:

server App —► server App : storePort(3021)
QQ server App server Transport : send (ftpSerSocket , 150)

The server may enter passive mode at any time after QQ. The acknowledgement is then passed back to the
client:



B.3. Passive Mode with NAT 199

D

server

server

server

server

server

server

server

client
client
client
client
client
client

Transport
Transport
Transport
Router

Lookup
Lookup
Router
Router

Lookup
Lookup
Lookup
Router

Transport

—>■ server

-t server

—> server

—> server

—> server

-» server

—t client
—> client
—> client
—> client
—» client
—> client
—> client

Transport
Transport
Router

Lookup
Lookup
Router
Router

Lookup
Lookup
Lookup
Router

Transport
Transport

ftpSerSocket(n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
routerFtpSer(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 150)
lookup (replyRouter , 129.48.32.3)
129.48.32.3(replyRouter)
replyRouter(routerFtpCli)
routerFtpCli(129.48.32.3 , 168.32.16.5 , 3022 , 21 , 150)
lookup (replyRouter , 129.48.32.3 , 168.32.16.5)
129.48.32.3(same , swap)
same(ftpCliHost , 255.0.0.1)
replyRouter(ftpCliHost , 255.0.0.1 , 168.32.16.5)
ftpCliHost(255.0.0.1 , 168.32.16.5 , 3022 , 21 , 150)
3022( 255.0.0.1 , 168.32.16.5 , 3022 , 21 , 150)

The client listens for an acknowledgement:

A client App -» client Transport
A client Transport client Transport
A client Transport -> client Transport
D client Transport -t client Transport

client Transport -t client App

receive(ftpCliSocket , replyCli)
ftpCliSocket(n)
n(168.32.16.5 , 255.0.0.1 , 21 , 3022)
3022( 255.0.0.1 , 168.32.16.5 , 3022 , 21 , 150)
replyCli (150)

4k : may happen at any time between k|kA and when it is given. The two traces above synchronise on D. On
receipt of this acknowledgement the FTP client opens the data socket and sends a packet to initiated it:

client App -> client Transport
client Transport -> client App
client App -> client Transport
client Transport -* client Transport
client Transport client Transport
client Transport -> client Router
client Router ->■ client Lookup
client Lookup -> client Lookup
client Lookup client Lookup
client Lookup —>■ client Lookup
client Lookup -> client Lookup
client Lookup ->■ client Router
client Router -> server Router
server Router -»■ server Lookup
server Lookup ->■ server Lookup
server Lookup -t server Router
server Router -> server Transport
server Transport -t server Transport

connect(168.32.16.5 , 3021 , 3021 , socketReply)
socketReply(dataSocket)
send (datasocket)
ftpCliSocket(n)
n(168.32.16.5 , 255.0.0.1 , 3021 , 3020)
routerFtpCli(168.32.16.5 , 21 , 255.0.0.1 , 3021 , 3020)
lookup (replyRouter , 168.32.16.5 , 255.0.0.1)
168.32.16.5(same , swap)
swap(routerFtpSer , 168.32.16.5)
255.0.0.1(same)
same(- , 129.48.32.3)
replyRouter(routerFtpSer , 168.32.16.5 , 129.48.32.3)
routerFtpSer(168.32.16.5 , 129.48.32.3 , 3021 , 3020)
lookup(replyRouter , 168.32.16.5)
168.32.16.5(replyRouter)
replyRouter(ftpSerHost)
ftpSerHost(168.32.16.5 , 129.48.32.3 , 3021 , 3020)
21(168.32.16.5 , 129.48.32.3 , 3021 , 3020)

The server listens for the data connection:

0 server App -> server Transport
5 server Transport —> server Transport

server Transport —> server App

listen(3021 , replySocket)
3021(168.32.16.5 , 129.48.32.3 , 3021 , 3020)
replySocket(ftpSerDataSocket)

The server then discards the initiation packet and sends the file:



200 Appendix B. Full Model Traces

server App server Transport
G server Transport server Transport
G server Transport server Transport
G server Transport server Transport

server App -> server Transport
server Transport -> server Transport
server Transport -* server Transport
server Transport -> server Router

server Router —¥ server Lookup
server Lookup -> server Lookup
server Lookup -> server Router
server Router ->• client Router

client Router -> client Lookup
client Lookup —> client Lookup
client Lookup -> client Lookup
client Lookup -» client Router
client Router -» client Transport

E client Transport —> client Transport

receive(ftpSerSocket , replySer)
ftpSerSocket(n)
n(129.48.32.3 , 168.32.16.5 , 3022 , 21)
3021(168.32.16.5 , 129.48.32.3 , 3021 , 3020)
send(ftpSerDataSocket , dataFile)
ftpSerDataSocket(n)
n(129.48.32.3 , 168.32.16.5 , 3020 , 3021)
routerFtpSer(129.48.32.3 , 168.32.16.5 ,

3020 , 3021 , dataFile)
lookup (replyRouter , 129.48.32.3)
129.48.32.3(replyRouter)
replyRouter (routerFtpCli)
routerFtpCli(129.48.32.3 , 168.32.16.5 ,

3020 , 3021 , dataFile)
lookup(replyRouter , 129.48.32.3 , 168.32.16.5)
129.48.32.3(same , swap)
same(ftpCliHost , 255.0.0.1)
replyRouter(ftpCliHost , 255.0.0.1 , 168.32.16.5)
ftpCliHost(255.0.0.1 , 168.32.16.5 ,

3020 , 21 , dataFile)
3020( 255.0.0.1 , 168.32.16.5 , 3020 , 3021 , dataFile)

The lines marks G discard the packet used to open the connection and so may happen later than given. The
client listens for the data file:

client App
client Transport

E

client Transport
j „ , client Transport

client Transport —► client Transport
client Transport —> client Transport
client Transport —»• outside processes

receive(ftpCliDataSocket , filerep)
ftpCliDataSocket(n)
n(168.32.16.5 , 129.48.32.3 , 3020 , 3021)
3020(129.48.32.3 , 168.32.16.5 , 3020 , 3021 , dataFile)
fileReply (dataFile)

Output and links:

• 1 links ftpCliSocket to (168.32.16.5 , 255.0.0.1 , 21 , 3022)
• 2 links ftpSerSocket. to (129.48.32.3 , 168.32.16.5 , 3022 , 21)
• 3 outputs 255.0.0.1 on storelP , 3021 on storePort and sets the active flag.
• 4 links ftpCliDataSocket to (168.32.16.5 , 129.48.32.3 , 3021 , 3020)
• 5 links ftpSerDataSocket to (129.48.32.3 , 168.32.16.5 , 3020 , 3021)


