1,545 research outputs found

    Least Squares Fitting of Chacón-Gielis Curves by the Particle Swarm Method of Optimization

    Get PDF
    Ricardo Chacón generalized Johan Gielis's superformula by introducing elliptic functions in place of trigonometric functions. In this paper an attempt has been made to fit the Chacón-Gielis curves (modified by various functions) to simulated data by the least squares principle. Estimation has been done by the Particle Swarm (PS) methods of global optimization. The Repulsive Particle Swarm optimization algorithm has been used. It has been found that although the curve-fitting exercise may be satisfactory, a lack of uniqueness of Chacón-Gielis parameters to data (from which they are estimated) poses an insurmountable difficulty to interpretation of findings.Least squares multimodal nonlinear curve-fitting; Ricardo Chacón; Jacobian Elliptic functions; Weierstrass ; Gielis super-formula; supershapes; Particle Swarm method; Repulsive Particle Swarm method of Global optimization; nonlinear programming; multiple sub-optima; global; local optima; fit; empirical; estimation; cellular automata; fractals

    Simulating city growth by using the cellular automata algorithm

    Get PDF
    The objective of this thesis is to develop and implement a Cellular Automata (CA) algorithm to simulate urban growth process. It attempts to satisfy the need to predict the future shape of a city, the way land uses sprawl in the surroundings of that city and its population. Salonica city in Greece is selected as a case study to simulate its urban growth. Cellular automaton (CA) based models are increasingly used to investigate cities and urban systems. Sprawling cities may be considered as complex adaptive systems, and this warrants use of methodology that can accommodate the space-time dynamics of many interacting entities. Automata tools are well-suited for representation of such systems. By means of illustrating this point, the development of a model for simulating the sprawl of land uses such as commercial and residential and calculating the population who will reside in the city is discussed

    CellSecure: Securing Image Data in Industrial Internet-of-Things via Cellular Automata and Chaos-Based Encryption

    Full text link
    In the era of Industrial IoT (IIoT) and Industry 4.0, ensuring secure data transmission has become a critical concern. Among other data types, images are widely transmitted and utilized across various IIoT applications, ranging from sensor-generated visual data and real-time remote monitoring to quality control in production lines. The encryption of these images is essential for maintaining operational integrity, data confidentiality, and seamless integration with analytics platforms. This paper addresses these critical concerns by proposing a robust image encryption algorithm tailored for IIoT and Cyber-Physical Systems (CPS). The algorithm combines Rule-30 cellular automata with chaotic scrambling and substitution. The Rule 30 cellular automata serves as an efficient mechanism for generating pseudo-random sequences that enable fast encryption and decryption cycles suitable for real-time sensor data in industrial settings. Most importantly, it induces non-linearity in the encryption algorithm. Furthermore, to increase the chaotic range and keyspace of the algorithm, which is vital for security in distributed industrial networks, a hybrid chaotic map, i.e., logistic-sine map is utilized. Extensive security analysis has been carried out to validate the efficacy of the proposed algorithm. Results indicate that our algorithm achieves close-to-ideal values, with an entropy of 7.99 and a correlation of 0.002. This enhances the algorithm's resilience against potential cyber-attacks in the industrial domain

    Non-Standard Sound Synthesis with Dynamic Models

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This Thesis proposes three main objectives: (i) to provide the concept of a new generalized non-standard synthesis model that would provide the framework for incorporating other non-standard synthesis approaches; (ii) to explore dynamic sound modeling through the application of new non-standard synthesis techniques and procedures; and (iii) to experiment with dynamic sound synthesis for the creation of novel sound objects. In order to achieve these objectives, this Thesis introduces a new paradigm for non-standard synthesis that is based in the algorithmic assemblage of minute wave segments to form sound waveforms. This paradigm is called Extended Waveform Segment Synthesis (EWSS) and incorporates a hierarchy of algorithmic models for the generation of microsound structures. The concepts of EWSS are illustrated with the development and presentation of a novel non-standard synthesis system, the Dynamic Waveform Segment Synthesis (DWSS). DWSS features and combines a variety of algorithmic models for direct synthesis generation: list generation and permutation, tendency masks, trigonometric functions, stochastic functions, chaotic functions and grammars. The core mechanism of DWSS is based in an extended application of Cellular Automata. The potential of the synthetic capabilities of DWSS is explored in a series of Case Studies where a number of sound object were generated revealing (i) the capabilities of the system to generate sound morphologies belonging to other non-standard synthesis approaches and, (ii) the capabilities of the system of generating novel sound objects with dynamic morphologies. The introduction of EWSS and DWSS is preceded by an extensive and critical overview on the concepts of microsound synthesis, algorithmic composition, the two cultures of computer music, the heretical approach in composition, non- standard synthesis and sonic emergence along with the thorough examination of algorithmic models and their application in sound synthesis and electroacoustic composition. This Thesis also proposes (i) a new definition for “algorithmic composition”, (ii) the term “totalistic algorithmic composition”, and (iii) four discrete aspects of non-standard synthesis

    Spatio-Temporal Patterns act as Computational Mechanisms governing Emergent behavior in Robotic Swarms

    Get PDF
    open access articleOur goal is to control a robotic swarm without removing its swarm-like nature. In other words, we aim to intrinsically control a robotic swarm emergent behavior. Past attempts at governing robotic swarms or their selfcoordinating emergent behavior, has proven ineffective, largely due to the swarm’s inherent randomness (making it difficult to predict) and utter simplicity (they lack a leader, any kind of centralized control, long-range communication, global knowledge, complex internal models and only operate on a couple of basic, reactive rules). The main problem is that emergent phenomena itself is not fully understood, despite being at the forefront of current research. Research into 1D and 2D Cellular Automata has uncovered a hidden computational layer which bridges the micromacro gap (i.e., how individual behaviors at the micro-level influence the global behaviors on the macro-level). We hypothesize that there also lie embedded computational mechanisms at the heart of a robotic swarm’s emergent behavior. To test this theory, we proceeded to simulate robotic swarms (represented as both particles and dynamic networks) and then designed local rules to induce various types of intelligent, emergent behaviors (as well as designing genetic algorithms to evolve robotic swarms with emergent behaviors). Finally, we analysed these robotic swarms and successfully confirmed our hypothesis; analyzing their developments and interactions over time revealed various forms of embedded spatiotemporal patterns which store, propagate and parallel process information across the swarm according to some internal, collision-based logic (solving the mystery of how simple robots are able to self-coordinate and allow global behaviors to emerge across the swarm)

    Artificial Intelligence Applied to Conceptual Design. A Review of Its Use in Architecture

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Conceptual architectural design is a complex process that draws on past experience and creativity to generate new designs. The application of artificial intelligence to this process should not be oriented toward finding a solution in a defined search space since the design requirements are not yet well defined in the conceptual stage. Instead, this process should be considered as an exploration of the requirements, as well as of possible solutions to meet those requirements. This work offers a tour of major research projects that apply artificial intelligence solutions to architectural conceptual design. We examine several approaches, but most of the work focuses on the use of evolutionary computing to perform these tasks. We note a marked increase in the number of papers in recent years, especially since 2015. Most employ evolutionary computing techniques, including cellular automata. Most initial approaches were oriented toward finding innovative and creative forms, while the latest research focuses on optimizing architectural form.This project was supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (Ref. ED431G/01, ED431D 2017/16), and the Spanish Ministry of Economy and Competitiveness via funding of the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) and the European Regional Development Funds (FEDER)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/1
    corecore