65 research outputs found

    A smart spectrum access technique for dynamic multi-hop routing in cognitive radio-based disaster response networks

    Get PDF
    Disasters frequently occur across both developed and developing countries, the existing communication systems are highly prone to malfunction and damage, these systems are necessary to coordinate disaster relief efforts, therefore, it is extremely important to autonomously deploy a network that can provide communication services for both victims and first responders in the first 48 critical hours, these consequences along with other distinct routing requirements imposed by disaster occurrence necessitate the availability of a Cognitive Radio based Disaster Response Network CR-DRN operated with a routing protocol that is designed considering the emerging routing requirements and variations imposed by disaster, In Cognitive Radio Network, the allocation of spectrum is a crucial process which affects the communication. The allocation of the spectrum during emergencies is a challenging task, which is not yet solved. In this research, a novel Smart Agent Aided Scalable Spectrum Access (SASSA) technique for Cognitive Radio networks CRN-based disaster networks is proposed in which the overall network is considered as hexagonal cells to achieve better coverage. The disaster-based cluster formation is carried out to locate the disaster region in the cell. The efficient spectrum sensing is performed by deploying Smart Spectrum Agents (SSAs) and the sensing is carried out using Enhanced Bayesian Compressive Sensing (EBayesCS). The cognitive base station implements the Combined Quality of Service Score (CoQS) to rank the available channels. A novel Dual– Environment Deep Deterministic Policy Gradient (DE-D2PG) is proposed to decide the QoS switching based on spectrum availability and data emergency. The multi-hop route selection is executed using the Hybrid Spiral Penguin Optimization (HSPO) algorithm based on the decision made by the DE-D2PG. The allocation of spectrum is carried out by performing one-to-K matching which enables multiple channels to the Secondary Users (SUs) for effective transmission. Further, the deployment of Mobile Cognitive Base Stations (McBS) using the Dynamic Rule-Based Movement (DRUM) algorithm facilitates the effective transmission of data with low latency. The proposed SASSA model was evaluated using NS- 3.26 through a comparative analysis with existing most recent approaches, the results of this analysis proved that SASSA empowered CR-DRNs with higher data ratios as network size and sensing time increase with minimum standard deviation and Min-Max variations of 1.02-1.2 Mbps. The proposed technique was also proved to be scalable, reliable and spectrum-efficient by achieving minimum delay, maximum probability of detection, maximum spectrum utilization and maximum throughput compared to other approaches concerning both network size and sensing time

    Adaptive V2V routing with RSUs and gateway support to enhance network performance in VANET

    Get PDF
    In a VANET communication, link stability can neither be guaranteed nor make the established route link permanent due to the dynamic nature of the network. In V2V communication without the involvement of any infrastructural units like RSU access points or gateway, the probability of successful link establishment decreases when vehicle’s speed varies, red traffic light increases, cross-road increases and finally when the density of the running vehicles is sparse. To ensure route establishment and control route request broadcast in a sparse VANET with crossroad layout, RSUs are used in this paper for route discovery within one gateway zone when a next hop vehicle to relay the route request packet is unavailable. RSUs are static but the vehicles are dynamic in nature, so relying completely on RSU for forwarding data is not recommended because chances of link failure, link re-establishment, and handoff overhead will be high. So, in this paper, RSUs and Gateways are evoked for route discovery and data forwarding only when necessary. Moreover, a local route repair is attempted in this paper when the path length is high to reduce or avoid loss of buffered packets along the route and to maintain a more stable link with the help of RSUs

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    SECURITY, PRIVACY AND APPLICATIONS IN VEHICULAR AD HOC NETWORKS

    Get PDF
    With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs
    • …
    corecore