82,745 research outputs found

    A System-of-Systems Framework for Exploratory Analysis of Climate Change Impacts on Civil Infrastructure Resilience

    Get PDF
    Climate change has various chronic and acute impacts on civil infrastructure systems (CIS). A long-term assessment of resilience in CIS requires understanding the transformation of CIS caused by climate change stressors and adaptation decision-making behaviors of institutional agencies. In addition, resilience assessment for CIS includes significant uncertainty regarding future climate change scenarios and subsequent impacts. Thus, resilience analysis in CIS under climate change impacts need to capture complex adaptive behaviors and uncertainty in order to enable robust planning and decision making. This study presented a system-of-systems (SoS) framework for abstraction and integrated modeling of climate change stressors, physical infrastructure performance, and institutional actors’ decision making. The application of the proposed SoS framework was shown in an illustrative case study related to the impacts of sea level rise and subsequent saltwater intrusion on a water system. Through the use of the proposed SoS framework, various attributes, processes, and interactions related to physical infrastructure and actor’s decision making were abstracted and used in the creation of a computational simulation model. Then, the computational model was used to simulate various scenarios composed of sea level rise and adaptation approaches. Through an exploratory analysis approach, the simulated scenario landscape was used to identify robust adaptation pathways that lead to a greater system resilience under future uncertain sea level rise. The results of the illustrative case study highlight the various novel capabilities of the SoS framework: (i) abstraction of various attributes and processes that affect the long-term resilience of infrastructure under climate change; (ii) integrated modeling of CIS transformation based on simulating the adaptive decision-making processes, physical infrastructure performance, and climate change impacts; and (iii) exploratory analysis and identification of robust pathways for adaptation to climate change impacts

    A System-of-Systems Framework for Exploratory Analysis of Climate Change Impacts on Civil Infrastructure Resilience

    Get PDF
    Climate change has various chronic and acute impacts on civil infrastructure systems (CIS). A long-term assessment of resilience in CIS requires understanding the transformation of CIS caused by climate change stressors and adaptation decision-making behaviors of institutional agencies. In addition, resilience assessment for CIS includes significant uncertainty regarding future climate change scenarios and subsequent impacts. Thus, resilience analysis in CIS under climate change impacts need to capture complex adaptive behaviors and uncertainty in order to enable robust planning and decision making. This study presented a system-of-systems (SoS) framework for abstraction and integrated modeling of climate change stressors, physical infrastructure performance, and institutional actors’ decision making. The application of the proposed SoS framework was shown in an illustrative case study related to the impacts of sea level rise and subsequent saltwater intrusion on a water system. Through the use of the proposed SoS framework, various attributes, processes, and interactions related to physical infrastructure and actor’s decision making were abstracted and used in the creation of a computational simulation model. Then, the computational model was used to simulate various scenarios composed of sea level rise and adaptation approaches. Through an exploratory analysis approach, the simulated scenario landscape was used to identify robust adaptation pathways that lead to a greater system resilience under future uncertain sea level rise. The results of the illustrative case study highlight the various novel capabilities of the SoS framework: (i) abstraction of various attributes and processes that affect the long-term resilience of infrastructure under climate change; (ii) integrated modeling of CIS transformation based on simulating the adaptive decision-making processes, physical infrastructure performance, and climate change impacts; and (iii) exploratory analysis and identification of robust pathways for adaptation to climate change impacts

    Adapting the community sector for climate extremes

    Get PDF
    Abstract People experiencing poverty and inequality will be affected first and worst by the impacts of climate change to infrastructure and human settlements, including those caused by increasingly frequent and intense extreme weather events and natural disasters. They have the least capacity to cope, to adapt, to move and to recover. Community service organisations (CSOs) play a critical role in supporting individuals, families and communities experiencing poverty and inequality to build resilience and respond to adverse changes in circumstances. As such, the services they provide comprise a critical component of social infrastructure in human settlements. However, very little is understood about CSOs own vulnerability to – or their role in managing and mitigating risks to their clients and the community from – climate change impacts to physical infrastructure. The Extreme Weather, Climate Change and the Community Sector – Risks and Adaptations project examined the relationship between physical and social infrastructure (in the form of CSO service provision). Specifically, the ways in which the climate-driven failure of CSO service delivery worsens risks to the individuals and communities they serve and, on the other hand, how preparedness may reduce vulnerability to climate change and extreme weather impacts to human settlements and infrastructure.The research comprised a comprehensive and critical scoping, examination and review of existing research findings and an audit, examination and judgment-based evaluation of the current vulnerabilities and capacities of CSOs under projected climate change scenarios. It employed three key methods of consultation and data collection. A literature review examined research conducted to date in Australia and comparative countries internationally on the vulnerability and climate change adaptation needs of CSOs. A program of 10 Community Sector Professional Climate Workshops consulted over 150 CSO representatives to develop a qualitative record of extreme event and climate change risks and corresponding adaptation strategies specific to CSOs. A national survey of CSOs, which resulted in the participation of approximately 500 organisations, produced a quantitative data set about the nature of CSO vulnerability to climate change and extreme weather impacts to infrastructure, whether and how CSOs are approaching the adaptation task and key barriers to adaptation.While the methods employed and the absence of empirical data sets quantifying CSO vulnerability to climate change impacts create limitations to the evidence-base produced, findings from the research suggest that CSOs are highly vulnerable and not well prepared to respond to climate change and extreme weather impacts to physical infrastructure and that this underlying organisational vulnerability worsens the vulnerability of people experiencing poverty and inequality to climate change. However, the project results indicate that if well adapted, CSOs have the willingness, specialist skills, assets and capacity to make a major contribution to the resilience and adaptive capacity of their clients and the community more broadly (sections of which will be plunged into adversity by extreme events). Despite this willingness, the evidence presented shows that few CSOs have undertaken significant action to prepare for climate change and worsening extreme weather events. Key barriers to adaptation identified through the research are inadequate financial resources, lack of institutionalised knowledge and skills for adaptation and the belief that climate change adaptation is beyond the scope of CSOs core business. On the other hand, key indicators of organisational resilience to climate change and extreme weather impacts include: level of knowledge about extreme weather risks, past experience of an extreme weather event and organisational size.Given its size, scope and the critical role the Australian community sector plays in building client and community resilience and in assisting communities to respond to and recover from the devastating impacts of extreme weather events and natural disasters, the research identifies serious gaps in both the policy frameworks and the research base required to ensure the sector’s resilience and adaptive capacity – gaps which appear to have already had serious consequences. To address these gaps, a series of recommendations has been prepared to enable the development and implementation of a comprehensive, sector-specific adaptation and preparedness program, which includes mechanisms to institutionalise knowledge and skills, streamlined tools appropriate to the needs and capacity of a diverse range of organisations and a benchmarking system to allow progress towards resilience and preparedness to be monitored. Future research priorities for adaptation in this sector have also been identified

    Adapting to change: Time for climate resilience and a new adaptation strategy. EPC Issue Paper 5 March 2020

    Get PDF
    The dramatic effects of climate change are being felt across the European continent and the world. Considering how sluggish and unsuccessful the world has been in reducing greenhouse gas (GHG) emissions, the impacts will become long-lasting scars. Even implementing radical climate mitigation now would be insufficient in addressing the economic, societal and environmental implications of climate change, which are expected to only intensify in the years to come. This means climate mitigation must go hand in hand with the adaptation efforts recognised in the Paris Agreement. And although the damages of climate change are usually localised and adaptation measures often depend on local specificities, given the interconnections between ecosystems, people and economies in a globalised world there are strong reasons for European Union (EU) member states to join forces, pool risk and cooperate across borders. Sharing information, good practices, experiences and resources to strengthen resilience and enhance adaptive capacity makes sense economically, environmentally and socially. The European Commission’s 2013 Adaptation Strategy is the first attempt to set EU-wide adaptation and climate resilience and could be considered novel in that it tried to mainstream adaptation goals into relevant legislation, instruments and funds. It was not very proactive, however. It also lacked long-term perspective, failed to put the adaptation file high on the political agenda, was under resourced, and suffered from knowledge gaps and silo thinking. The Commission’s European Green Deal proposal, which has been presented as a major step forward to the goal of Europe becoming the world’s first climate-neutral continent, suggests that the Commission will adopt a new EU strategy on adaptation to climate within the first two years of its mandate (2020-2021). In light of the risks climate change poses to ecosystems, societies and the economy (through inter alia the vulnerability of the supply chain to climate change and its potential failure to provide services to consumers), adaptation should take a prominent role alongside mitigation in the EU’s political climate agenda. Respecting the division of treaty competences, there are important areas where EU-wide action and support could foster the continent’s resilience to climate change. The European Policy Centre (EPC) project “Building a climate-resilient Europe”, which has culminated in this Issue Paper, has identified the following: (i) the ability to convert science-based knowledge into preventive action and responsible behaviour, thus filling the information gap; (ii) the need to close the protection gap through better risk management and risk sharing; (iii) the necessity to adopt nature-based infrastructural solutions widely and tackle the grey infrastructure bias; and (iv) the need to address the funding and investment gap. This Issue Paper aims to help inform the upcoming EU Adaptation Strategy and, by extension, strengthen the EU’s resilience to climate change. To that end, the authors make a call for the EU to mainstream adaptation and shift its focus from reacting to disasters to a more proactive approach that prioritises prevention, risk reduction and resilience building. In doing so, the EU must ensure fairness and distributive justice while striving for climate change mitigation and protecting the environment and biodiversity. To succeed, the new EU Adaptation Strategy will need to address specific challenges related to the information, protection, funding and investment gaps; and the grey infrastructure bias. To tackle and address those challenges, this Paper proposes 17 solutions outlined in Table 1 (see page 6)

    Infrastructure Financing for Climate Change Adaptation in Australia: Practitioners’ Perspectives

    Get PDF
    With increased climate-related risks and natural disasters, impacts on infrastructure assets are intensifying. As the need for adaptation actions increase, how finance is used to enable adaptation plays a vital role in the resilience of infrastructure.  This research aims to understand how infrastructure adaptation measures are carried out, focusing on how financing is used to aid such efforts. Exploratory interviews with infrastructure and finance practitioners from a broad range of organisations were conducted to understand the dynamics of how infrastructure adaptation occurs. The findings reveal that infrastructure agencies conduct adaptation activities to maintain the serviceability of assets under climate change risks, with most climate financing targeting mitigation rather than adaptation. Most actions are taken at individual asset or agency level with little collaboration across agencies and sectors. The results illustrate a need for a more holistic, systems-level approach to adaptation across the infrastructure sector in Australia

    Planning for climate change by Queensland coastal councils

    Get PDF
    The Queensland Coastal Plan requires councils to prepare coastal hazard adaptation plans for those parts of their urban areas at risk from a projected sea level rise of 80cm by 2100. This paper reviews adaptation actions in climate change strategies prepared by four urban Queensland coastal councils (e.g. Cairns, Gold Coast, Redland, and Sunshine Coast), and one community-based climate adaptation action plan for Bribie Island in Moreton Bay. The actions in these climate change plans are analysed for their adaptive response categories: Emphasising Nature, Emphasising Development and Managed Nature (Vasey-Ellis, 2009), along with Council Governance of climate change, and Emphasising Communities. Climate change planning and infrastructure responses by Queensland coastal councils mainly focus on protecting coastal development from erosion and other climate hazards, and building community resilience, supplemented by ‘soft’ environmental actions protecting nature. While some climate plans included actions for shoreline erosion, coastal inundation, and storm surges, only one addressed sea level rise impacts on buildings and heritage (i.e. Redland)

    Micro-level practices to adapt to climate change for African small-scale farmers:

    Get PDF
    This paper discusses micro-level practices for adapting to climate change that are available to small-scale farmers in Africa. The analysis is based on a review of 17 studies about practices that boost small-scale farmers' resilience or reduce their vulnerability to observed or expected changes in climate; it includes data from more than 16 countries in Africa, the Americas, Europe, and Asia. The review shows that African smallholders are already using a wide variety of creative practices to deal with climate risks; these can be further adjusted to the challenge of climate change by planned adaptation programs. We found 104 different practices relevant to climate change adaptation and organized them in five categories: farm management and technology; farm financial management; diversification on and beyond the farm; government interventions in infrastructure, health, and risk reduction; and knowledge management, networks, and governance. We conclude that adaptation policies should complement farmers' autonomous response to climate change through the development of new drought-resistant varieties and improved weather forecasts, the provision of financial services, improvement of rural transportation infrastructure, investments in public healthcare and public welfare programs, and policies that improve local governance and coordinate donor activities.Climate change, adaptation practices, content analysis, Small-scale farmers, climate risks, Farm management, diversification, risk reduction, government interventions, public welfare programs

    An agenda for ethics and justice in adaptation to climate change

    Get PDF
    As experts predict that at least some irreversible climate change will occur with potentially disastrous effects on the lives and well-being of vulnerable communities around the world, it is paramount to ensure that these communities are resilient and have adaptive capacity to withstand the consequences. Adaptation and resilience planning present several ethical issues that need to be resolved if we are to achieve successful adaptation and resilience to climate change, taking into consideration vulnerabilities and inequalities in terms of power, income, gender, age, sexuality, race, culture, religion, and spatiality. Sustainable adaptation and resilience planning that addresses these ethical issues requires interdisciplinary dialogues between the natural sciences, social sciences, and philosophy, in order to integrate empirical insights on socioeconomic inequality and climate vulnerability with ethical analysis of the underlying causes and consequences of injustice in adaptation and resilience. In this paper, we set out an interdisciplinary research agenda for the inclusion of ethics and justice theories in adaptation and resilience planning, particularly into the Sixth Assessment Report of the International Panel on Climate Change (IPCC AR6). We present six core discussions that we believe should be an integral part of these interdisciplinary dialogues on adaptation and resilience as part of IPCC AR6, especially Chapters 2 (“Terrestial and freshwater ecosystems and their services”), 6 (“Cities, settlements and key infrastructure”), 7 (“Health, wellbeing and the changing structure of communities”), 8 (“Poverty, livelihoods and sustainable development”), 16 “Key risks across sectors and regions”), 17 (“Decision-making options for managing risk”), and 18 (“Climate resilient development pathways”).: (i) Where does ‘justice’ feature in resilience and adaptation planning and what does it require in that regard?; (ii) How can it be ensured that adaptation and resilience strategies protect and take into consideration and represent the interest of the most vulnerable women and men, and communities?; (iii) How can different forms of knowledge be integrated within adaptation and resilience planning?; (iv) What trade-offs need to be made when focusing on resilience and adaptation and how can they be resolved?; (v) What roles and responsibilities do different actors have to build resilience and achieve adaptation?; (vi) Finally, what does the focus on ethics imply for the practice of adaptation and resilience planning

    Fostering Resilience and Adapting to Climate Change in the Canadian North— Implications for Infrastructure in the Proposed Canadian Northern Corridor

    Get PDF
    The Canadian Northern Corridor (CNC) has been proposed to overcome gaps in the northern transportation system that limit social and economic development in the Canadian North (Fellows et al. 2020). Intended to be a multimodal transportation right- of-way through Canada’s North, the CNC seeks to capitalize on shifting global markets and increased access to northern resources (Pearce et al. 2020; Fellows et al. 2020). However, transportation infrastructure has remained constrained across northern Canada. Significant challenges exist for northern infrastructure due to isolation, restricted access and extraordinary environmental conditions — all of which climate change is projected to radically intensify (Palko and Lemmen 2017; Pearce et al. 2020). Climate change drastically reduces the feasibility of expanding northern infrastructure. Significant increases in environmental risk threaten existing infrastructure and magnify maintenance costs. Adaptation in remote northern locations can be exceedingly difficult and costly (Palko and Lemmen 2017). Additional Arctic warming is guaranteed to have systemic effects and pose significant challenges for northern infrastructure: temperature and precipitation will continue to increase; permafrost thaw will be amplified through changes in seasonal snow cover and land ice; ice loss of mountain and polar glaciers is virtually certain; coastal impacts such as erosion and storm surges will be magnified by increasing sea level and extreme volatility; and Arctic sea ice extent will decline to the point of likely being practically ice free in September before 2050 (IPCC 2021). Determining how to facilitate long-term, effective climate change adaptation is critical to overcome these challenges. Adaptation planning seeks to anticipate and mitigate the risks that result from climate change. This is done through two methods: hard and soft adaptation. Hard adaptations provide a physical barrier to the source of risk, such as a sea wall. In contrast, soft adaptations reduce risk by adjusting human behaviour through a variety of methods, including regulating development out of high-risk areas through land use bylaws or development permits, and fostering environmental stewardship to bolster ecosystem services, such as wetland preservation to reduce flooding (Bonnett and Birchall 2020). However, common misunderstandings about which adaptation initiatives are effective often disable adaptation planning (Kehler and Birchall 2021). This often results in maladaptation — when adaptation measures result in unintended negative consequences that further increase risks. Hard infrastructure adaptations intended to reduce physical risk, despite typically being used as the foundation of adaptation planning, magnify the risk of maladaptation when used alone (Bonnett and Birchall 2020). Due to the capital-intensive nature of hard measures, both upfront and in long- term maintenance, and their predisposition to environmental degradation, the need to go beyond hard measures to address vulnerability is well understood (Bonnett and Birchall 2020; Kehler and Birchall 2021; Naylor et al. 2020). Adapting infrastructure to climate change in the Canadian North presents a formidable challenge. Limits and constraints to effective adaptation, such as lagging implementation, isolation, low population and limited tax base to fund local-level adaptation and infrastructure maintenance, result in significant challenges and limited capacity to overcome them (Bonnett and Birchall 2020; Birchall and Bonnett 2020; Birchall et al. 2021; Ford et al. 2015). While climate change is perceived to have the potential to increase access to the North — allowing trade, tourism and transport of much-needed goods and services to northern communities — in reality, existing and new construction will be progressively vulnerable to unprecedented climatic effects and the resulting infrastructure maintenance will grow increasingly costly. This increase in vulnerability and costs is likely to restrict the anticipated socioeconomic boons of expanded connectivity and resource development, potentially straining already vulnerable communities and Indigenous Peoples. Considerable uncertainty requires a planning approach to infrastructure adaptation that focuses on mitigating risks of climate change while also bolstering community resilience. Infrastructure expansion such as the CNC necessitates adaptation planning that includes fostering economic diversity and infrastructure resilience. Increased disaster risk due to climate change could push communities already overwhelmed by maintenance and adaptation to being unable to cope, resulting in vulnerabilities across northern Canada. Balancing hard adaptations with other forms of policy, such as soft adaptations intended to increase adaptive capacity and adaptation readiness, is critical to avoid maladaptation of infrastructure. Regardless of cost or feasibility, for infrastructure adaptation to be effective it must coincide with a reduction of socioeconomic stressors, and all decision making must be done through a localized, participatory and equitable process (IPCC 2014). Addressing adaptation and resilience for northern infrastructure requires exploring what is necessary to foster resilience, examining what avenues for adaptation are most effective and then maximizing the benefits of limited funding allocated toward these strategies. Effective adaptation strategies focus on the reduction of vulnerability through place- and context-specific approaches, using low-risk, high-benefit policy measures that are supported through significant intergovernmental co-operation, public engagement and integration of non-Western knowledge systems. By further understanding the pathways to achieve resilience, and through a holistic approach to adaptation, it is possible to balance the increased environmental risks of climate change with socioeconomic impacts, and to do so in a way that is economically sustainable long into the future

    The impact of COVID-19 fiscal spending on climate change adaptation and resilience

    Get PDF
    Government expenditure and taxation have a significant influence on the long-term adaptation and resilience of societies to climate and other environmental shocks. Unprecedented fiscal spending in the COVID-19 recovery offered an opportunity to systematically enhance adaptation and resilience to future shocks. But did the ‘build back better’ rhetoric manifest in more resilient policy? We develop a dedicated fiscal policy taxonomy for climate change adaptation and resilience (A&R)—the Climate Resilience and Adaptation Financing Taxonomy (CRAFT)—and apply this to analyse ~8,000 government policies across 88 countries. We find that US$279–334 billion (9.7–11.1%) of economic recovery spending potentially had direct A&R benefits. This positive spending is substantial in absolute terms but falls well below adaptation needs. Moreover, a notable portion (27.6–28%) of recovery spending may have had negative impacts on A&R, acting to lock in non-resilient infrastructure. We add a deep learning algorithm to consider A&R themes in associated COVID-19 policy documents. Compared with climate mitigation, A&R received only one-third of the spending and was mentioned only one-seventh as frequently in policy documents. These results suggest that the COVID-19 fiscal response missed many opportunities to advance climate A&R. We draw conclusions for how to better align fiscal policy with A&R
    • 

    corecore