1,257 research outputs found

    Fast and Robust Small Infrared Target Detection Using Absolute Directional Mean Difference Algorithm

    Full text link
    Infrared small target detection in an infrared search and track (IRST) system is a challenging task. This situation becomes more complicated when high gray-intensity structural backgrounds appear in the field of view (FoV) of the infrared seeker. While the majority of the infrared small target detection algorithms neglect directional information, in this paper, a directional approach is presented to suppress structural backgrounds and develop a more effective detection algorithm. To this end, a similar concept to the average absolute gray difference (AAGD) is utilized to construct a novel directional small target detection algorithm called absolute directional mean difference (ADMD). Also, an efficient implementation procedure is presented for the proposed algorithm. The proposed algorithm effectively enhances the target area and eliminates background clutter. Simulation results on real infrared images prove the significant effectiveness of the proposed algorithm.Comment: The Final version (Accepted in Signal Processing journal

    Fusion of infrared and visible images for remote detection of low-altitude slow-speed small targets.

    Get PDF
    Detection of the low-altitude and slow-speed small (LSS) targets is one of the most popular research topics in remote sensing. Despite of a few existing approaches, there is still an accuracy gap for satisfying the practical needs. As the LSS targets are too small to extract useful features, deep learning based algorithms can hardly be used. To this end, we propose in this article an effective strategy for determining the region of interest, using a multiscale layered image fusion method to extract the most representative information for LSS-target detection. In addition, an improved self-balanced sensitivity segment model is proposed to detect the fused LSS target, which can further improve both the detection accuracy and the computational efficiency. We conduct extensive ablation studies to validate the efficacy of the proposed LSS-target detection method on three public datasets and three self-collected datasets. The superior performance over the state of the arts has fully demonstrated the efficacy of the proposed approach

    Fast filtering image fusion

    Full text link
    © 2017 SPIE and IS & T. Image fusion aims at exploiting complementary information in multimodal images to create a single composite image with extended information content. An image fusion framework is proposed for different types of multimodal images with fast filtering in the spatial domain. First, image gradient magnitude is used to detect contrast and image sharpness. Second, a fast morphological closing operation is performed on image gradient magnitude to bridge gaps and fill holes. Third, the weight map is obtained from the multimodal image gradient magnitude and is filtered by a fast structure-preserving filter. Finally, the fused image is composed by using a weighed-sum rule. Experimental results on several groups of images show that the proposed fast fusion method has a better performance than the state-of-the-art methods, running up to four times faster than the fastest baseline algorithm

    Filter design for small target detection on infrared imagery using normalized-cross-correlation layer

    Get PDF
    In this paper, we introduce a machine learning approach to the problem of infrared small target detection filter design. For this purpose, similarly to a convolutional layer of a neural network, the normalized-cross-correlational (NCC) layer, which we utilize for designing a target detection/recognition filter bank, is proposed. By employing the NCC layer in a neural network structure, we introduce a framework, in which supervised training is used to calculate the optimal filter shape and the optimum number of filters required for a specific target detection/recognition task on infrared images. We also propose the mean-absolute-deviation NCC (MAD-NCC) layer, an efficient implementation of the proposed NCC layer, designed especially for FPGA systems, in which square root operations are avoided for real-time computation. As a case study we work on dim-target detection on mid-wave infrared imagery and obtain the filters that can discriminate a dim target from various types of background clutter, specific to our operational concept

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    Information Theory and Its Application in Machine Condition Monitoring

    Get PDF
    Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries
    corecore