3,250 research outputs found

    Iterative Multiscale Fusion and Night Vision Colorization of Multispectral Images

    Get PDF

    An Adaptive Spatial-Temporal Local Feature Difference Method for Infrared Small-moving Target Detection

    Full text link
    Detecting small moving targets accurately in infrared (IR) image sequences is a significant challenge. To address this problem, we propose a novel method called spatial-temporal local feature difference (STLFD) with adaptive background suppression (ABS). Our approach utilizes filters in the spatial and temporal domains and performs pixel-level ABS on the output to enhance the contrast between the target and the background. The proposed method comprises three steps. First, we obtain three temporal frame images based on the current frame image and extract two feature maps using the designed spatial domain and temporal domain filters. Next, we fuse the information of the spatial domain and temporal domain to produce the spatial-temporal feature maps and suppress noise using our pixel-level ABS module. Finally, we obtain the segmented binary map by applying a threshold. Our experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods for infrared small-moving target detection

    Small and Dim Target Detection in IR Imagery: A Review

    Full text link
    While there has been significant progress in object detection using conventional image processing and machine learning algorithms, exploring small and dim target detection in the IR domain is a relatively new area of study. The majority of small and dim target detection methods are derived from conventional object detection algorithms, albeit with some alterations. The task of detecting small and dim targets in IR imagery is complex. This is because these targets often need distinct features, the background is cluttered with unclear details, and the IR signatures of the scene can change over time due to fluctuations in thermodynamics. The primary objective of this review is to highlight the progress made in this field. This is the first review in the field of small and dim target detection in infrared imagery, encompassing various methodologies ranging from conventional image processing to cutting-edge deep learning-based approaches. The authors have also introduced a taxonomy of such approaches. There are two main types of approaches: methodologies using several frames for detection, and single-frame-based detection techniques. Single frame-based detection techniques encompass a diverse range of methods, spanning from traditional image processing-based approaches to more advanced deep learning methodologies. Our findings indicate that deep learning approaches perform better than traditional image processing-based approaches. In addition, a comprehensive compilation of various available datasets has also been provided. Furthermore, this review identifies the gaps and limitations in existing techniques, paving the way for future research and development in this area.Comment: Under Revie

    Infrared small-target detection based on background-suppression proximal gradient and GPU acceleration

    Get PDF
    Patch-based methods improve the performance of infrared small target detection, transforming the detection problem into a Low-Rank Sparse Decomposition (LRSD) problem. However, two challenges hinder the success of these methods: (1) The interference from strong edges of the background, and (2) the time-consuming nature of solving the model. To tackle these two challenges, we propose a novel infrared small-target detection method using a Background-Suppression Proximal Gradient (BSPG) and GPU parallelism. We first propose a new continuation strategy to suppress the strong edges. This strategy enables the model to simultaneously consider heterogeneous components while dealing with low-rank backgrounds. Then, the Approximate Partial Singular Value Decomposition (APSVD) is presented to accelerate solution of the LRSD problem and further improve the solution accuracy. Finally, we implement our method on GPU using multi-threaded parallelism, in order to further enhance the computational efficiency of the model. The experimental results demonstrate that our method out-performs existing advanced methods, in terms of detection accuracy and execution time

    Workshop on Advanced Technologies for Planetary Instruments, part 1

    Get PDF
    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods
    corecore