32,503 research outputs found

    Infrared Imaging of Late-Type Stars

    Get PDF
    Infrared imaging properties of dusty winds around late-type stars are investigated in detail, employing a self-consistent model that couples the equations of motion and radiative transfer. Because of general scaling properties, the angular profiles of surface brightness are self-similar. In any given star, the profile shape is determined essentially by overall optical depth at each wavelength and it is self-similarly scaled by the size of the dust condensation zone. We find that the mid-IR is the best wavelength range to measure directly the angular size of this zone, and from {\it IRAS} data we identify the 15 best candidates for such future observations. We also show that the visibility function at short wavelengths (\la 2 \mic) directly determines the scattering optical depth, and produce theoretical visibility curves for various characteristic wavelengths and the entire parameter range relevant to late-type stars. The infrared emission should display time variability because of cyclical changes in overall optical depth, reflecting luminosity-induced movement of the dust condensation point. Calculations of the wavelength dependence of photometric amplitudes and time variability of envelope sizes are in agreement with observations; envelopes are bigger and bluer at maximum light.Comment: LaTeX with 2 figures, requires MNRAS mn.sty; figures and/or complete PS or PS.Z preprint (8 pages) available by anonymous ftp at ftp://asta.pa.uky.edu/ivezic/imaging/imaging.ps (or fig1.ps, fig2.ps

    Far-infrared imaging of tokamak plasma

    Get PDF
    A 20-channel interferometer has been developed which utilizes a linear, one-dimensional microbolometer array to obtain single-shot density profiles from the UCLA Microtor tokamak plasma. The interferometer has been used to study time-dependent phenomena in the plasma density profile. Observations of the sawtooth instability clearly show the growth of the m=0 mode from a localized oscillation (r=1 cm) on axis to an oscillation of the entire plasma. Also, measurements during the initial startup phase of the discharge show evidence of hollow density profiles. In addition, a simultaneous measurement of the poloidal magnetic field has been developed which provides 20 channels of polarimetry. Interferometry and polarimetry both use the same imaging system and the spatial resolution of both measurements has been tested using plastic and crystal-quartz test objects. The signal-to-noise ratio for the polarimeter has also proved adequate for the expected Faraday rotation angle (alphamax=7°, Ip=70 kA, n=5×10^13 cm^−3)

    Near infrared imaging spectroscopy of NGC1275

    Get PDF
    We present H and K band imaging spectroscopy of the core regions of the cD/AGN galaxy NGC1275. The spectra, including lines from H2, H, 12CO bandheads, [FeII], and [FeIII], are exploited to constrain the star formation and excitation mechanisms in the galaxy's nucleus. The near-infrared properties can largely be accounted for by ionized gas in the NLR, dense molecular gas, and hot dust concentrated near the active nucleus of NGC1275. The strong and compact H2 emission is mostly from circumnuclear gas excited by the AGN and not from the cooling flow. The extended emission of latetype stars is diluted in the center by the thermal emission of hot dust.Comment: 16 pages, LaTex, 15 gif figures, aa.cls required, accepted for A&A, high resolution images at http://astro1.ws.ba.dlr.d

    Planetary optical and infrared imaging

    Get PDF
    The purpose is to obtain and analyze high spatial resolution CCD coronagraphic images of extra-solar planetary material and solar system objects. These data will provide information on the distribution of planetary and proto-planetary material around nearby stars leading to a better understanding of the origin and evolution of the solar system

    Infrared imaging spectroscopy of skin cancer lesions

    Get PDF
    Skin cancer is a disease of the twenty-first century since, unfortunately, being tan is associated to be healthy and good looking. UV radiation produces one of the most aggressive kinds of skin cancer: melanoma; once the damage is done there is no other solution that a rapid and effective diagnosis. Clinical examination and biopsies have shown to be slow and costly in many ways, so the possibility of getting a non-invasive optical detection of skin melanomas became a hot topic in biophotonics. In this context, multispectral imaging systems have approached the problem, but none of them worked inside the infrared range. Hence, this work has been proposed as an interesting, long-term project to further investigate about the possibilities of infrared imaging spectroscopy for the early detection of skin cancer through the development of such a system based on an InGaAs camera

    Mid-Infrared Imaging of NGC 6334 I

    Get PDF
    We present high-resolution (<0.5") mid-infrared Keck II images of individual sources in the central region of NGC 6334 I. We compare these images to images at a variety of other wavelengths from the near infrared to cm radio continuum and speculate on the nature of the NGC 6334 I sources. We assert that the cometary shape of the UCHII region here, NGC 6334 F, is due to a champagne-like flow from a source on the edge of a molecular clump and not a due to a bow shock caused by the supersonic motion of the UCHII region through the interstellar medium. The mid-infrared emission in concentrated into an arc of dust that define the boundary between the UCHII region and the molecular clump. This dust arc contains a majority of the masers in the region. We discuss the nature of the four near-infrared sources associated with IRS-I 1, and suggest that one of the sources, IRS1E, is responsible for the heating and ionizing of the UCHII region and the mid-infrared dust arc. Infrared source IRS-I 2, which has been thought to be a circumstellar disk associated with a linear distribution of methanol masers, is found not to be directly coincident with the masers and elongated at a much different position angle. IRS-I 3 is found to be a extended source of mid-infrared emission coming from a cluster of young dusty sources seen in the near-infrared.Comment: Accepted for publication by the Astrophysical Journal, 27 pages, 9 figure

    Million frames per second infrared imaging system

    Get PDF
    An infrared imaging system has been developed for measuring the temperature increase during the dynamic deformation of materials. The system consists of an 8×8 HgCdTe focal plane array, each with its own preamplifier. Outputs from the 64 detector/preamplifiers are digitized using a row-parallel scheme. In this approach, all 64 signals are simultaneously acquired and held using a bank of track and hold amplifiers. An array of eight 8:1 multiplexers then routes the signals to eight 10 MHz digitizers, acquiring data from each row of detectors in parallel. The maximum rate is one million frames per second. A fully reflective lens system was developed, consisting of two Schwarszchild objectives operating at infinite conjugation ratio. The ratio of the focal lengths of the objectives determines the lens magnification. The system has been used to image the distribution of temperature rise near the tip of a notch in a high strength steel sample (C-300) subjected to impact loading by a drop weight testing machine. The results show temperature rises at the crack tip up to around 70 K. Localization of temperature, and hence, of deformation into "U" shaped zones emanating from the notch tip is clearly seen, as is the onset of crack propagation
    corecore