18 research outputs found

    Walkabout : an asynchronous messaging architecture for mobile devices

    Get PDF
    Modern mobile devices are prolific producers and consumers of digital data, and wireless networking capabilities enable them to transfer their data over the Internet while moving. Applications running on these devices may perform transfers to upload data for backup or distribution, or to download new content on demand. Unfortunately, the limited connectivity that mobile devices experience can make these transfers slow and impractical as the amount of data increases. This thesis argues that asynchronous messaging supported by local proxies can improve the transfer capabilities of mobile devices, making it practical for them to participate in large Internet transfers. The design of the Walkabout architecture follows this approach: proxies form store-and-forward overlay networks to deliver messages asynchronously across the Internet on behalf of devices. A mobile device uploads a message to a local proxy at rapid speed, and the overlay delivers it to one or more destination devices, caching the message until each one is able to retrieve it from a local proxy. A device is able to partially upload or download a message whenever it has network connectivity, and can resume this transfer at any proxy if interrupted through disconnection. Simulation results show that Walkabout provides better throughput for mobile devices than is possible under existing methods, for a range of movement patterns. Upload and end-to-end to transfer speeds are always high when the device sending the message is mobile. In the basic Walkabout model, a message sent to a mobile device that is repeatedly moving between a small selection of connection points experiences high download and end-to-end transfer speeds, but these speeds fall as the number of connection points grows. Pre-emptive message delivery extensions improve this situation, making fast end-to-end transfers and device downloads possible under any pattern of movement. This thesis describes the design and evaluation of Walkabout, with both practical implementation and extensive simulation under real-world scenarios

    A content dissemination framework for vehicular networking

    Get PDF
    Vehicular Networks are a peculiar class of wireless mobile networks in which vehicles are equipped with radio interfaces and are, therefore, able to communicate with fixed infrastructure (if available) or other vehicles. Content dissemination has a potential number of applications in vehicular networking, including advertising, traffic warnings, parking notifications and emergency announcements. This thesis addresses two possible dissemination strategies: i) Push-based that is aiming to proactively deliver information to a group of vehicles based on their interests and the level of matching content, and ii) Pull-based that is allowing vehicles to explicitly request custom information. Our dissemination framework is taking into consideration very specific information only available in vehicular networks: the geographical data produced by the navigation system. With its aid, a vehicle's mobility patterns become predictable. This information is exploited to efficiently deliver the content where it is needed. Furthermore, we use the navigation system to automatically filter information which might be relevant to the vehicles. Our framework has been designed and implemented in .NET C# and Microsoft MapPoint. It was tested using a small number of vehicles in the area of Cambridge, UK. Moreover, to prove the correctness of our protocols, we further evaluated it in a large-scale network simulation over a number of realistic vehicular trace-based scenarios. Finally, we built a test-case application aiming to prove that vehicles can gain from such a framework. In this application every vehicle collects and disseminates road traffic information. Vehicles that receive this information can individually evaluate the traffic conditions and take an alternative route, if needed. To evaluate this approach, we collaborated with UCLA's Network Research Lab (NRL), to build a simulator that combines network and dynamic mobility emulation simultaneously. When our dissemination framework is used, the drivers can considerably reduce their trip-times

    Experimental Analysis of Opportunistic Communication for Vehicular Internet Access

    Get PDF
    This thesis examines the problem of using 802.11 hotspots for vehicular Internet access. In this access paradigm, a user in a vehicle performs batch transfers by opportunistically communicating with roadside 802.11 access points while driving along a highway. Despite the short connection duration, a significant amount of data can be transferred. Because complete coverage is not needed, this method of Internet access provides a low-cost alternative to using cellular technology for applications that can tolerate some delay and require large data transfer such as sending or receiving music, movies, or digital photographs. Although vehicular opportunistic connections offer the potential to transfer a large of amount of data, utilizing this potential is non-trivial because existing transport and data-link layer network protocols were not designed for this use. This thesis presents an experimental analysis of transport and data-link layer protocol operation at a level of detail not previously explored. We identify ten problems that cause a reduction of up to 50% of the amount of data that could have been transferred in this scenario. Our primary finding is that transmission errors during connection setup and inadequate MAC data rate selection are the main causes of the under-utilization of the connection. Based on these findings we make preliminary recommendations for best practices for using vehicular opportunistic connections. In particular, we argue that overall throughput could be significantly improved if environmental information was available to the lower layer network protocols

    Opportunistic sensing and mobile data delivery in the CarTel System

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 94-102).Wide-area sensor systems enable a broad class of applications, including the fine-grained monitoring of traffic congestion, road surface conditions, and pollution. This dissertation shows that it is possible to build a low-cost, wide-area sensor system. Our approach relies on two techniques: using existing motion from such sources of mobility as cars and people to provide coverage (opportunistic mobility), and using the abundance of short duration network connections to provide low-cost data delivery (opportunistic networking). We use these two techniques to build a mobile sensor computing system called CarTel, to collect, process, deliver, and visualize spatially diverse data. CarTel consists of three key components: hardware placed in users' cars to provide remote sensing, a communication stack called CafNet to take advantage of opportunistic networking, and a web-based portal for data visualization. This dissertation describes the design and implementation of these three components. In addition, we analyze the properties of opportunistic networking and mobility. To show the viability of opportunistic networking, we studied Internet access from moving vehicles and found that the median duration of link layer connectivity at vehicular speeds was 13 seconds, that the median connection upload bandwidth was 30 KBytes/s, and that the mean duration between successful associations to APs was 75 seconds. To show the viability of opportunistic mobility, we used a simulation and found that after as little as 100 drive hours, a CarTel deployment could achieve over 80 percent coverage of useful roads for a traffic congestion monitoring application.by Bret W. Hull.Ph.D

    Computer-network Solutions for Pervasive Computing

    Get PDF
    Lo scenario delle reti di comunicazione di tipo wireless sta rapidamente evolvendo verso i sistemi pervasivi in cui i dispositivi wireless, di diversi tipi e grandezze, costituiscono parte integrante dell’ambiente in cui sono immersi, ed interagiscono continuamente ed in maniera trasparente con gli utenti che vi vivono o che lo attraversano. Si parla a tal proposito anche di ambienti intelligenti. Seguendo l’evoluzione dai sistemi mobili a quelli pervasivi, questa tesi rivisita diversi tipi di ambienti wireless che si sono sviluppati e diffusi negli ultimi 20 anni: a partire dalle wireless LANs, proseguendo con le reti ad hoc, per finire con le reti opportunistiche. Sebbene molte problematiche delle reti wireless si ripropongano in quasi tutti gli scenari (ad esempio il risparmio energetico), a scenari wireless diversi corrispondono in genere utilizzi differenti e diversi fabbisogni degli utenti, come pure problemi specifici che richiedono soluzioni dedicate. Alcune soluzioni specifiche sono analizzate e proposte in questa tesi. Le reti WLANs basate su infrastruttura sono usate generalmente per fornire accesso alla rete Internet ed infatti lo scenario che le comprende è solitamente riferito come Wireless Internet. Nonostante la presenza dell’infrastruttuta fissa garantisca in generale una trasmissione di dati affidabile, l’utilizzo di questo tipo di reti per fornire esattamente gli stessi tipi di servizi delle reti fisse provoca un elevato consumo di risorse che all’interno delle WLANs sono invece limitate. Inoltre l’utilizzo dei protocolli dello stack TCP/IP sui link wireless è di solito fonte di inefficienze viste le profonde differenze esistenti fra i link wireless e quelli fissi. La progettazione di servizi in uno scenario di wireless Internet ha come primario obiettivo quello di garantire la fruizione da parte degli utenti mobili senza soluzione di continuità, mascherando così la presenza del link wireless che ha banda nominale inferiore rispetto ai link fissi ed è soggetto a maggiori perdite, e supportando la mobilità degli utenti all’interno delle zone di copertura (handoff). La gestione dei servizi di wireless Internet deve sempre essere integrata con soluzioni di risparmio energetico tese ad allungare il più possibile l’autonomia energetica dei dispositivi degli utenti (alimentati a batteria) garantendo così loro un servizio duraturo nel tempo. Abbiamo studiato una soluzione per servizi di streaming audio-video verso terminali mobili in un ambiente di wireless LAN. Oltre a garantire la continuità della riproduzione multimediale con buona qualità, questa soluzione ottimizza il consumo energetico del terminale wireless agendo sulla scheda di rete wireless. Durante lo streaming infatti, la scheda di rete viene periodicamente messa in uno stato a basso consumo energetico (sleep). I periodi di sleep della scheda vengono calcolati adattivamente in funzione dello stato di avanzamento della riproduzione multimediale e della banda disponibile istantaneamente sul canale wireless opportunamente monitorato. Il riposo della scheda di rete non incide sul processo di riproduzione e quindi sulla qualità del servizio percepita dall’utente mobile. A differenza delle WLANs, le reti MANETs sono prive di infrastruttura fissa ed i nodi che vi partecipano si autoconfigurano ed autoorganizzano tra di loro. Le MANETs si mostrano particolarmente adatte ad esigenze temporanee di gruppi di utenti che vogliano condividere dati, scambiarsi messaggi, o altro. Uno dei principali interessi di ricerca nell’ambito delle reti MANETs ha riguardato storicamente lo studio dei protocolli di routing per l’instradamento delle informazioni fra nodi sorgente e nodi destinatari. In una rete MANET infatti, vista l’assenza di infrastruttura, ogni nodo è coinvolto nella funzione di instradamento. Negli ultimi anni tuttavia, un nuovo aspetto di ricerca sta acquistando sempre maggiore attenzione e riguarda la sperimentazione su testbed reali. Le poche esperienze sperimentali eseguite su MANETs hanno dimostrato l’inadeguatezza degli studi di tipo analitico-simulativo nel giudicare l’efficacia delle soluzioni progettate per reti MANETs. Questo è principalmente dovuto al fatto che gli scenari wireless sono estremamente complessi e soggetti a fenomeni di diversa natura che influiscono sulle comunicazioni ma che sono difficilmente condensabili in un modello analitico completo. I modelli esistenti nei simulatori attualmente diffusi sono spesso causa di errori nel validare o al contrario bocciare le soluzioni ed i protocolli testati. Le attività di sperimentazione su testbed reali hanno dunque un duplice scopo: i) validare protocolli e soluzioni proposte attualmente, e ii) gettare le basi per la costruizione di nuovi modelli analitici e simulativi che siano maggiormente attendibili di quelli attuali. L’esperienza condotta su di un testbed reale per reti ad hoc comprendente portatili e palmari fino ad un totale di 12 nodi, ha dimostrato l’efficacia delle implementazioni di due protocolli di routing: AODV (Ad hoc On demand Distance Vector) ed OLSR (Optimized Link State Routing). Tuttavia, benchè entrambi siano funzionalmente corretti, mostrano comportamenti differenti quando usati per supportare servizi di livello middleware ed applicativi (vedi ad esempio file sharing o trasferimenti ftp). In particolare, i ritardi causati dalla scoperta delle rotte in AODV sono spesso causa di inefficienze o addirittura di interruzione del servizio. OLSR invece, seppure responsabile di un overhead di traffico maggiore, si mostra maggiormente adatto alle interazioni con i servizi dei livelli superiori. Infine, l’esperienza ha dimostrato la necessità di ripensare molti dei servizi disponibili su rete fissa per adeguarli alle caratteristiche delle reti wireless e particolarmente di quelle ad hoc. Una nuova tipologia di reti wireless sta emergendo attualmente e si sta rivelando di particolare interesse: quella delle reti opportunistiche. Le reti opportunistiche non si appoggiano su alcuna infrastruttura fissa, né cercano di autoconfigurarsi in una infrastruttura wireless temporanea costituita da nodi vicini. Sfruttano le opportunità di contatto che si verificano fra i nodi (dispositivi wireless di piccola taglia) trasportati dagli utenti nelle loro attività quotidiane (ad esempio a lavoro, sugli autobus, a scuola o all’università, ecc.). I messaggi sono scambiati ogni qualvolta si renda possibile, ovunque sia possibile ed il successo della loro trasmissione è strettamente legato alle dinamiche sociali in cui sono coinvolti gli utenti che trasportano i dispositivi ed alla storia degli incontri tra individui. Data la mobilità estremamente elevata che caratterizza questo nuovo scenario di reti, e la nota rumorosità delle comunicazioni wireless, l’affidabilità delle trasmissioni emerge come uno dei fattori di principale interesse. Infatti, le comunicazioni possono aver luogo soltanto durante i periodi di contatto tra i nodi e devono essere estremamente veloci ed efficaci. Questo porta a dover fare uno sforzo di progettazione per nuovi protocolli di comunicazione che si diversifichino da quelli oggi più diffusi e basati sulla ritrasmissione dei dati mancanti. Le ritrasmissioni infatti, nella maggior parte dei casi potrebbero non poter essere eseguite per mancanza di tempo. Una strategia valida per gestire l’affidabilità delle comunicazioni opportunistiche in simili scenari estremi (caratterizzati cioè da scarse risorse e scarsa connettività) prevede l’utilizzo combinato di tecniche di codifica dei dati e strategie di instradamento di tipo epidemico. Questo approccio sfrutta la ridondanza sia delle informazioni, sia dei percorsi. La ridondanza delle informazioni dà robustezza a fronte della perdita dei dati in rete poiché è necessario che soltanto un sottoinsieme dei codici generati arrivi a destinazione per consentire al ricostruzione corretta delle informazioni. La ridondanza dei percorsi invece è necessaria poichè non è possibile predirre in anticipo la sequenza dei contatti che può portare i dati a destinazione e pertanto è necessario distribuire l’informazione in più direzioni. Le reti opportunistiche caratterizzate dalla presenza di dispositivi con limitata autonomia energetica e risorse limitate, offrono attualmente lo scenario che meglio traduce il concetto di sistemi pervasivi. Di particolare interesse è il caso delle reti di sensori sparse in cui i sensori sono disposti nell’ambiente con funzione di monitoraggio ed i dati che collezionano vengono raccolti da degli agenti mobili che passano nelle vicinanze e che sono noti come data MULEs. I data MULEs possono utilizzare le informazioni acquisite dai sensori per eseguire applicazioni dipendenti dal contesto o possono semplicemente inoltrarle fino a quando raggiungono l’infrastruttura dove vengono elaborati e memorizzati. Le interazioni fra i sensori immersi nell’ambiente ed i data MULEs sono soltanto un primo passo di un sistema di comunicazione globale completamente opportunistico in cui i data MULEs scambiano l’un l’altro le informazioni che trasportano fino a quando infine, i dati pervengono alle destinazioni più lontane. In questo scenario, le comunicazioni wireless completano naturalmente le interazioni fra gli utenti e si verificano ogni qualvolta gli utenti si incontrano oppure si avvicinano casualmente l’un l’altro, dovunque questa interazione avvenga. Per supportare un simile framework, è necessario sviluppare nuovi paradigmi di comunicazione che tengano in considerazione l’assenza di link stabili tra i nodi che comunicano (connettività intermittente) e che assumano quindi la disponibilità di brevi periodi di contatto per comunicare. Inoltre i nuovi paradigmi di comunicazione devono generalmente assumere l’assenza di un percorso completo fra i nodi sorgente e destinatario e sfruttare invece forme di instradamento delle informazioni che sono simili al modo in cui avvengono le interazioni sociali fra le persone. Strategie di instradamento basate su codifica dei dati offrono una valida soluzione per supportare il framework emergente dei sistemi pervasivi

    Investigation of data dissemination techniques for opportunistic networks

    Get PDF
    An opportunistic network is an infrastructure-less peer to peer network, created between devices that are mobile and wireless enabled. The links between devices are dynamic and often short-lived. Therefore, disseminating data from a source to recipients with a quality of service guarantee and efficiency is a very challenging problem. Furthermore, the interactions between devices are based on opportunity and are dependent on the devices mobility, which have extreme diverse patterns. The aim of this thesis is to investigate dissemination of data in opportunistic networks. In particular two conflicting objectives are studied: minimising the overhead costs and maximising the information coverage over time. We also take into account the effects of mobility. Extensive computer simulation is developed to explore models for information dissemination and mobility. On top of existing mobility models (i.e. Random Walk, Random, Waypoint and Gauss Markov) a hybrid model is derived from the Random Waypoint and Gauss Markov mobility models. The effect on mobility model on dissemination performance is found to be highly significant. This is based on sensitivity analysis on mobility and node density. We first consider different baseline push techniques for data dissemination. We propose four different push techniques, namely Pure Push, Greedy, L-Push and Spray and Relay to analyse the impact of different push techniques to the information dissemination performances. The results present different trade-offs between objectives. As a strategy to manage overheads, we consider controlling to which nodes information is pushed to by establishing a social network between devices. A logical social network can be built between mobile devices if they repeatedly see each other, and can be defined in different ways. This is important because it shows how content may potentially flow to devices. We explore the effects of mobility for different definitions of the social network. This shows how different local criteria for defining links in a social network lead to different social structures. Finally we consider the effect of combining the social structure and intelligent push techniques to further improve the data dissemination performance in opportunistic networks. We discover that prioritising pushing over a social network is able to minimise the overhead costs but it introduces a dissemination delay.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Investigation of data dissemination techniques for opportunistic networks

    Get PDF
    An opportunistic network is an infrastructure-less peer to peer network, created between devices that are mobile and wireless enabled. The links between devices are dynamic and often short-lived. Therefore, disseminating data from a source to recipients with a quality of service guarantee and efficiency is a very challenging problem. Furthermore, the interactions between devices are based on opportunity and are dependent on the devices mobility, which have extreme diverse patterns. The aim of this thesis is to investigate dissemination of data in opportunistic networks. In particular two conflicting objectives are studied: minimising the overhead costs and maximising the information coverage over time. We also take into account the effects of mobility. Extensive computer simulation is developed to explore models for information dissemination and mobility. On top of existing mobility models (i.e. Random Walk, Random, Waypoint and Gauss Markov) a hybrid model is derived from the Random Waypoint and Gauss Markov mobility models. The effect on mobility model on dissemination performance is found to be highly significant. This is based on sensitivity analysis on mobility and node density. We first consider different baseline push techniques for data dissemination. We propose four different push techniques, namely Pure Push, Greedy, L-Push and Spray and Relay to analyse the impact of different push techniques to the information dissemination performances. The results present different trade-offs between objectives. As a strategy to manage overheads, we consider controlling to which nodes information is pushed to by establishing a social network between devices. A logical social network can be built between mobile devices if they repeatedly see each other, and can be defined in different ways. This is important because it shows how content may potentially flow to devices. We explore the effects of mobility for different definitions of the social network. This shows how different local criteria for defining links in a social network lead to different social structures. Finally we consider the effect of combining the social structure and intelligent push techniques to further improve the data dissemination performance in opportunistic networks. We discover that prioritising pushing over a social network is able to minimise the overhead costs but it introduces a dissemination delay.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Investigation of data dissemination techniques for opportunistic networks

    Get PDF
    An opportunistic network is an infrastructure-less peer to peer network, created between devices that are mobile and wireless enabled. The links between devices are dynamic and often short-lived. Therefore, disseminating data from a source to recipients with a quality of service guarantee and efficiency is a very challenging problem. Furthermore, the interactions between devices are based on opportunity and are dependent on the devices mobility, which have extreme diverse patterns. The aim of this thesis is to investigate dissemination of data in opportunistic networks. In particular two conflicting objectives are studied: minimising the overhead costs and maximising the information coverage over time. We also take into account the effects of mobility. Extensive computer simulation is developed to explore models for information dissemination and mobility. On top of existing mobility models (i.e. Random Walk, Random, Waypoint and Gauss Markov) a hybrid model is derived from the Random Waypoint and Gauss Markov mobility models. The effect on mobility model on dissemination performance is found to be highly significant. This is based on sensitivity analysis on mobility and node density. We first consider different baseline push techniques for data dissemination. We propose four different push techniques, namely Pure Push, Greedy, L-Push and Spray and Relay to analyse the impact of different push techniques to the information dissemination performances. The results present different trade-offs between objectives. As a strategy to manage overheads, we consider controlling to which nodes information is pushed to by establishing a social network between devices. A logical social network can be built between mobile devices if they repeatedly see each other, and can be defined in different ways. This is important because it shows how content may potentially flow to devices. We explore the effects of mobility for different definitions of the social network. This shows how different local criteria for defining links in a social network lead to different social structures. Finally we consider the effect of combining the social structure and intelligent push techniques to further improve the data dissemination performance in opportunistic networks. We discover that prioritising pushing over a social network is able to minimise the overhead costs but it introduces a dissemination delay

    NASA Tech Briefs, October 2000

    Get PDF
    Topics include: special coverage sections on CAD, CAE, and PDM, and, Composites and Plastics, and sections on electronic components and systems, software, test and measurement, mechanics, manufacturing/fabrication, physical sciences, information sciences, book and reports, and special sections of Electronics Tech Briefs and Motion Control Tech Brief
    corecore