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Abstract

Modern mobile devices are prolific producers and consumers of digital data, and

wireless networking capabilities enable them to transfer their data over the Internet while mov-

ing. Applications running on these devices may perform transfers to upload data for backup or

distribution, or to download new content on demand. Unfortunately, the limited connectivity

that mobile devices experience can make these transfers slow and impractical as the amount of

data increases.

This thesis argues that asynchronous messaging supported by local proxies can im-

prove the transfer capabilities of mobile devices, making it practical for them to participate

in large Internet transfers. The design of the Walkabout architecture follows this approach:

proxies form store-and-forward overlay networks to deliver messages asynchronously across

the Internet on behalf of devices. A mobile device uploads a message to a local proxy at rapid

speed, and the overlay delivers it to one or more destination devices, caching the message until

each one is able to retrieve it from a local proxy. A device is able to partially upload or down-

load a message whenever it has network connectivity, and can resume this transfer at any proxy

if interrupted through disconnection.

Simulation results show that Walkabout provides better throughput for mobile de-

vices than is possible under existing methods, for a range of movement patterns. Upload and

end-to-end to transfer speeds are always high when the device sending the message is mobile.

In the basic Walkabout model, a message sent to a mobile device that is repeatedly moving

between a small selection of connection points experiences high download and end-to-end

transfer speeds, but these speeds fall as the number of connection points grows. Pre-emptive

message delivery extensions improve this situation, making fast end-to-end transfers and device

downloads possible under any pattern of movement.

This thesis describes the design and evaluation of Walkabout, with both practical

implementation and extensive simulation under real-world scenarios.
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A note on data units

In general, this thesis will use the following basic units for data measurement:

• 1 byte (B) = 8 bits

• 1 kilobyte (KB) = 1024 bytes

• 1 megabyte (MB) = 1024 kilobytes

• 1 gigabyte (GB) = 1024 megabytes

Accordingly, all experimental data rates are measured in kilobytes per second (KB/s) or megabytes

per second (MB/s).

Somewhat confusingly, internet service providers and equipment manufacturers of-

ten measure data rates with units that use bits (rather than bytes) and multiples of 1000 (rather

than 1024). Commonly used units include the following:

• 1 kilobit per second (Kbps) = 1000 bits per second

• 1 megabit per second (Mbps) = 1000 kilobits per second

• 1 gigabit per second (Gbps) = 1000 megabits per second

Rather than converting these values, they will be left in the original units where

appropriate, but the reader is advised to bear in mind that 1Mbps is approximately equal to

122KB/s.
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Chapter 1

Introduction

1.1 Motivation

Modern mobile electronic devices are becoming increasingly adept at handling digi-

tal multimedia in all its forms. Fast processors, gigabytes worth of storage and a rich array of

input and output technologies all support their ability to create, store and render multimedia.

Because they are portable, mobile devices give people the freedom to experience and create

content any time and place that they want.

Connectivity is also an important part of their functionality. Mobile devices regularly

interact with fixed devices and other mobile devices to exchange content, whether it is to store

locally created content for safekeeping, to share it with a group of interested people, or to

acquire new content on demand. Direct local links over USB or a local area network can

support these transfers at high data rates, but in today’s connected world it should also be

possible to perform the same operations on a worldwide scale across the Internet.

Fortunately, the networking capabilities of mobile devices are also increasing, with

high-speed wireless networking interfaces from the 802.11 family (commonly referred to as

WiFi) and cellular networking becoming commonplace. WiFi access points are also widespread,

deployed by individuals and organisations alike. These technologies enable mobile devices to

access the Internet directly, and exchange digital content with any other device in the world

without being tethered to a fixed network. However, the nature of these devices means that

even though this form of communication is usually possible, it is rarely practical.

One reason for this is that a mobile device is not always reachable. It may be out of

the range of a suitable network, or switched off to conserve power. This can create difficulties

if another device wishes to contact it to initiate a direct transfer. This situation is compounded
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if the initiating device is also mobile and has to contend with the same connectivity issues.

Cellular networking that is “always on” offers one way to overcome this problem, but data

costs can be prohibitive, speed is limited, coverage is not absolute, and relatively few devices

beyond mobile phones have the required hardware.

Another problem is that the media content involved can be quite large, ranging in

size from tens of kilobytes for small images, to several megabytes for typical photos and music

files, all the way up to gigabytes for high definition video. In many cases, transferring this

content across the Internet can require minutes or possibly even hours of constant connectivity.

For a mobile device with intermittent connectivity, the actual time taken between the transfer

initiation and completion can be longer still. If a person wishes to complete a large transfer in

the shortest possible time, they may find that they need to modify or restrict their movements

to guarantee device connectivity for the duration of the transfer.

It is clear that the unreliable connectivity associated with mobility can make it diffi-

cult to transfer large amounts of data across the Internet. This thesis aims to make these large

transfers practical, by improving the networking abilities of mobile devices. In this context, a

transfer is defined as practical if:

• it succeeds irrespective of the connection patterns of the devices involved;

• the speed is comparable to what would be observed between fixed hosts;

• the user of a mobile device can achieve this speed without needing to alter their

movement patterns.

1.2 Local proxies

In general, mobile devices can achieve higher transfer rates when communicating

across a local wireless network than across the Internet. This is partly due to the difference

in the speeds that the different technologies offer. Table 1.1 presents the maximum speeds of

some consumer-level networking technologies that are commonly available in 2007. It shows

that the maximum speed of local 802.11g WiFi exceeds that of the Internet access methods of

ADSL2+ or High Speed Packet Access (HSPA), particularly on the uplink. Figure 1.1 indicates

that WiFi is also faster than the average consumer broadband downlink speed available in the

majority of countries. The average connection speeds available in Japan, France and Korea

approach or exceed those of WiFi, and emerging technologies like Fibre to the Home (FTTH)

promise to improve these speeds further to 1Gbps (Takachi et al., 2006), but these values do not
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Table 1.1: Network speeds for commonly available technologies.

Technology Type Max Downlink Max Uplink
(Mbps) (Mbps)

802.11g WiFi Local network 54 54
ADSL2+ Fixed Internet 24 3.5

HSPA Cellular Internet 14.4† 1.45‡

†Highest commercially available speed (Telstra, 2007)
‡Highest commercially available speed (hsupa.com, 2007)
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Figure 1.1: Average advertised broadband downlink speed by country, October 2007 (OECD, 2007).

necessarily improve actual transfer speeds beyond what local wireless can offer. An Internet

transfer passes through many links along its path, so a slow or congested link at any point will

restrict the overall throughput. Local transfers pass through a relatively small number of links,

so there is more chance of them attaining their maximum speed, and advances in technology

continue to offer ever-higher maximum speeds. For example, 802.11n WiFi is due for release

in 2008 and will provide local speeds of up to 300Mbps, with non-standard “pre-n” equipment

available already (Apple Computer, Inc., 2007), and short-range wireless speeds are estimated

to reach 15Gbps within the next three years (GEDC, 2007; Press Esc, 2007). The other factor is

that it may be some time before technologies like FTTH or high-speed cellular access become

widespread, because it is difficult and expensive for telecommunications companies to deploy

them. Meanwhile, it is relatively easy to purchase and install new WiFi equipment as faster

speeds become available.

Local proxies provide a way to exploit the disparity between local network and Inter-

net speeds. A proxy is defined as an agent that mediates communication between a device and

the wider network. If proxies reside within the same local networks as mobile devices, they
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can take advantage of the speed disparity to make large Internet transfers practical, by acting

as local storage points to buffer asynchronous messaging between the devices.

In the asynchronous messaging paradigm, the communication endpoints never con-

tact each other directly, but exchange messages via some intermediate infrastructure instead.

Email, SMS and MMS are common existing asynchronous communication methods. This

store-and-forward approach is perfectly suited to transfers between mobile devices, as it serves

to minimise the effect of fluctuating network connectivity. The sender is able to upload data

messages at its convenience, without any knowledge of or dependency on recipient availability.

The infrastructure stores the messages and delivers them as soon as the recipient is available.

Asynchronous messaging decouples the endpoints, so that they can communicate without con-

cern for each other’s connection patterns. In the extreme case, devices are able to communicate

without any common connection time at all.

The presence of local proxies can provide great benefits for asynchronous messag-

ing. When sending messages, a device can offload them at local speed to the proxy, which

caches them and forwards them across the Internet at the slower speed. The Internet transfer is

therefore able to continue even if the device disconnects. When delivering messages, the local

proxy accepts messages on behalf of the receiving device. If this device is connected as the

messages arrive, the proxy forwards them immediately and there is no advantage. However,

if the device is not connected, the proxy caches the messages, then forwards them when the

device next connects. This allows the device to “catch up” on the download at local speeds

upon reconnection, as if it had never disconnected. Effectively, the proxies prevent the Internet

from being a communication bottleneck, so that the devices are able to make more efficient

use of their connection periods. As a result, mobile devices should be able to carry out large

transfers even with only sporadic network connectivity.

These properties lead to the central hypothesis of this research: that asynchronous

messaging supported by local proxies makes it practical for mobile devices to transfer

large data objects across the Internet.

1.3 Walkabout

To test this hypothesis, an asynchronous messaging architecture called Walkabout is

proposed, which takes advantage of local proxies to support Internet data transfers. Walkabout

proxies are located within network segments across the Internet and client devices connect

to them locally, typically over WiFi. Producer clients upload messages to their nearest proxy,

4



1.3. Walkabout
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Figure 1.2: File delivery using an overlay network.

addressed to one or more consumer clients, and the proxy creates a peer-to-peer Internet overlay

with other proxies to cooperatively deliver each message, without the need for data storage on

or coordination by a central authority. Figure 1.2 shows these components, arranged to form

an overlay for the delivery of a file to three consumers. The proxies buffer message uploads

and downloads, so that clients can transfer at local speeds whenever possible. If disconnection

interrupts a message transfer, the client can resume it at any proxy upon reconnection.

This design provides the necessary support to build mobile applications based upon

asynchronous messaging. Messages can range in size from small inter-application messages,

up to large media files in the order of gigabytes. While multimedia transfer is a motivation

for this research, Walkabout is not restricted to this domain and can support any other type of

content, including documents, games or scientific data. The only condition is that messages

must be discrete, with the size defined before the transfer begins. Examples of applications

that this messaging can enable are explored in depth in Chapter 2.

Walkabout’s message-based approach is ideally suited to the delivery of personal

data. Content created on a device can be uploaded quickly to a variety of different targets.

Valuable data, such as holiday photos and videos, can be uploaded to a host for permanent

storage. Content with limited appeal, such as video messages, can be sent directly to the
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devices of a group of interested people. If the content is of general interest and wider distri-

bution is sought, the producer can deliver it directly to a content sharing site like Flickr (Ya-

hoo!, 2007b) or YouTube (Google, 2007e). Walkabout’s directed messaging can also provide

a speed boost when downloading personal content, such as that drawn from a personal library,

or copy-protected content purchased directly from an online store. This improvement would

traditionally only be available when downloading popular data, which has been cached locally

in response to previous downloads or replicated in anticipation of future demand.

This thesis presents the full design for Walkabout and investigates its performance

through simulation under a variety of device movement scenarios, including patterns based

upon real-world traces. This investigation shows significant improvements in upload, download

and end-to-end transfer speeds when compared to alternative transfer techniques. These results

show that Walkabout achieves its aim of providing mobile devices with a practical means to

transfer large data items across the Internet, irrespective of mobility patterns.

1.4 Contributions

This thesis makes three major contributions:

C1: A review of the literature associated with an architecture that facilitates Internet data

transfers involving mobile devices.

C2: The design of a distributed network architecture that enables asynchronous Internet mes-

sage delivery to one or more devices, with particular focus on mobile senders and re-

ceivers. Local network proxies enable high upload speeds for all devices, and high

download speeds for devices with repetitive movement patterns, resulting in end-to-end

transfer speeds that are largely unaffected by mobility. When an uploading device is

highly mobile, the architecture can improve end-to-end transfer speeds beyond what is

possible between fixed systems.

C3: The design of a pre-emptive message delivery service on top of the basic architecture.

The service uses different movement prediction and message delivery policies to deliver

high download speeds for devices with any movement pattern.
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1.5 Thesis outline

Chapter 2 - Applications: Presents further motivation for Walkabout, through an exploration

of some applications that it will enable and existing devices that can run them.

Chapter 3 - Background: Gives an overview of the background material that is necessary to

understand the design decisions behind Walkabout and describes the related work. This

forms Contribution C1.

Chapter 4 - Core system design: Details the design of the core Walkabout architecture, in-

cluding its components, operation and API.

Chapter 5 - Core system evaluation: Evaluates the performance of Walkabout through sim-

ulation. Together with Chapter 4, this forms Contribution C2.

Chapter 6 - Extended system design: Details the design of additional features to make Walk-

about applicable to a wider range of situations. These features are a pre-emptive message

delivery service, greater recipient control over message delivery and network support for

simple devices.

Chapter 7 - Client manager evaluation: Evaluates the performance of two pre-emptive de-

livery mechanisms through simulation. Together with Chapter 6, this forms Contribu-

tion C3.

Chapter 8 - Conclusions and future directions: Concludes this thesis and presents directions

for future research.
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Chapter 2

Applications

This chapter presents some of the devices that Walkabout is designed to support

and a range of potential applications that they could run. These Internet-based applications

are a major motivation for this work and fall in to three distinct categories: uploads from

mobile devices to fixed servers, downloads to mobile devices from fixed servers, and transfers

between mobile devices. The chapter concludes by examining some existing applications that

are similar, but that operate without the benefit of local proxies.

2.1 Devices

A wide range of mobile devices are available on the market today, featuring fast

processors, gigabytes of local storage, and many different functions. Each of the recently

released devices featured in Table 2.1 has a variety of features, which may include a large, high

resolution screen, image and audio capture hardware, speaker/headphone output, a keyboard

or touch-screen input. These features enable them to create, store and render a wide variety of

different content, most notably photos, videos, music, documents and games. Importantly, even

though each of the devices in the table has a different purpose, they all feature built-in WiFi

that enables them to send and receive this content over both local networks and the Internet.

As explained in Chapter 1, Walkabout aims to harness the wireless local network-

ing ability of these mobile devices, to enable them to transfer data at local speeds wherever

possible. This allows for cheap and quick Internet transfers, without significant impact upon a

person’s mobility. The following sections illustrate just some of the applications that become

possible when there is a rapid form of asynchronous messaging available to a mobile device.

They demonstrate the need for this type of messaging and provide supporting scenarios for the

simulations in later chapters.
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Table 2.1: Examples of powerful portable devices.

Device: Apple MacBook Sony Vaio UMPC HP iPAQ
Description: Notebook computer Ultra-mobile PC Pocket PC

Network: WiFi, Bluetooth WiFi, Bluetooth, cellu-
lar

WiFi, Bluetooth

Images: Create, view Create, view View
Video: Create, view Create, view View
Audio: Record, listen Record, listen Record, listen

Documents: Create, view Create, view Create, view
Plays games: Yes Yes Yes

Device: Kodak EasyShare-One Nokia N93i Nokia N800
Description: Camera Phone Internet tablet

Network: WiFi (Bluetooth model
also available)

WiFi, Bluetooth, cellu-
lar

WiFi, Bluetooth

Images: Create, view Create, view Create, view
Video: Create, view Create, view Create, view
Audio: Record, listen Record, listen Record, listen

Documents: N/A Create, view Create, view
Plays games: No Yes Yes

Device: Microsoft Zune Sony PlayStation
Portable (PSP)

iLiad iRex

Description: Digital media player Entertainment device e-book reader
Network: WiFi WiFi WiFi

Images: View View View
Video: View View N/A
Audio: Listen Listen Listen

Documents: View View Create, view
Plays games: No Yes No
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2.2 Upload to a server

There is a great need for mobile devices to be able to upload their data across the

Internet to a safe location on a regular basis. The data that these devices capture can be irre-

placeable, yet their portable nature commonly places them in situations where they can be lost,

stolen or damaged. The ability to regularly upload files to a remote location would protect them

from loss. While mobile devices can have large amounts of onboard or card-based storage, it

is unfortunately very easy to create or download far more content than a device can hold. As

storage fills up, users reach the point where they have to become more selective about what

new content they create, or choose to sacrifice existing content to free up space, both of which

can be very undesirable. If the device is constantly backing up files across the Internet, then

the user can reclaim space as needed by deleting the local copies. The location to upload data

to would need to be a reliable server, which could be managed personally, by an organisation

or provided by a company for a fee.

The rise in popularity of social networking sites that are driven by user-created con-

tent provides further motivation for this type of immediate upload. Sites such as YouTube

(Google, 2007e) (which presents videos), Flickr (Yahoo!, 2007b) (photos) and Blogger (Google,

2007a) (text and multimedia) inspire people to publish content, often captured on a mobile

device, to the world. The ability to publish directly from the device would increase the acces-

sibility of these sites even further, so that they can share media at any time, from practically

any location. It would also provide an extremely powerful means for ordinary people to report

news as it happens.

With these motivations in mind, the following applications demonstrate how Walka-

bout improves the upload abilities of mobile devices.

Photo backup: An Australian on holiday in Europe carries his EasyShare-One camera

and 512MB memory card wherever he goes. He takes hundreds of photos every day,

each one between 3 and 5MB in size. The camera automatically uploads each photo

to a machine in his home within minutes of capture (see Figure 2.1). When the memory

card starts running low on space, the camera automatically deletes photos that are safely

backed up.

Walkabout enables the traveller to take as many photos as he wants with only a single mem-

ory card, and his photos remain safe even if something happens to the camera. The camera

performs the backup regardless of the route he follows over the course of a day.
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Proxy
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Figure 2.1: A camera uses Walkabout to upload photos to a home server.

Direct publication: A gang of thieves attempt a bank heist, but a courageous security

guard stops them all single-handedly. A bystander captures the entire event on her N93i

phone and publishes the 20MB video directly to YouTube via a WiFi hotspot. The initial

upload only takes seconds, the video is available on the web within minutes, and people

all round the world are watching it long before any news teams arrive on the scene.

Walkabout enables the woman to publish the content to the web quickly from her current

location, with only minimal connection time required.

2.3 Download from a server

Although modern mobile devices can hold gigabytes of data, this may only be a

subset of what a person owns. This means that a mobile device may be missing content that

becomes necessary as they move around over time. Even though a person may anticipate what

content they expect to need and load it on to their device from a larger library while still at

home, there is always the chance that they will need something different later on. This could

possibly be because they want to show it to someone else, because it has only just become

available, or simply because they changed their mind. Walkabout messaging opens up possi-

bilities for users to acquire content from a remote server, and load it directly on to their devices

while mobile. The data transfers will take place opportunistically in the background as they

continue to carry out their normal activities. Requests could either be made explicitly through

an interface, or the content could be sent automatically by way of a schedule or user agent

running on the remote server.
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The following applications are examples of how Walkabout improves the abilities of

mobile devices to download data from the Internet.

Online purchasing: A jogger is listening to music on her Zune, but finds that a song she

heard on the radio that morning is stuck in her head. She pauses momentarily within

an area of WiFi coverage, where she connects the Zune to an online store, purchases the

song, and adds it as a virtual item to her current playlist. She returns to jogging while

the device downloads the 5MB file in the background. The download is complete within

a couple of minutes, then the song starts playing as the next item in her playlist.

Walkabout enables the jogger to request high quality media content from a vendor on demand,

and to download the file opportunistically while still moving, rather than having to wait in one

location until the download completes.

Media retrieval: While in the car on the way to his parents’ house, a man remembers

that he promised his mother that he would bring last year’s Christmas photos with him.

He pulls over to the side of the road, browses a locally cached catalogue of photos on

his Nokia N800 Internet tablet, and requests the 100MB album of photos from his home

media server. The download starts instantly and continues throughout the course of the

drive, as he passes through areas of public WiFI coverage along the way. By the time he

sits down to afternoon tea with his family, the photos are available to show to them.

Walkabout enables the man to download a large number of items from a personal library, that

he did not have the opportunity to retrieve while he was at home. He can download them while

continuing his trip, which is a faster option than returning home or downloading them when he

reaches his destination.

Automatic media delivery: A student’s personal video recorder (PVR) is set to record

her favourite show each week, and transmit it automatically to her Vaio UMPC. If she

is at home, it simply does so over local wireless. However, one week she is overseas

at a conference, so the PVR sends it over the Internet instead. The Vaio downloads the

200MB show in the background as she moves between presentations at the conference,

so that when she returns to the hotel that evening, it is ready to watch.

Walkabout once more enables a large download without requiring any modifications to mobility

patterns. In this instance, the transfer is initiated automatically, rather than explicitly requested

by the user.
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2.4 Transfers between devices

Transferring content directly between mobile devices over the Internet can be diffi-

cult, as it usually requires both the sender and receiver to be connected simultaneously. Up-

loading via an intermediate server can be an effective way to remove this restriction, but has

other problems. Media sharing sites place size and topic restrictions on what can be posted

(for example, YouTube videos must not exceed 10 minutes nor 100MB), and may be too public

when the content is only intended for one person or a small group. A dedicated storage server

in the home or office is perhaps a better intermediate option, but users do not always have ac-

cess to one. There are also issues of efficiency to consider, as uploading then downloading will

tend to take longer and use more bandwidth than transferring directly. It is therefore desirable

to enable communications between mobile devices without the need for an intermediate server.

The asynchronous messaging support that Walkabout offers allows mobile devices

to exchange data directly, without needing simultaneous connectivity. Both uploads and down-

loads can take place while the devices are moving and messages can easily reach multiple

destinations. SMS and MMS on mobile phones are existing examples of this technique, but

the ability to transfer larger files opens up the potential for even more powerful rich messaging

applications. Existing applications that enable multimedia messaging between fixed devices,

such as the Keep-in-Touch family messaging system (Assad et al., 2005), could easily incor-

porate Walkabout to extend their reach to mobile devices. The following example shows how

this might work:

Video messages: While walking home from a school, a pair of teenage girls decide

that they want to have a party, so they sit down in a park to record a video invite on a

MacBook. The final message is 20MB in size, and the MacBook uploads it automati-

cally while they continue walking home, for direct delivery to the phones, notebooks and

portable media players of their friends.

Walkabout enables the girls to send a large media message directly from one mobile device to

a diverse group of other devices. The message will reach each of these devices, regardless of

the mobility patterns of the sender or the recipients.

2.5 Discussion

Many of the mobile applications presented in this chapter do currently exist, but they

are limited by their underlying networking technology. Phone-based applications commonly
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Figure 2.2: A PlayStation Portable using “remote play” to connect to a PlayStation 3 (Sony Computer
Entertainment, 2007).

make use of the cellular multimedia messaging service (MMS) (Open Mobile Alliance, 2005),

to exchange images, audio, video and text with both fixed and mobile endpoints, albeit at a

limited size and quality. More generally, email allows any kind of content to be sent as an

attachment over either cellular or local network connections to the Internet. The issues of

speed and cost discussed in Chapter 1 therefore apply to any transfers that use these methods.

YouTube (Google, 2007f), Flickr (Yahoo!, 2007a) and Blogger (Google, 2007b) all

provide facilities for content to be uploaded from mobile devices, by MMS or email. The

ZoneTag application also manages mobile photo uploads to Flickr, with additional location

tags drawn automatically from GPS or cell data (Yahoo!, 2007d). The EasyShare-One camera

is able to use any WiFi access point to upload photos directly to Kodak’s online subscription-

based gallery (Kodak, 2005). These upload services might be suitable for the occasional up-

load, but not for large scale transfers such as large videos or full camera backups. However,

with these services already in place, it would be trivial for these companies to provide Walka-

bout support. An upload application running on the consumer’s device could send messages to

a server-side application, which acts as a gateway between Walkabout and the existing storage

service. The customer could use WiFi to upload these messages in bursts while moving around,

but without incurring high cellular transfer costs.

Most mobile phone service providers now offer music and video that can be streamed

directly to the phone. Some also offer digital music that can be purchased, downloaded and

stored locally, an example being Sprint’s music store (Sprint Nextel, 2007). Owners of Sony’s

PSP can use its “remote play” capabilities to connect to a PlayStation 3 (PS3) home entertain-

ment console across the Internet and stream images, music or video over WiFi (Sony Computer

Entertainment, 2007). Figure 2.2 is drawn from Sony’s web site, and shows how simple it can

be to establish this link. While streaming is a popular option for these companies (partially

because it restricts the ability of end-users to redistribute the content), it requires a constant

connection, which either limits transfers to cellular links, or cuts down on mobility when WiFi

is used. If the content is large or the device’s owner is moving around rapidly, downloading
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it over Walkabout would be a better option. A cellular connection could still provide backup

connectivity, for the situation when a download is urgent but there are no WiFi access points

within immediate range. Alternatively, a user could use the connection to place a request for a

large file from a server, then receive it as a regular Walkabout transfer over WiFi.

The applications in this chapter illustrate the potential benefits of enabling mobile

devices to send and receive large amounts of data. While major companies have already ex-

pressed interest in providing similar applications, their approaches are impractical when large

content is involved. This is due to slow transfer times, high data costs and the limitations they

impose on mobility. The design for Walkabout proposed in this thesis improves the capabilities

of mobile devices, by making it practical for people to use data transfer applications in a broad

range of situations, such as those illustrated by the scenarios in this chapter. These scenarios

form the basis of the evaluations in the later chapters of this thesis.
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Chapter 3

Background

The main focus of this thesis is an architecture that facilitates Internet data transfers

involving mobile devices. This chapter presents a review of the research that informs the design

of the architecture, and covers several key areas:

• Service discovery: How mobile devices automatically discover and connect to network

services, both locally and across the Internet.

• Peer-to-peer overlay networks: The use of peer-to-peer overlay networks to locate mo-

bile clients and data objects, and to transfer large amounts of data across the Internet.

• Mobile device location and communication: Different ways that a host can make contact

with a mobile device on demand anywhere on the Internet, and continue to communicate

even as it moves.

• Proxies: Ways that proxy hosts can improve the Internet transfer abilities of mobile

devices.

• Movement prediction: How to predict the future movement patterns of a mobile devices,

and how this knowledge can help to improve data delivery.

The following sections explore existing research in each of these areas, to identify

the strengths and weaknesses of the different approaches, and how the principles that they

present relate to Walkabout. They describe all of the background material that is necessary to

understand the architectural design covered in the remaining chapters of this thesis.
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3.1 Service discovery

Hosts in a local-area network can provide each other with a variety of different ser-

vices, such as Internet access, file repositories and printers. For an application running on a

device to make use of these services, it must be aware that they exist, and know how to contact

them. The simplest approach is to manually configure applications with details of the services

they will use, but this requires careful administration to keep details current if service availabil-

ity changes. A well-defined service discovery protocol provides a more flexible alternative, by

introducing a common mechanism for applications to automatically discover which hosts can

provide the services that meet their needs. This becomes particularly important when devices

are mobile, as they need to be able discover the local services any time they connect to an

unfamiliar network.

There are many different local area service discovery protocols in existence today.

Each protocol has a unique approach, but they still share fundamental similarities. They all

allow the application to send out a query for services that match given criteria, and to receive

responses that detail which hosts can provide them. A protocol may achieve this by following

a centralised directory-based approach, a distributed approach, or a combination of the two:

• Directory-based: Providers advertise a service description to a dedicated directory, which

applications query directly to discover service information. A host needs to know a direc-

tory’s location to communicate with it, so this must be pre-configured, provided during

DHCP registration, or discovered initially using a distributed method as below. The di-

rectory infrastructure may be distributed across a number of hosts to improve reliability

and scalability. Examples: Jini (Sun Microsystems, 2001; Waldo, 1999), Salutation (The

Salutation Consortium, 1999) and the Service Discovery Service (SDS) which is part of

the Ninja project (Czerwinski et al., 1999)

• Distributed: Applications send out a service query to all local hosts, typically via mul-

ticast, and receive responses from any host that can provide a matching service. A

service provider may also advertise services directly to the network, and other hosts

cache these details for future reference. Examples: Bluetooth Service Discovery Pro-

tocol (SDP) (Bluetooth SIG, 2003), MOCA (Beck et al., 1999) and the Simple Ser-

vice Discovery Protocol (SSDP) within Universal Plug and Play (UPnP) (UPnP Forum,

2003).

• Both: Some protocols are able to operate in either mode, giving them options for both

scalability and redundancy. Examples: Service Location Protocol (SLP) (Guttman et al.,

1999; Guttman, 1999), Bonjour (Apple Computer, Inc., 2006), JXTA (Gong, 2002).
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Figure 3.1: Different approaches to service discovery.

Figure 3.1 shows the difference between directory-based and distributed service dis-

covery protocols. The zero-configuration approach of distributed discovery makes it suitable

for small or ad hoc networks, but the amount of network traffic generated increases with the

number of hosts and services. Thus larger networks are better served by directory-based dis-

covery, where the cost of creating and maintaining a directory is offset by improvements in

efficiency and scaleability.

Protocols that make use of a directory may also be able to advertise services beyond

the local network, although not all are designed to do so. Apple’s Bonjour is based upon Do-

main Name System Service Discovery (DNS-SD) (Cheshire & Krochmal, 2006a), and is an

example of a protocol that can work on both a local and global scale. In a local network, dis-

covery typically operates in a distributed fashion over multicast DNS (Cheshire & Krochmal,

2006b), but the providers can also choose to register their services with a DNS server that sup-

ports dynamic updates (Vixie et al., 1997). If this DNS server is globally addressable, then

devices outside the local network can also discover these services, if they are configured to

search that domain.

Individual protocols have other features, such as enhanced security, an expressive

query language or management of the actual connection between application and service, and

these are covered in depth in other surveys (Rakotonirainy & Groves, 2002; Zhu et al., 2005).

For mobile devices, though, the ability to quickly and easily locate services in any network is

the key property they require of a service discovery protocol, and any of the options mentioned

here would be appropriate.
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3.2. Peer-to-peer overlay networks

3.2 Peer-to-peer overlay networks

An overlay network presents a virtual network topology that is independent of the

underlying physical structure. The abstraction allows for network node addressing, neigh-

bour selection and routing rules that suit the application creating the overlay. They are also

known as peer-to-peer networks because the structure is organised by the very hosts that use

the service, all of which typically perform equal roles as peers (as opposed to a client-server

arrangement). Peer-to-peer communications offer a number of reliability and performance im-

provements over client-server communications, and this section details these improvements.

There are many different types of overlays, but this review focuses on those most relevant to

Walkabout: structured overlays, which are used to locate devices and content; and file transfer

overlays, which are used to transfer files between proxies. Particular attention is focused on the

BitTorrent file transfer overlay protocol, which Walkabout’s transfer overlays are based upon.

3.2.1 Structured overlays

Structured overlay networks connect nodes together according to a well-defined al-

gorithm, to enable the efficient location of data objects even when there are a large number of

nodes. A host typically connects to the overlay by contacting an existing member, and estab-

lishes itself as a node with a random, unique identity. This identity dictates its position within in

a shared coordinate space, and thus which other peers are its neighbours. To route a message to

a specific address, a node starts by delivering it to one of its neighbours. The message follows a

route through nodes that are progressively “closer” to the destination (based upon some metric

particular to the overlay) until it arrives. The delivery is scalable, as it typically takes no more

than O(log n) steps for a network consisting of n nodes, and reliable, as multiple routes exist

to the same destination. Examples of structured overlay systems include Chord (Stoica et al.,

2001), Pastry (Rowstron & Druschel, 2001), Tapestry (Zhao et al., 2001), CAN (Ratnasamy

et al., 2001) and Kademlia (Maymounkov & Mazieres, 2002). A survey paper by El-Ansary &

Haridi (2005) summarises and compares these systems (and more) in detail.

Distributed Hash Tables (DHTs) and Distributed Object Location and Routing (DOLR)

are two major services that can be built on top of these routing overlays. The difference between

these services lies in the APIs defined by Dabek et al. (2003), which Table 3.1 summarises. In

both services, a node that holds a data object assigns a unique key to it, which is drawn from the

same address space as the overlay nodes. This is usually obtained by taking a cryptographic

hash of some property of the object (such as the file name). The node in the overlay with the

closest address to this key is known as its root.
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Table 3.1: Structured overlay APIs.

Overlay Function Description

DHT
put(key, data) Store data at the root node for key.

remove(key) Delete the data associated with key.

value = get(key) Retrieve the data associated with key.

DOLR
publish(key) Announce that the data object identified by key is

available at the publishing node.

unpublish(key) Delete all mappings from key to this node.

sendToObj (msg, key, [n]) Deliver msg to the closest node that has published
key. May optionally request to send to the closest n
nodes.

As the name implies, DHTs provide similar key/value pair storage functionality to

that of a traditional hash table data structure, but in a distributed fashion. A host stores a data

object at the root node identified by the object’s key, and any host can subsequently retrieve the

object using the same key.

DOLR provides a way to route messages to one or more hosts that hold a replica of a

data object. When a host holds an instance of a given data object, it routes a publication towards

the root node for the object. Nodes along the routing path also take note of this publication.

More than one node may publish that they have the same data object. When another node

wishes to contact a host that has this object, it routes a message towards the root node. The

first publication encountered along the path is considered to be the closest, and so the node

responsible for that publication receives the message.

Because the peers that use structured overlays also form the routing substrate, these

systems are designed to run on networks that consist mainly of fixed hosts. They do possess

failure detection and recovery mechanisms, but rapid changes in overlay membership can lead

to routing delays, inconsistencies or failure (Li et al., 2004; Rhea et al., 2004). The regular

movement and disconnection experienced by mobile devices can therefore limit their ability

to participate and access these valuable services. One solution to this issue is to incorporate

specialised recovery algorithms into the overlay (Hsiao & King, 2005; Rhea et al., 2004).

Alternatively, only those hosts that are likely to remain stable join the overlay, and then act

as service nodes (Brampton et al., 2006) or proxies (Zhao et al., 2004) that enable less stable

mobile nodes to access the overlay services without actually joining.

As will become apparent through the remainder of this chapter, structured peer-

to-peer overlays can perform many different roles in a diverse range of applications. They
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can enable network hosts to locate other hosts (Ramasubramanian & Sirer, 2004) or data

objects (Cohen, 2005), and can form the basis for complex applications like file systems (Ku-

biatowicz et al., 2000), distributed web caches (Iyer et al., 2002) and messaging architec-

tures (Castro et al., 2002).

3.2.2 File transfer overlays

Peer-to-peer file transfer overlays provide a decentralised way for hosts to retrieve

files on demand. Hosts download files from each other, rather than a central server, exploiting

the often under-utilised upload capacity of individual hosts. Overlay formation is ad hoc, and

there is no correlation between network topology and data location as there is in structured

overlay networks. Only one node provides a file initially, but as more peers download it, they

become additional sources for future downloads as long as they remain members of the overlay.

The decentralised file publication provided by these overlays offer reliability and performance

advantages over traditional centralised methods.

There are different ways to build the overlay and locate content. One approach,

favoured by the Gnutella (Babenhauserheide, 2004) and FastTrack (Liang et al., 2006) pro-

tocols, is for all hosts to form a single, vast overlay network. Individual hosts offer to share

a number of files from their local disk, and locate content they are interested in by passing

requests through the overlay. In the original Gnutella protocol, requests were given a time-to-

live that decremented with each overlay hop, then simply flooded through a node’s peers to a

limited depth. Nodes with matching files would return their results, and the requesting node

would then select the files to download. FastTrack and later versions of Gnutella refine this, so

that some nodes become supernodes that index the content available at their peers and form a

second tier within the overlay. A node directs its queries to a supernode, which forwards them

on to its supernode peers to locate content more efficiently than if the node flooded the entire

network.

Alternatively, BitTorrent (Cohen, 2003) sees hosts form individual overlays, each

dedicated to transferring a single file (or collection thereof). Hosts initially find each other

through a central coordinator. The next section describes the operation of BitTorrent in detail.

Once a node is a member of an overlay and has located peers that have the file, it can

start downloading data. A common approach is to retrieve the file in pieces, which has several

advantages. It allows nodes to maximise download speeds by retrieving different pieces of the

same file from multiple peers in parallel and in arbitrary order. A node can also offer whatever

pieces it has, even if it is still in the process of downloading and does not yet have the complete
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file. If a file transfer is interrupted for any reason, a host can resume by reconnecting to the

overlay and downloading the pieces that it still requires.

The traditional way to make a file available to a large audience is to publish it on

a single server, or possibly mirror it on several servers, and for interested hosts to download

it from there. If a file is popular, this can lead to high bandwidth costs for the publisher and

low individual download speeds for the end user. If these servers fail for any reason, the

file is no longer available. Peer-to-peer overlays improve upon the server-based approach,

because availability is not dependent on a single host. The combined upload speed of all

overlay members helps to provide fast downloads, while simultaneously reducing the stress on

the original source. The file remains available as long as there is at least one overlay member.

Overlay networks are an extremely popular method of file distribution, with BitTor-

rent alone reportedly contributing to 18% of home broadband traffic as of 2006 (Ellis, 2006).

They make it possible for anybody to publish content on the Internet without requiring access

to a high performance server. At a bare minimum, a host needs to upload a file once in its

entirety, and then the other overlay members can share the cost of distribution. A large part of

their popularity is also that overlays enable people to distribute material that no service would

be willing to host, such as illegally “pirated” music and video.

3.2.3 BitTorrent

BitTorrent (Cohen, 2003) is a protocol where overlay networks known as torrents

are formed dynamically by hosts with mutual interest in a set of one or more files. These

overlays are simple to build, but can share files effectively with either a single peer or multiple

ones, making them the ideal basis for the lightweight core of Walkabout. Therefore this section

explores how torrents are created and maintained.

A new torrent requires a tracker and a .torrent file. A tracker is a program that runs

on a web server and coordinates the overlay, by tracking the contact details of existing peers

and supplying these details to new members as they join. It also records general statistics about

peer download progress. The demands on a tracker are quite low, so one will typically be

responsible for the coordination of many overlays at the same time. A .torrent file contains

important metadata about the file being published, including its name, length, hash signatures

of the pieces that the file will be divided in to, and the URL for the tracker. To create a torrent,

a person generates the .torrent for the file to be published, distributes it (usually by storing it

on a web site), then introduces their host to the tracker as the initial overlay peer.
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Figure 3.2: A BitTorrent download.
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The process of downloading a torrent is presented in Figure 3.2. To begin a down-

load, a user retrieves the .torrent file and opens it with an application. Their host contacts the

tracker specified in the file to obtain a list of available peers and registers itself as a new peer.

The host then contacts each of these peers to find which pieces of the file they can offer, selects

smaller sub-pieces (known as blocks) for download according to rules which aim to minimise

completion time while also increasing the system-wide availability of the file, and requests

several of them at once from each peer. If there are a large number of suitable peers, then they

are selected at random.

When a peer downloads the final block that completes a piece, it verifies the piece’s

hash against the one stored in the .torrent file, then alerts each of its connected peers if valida-

tion succeeds. Blocks of this piece then become available for peers to download. An essential

component of BitTorrent is the choking algorithm, which aims to improve total overlay perfor-

mance by ensuring a peer will preferentially upload blocks to those peers that are also willing

to upload. A host continues downloading blocks until it has the whole file, at which point it

stays connected to the overlay as long as possible to continue contributing to the torrent.

The tracker must be stable if a torrent is to operate smoothly. If the tracker goes

offline, existing transfers between peers can continue, but no more nodes join the overlay.

Modifications to the BitTorrent protocol address this central point-of-failure by making use

of a Kademlia DHT to store peer information (Cohen, 2005). Portions of the torrent file are

hashed to generate a globally unique identifier, and this is used as a key to store the .torrent file

and the initial host’s address. Subsequent hosts use this same key to register their own address

and discover overlay peers in a trackerless fashion.

BitTorrent aims to minimise the average completion time for each user that is down-

loading the file, but the performance is dependent upon the size of the overlay and the speed of

the members’ uplink connections. Studies have shown that it produces consistently high aver-

age download speeds, which actually improve as the number of overlay members increase (Izal

et al., 2004; Pouwelse et al., 2005), although Wu & Chiueh (2006) indicate that the total end-

to-end delay when distributing a file to multiple recipients is sub-optimal.

3.3 Internet-scale mobile device communication

The ubiquity of IP makes it possible for hosts to communicate with each other over

networks of any size. When the hosts are fixed, communication is straightforward, as an IP

address is all that one host requires to route data packets to another host across any network.
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Unfortunately the initialisation and maintenance of communications can become difficult when

hosts are mobile.

The first issue is that of naming. A fixed host can potentially use the IP address as

both an identity and a location, but this is not practical for a mobile host. Its IP address will

most likely change as it moves between networks, making it difficult for a correspondent host

(the one that is initiating a transfer) to make contact on demand. Therefore, while a mobile

host’s current IP address can represent its location, its identity needs to be something different

so that a correspondent host can contact it by the same means no matter where it is.

The other issue is that a mobile host may move while communications are ongoing,

resulting in a possible change of IP address or loss of connectivity. This a particular prob-

lem for synchronous communication methods, where data flows in real-time directly between

two hosts. The transport layer traditionally uses IP addresses as link endpoints, so if either

host changes its address, this can interrupt their transfer. Communications can continue dur-

ing host mobility if link endpoints are bound to some other location independent identity or all

data passes through an intermediate fixed host, but only when both endpoints maintain network

connectivity. By contrast, changes in host addresses or connectivity do not affect asynchronous

communication methods. Hosts send messages to each other through a store-and-forward net-

work, where they are held until the destination host is available (which may be immediately).

In the extreme case, where the endpoints never have simultaneous network access, this may be

the only way for them to communicate. The best approach to handle mobility depends upon

the application. Some applications, particularly those based on real-time interaction, require

a constant unbroken synchronous link, but others are tolerant of the potential delays that may

arise from asynchronous communications.

There are a variety of different protocols and communication methods that can im-

prove Internet transfers involving mobile devices. The different methods can be divided in to

four categories: registry-based; redirection-based; storage-based; and opportunistic network-

ing. The following sections explore a number of different systems, with particular attention to

how they approach naming, mobility and disconnection. Table 3.2 summarises the properties

of the main systems that follow.

3.3.1 Registry-based

In the registry-based approach, a mobile device is known by a static identity. When-

ever the device’s IP address changes, it updates its identity’s record with a location registry

service. A correspondent host wishing to initiate communications with the device queries the
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Table 3.2: Summary of approaches to mobile device communication.

System Category Addressing Synchronous Asynchronous

DNS Registry Hierarchical name X 7

CoDoNS Registry Flat name X 7

HIP Registry Public key X 7

Mobile IP Redirection IP address X 7

i3 Redirection Flat name X 7

UIP Redirection Public key X 7

Warp Redirection Flat name X X

Topic-based pub/sub Redirection Topic X X

Content-based pub/sub Redirection None† X X

Email Storage User and server 7 X

Distributed file system Storage None† 7 X

DHT Storage None† 7 X

Tuple spaces Storage None† 7 X

Haggle Opportunistic Various 7 X

†Other than the shared knowledge of a storage location and/or data property

registry to resolve the identity to the current location, then contacts the device directly over a

link that is typically synchronous. Figure 3.3 portrays this sequence of events.

The most widely deployed registry mechanism in the modern Internet is the Domain

Name System (DNS) (Mockapetris, 1997a,b), which binds a host’s hierarchical domain name

to its IP address. It was originally designed to handle low-frequency updates, but dynamic

DNS (Vixie et al., 1997) introduced the ability to update name bindings in real-time. A host

keeps its record current by dynamically updating the appropriate DNS server each time its

address changes. An application obtains a host’s IP addresses by querying its local DNS server,

which contacts other DNS servers across the Internet as necessary to resolve the name. Servers

cache address records to reduce lookup latency and bandwidth usage, with records having an

associated time-to-live (TTL) value. Depending on the rate of mobility, a mobile host’s DNS

record TTL should be set to a low or zero value, to decrease the chance that caching will lead

other hosts to receive outdated IP addresses.

A number of other systems advocate the use of flat namespaces as a flexible alter-

native for host identification. This enables hosts to derive their name from properties other

than their administrative domain, as is the case with hierarchical domain names. DNS can be

manipulated to support flat namespaces, as seen by the Internet fax service that resolves phone

numbers via DNS to locate remote printers (Malamud & Rose, 1993). A common modern

alternative is a DHT, where the hash of any name can correspond to an IP address within an

Internet-scale name resolution service.
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Figure 3.3: Registry-based communications: (1) the mobile host registers its current IP address; (2) the
correspondent host queries the registry to (3) resolve an identifier to the mobile host’s current location;
(4) the correspondent host contacts the mobile host directly.

The Cooperative Domain Name System (CoDoNS) (Ramasubramanian & Sirer, 2004)

offers a service that is backwards compatible with DNS, but with improved reliability and

name resolution times. IP address updates made by moving hosts are proactively propagated

across the system without the need for TTL configuration. Hosts updating or retrieving address

records still use hierarchical names to maintain legacy DNS compatibility, but they are hashed

to a flat namespace for the purposes of the underlying DHT lookup.

The Host Identity Protocol (HIP) (Moskowitz & Nikander, 2006; Moskowitz et al.,

2007) introduces an additional level of indirection, that sits between the transport and network

layers. A device has one or more host identifiers that are based upon public/private key pairs.

They are dynamically associated with a host’s current IP address, and used by the transport

layer to bind to communication endpoints. The mechanism for storing and resolving these

identifiers on demand is not specifically defined, and both DNS (Nikander et al., 2003) and

DHTs (Eggert et al., 2004) have been suggested. The underlying communications still take

place over IP, but hosts dynamically update peers of any change in address, and the endpoint

abstraction avoids any interruption to synchronous communications. The architecture proposed

by Balakrishnan et al. (2004) presents a similar layered naming approach to HIP, but with

further indirection that also abstracts services and data away from a particular host.

A registry-based method provides a way for a correspondent host to locate a mo-

bile host, then carry out synchronous communications. They are simple to deploy and the

direct transfers are efficient, but these methods do not provide a lot of support for mobility

beyond the initial address resolution. Some approaches, such as HIP, allows for continuous
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Figure 3.4: Redirection-based communications: (1) the mobile host registers its current IP address;
(2) the correspondent host sends data to the registry; (3) the registry forwards the data to the mobile
host.

communications if the IP address is changing. Otherwise, the introduction of mobile IP (see

the next section), migration options for TCP (Snoeren & Balakrishnan, 2000) or mobile sockets

(or “mockets”) (Suri et al., 2005) can offer additional support.

3.3.2 Redirection-based

Redirection extends the registry concept so that the registry, rather than the corre-

spondent host, is responsible for data delivery. The registry may be a single host acting as an

agent on behalf of another, or an entire network of hosts working together to route messages.

As Figure 3.4 shows, the destination host notifies a registry service any time that its IP address

changes. The correspondent host sends its data via the same registry, which forwards the data

on to the device’s current destination. The decoupling of the endpoints means that synchronous

communications are able to continue when hosts are moving without needing to update end-

points, and that asynchronous communications are also possible if the network can store data.

This also provides for a variety of flexible addressing options.

Mobile IP (version 4) (Perkins, 2002) allows a mobile host to always be reachable

at the same IP address, taken from its home network, no matter where it is physically located.

When the mobile host connects to a remote network, it creates a tunnel to a home agent in its

home network. This home agent intercepts any IP packets addressed to the host, and forwards

them over this tunnel. This hides mobility from the transport layer, so that connections can

be maintained while a host is moving. The route optimisation extension (Perkins & Johnson,
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2000) overcomes the inefficiencies and bottlenecks inherent in tunnelling via the home agent,

by allowing the correspondent node to discover and cache mobile node IP addresses and tunnel

packets to them directly.

Under the Internet Indirection Infrastructure (i3) (Stoica et al., 2002), mobile hosts

store triggers within a structured overlay network, to associate an identity with their current

IP address. Public triggers have identities based on some well known property (such as a

host name), while private triggers have random identities and only exist for the lifetime of a

communication flow. A correspondent host starts communications by routing data (typically

encapsulated IP packet payloads) to a public trigger, which redirects the data to the mobile

host at its current location (if it is available). This causes the hosts to create private triggers

and inform each other of the identities, then communications proceed in each direction via the

nodes that host the private triggers. The mobile host updates all active triggers any time its

IP address changes, so it is always reachable and all existing communications can continue

uninterrupted. The Robust Overlay Architecture for Mobility (ROAM) (Zhuang et al., 2003)

is built upon i3, and improves the routing and handoff efficiency for mobile devices through

intelligent placement of multiple triggers.

The Unmanaged Internet Protocol (UIP) (Ford, 2004) combines the self management

of ad hoc networks with the scalability of IP. Hosts are identified by the hash of a public key,

and the network uses these keys to route data in a peer-to-peer fashion. A host wishing to

join the network starts by making contact over IP with another host that is already part of the

network. Following an algorithm derived from Kademlia (Maymounkov & Mazieres, 2002), it

traverses the routing layer to build virtual links to peers, which it then uses to deliver data to

any other host in the network.

Warp (Zhao et al., 2004) is an infrastructure that enables rapid device mobility. Mo-

bile hosts join Warp by connecting to a proxy node, which is a member of a Tapestry DOLR

service. Each mobile host has a unique identity, and the proxy publishes this identity as if

the host were an object on the local device. Subsequently, the proxy receives any messages

routed to the identity over DOLR and forwards them to the host. When a host moves, the new

proxy arranges a handover from the previous proxy through efficient alteration of the underly-

ing Tapestry route to the identity. Warp also supports limited asynchronous communications.

When a mobile host disconnects, its last proxy buffers a limited amount of data, then forwards

it to the new proxy upon reconnection.

Unlike the other redirection-based methods presented in this section, the publish/sub-

scribe (or pub/sub) messaging paradigm enables hosts to send messages to each other without
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any knowledge of identities. In general, subscribers register their interest in certain events via

subscription to an event broker, which may be a single server or a network thereof. A publisher

generates a message and delivers it to the event broker, which forwards in a notification to

all subscribers with matching subscriptions. This subscription may be topic-based and simply

name a message topic, or be content-based and define a complex expression to filter upon the

metadata and content of the message. The Java Message Service (JMS) API (Sun Microsys-

tems, 2002) is an example of a topic-based pub/sub system, while Elvin (Segall & Arnold,

1997), Siena (Carzaniga et al., 1998) and JEDI (Cugola et al., 2001) are all content-based. The

reader is directed to the survey paper by Eugster et al. (2003) for a more exhaustive discussion

of pub/sub systems and their individual features.

The basic pub/sub model provides effective synchronous communications for mobile

hosts. A host re-registers its subscriptions, and thus its current location, each time it reconnects

to a network, but it only receives notifications if it is connected at the time of publication.

However, there are several extended systems that also enable asynchronous communications,

by allowing subscriptions to persist even if the subscriber is absent.

The Java Event-based Distributed Infrastructure (JEDI) (Cugola et al., 2001) is a

pub/sub architecture with native support for mobility. Before detaching, a mobile host can

instruct its event broker to suspend its subscriptions and store any notifications that arrive in

its absence. The host then reactivates its subscription and retrieves any stored notifications

upon reconnection. JEDI supports multiple hierarchically arranged event brokers, so if a host

reconnects to a different broker than it suspended at, notifications migrate to the new one for

delivery. JMS (Sun Microsystems, 2002) also provides similar functionality through durable

subscriptions, though it is an API, so the specifics of how this is achieved is dependent upon

the actual implementation.

The mobility support service presented by Caporuscio et al. (2003) is independent of

any underlying pub/sub architecture. A host transfers its subscriptions to a stationary proxy in

the local network before it disconnects, and the proxy continues to collect notifications on its

behalf. When the host reconnects to the pub/sub service, it also contacts its nearest proxy and

retrieves any buffered notifications. If this is a different proxy to the one it left, then the new

proxy contacts the old one to acquire these notifications.

Elvin supports asynchronous communications through the introduction of a proxy (Sut-

ton et al., 2001) at a central location. The proxy receives subscriptions from hosts and then

registers them with the event broker. The proxy receives notifications and forwards them to

the host if it is available, or otherwise holds them until it is. Even if there are multiple proxies

31



3.3. Internet-scale mobile device communication

available within the network, the mobile host must connect back to the same one to retrieve

stored notifications.

The work of Burcea et al. (2004) suggests ways that these systems can reduce the

time spent migrating stored notifications between event brokers or proxies upon host reconnec-

tion, most notably through prefetching and logging. A prefetching event broker predicts where

a host that has just disconnected will move to, and pre-emptively transfers its subscriptions and

stored notifications. Alternatively, event brokers can log the identifiers of all the notifications

they receive, so that when the time comes to migrate the them, it is easy to reduce the set down

to only those that the new event broker does not already have.

Redirection-based communication systems provide good support for mobile devices,

because they hide mobility from the sender. Some systems also enable asynchronous commu-

nication, so that transfers can even continue if the device disconnects. However, if the amount

of data being transferred is large, the indirect delivery can lead to inefficiencies, and asyn-

chronous delivery may fail if limited buffering prevents the system from storing all the data

until a mobile device reconnects.

3.3.3 Storage-based

Storage-based communication solutions are asynchronous by nature, and typically

deal with discrete data objects such as files or messages. As Figure 3.5 shows, a correspondent

host starts the process by uploading an object to a storage service, the mobile host queries this

same service at some point in the future, and downloads the object if it wishes to. There is no

direct contact between the two hosts, so the mobile host must know where the object is being

stored, and check for updates periodically. This approach suits mobile hosts well even when a

system is not designed specifically for them, because the recipients initiates the final download,

and thus there is no need for the system to maintain knowledge of current host addresses.

Many widespread Internet message or file delivery mechanisms are storage-based.

In electronic mail (or email), a correspondent user uploads a message to a known mail server,

with a destination of the form user@domain. This server delivers the message to the destination

server, whose IP address is obtained by resolving the domain portion of the address through a

DNS lookup. The destination server stores the message until the specified user authenticates

themself and retrieves it. Web and File Transfer Protocol (FTP) servers are two other common

content distribution mechanisms. Files uploaded to the server’s file system become available to

other users across the Internet, potentially restricted to only those who are authorised. Content

is not addressed to a specific user, but they may either discover the content by browsing the

server, or be alerted to its presence via a URI obtained by some other means.
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Figure 3.5: Storage-based communications: (1) the correspondent host sends the data item to a storage
location; (2) the mobile host checks for new data, and (3) retrieves any that is available.

The storage concept also extends to distributed file systems. These present hosts with

persistent storage that acts as an extension to their local file system, but is actually on a remote

system. Files placed in this shared namespace are then readily available to other hosts. In some

instances, such the Networked File System (NFS) (Shepler et al., 2003) and Coda (Kistler &

Satyanarayanan, 1992), the file system is hosted upon one or more dedicated servers, which

the hosts are configured to connect to. Coda supports mobile hosts by way of disconnected

operation, where selected files are cached locally so that they can be accessed if network con-

nectivity is lost, and any changes made to the cached copy are integrated in to the network copy

on reconnection. There are also a number of peer-to-peer distributed file systems, where the

hosts that use the system cooperate to store the files in ways that maximise availability. These

include Farsite (Adya et al., 2002), which is coordinated by way of a hierarchical directory

service, and OceanStore (Kubiatowicz et al., 2000), Ivy (Muthitacharoen et al., 2002) and the

Cooperative File System (CFS) (Dabek et al., 2001) which are all built upon structured peer-

to-peer overlays. A DHT alone can also be used to store objects within a flat namespace, at a

location derived from some property, for later retrieval by a host that also knows or is interested

in the same property.

Tuple spaces, as exemplified by Linda (Gelernter, 1985), enable hosts to communi-

cate through tuples placed in a persistent shared repository. Hosts insert data tuples in to the

repository, or attempt to read tuples that match a given pattern (choosing whether or not to

remove the tuple from the repository in the process). If there is no matching tuple when the

read request is placed, then it remains active until one does become available, at which point

the requesting host receives the data immediately.
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Generally, the closest these systems have to addressing is shared knowledge of where

an object is stored. If one host wants to reach another, then it uploads the data object to a

particular server, file path and/or identity that it knows the other host will look for. There is

also the potential to reach numerous other hosts beyond those that were the original target.

These approaches are suitable when delivering large amounts of data, particularly

when the destination device experiences large periods of disconnection. This is because the

storage location will usually be willing to hold the content for a long or even unlimited amount

of time, such that it remains available until the device can collect it.

3.3.4 Opportunistic networking

Opportunistic networking is an emerging research area that presents an extreme form

of asynchronous messaging. It operates in an environment where there is no guarantee of a

complete path between the sender and receiver, and where message delivery may experience

long delays. There are various systems built on these principles, but the common mechansm is

that hosts harness device mobility to deliver messages between networks where no other com-

munication medium exists. Devices may be moving because people are carrying them (Davis

et al., 2001), because they are attached to vehicles (Burgess et al., 2006), or even because they

are attached to animals (Juang et al., 2002). Some systems use opportunistic networking to

deliver messages in a purely ad hoc environment, but this section concentrates on those that

enable Internet-scale communication. This covers such situations as in Figure 3.6, where one

mobile device transfers a message to another device, which later forwards the message to the

destination across the Internet. The survey by Pelusi et al. (2006) covers a number of different

opportunistic networking systems in detail.

Haggle (Scott et al., 2006) is a framework that enables devices to transfer data in

three different ways: over the Internet, between devices, or by physically moving to another

location. Which option they use depends upon who the data is intended for, and what options

are available at the time. A device that wishes to send a message encapsulates it with associated

metadata in an Application Data Unit (ADU), which is a sequence of key/value pairs. The

device adds a number of destination addresses to the ADU, specified in any protocol that it has

a supporting module for. These addresses are typically user-level identities that make sense for

Internet-scale transfers, like email addresses or phone numbers, but can also be device specific

identifiers like MAC addresses.

Once the message has a destination, the device stores it ready for forwarding. If the

device’s movements bring it in to contact with the destination, it can deliver the data directly.
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Figure 3.6: An example of opportunistic networking: (1) Mobile Host 1 forwards a message to
Mobile Host 2; (2) Mobile Host 2 moves; (3) Mobile Host 2 gains Internet access and forwards the
message; (4) the destination host receives the message.

It can send the data over the Internet if it connects to an access point and the ADU contains

an Internet addressable identity. Otherwise, the device can forward the message on to other

Haggle devices that it encounters. The intention is that the movements of the other device may

eventually bring it in to contact with the destination, or an Internet access point, or another

device that can take the ADU even closer to the destination. While Haggle does not have any

specific method for contacting other mobile devices across the Internet, it could be used in

conjunction with any of the techniques covered previously in this chapter.

DakNet (Pentland et al., 2004) uses mobile access points mounted on vehicles to

ferry data items such as emails or audio messages between kiosks in remote rural communities

and Internet hubs in larger towns. It has been deployed in areas of India and Cambodia, with

buses, motorcycles and even ox-carts carrying the access points. It provides villagers with the

ability to send and receive Internet content in areas where it would otherwise be very difficult

to obtain access.

These systems share similarities with Walkabout, as devices with limited connectiv-

ity hold data messages until they have the opportunity to forward them closer to their destina-

tion. These opportunistic networking solutions make use of inter-device forwarding in addition

to Internet transfers. However, they do not have the specialised Internet mobility support that

Walkabout proxies provide to maximise a device’s potentially limited Internet access. Hag-

gle supports many different Internet transfer methods, and could conceivably interact with the

Walkabout architecture via an appropriate protocol module.
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3.4 Proxies

As defined in Chapter 1, a proxy mediates communication between a device and

the wider network. A proxy’s positioning allows it to perform data storage, redirection and

transcoding tasks on behalf of a device. These tasks are of particular importance if the device

is mobile, because they help to improve the amount of data that the device can send or receive

during its limited connection periods. This section explores some ways that proxies are used to

support mobile devices.

A caching proxy like Squid (Squid, 2007) typically resides within a local network,

and intercepts all requests for web content made by client devices. It services these requests by

retrieving data from the Internet as necessary. However, if the requested content is already in-

cache, the proxy delivers it to the client immediately. This local delivery yields faster download

times for the clients, as well as reduced Internet usage for the individual or organisation that is

running the proxy.

Mowser (Joshi et al., 1997) is a local caching proxy that adapts content to suit the

capabilities of mobile devices. The user configures Mowser via a web form, then browses

the web as normal. The proxy then transforms any data that it delivers to the client to meet

these criteria. Reducing the fidelity of images, video and audio decreases the content file size,

but may not be noticeable on a simple mobile device. Therefore, these transformations are an

effective way to increase the amount of data that a device can retrieve during a limited con-

nection time, particularly when using a slower transfer method such as Bluetooth. Buchholz

& Schill (2002) present an architecture based upon the same principle, where a hierarchy of

proxies exist within the Internet. A mobile device includes a description of its media handling

capabilities within any web request it makes, and the proxies communicate to deliver an ap-

propriately adapted data object to the device. The architecture by Kara & Edwards (2003) uses

local proxies to support streaming multimedia retrieval on mobile devices. Proxies download

and forward segments of a stream while the device is connected, and other proxies selected

by the Mobile Motion Prediction algorithm (Liu & Maguire, 1995) pre-emptively download

pieces, with the aim of providing an uninterrupted service to the device.

Proxies are also useful when data is sent to a mobile device, rather than requested by

it. As shown by several of the redirection-based systems from Section 3.3.2, a proxy acting on

behalf of a mobile device can allow it to participate in messaging systems that were originally

designed for immediate delivery to fixed hosts. For example, Warp (Zhao et al., 2004) gives

mobile devices access to a Tapestry DOLR service, while the work of Caporuscio et al. (2003)

allows devices to receive pub/sub notifications that are sent in their absence.
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3.4.1 Infostations

The Infostations architecture (Frenkiel & Imielinski, 1996; Goodman et al., 1997)

uses access points with caching functionality, known as infostations, to provide high speed

data transfers to mobile devices in a disconnected environment. The motivating idea behind

the research is that data bound for a mobile device is usually delay tolerant, so high-speed

transfer bursts in between periods of disconnection can be at least as effective as a service that

provides low speed ubiquitous coverage. Infostations achieve this with low power demands on

mobile devices and at a lower cost than cellular data transfers.

Each infostation has a customised MAC layer that maximises throughput by only

communicating with a single nearby device at a time. Mobile devices use them to retrieve data

from the Internet or a private network. Infostations might be provided as a service by a single

company, which manages the transfers between them over dedicated lines. They may also be

more ad hoc, with organisations or individuals providing their own infostations that connect to

each other across the Internet. Or they could be used solely for local communications, within

an office, campus or the home. The quality of the service depends on suitable placement of

infostations, particularly at regular intervals, and the authors suggest deployment in such places

as toll booths, street corners, building entrances, train stations and airport waiting areas.

The majority of Infostations research concerns situations where downloads from the

network to a user’s device form the majority of the data flow. The basic operation is for a device

to request data it wants when it has access to an infostation, and for the infostation to forward

data packets as they arrive. It may take multiple connections for the device to receive the entire

requested item. The latency between the request and the data arriving can affect efficiency,

particularly when the device is highly mobile. One solution is to have separate upstream and

downstream infostations available, to enable devices to place their requests even if another is

currently downloading (Goodman et al., 1997). Another approach is to use a low-bandwidth

cellular network to place requests, so that the data is locally available for download when the

device reaches an infostation (Frenkiel et al., 2000).

A cluster controller (Iacono & Rose, 2000) can coordinate data delivery to the indi-

vidual infostations, by acting as an additional proxy between a group of infostations and the rest

of the network. These controllers attempt to minimise the overall delay by delivering packets

to an infostation in advance, for immediate delivery when the device enters the coverage area.

If a device’s path is very predictable, such as when travelling along a highway, the controller

can forward different packets to the infostations along its path well in advance. However, the

work also presents an algorithm to handle more complex movement scenarios. The controller
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considers how much of the data item remains and which infostations the device could reach

following a constant velocity random walk, then uses this knowledge to spread packets across

the infostations in the device’s likely path, reducing delay at the expense of additional network

traffic.

One adaptation of the Infostations architecture provides on-demand access to multi-

media content broadcast over DVB (Bush et al., 2005). Each infostation builds up a catalogue

of broadcast material and transcodes it to suit a range of possible devices. A user retrieves a

listing of the available files when they enter the coverage area of an infostation, select what

they wish to download and pay for it if necessary. They continue to download parts of the

file whenever they are connected to an infostation, until they have it all. The infostations are

responsible for accepting payments and authorising data requests.

Infostations and Walkabout share similar goals of maximising throughput while a

mobile device is connected, although the Infostations architecture is concerned with the re-

trieval of requested data, rather than the delivery of unanticipated messages. Infostations use

an efficient MAC protocol and pre-emptive packet delivery to improve transfer rates. Walka-

bout supports large data uploads in addition to downloads, and it could potentially benefit from

using the same MAC layer in its access points as infostations do.

3.5 Mobile device movement prediction

Movement prediction can be used to improve various aspects of systems that deliver

data to mobile devices. It can help to reserve network capacity in advance, aid real-time call

admission control, or deliver data to a location before a mobile device connects. The last ability

is particularly important for this thesis, because an existing cache of data can lead a mobile

device to experience faster download speeds upon reconnection. For example, prediction has

been used previously to deliver packets to infostations along a device’s likely path (Iacono &

Rose, 2000), to migrate pub/sub subscriptions and notifications (Burcea et al., 2004), and to

pre-emptively cache media streams (Kara & Edwards, 2003).

A common assumption is that a person’s past movements give insight in to their

future movements, because they tend to follow a number of regular paths on a daily basis.

Therefore, many prediction algorithms compare a device’s recent movement sequence to a

record of its historical sequences, where each item in the sequence is a discrete action, such

as a connection to a cellular base station or a WiFi access point. Previous approaches that

rely upon historical evidence have used Lempel-Ziv algorithms (Bhattacharya & Das, 2002),
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Markov predictors (Song et al., 2006), Bayesian Learning (Akoush & Sameh, 2007) and the

Mobile Motion Prediction (MMP) algorithm (Liu & Maguire, 1995). The survey by Cheng

et al. (2003) covers the details of a number of different methods that are used to predict device

movement in wireless systems.

The extended Walkabout model uses Markov predictors to improve transfer perfor-

mance in Chapter 6. An order-k (or O(k)) Markov predictor compares the last k items of

a device’s recent movement context against its entire recorded movement history, to predict

where it is most likely to move to next. If the recent pattern exists in the history, the location

that follows on the most occasions becomes the prediction for next step. If the pattern has

never occurred previously, then no prediction can be made. The use of lower-order fallback

can improve the chance of obtaining a result, where O(k-1) predictors are applied recursively

until a location can be predicted, or the context is exhausted. When applied to a large corpus

of WiFi access point traces, O(2) Markov prediction with fallback was found to have a median

prediction accuracy of 72% (Song et al., 2006).

3.6 Summary

This chapter has introduced all of the background material that is necessary to under-

stand the upcoming chapters of this thesis, by covering the areas of service discovery, the use

of proxies, peer-to-peer overlay networks, and how to locate, maintain communication with,

and predict the movement patterns of mobile devices. In doing so, it forms Contribution C1

from Section 1.4.

While the complete design of Walkabout is different to all of the systems presented

here, it does share partial similarities with some of them. In particular, Walkabout’s data down-

loads are similar to those enabled by Infostations, uploads are similar to Haggle, and Internet

transfers are influenced by BitTorrent.

The following chapters discuss the full design of Walkabout, and build upon the

research and insights that were presented in this background review. Experimental results show

that an appropriate combination of the principles presented here can create an architecture that

makes it practical for mobile devices to participate in Internet data transfers.
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Chapter 4

Core system design

The main focus of this thesis is Walkabout, a messaging architecture designed to sup-

port asynchronous data transfers where at least one of the participants is likely to be a mobile

device. It enables a device to send a message across the Internet to one or more other devices in

a robust and efficient way that maximises the use of network connection time available to them.

This chapter begins by giving a brief overview of how Walkabout works and its key features.

It continues by describing the components of Walkabout and the processes that they follow to

carry out these transfers, then it covers the issues of reliability, security and real-world deploy-

ment. Finally, it discusses an implementation of the architecture and a sample application, and

presents the API that they use.

4.1 Overview

The Walkabout architecture aims to make it practical for mobile client devices to

send and receive messages of any size across the Internet. A client communicates directly

with a Walkabout proxy that is ideally located within the same network segment. The proxy

participates in peer-to-peer overlays on top of the Internet, to communicate with other proxies

and carry out message transfers on behalf of its clients.

A complete transfer follows several steps. First, the producer client generates a mes-

sage, then uploads it whenever it is connected to a proxy. The proxy creates a message tracker,

then uses location-independent addresses to contact the last known proxy for each consumer

client. These proxies become peers to each other, and the links between them form the message

delivery overlay. Peers retrieve pieces of the message over these links, then forward them to

the consumers. Figure 4.1 illustrates what an overlay constructed to deliver a message to three
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Figure 4.1: A Walkabout overlay network.

consumers might look like. Each overlay is dedicated to the delivery of a single message, and

a proxy can participate in any number of overlays at once. As Section 3.2.2 explains, this style

of peer-to-peer delivery offers reliability and speed improvements compared to transferring di-

rectly or via central storage, and allows anybody to distribute large amounts of data without

access to a high performance server.

When all of the consumers have received or rejected the entire message, the transfer

is complete. This store-and-forward approach makes delivery robust when clients are mobile.

This is because proxies accept pieces of the message from mobile producers, and continue

to forward them even if the producer disconnects. Proxies also store pieces of the message

when a mobile consumer is unavailable, then forward them immediately when the consumer

reconnects.

Walkabout nodes, be they proxies or clients, communicate by way of sending small

notifications to each other. Note that this is distinct from a message, which is typically much

larger and transferred between nodes via a series of notifications.

This design combines the redirection and storage-based Internet communication meth-

ods from Chapter 3. Clients send messages to each other using location independent addresses

and proxy overlays redirect them to the correct destinations, even if the consumers are moving.

However, the messages can be large, so the overlays do not just send them across the Internet

automatically. Instead, the proxies store pieces of the message and their peers retrieve them on

demand for delivery to consumers. This hybrid approach gives devices a flexible way to send

and receive messages while moving without placing undue stress on the intermediate network.
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The roles of the system components are explained in more detail in Section 4.2, and

the full details of the transfer process are explained in Section 4.3.

4.1.1 Features

The core design features of Walkabout that this chapter covers are as follows:

• Location independent addressing: A producer addresses a message to a consumer using

a location independent key. The key resolves to the consumer’s last known location via

a standard Distributed Object Location and Routing (DOLR) service.

• Multiple recipients: A message can be delivered to a group of consumers in a scalable

manner.

• Easy access: If a device can find a Walkabout service in the local network, it is ready

to transfer, without needing to worry about firewalls or network address translation. The

software to provide the service locally can be installed on any fixed host.

• Decentralised delivery: Overlay creation is ad hoc and managed by the initial peer. If

that peer fails, then another one takes over. Message transfers take place directly between

peers.

• Message segmentation: A message is broken in to pieces during transit, so that a transfer

may be interrupted and resumed as necessary. Segmentation also allows multiple proxies

to provide parts of the same message simultaneously, so that they can be downloaded in

parallel to accelerate transfers.

• Unrestricted message sizes: Equal support for all message sizes, ranging from very small

(several bytes) to very large (gigabytes).

• Upload caching: A producer may upload a message to the Walkabout overlay as quickly

as its local network allows. If the uplink speed across the Internet is slower, then the

local proxy caches the message pieces and transfers them across the overlay at a later

time, as fast as the connection allows.

• Download caching: The overlay transfers each message piece across the Internet to the

proxy where the consumer connected last. If the consumer is still present, the proxy

delivers the piece immediately. If the consumer is not present, the proxy caches the

piece until it reconnects to the network.
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There are also additional design features that Chapter 6 covers in depth:

• Pre-emptive message delivery: By predicting movement patterns, messages are dis-

tributed in advance to improve download times.

• High level addressing: Multiple devices and multiple users can be united under a single

address, and the address owner specifies rules to direct messages to the end devices.

• Simple device support: Non-programmable devices that are unable to run Walkabout

software can still send and receive content.

4.2 Components

The main components of Walkabout are clients, proxies and message trackers, which

are supported by DOLR and service discovery. This section explains the main properties of

these components.

4.2.1 Distributed object location and routing service

Walkabout could potentially be deployed in millions of networks around the world,

so it requires a scalable mechanism for proxies to contact each other on demand when seeking

clients and message trackers. This is something that a Distributed Object Location and Routing

(DOLR) service such as Tapestry (Zhao et al., 2001) can provide. As Section 3.2.1 explains,

DOLR enables a host to publish an identifier, which other hosts can then direct notifications to.

Therefore every proxy joins a common DOLR service when it launches.

A proxy publishes a new unique identifier when it either accepts a client registration

or creates a new message tracker, which is based upon the hash of the client’s public key or

the hash of the message metadata, respectively. Any other proxy that wishes to make initial

contact can then do so by “routing” a notification to that identifier. Hereafter, a notification is

said to be routed when it is sent via the DOLR service. When a client moves or the message

delivery is complete, the proxy unpublishes the appropriate identifier.

4.2.2 Service discovery

Upon connection to a new network, a client needs some way to automatically find

a local proxy. Alternatively, if there are no proxies available locally, then they should be able

to find one in a remote network instead. While there are a number of potential service discov-

ery protocols presented in Section 3.1, Apple’s Bonjour integrates local and remote discovery
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functionality in to the one technology (Apple Computer, Inc., 2006). Local discovery under

Bonjour is decentralised, so a client should always be able to use it to find a local proxy if

it exists, without the need for any support infrastructure, and regardless of what other service

discovery protocols are in use in the same network.

Walkabout therefore requires each proxy to run a multicast DNS responder (Cheshire

& Krochmal, 2006b), which is the client-side component of Bonjour. Proxies are always avail-

able locally, but administrators also have the option to register their proxy with a DNS server

that supports dynamic updates, if they are willing to open the service to external connections.

The DNS server is not required for the system to function, but it does make it more flexible by

allowing a client to use Walkabout even if there is no local proxy available.

4.2.3 Client

A client is any device that runs an application to send or receive Walkabout messages.

A producer client initiates message transfers, and addresses them to be received by one or more

consumer clients. While Walkabout is designed with mobile clients in mind, it is also equally

suited to fixed systems.

Each client has a key pair that it uses as the basis for identification and cryptography.

In particular, the hash of the client’s public key (known as the key hash) serves as a globally

unique identifier, which a proxy uses to register the client with the DOLR service upon con-

nection. This allows other proxies to route notifications to the client’s last point of attachment

by simply providing the key hash.

4.2.4 Proxy

A Walkabout proxy is a network service that provides client connection, message

transfer, caching and overlay maintenance functions. This service would typically be offered

by a program running on a single dedicated machine within a local network. It could be pro-

vided as a free service to trusted users in a home or office environment, as additional value

to accompany other services (in a café, for example) or as a wide scale subscription service

deployed alongside wireless access points. As mentioned previously, proxies use Bonjour to

advertise their service on the local network and, optionally, for remote access across the Inter-

net.

Proxies link to form peer-to-peer overlay networks for the delivery of messages. They

receive message pieces for upload from clients, and download them from their peers. Any
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pieces they acquire are held in a cache as long as possible, so that they may be delivered to

clients connected locally, or downloaded by any other proxies that may need them. When the

cache reaches its limit, the proxy deletes pieces according to the cache purging policy, which

can be selected to suit the proxy’s capabilities.

A single machine can run both a client and a proxy, though this is only suitable for

fixed systems that are unlikely to disconnect, such as desktop computers.

4.2.5 Message tracker and the overlay

The collection of proxies that have or seek pieces of a given message form the peers

of a Walkabout message delivery overlay. Each overlay is managed by a message tracker,

which stores peer addresses and monitors the delivery status of message consumers. When a

producer starts uploading a message for the first time, the proxy it is connected to creates a

message tracker as a local process, and publishes its location to the DOLR service using the

hash of the message metadata. Other proxies register with the message tracker, and thus join

the overlay, as they come in to contact with the producer or one of the consumers. They also

update the tracker when a connected consumer either finishes downloading the message, or

chooses to reject it. The overlay only exists to deliver the message, so once all the consumers

have received or rejected the message, the tracker notifies the producer and all the peers, and

the overlay is dismantled.

4.3 Message delivery process

Any time that client acquires a network connection, it uses a service discovery pro-

tocol to seek out and register with its nearest proxy. When a client wishes to send a message,

it uploads a header to its proxy that describes the message and the intended consumers, then

continues by uploading pieces of the message as fast as the local network will allow. This

proxy creates the message tracker that will manage the delivery overlay, then contacts the last

known proxy for each consumer. In response, each proxy registers with the message tracker

then contacts all of the other proxies that are already registered. Proxies communicate over this

peer-to-peer overlay, and download the message from each other on behalf of the consumers.

A proxy caches any message pieces that it downloads from its peers, and forwards them on to

any consumer that is connected. Proxies continue downloading message pieces and deliver-

ing them to consumers until all of them either have the message or haven chosen to reject the

delivery.
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This section describes how a client connects to a proxy, covers the message delivery

process of message generation, producer upload, overlay transfer and consumer download, then

concludes by explaining what happens when delivery is complete.

4.3.1 Client connection

A client needs to find a proxy to gain access to the system, so upon joining a new

network, it initially performs a local Bonjour search. If it is able to find a suitable proxy, it

initiates a connection. If there does not appear to be a local proxy, it instead uses Bonjour to

search a pre-configured domain over the Internet, in an attempt to find one in a remote network.

While it is preferable to use a local proxy, it is unlikely that one will be available in every

network, so a remote proxy may be the only option at times. This does introduce problems of

needing to negotiate firewalls and address translation, so it may not always be possible for the

client to search for or make contact with an external proxy.

Upon connection to the new proxy, the client issues a notification that contains its key

hash, the address of the last proxy it was connected to, and information about any outstanding

messages that it is a producer or consumer for. The proxy uses this information to carry out a

number of tasks:

• It publishes the client’s key hash to the DOLR server.

• It contacts the client’s previous proxy, to let it know the client has reconnected. That

proxy revokes its existing DOLR publication for the client, and responds with the headers

for any new messages that were addressed to the client in its absence.

• If it has any locally cached pieces of the messages the client has expressed interest in, it

delivers them immediately.

• It joins or creates the appropriate overlays to upload or download messages on behalf of

the client, as informed by headers it received from the client or previous proxy.

• It routes a delivery status query to the message tracker for any message the client indi-

cates it has fully uploaded, and returns the result to the client.

There is a slight chance that a new message could be routed to the wrong proxy in the brief

period between when a client reconnects and its previous proxy unpublishes its identity from

the DOLR service. The previous proxy knows the correct proxy by this point, so it forwards

the details on directly to the correct proxy if this happens.
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Table 4.1: Message header fields.

Field Description

Cryptographic information Identifies the hashing and symmetrical encryption algorithms
used (if any)

Message signature The hash of all the other fields combined

Payload length The total length of the data payload (in bytes)

Piece length The fixed message piece length (in bytes)

Piece signatures An array of individual piece hashes

Producer key hash The identity of the producer

Consumer key hashes The identities of the intended consumers

File name The default name if the message is written to a file (optional)

Application data Any additional information the application wishes to communi-
cate to the consumers (optional)

Session keys Encrypted symmetrical cryptographic keys used to secure deliv-
ery (optional) [see Section 4.7]

4.3.2 Message generation

The delivery process begins when a client application generates a new message,

which consists of a data object as a payload, and associated metadata stored in a header. The

payload is either drawn from a file on disk, or is the direct output of a program. The application

divides the payload into equal length pieces at the time of selection, where the length is either

chosen automatically or specified by the user, and remains fixed for the duration of the transfer.

The header describes the payload and its destination(s), as Table 4.1 shows. Most of the fields

are straightforward, with the exception of the piece and message signatures. The piece signa-

ture array contains the hash of each individual piece of the payload, which provides proxies

and clients with a way to check the validity of pieces after downloading them. The message

signature is the hash of all of the other fields in the message header. Once created, a header

is immutable, so this hash uniquely identifies the message. It is therefore used throughout

the architecture to refer to the message, and as the DOLR address that identifies the message

tracker. Because the entire message needs to be known to calculate the header, all transfers

must be discrete messages, and therefore Walkabout does not natively support streaming data.

See Chapter 8 for a discussion of how changes to Walkabout could enable it to support stream-

ing data. The header is an important part of the delivery process, because it contains all the

information that a proxy requires to create a new overlay, or join an existing one.
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Figure 4.2: A producer continues uploading a message as it moves between proxies.

The various decisions regarding when to generate the message, what it should contain

and who to send it to may be either user-driven or automated, depending upon the type of

application and the capabilities of the device. For example, an application running on a camera

could generate a new message each time a photo is taken, and address it to a pre-configured

backup server. Alternatively, a user interacting with an application running on a laptop might

use dialogue boxes to select files from the local file system and consumer aliases from a list,

where that list has been compiled through out-of-band means, such as over email or from a

directory service.

The basic data structure used to communicate message state is a piece map, which

is a string containing as many bits as there are pieces in the message. The meaning of a bit

depends upon the context. If a client delivers a map, a bit is set if they want the piece in

that position, while a proxy uses this to mean that they have that piece in their cache. These

maps are generally quite small. For example, a one gigabyte file transmitted as 256KB pieces

generates a map of only 512 bytes.

4.3.3 Producer upload

After a producer has established a connection to a proxy, it is ready to begin up-

loading its message. It begins by uploading the header, then message pieces as fast as the

connection will allow. Each time a piece upload is complete, the proxy verifies it against the

hash in the header and acknowledges it if it is valid. This continues until the entire message

is uploaded or the producer disconnects. If a transfer is interrupted through disconnection, the

producer sends the header again upon reconnection and resumes the upload from the first un-

acknowledged piece. Figure 4.2 shows this process, where the producer has the full message,

and uploads the header and a number of pieces to each of the proxies it connects to.
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If the proxy has not seen the header before, it attempts to join the overlay by using

the header’s message signature to route a registration notification to the the message tracker. If

it exists, the tracker responds with a list of peers, and the proxy contacts each of them in turn.

However, if no tracker is found, the proxy creates a new one, adds itself as the initial peer, and

publishes the message signature. It routes the message header to the key hash for each of the

consumers and the transfer process is ready to begin.

Once the producer believes it has completely uploaded a message, it checks with its

proxy. If the proxy knows that at least one copy of each piece exists across the overlay, it

informs the producer that the upload is complete. If there are any pieces that cannot be found

(which may happen if the peer that held them disconnected unexpectedly), the proxy informs

the producer that it must upload them again. Similarly, if pieces are lost at any point after this,

the producer is also prompted to upload them once more.

Producer applications usually need to know when a message has been successfully

delivered. For example, a backup application needs to know when a file is safely in the archive

so that the local copy can be deleted. Walkabout achieves this by having the proxy at the

receiving end update the message tracker when it completes a transfer to the consumer. The

tracker then sends a status update to the producer, which it receives if connected. If the producer

misses the update, it checks on the delivery status each time it reconnects until all consumers

are accounted for.

4.3.4 Overlay transfer

Peer-to-peer file transfer protocols such as BitTorrent (Cohen, 2003) form the in-

spiration behind the message transfers across a Walkabout overlay. Transfers are driven by

receiving proxies and make use of parallel downloads where possible. As a proxy downloads

the message from its peers (or receives it from the producer), it keeps all peers informed of

its progress, so that they maintain knowledge of message availability and are able to make

informed download decisions.

While data transfers between clients and proxies are performed in pieces, transfers

between proxies are performed in blocks, which are a fraction of the size of a piece. Figure 4.3

illustrates the difference. This design uses 16 blocks per piece, which is the same value that

BitTorrent has shown to be suitable for peer-to-peer transfers. These smaller units increase the

number of objects available in the overlay, and thus increase the chance that a proxy can down-

load from multiple peers in parallel. Progress updates between peers are still at the granularity

of pieces, though, so that the size and frequency of updates are kept to a minimum.
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Figure 4.3: The use of pieces versus blocks.

The transfer negotiation begins when one proxy receives a message header from

another. The proxy starts by attempting to find which pieces (if any) its connected consumers

want. It forwards the header to each of them, and expects a piece map detailing which pieces

they want in reply (which may never happen if the client has disconnected). It initially assumes

that they want the entire message, and starts downloading blocks immediately from the proxy

that delivered the header. If the client responses indicate that there are any pieces that none

of them want, the proxy shifts its focus to avoid downloading them. A consumer may also

choose to reject the transfer completely, which leads the proxy to route a rejection notification

to the tracker, and possibly to cease downloading the message itself. Once again, the device

capabilities and the particular application determine whether the message acceptance is decided

automatically or through user input.

The next step sees the proxy contact the message tracker to join the overlay. It re-

trieves the list of peers, requests a piece map from each one to find what pieces they can offer,

then starts downloading blocks simultaneously from multiple peers (where possible). Proxies

pipeline block requests by requesting several at once from each peer, which ensures that a block

is being delivered while a new one is being requested whenever possible.

Which pieces, and therefore which blocks, a proxy requests from its peers is deter-

mined by a set of rules with two main aims: to minimise total download time, and to minimise

the individual piece download times. The full set of rules are outlined in Algorithm 1, which is

expressed in the Python programming language (Python, 2007). The proxy sends consecutive

requests until it reaches the maximum number of block requests per peer, or no more suitable

blocks remain. When one download completes, a new block is requested immediately.

Minimising the transfer time between a single producer and consumer is quite straight-

forward: the consumer-side proxy fills the pipeline with requests, and the producer-side proxy

delivers them as fast as the link will allow. When a message is addressed to multiple consumers,
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Algorithm 1 Piece and block selection.

1 # Find which piece and block of message ‘sig’ is best to download from ‘peer’

2 def getNextBlock(sig, peer):

3 remaining = ˜self.cachedMap[sig] # Invert the map of cached pieces

4 needsMap = remaining & self.clientNeeds[sig] & peer.getMap(sig)

5 needsList = needsMap.listPieces() # List all that are still needed

6

7 # Start by choosing from the unique pieces this peer can offer

8 uniqueList = (needsMap & peer.getUniquePiecesMap(sig)).listPieces()

9 if not empty(uniqueList):

10 last = peer.lastPieceRequested(sig)

11 if last in uniqueList and hasUnrequestedBlock(last):

12 return (last, nextUnrequestedBlock(last))

13 random.shuffle(uniqueList)

14 for piece in uniqueList:

15 if hasUnrequestedBlock(piece):

16 return (piece, nextUnrequestedBlock(piece))

17

18 # Choose from pieces that already have blocks requested from any peer

19 partialMap = needsMap & findPartiallyRequestedPieces(sig, self.peers)

20 partialList = partialMap.listPieces()

21 partialList.sort(leastRecentlyRequestedFirst)

22 if not empty(partialList):

23 return (partialList[0], nextUnrequestedBlock(partialList[0]))

24

25 # Choose from the pieces with the highest availability in the overlay

26 commonMap = needsMap & findMostCommonPieces(sig, self.peers)

27 commonList = commonMap.listPieces()

28 random.shuffle(commonPieces)

29 for piece in commonList:

30 if hasUnrequestedBlock(piece):

31 return (piece, nextUnrequestedBlock(piece))

32

33 # Finally, just pick from any piece the peer has at random

34 random.shuffle(needsList)

35 for piece in needsList:

36 if hasUnrequestedBlock(piece):

37 return (piece, nextUnrequestedBlock(piece))

38

39 return (None, None)
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though, the producer-side proxy becomes a potential bottleneck. It is initially the only source

for all of the pieces, so the download can not complete for any consumer until it has uploaded

every piece at least once. If the proxy uploads any piece multiple times before this point, the

system-wide transfer speed suffers. Accordingly, the consumer-side proxies identify when a

peer has any unique pieces available, and prioritises them above any other pieces they have on

offer, in an effort to improve the rate at which unique pieces are injected in to the overlay. This

can be seen in lines 7–16 of Algorithm 1.

The other goal, of minimising the download time for each piece, is aimed at im-

proving transfers to mobile consumers. Simply downloading a large number of blocks while a

consumer is connected is not sufficient. For blocks to be delivered to the consumer, they must

form complete pieces, so the proxy focuses on completing as many pieces as possible over

the duration of a consumer’s potentially limited connection. When selecting the next piece

from a peer, it first favours those that it already has some blocks for, beginning with those that

were started furthest in the past (lines 18–23). Next, it selects from the pieces that are most

widespread across the overlay, and will therefore be available to download in parallel from the

maximum number of peers (lines 25–31). If all pieces remain equal after that, it selects one at

random (lines 33–37), or nothing at all if every block they can offer has already been requested.

Once a proxy collects all 16 blocks of a piece, it verifies the piece against the hash

value in the header. It stores the piece in its cache if verification is successful, sends an update

to each of its peers, and delivers the piece to any connected clients that want it. Should the

verification fail, whether due to a transmission error or a malicious peer, then the entire piece

needs to be re-downloaded. The simplest way for a proxy to communicate message progress

to its peers is to send out a piece map each time it completes a piece. While this is an efficient

way to communicate how much of the message is in the proxy’s cache, consecutive updates can

contain large amounts of redundant information when there are only minor differences between

them. Thus, proxies actually use a new piece list for most peer updates, which contain the

numbers of the pieces that have been acquired since the last update. Piece maps are still used,

though, for the first time that a proxy updates a new peer, when the peer explicitly requests one,

or when there are enough new pieces that the size of the new piece list would actually exceed

that of the piece map.

The selected piece size, and thus block size, can have a dramatic effect on the per-

formance of a transfer. Small pieces increase the chance of parallelism, but the volume of

requests and progress updates can slow the rate of message data transfer, and the size of these

overheads increase with payload size. By contrast, big pieces reduce these overheads, but the
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corresponding drop in parallelism can cause speeds to suffer when a message is sent to multiple

consumers. There are also issues to consider regarding the transfers between client and proxy.

The effect of piece size on the overall transfer performance is explored in Chapter 5.

The complex flow of message headers, pieces and blocks when a consumer is con-

stantly moving gives valuable insight in to the delivery process. Therefore, Figure 4.4 presents

a high level view of the data flow in a scenario where a message is being delivered to a moving

consumer. The sequence of events is as follows:

1. The consumer is initially connected to proxy P2, but then moves out of network range.

2. The producer generates a message addressed to the consumer and starts uploading all

four pieces to P1. P1 routes the message header to the consumer’s last point of contact at

P2. P2 joins the overlay and requests blocks from P1, which is the only source.

3. The consumer connects to P3. P2 stops downloading, having completed two pieces. P3

receives the header from P2, forwards it to the consumer, then requests blocks from P2.

It also joins the overlay, learns about P1, and requests blocks from there too. Two pieces

are completed and forwarded to the consumer while it is connected.

4. The consumer disconnects again. P3 continues requesting blocks, and completes the

message.

5. The consumer connects to P4, and uploads the message header and its piece map. This

leads P4 to join the overlay immediately, and request blocks for the pieces the consumer

still needs from P1, P2 and P3. P4 completes the remaining pieces and delivers them to

the consumer.

4.3.5 Consumer download

The final phase of delivery is when the proxy transfers the message to a consumer.

The proxy knows which pieces the consumer wants, either because it requested the informa-

tion from the consumer when a new message arrived, or because the consumer provided a piece

map upon connection to resume a previously interrupted download. If it already has the de-

sired pieces of the message in its cache when a consumer connects, the proxy delivers them

immediately, in order of ascending piece numbers. Once these pieces are exhausted, or if the

consumer is connected when the message header first arrives, the proxy streams pieces as it

receives them. The consumer verifies each piece against its hash and acknowledges its receipt
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Figure 4.4: Piece and block flow in a complex delivery scenario.

if valid. The download is complete after the final acknowledgement, so the proxy routes a

completion notification to the message tracker.

4.3.6 Completion

Each time a consumer completes or rejects a message, the message tracker is in-

formed. When there are no more consumers that require the message, the transfer is complete,

and the overlay can be dismantled. The message tracker sends a notification to the producer

and each of the peers, and waits upon acknowledgement from them all. This causes the proxies

to delete all information about the message, including any cached pieces, effectively leaving

the overlay. When the producer and all peers have responded, the message tracker is deleted,

and the transfer process is complete.
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4.4 Cache management

The operation of Walkabout is dependent upon the use of caches, but a proxy is

limited in the amount of storage space that it can offer. A busy proxy might be a member of

many overlays simultaneously, causing it to store many different message pieces on behalf of

many different clients. As new message pieces arrive, existing ones may need to be removed,

possibly even before they have been delivered to their destination clients. This could potentially

prevent a complete message from ever reaching its destination, so intelligent purging rules are

required to minimise the impact of piece deletion on the system. It is worth noting that while

premature deletion of pieces can have an adverse effect on overall transfer speeds, the producer

can be asked to re-upload them if necessary.

Pieces that have been held in-cache for the longest and that have the highest numbers

of replicas across the relevant overlay are the first candidates for deletion. The proxy notifies

the peers that also have these pieces that it intends to delete them, and only does so once it

receives confirmation that at least one copy will remain. If this approach does not clear enough

space, then the proxy migrates pieces to its peers instead, by asking them to download some

pieces with highest priority, and deleting them when the transfer completes. Any time the

proxy deletes a piece, it sends out an updated piece map. There is clearly a lot of scope for

optimisation, so any rules more detailed than these would require further investigation.

4.5 Short messages

Walkabout makes it simple for client applications to send messages to each other,

but there are time and data overheads associated with the establishment and maintenance of a

tracker and an overlay. The advantages usually outweigh these slight overheads, except when

the message is small enough that the setup time is longer than it would take to just deliver the

message. Therefore, Walkabout provides clients with an alternative mechanism to send short

messages without the overhead of a message tracker. It requires that consumers are online to

receive messages, and is primarily aimed at inter-application communication. For example,

short messages could be used by a mobile device to request a file listing from a fixed server, by

the server to respond, and once more by the device to request the regular Walkabout delivery

of particular files.

A short message does not have an associated header like a regular message. All its

information is self contained, consisting of the key hashes of the producer and the consumers,

and the message payload. A message signature is derived by hashing all of these fields. The
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payload can be of arbitrary size, although it is undesirable for it to be too large. The threshold

that defines the maximum payload allowed within a small message is left to the discretion of

the application.

To deliver one of these short messages, the client uploads it to a proxy, which routes

it to the location of the consumers accordingly. The receiving proxies forward the message if

the consumers are currently available, or discards it and returns a “client not found” notification

if they are not. If the producer is no longer available to receive the response, it too is discarded.

Short messaging is less reliable than regular Walkabout messaging, but both mecha-

nisms still share many features, including location independent addressing, multicast delivery

and firewall negotiation. Therefore, it presents a versatile communication alternative for client

applications wishing to deliver small amounts of data.

4.6 Fault tolerance

It is an unfortunate fact that network communications are imperfect. For example,

transfers may not complete correctly, proxies may leave the network, or it may not be possible

to locate a client. Walkabout incorporates a number of recovery techniques, to help protect

against some of these problems.

When a proxy attempts to route the header for a new message to its consumers, there

may be some clients that do not have an existing DOLR registration. This could happen if

the consumer has never connected, if the specified key hash is incorrect, or if the client’s most

recent proxy is no longer accessible. The proxy combats this by publishing the key hash itself,

to become a temporary storage point for this header and any others routed to the consumer

in the near future. When the consumer does eventually connect, this proxy is contacted as if

it were the client’s previous proxy, which leads it to forward the message headers so that the

transfers can take place as normal.

Every message tracker has a version number, which increments each time there is

an update. Proxies receive the most recent version of the tracker contents when they request

peer information, or in response to any update they make. This means that the tracker state

is replicated across the overlay, preventing the message tracker from becoming a central point

of failure. If the proxy running the original tracker fails, then the first proxy to detect this

assumes its role by creating a new tracker (based upon the most recent contents it received)

and publishing its existence. If it makes any future contact with a proxy that has a more recent

version of the original tracker’s content, the two proxies exchange information to correct the

state and bring it as close as possible to what it was previously.
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A proxy maintains piece maps that describe the message availability at each of its

peers, and performs periodic liveness tests to ensure that they all remain reachable. If one of

these tests fails, the peer is considered to be inactive. This leads the proxy to delete its local

copy of the peer’s piece map and cease trying to communicate with it. It also notifies its other

peers and the message tracker, which react by performing their own liveness checks. These

actions mean that each peer should have full knowledge of the combined message availability

at all times, so it will not take long to discover if the failure of a proxy resulted in the loss of

unique pieces from the overlay. The next proxy to make contact with the producer can therefore

recover these pieces by prompting it to upload them again. In addition, a proxy can use policies

similar to the caching ones discussed in Section 4.4 to maintain global availability if it knows

in advance that it will be disconnecting from the Internet.

Finally, as has been discussed previously, a message header contains verification

hashes for each piece of its message. This makes it easy for both proxies and clients to deter-

mine when transfers have been corrupted, and to request retransmission of the damaged piece.

4.7 Security

As with any Internet-based system, security is a concern for Walkabout. Fortunately,

the key pair that each client already uses for identification purposes can also enable a number of

encryption and authentication techniques, which serve to secure many aspects of the message

delivery process.

Because a client’s key hash is drawn from its public key, the producer already has the

information required to encrypt a message for each of the consumers at the time of generation.

The producer generates a symmetric session key, and uses a cipher such as AES (National In-

stitute of Standards and Technology, 2001) to encrypt the payload. It follows this by encrypting

the session key with each of the consumer’s public keys, and storing the sequence of results

and the encryption algorithm used in the message header (as shown in Table 4.1). The piece

signatures that are included in the header are calculated from the encrypted payload, which

allows any host to check the validity of downloaded pieces without needing to decrypt them.

Every consumer receives the same encrypted message, decrypts its copy of the session key us-

ing its private key, and then uses that to decrypt the message payload. This same approach can

be used to encrypt short messages, with the encrypted session key sent as part of the message

itself.
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It is important that the Walkabout system is able to verify the identity of the con-

sumers. Even though impostors are unable to access the contents of encrypted messages, there

is still the possibility that they could claim a message to prevent the intended consumer from

ever receiving it. Therefore, the proxy can specify in its Bonjour service announcement that

it requires secure registration. This demands that the client provides its public key at the time

of connection, which the proxy verifies against the accompanying key hash, and then uses it to

issue a challenge-response to the client. If the client passes this test, the proxy trusts it is who

it claims to be, and is willing to register it with the DOLR and forward any messages on its

behalf. The client also signs all notifications it sends and the proxy checks the signatures upon

receipt. These checks prevent against both denial-of-service and man-in-the-middle attacks, by

preventing malicious hosts from forging or tampering with client notifications to falsely claim

or reject messages.

The ability for anybody to run a proxy allows the network to grow easily as needed.

Unfortunately, this flexibility also presents security problems. The ad hoc network formation

means that there is no easy way for proxies to establish trust with clients or other proxies. Piece

signature checks can protect against malicious proxies providing altered pieces, but not against

them providing false information about their piece availability. Proxies can forward the signed

notification that the client provides when it completes or rejects a message, and this allows the

proxy to prove the action to the message tracker. However, there is nothing to guarantee that

the proxy providing the tracker itself can be trusted! There is also the chance that rogue proxies

could falsely publish DOLR entries, in an effort to prevent notifications from reaching their real

destination. This can be overcome if proxies route notifications to multiple destinations (as the

DOLR API in Table 3.1 details), rather than just the closest node. A potential solution to all

these problems is for peers to build trust relationships with each other, as demonstrated by the

TrustMe protocol (Singh & Liu, 2003) or the work of Aberer & Despotovic (2001). This is an

area for further investigation, and the current design simply assumes that all proxies are honest.

There is no provision within the architecture for the distribution and management of

client keys, but Walkabout would ideally be supplemented by an external public key infrastruc-

ture (PKI). This is not strictly necessary, though, as adequate functionality can still be obtained

by manually copying key pairs on to devices, and distributing public keys to people through

out-of-band channels like email.

59



4.8. Deployment

4.8 Deployment

One of the advantages of Walkabout is that it is easy to deploy and access. Anybody

can install a proxy, wireless Internet access is widespread, and client devices use commonly

available hardware to access the service. This section outlines the important aspects of real-

world Walkabout deployment.

A proxy is a piece of software that can be installed on any fixed device that is accessi-

ble through a wireless network. This could be a dedicated server machine, a desktop computer

or possibly even the wireless access point itself. Organisations can deploy one or more prox-

ies, depending on demand, alongside standard network services such as email or web access.

Companies can offer them to attract potential customers, in much the same way that cafés com-

monly offer web access today. End-users can easily set up their own local proxy on whatever

fixed hardware is available in their home. Support for remote proxy connection means that

there does not even need to be a proxy in every network for Walkabout to function, although

the fast transfers that local proxies provide make them preferable.

Overlay formation is ad hoc, and there is no central administration to control which

proxies can use Walkabout. To become part of the peer-to-peer architecture, all that a proxy

needs is access to a common DOLR service. This allows proxies to find and introduce new

peers to an overlay when arranging a message transfer on behalf of a producer, or to join an

overlay on demand by seeking out the message tracker. Every proxy that uses the DOLR

service becomes a member of it, meaning that Walkabout proxies should ultimately be able

to form their own self-sufficient service. However, an initial deployment of Walkabout would

only contain a small number of proxies, so they would benefit from the reliability that a larger

external service could provide.

Walkabout is designed to cope with sporadic network connectivity, but transfers

are unable to take place unless devices have some WiFi access. Fortunately WiFi is be-

coming increasingly widespread. For example, the Wireless Geographic Logging Engine

(WiGLE) (WiGLE, 2008b) is a community project that records the information about wire-

less access points around the world. As figure 4.5 shows, volunteers have collected data on

over 13 million access points since the project began in 2001.

People install secured access points in both homes and businesses, so that devices

they trust can access the web without the need for network cables. Client devices can there-

fore use them to access Walkabout proxies too, provided that they know the encryption key.

Unsecured private access points are also prevalent, as seen by projects like WiGLE and
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Figure 4.5: A summary of the number of access points recorded by WiGLE (WiGLE, 2008a).

(a) Philadelphia (Wireless Philadelphia, 2007) (b) Mountain View (Google, 2007d)

Figure 4.6: Coverage maps of the metropolitan WiFi networks in Mountain View, California and
Philadelphia, Pennsylvania.
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NodeDB (Groth, 2006), but unauthorised use of these networks can be illegal (BBC News,

2007). However, an architecture such as the Collaborative Community Network (Landfeldt

et al., 2006) could make it possible for these private access points to legitimately provide a

public service, by offering unused Internet bandwidth to foreign devices.

There are also many attempts to provide wide scale public WiFi services in a coordi-

nated manner. These are commonly provided as subscription services, as seen by the HotSpots

that companies like T-Mobile (2007) and Boingo Wireless (2007) offer around the world, or

the efforts to provide complete WiFi coverage to the cities of London (thecloud.net, 2007)

and Philadelphia (Wireless Philadelphia, 2007) (as seen in Figure 4.6(a)). These large areas

of WiFi access may also be free at times, although the cost of providing the network means

that this is rare. Figure 4.6(b) shows the free coverage that Google has established within

their home city of Mountain View, California (Google, 2007d). The government of New South

Wales, Australia, also has plans to build free WiFi networks in each of the state’s major city

centres (Sydney Morning Herald, 2007)

It would be simple to integrate Walkabout with subscription WiFi services. Proxies

would be installed alongside (or within) the access points, and client devices would authenti-

cate with them using the secure registration from Section 4.7. If the registration information

corresponds to a valid subscription, the service would provide the device with access to upload

and download Walkabout data, and bill the user accordingly.

Finally, people need to have devices that are capable of using the architecture. As

Section 2.1 demonstrates, there are a wide array of devices on the market today that have WiFi

capabilities, ranging from portable computers to PDAs and cameras. WiFi is such a ubiquitous

standard that it is built in to most devices, as opposed to cellular networking which usually

requires external adapters in anything other than mobile phones. This means that if a user

is carrying their device, that can use it to access Walkabout. Bluetooth is another common

wireless communication technology, and Chapter 6 presents a system extension that enables it

to become a Walkabout access method.

4.9 Prototype implementation

During the course of this research, a working prototype was developed in the Python

programming language to test the architecture’s viability. This became a valuable tool that

helped to refine numerous design details. It is presented here to illustrate what a real Walkabout

application would look like and what API a developer would need access to in order to create it.
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On the client, the prototype consists of two key elements: the library and the appli-

cation. The library manages all the client-proxy communications that a device needs to carry

out Walkabout transfers, while the application imports the library and dictates when to upload

and download data. An application specifies a keypair when it instantiates the client library,

to define the identity that the device will take within the architecture. The prototype only per-

mits one application, and hence one identity, per device. A full scale implementation would

allow multiple applications per device, with the possibility of each having its own identity or

of several applications sharing the same one. The prototype also includes a proxy service, and

a basic centralised registration and forwarding service that operates in place of a DOLR.

A backup suite of two applications was also developed as part of the prototype. The

backup utility application includes a GUI, so that users can interactively select files from their

computer for upload and watch the progress. The storage point application receives these

files and automatically saves them to disk. There might be numerous storage points available

to a user, so that they can store content to multiple context-dependent locations. This suite

is important because it is essentially an implementation of the photo backup scenario from

Section 2.2, which is one of the main motivations behind this research.

The following outlines how these applications work. A user runs the backup utility

on any device that is able to run Python code and display a GUI. The first time that the user

launches the backup utility, he sees an empty version of the main application window pre-

sented in Figure 4.7, and clicks the ‘Change’ button to launch the host selection dialogue. As

Figure 4.8 shows, he specifies all the storage points he knows and uses, by entering a base 64

encoded string representation of the public key for each one, and a short description of the host

they are running on. Once the desired hosts are all saved, he is ready to start the backup. The

backup process is as follows:

• The user opens the host selection dialogue, and selects the storage points to use by mov-

ing them to the pane on the right. In Figure 4.8, he has selected the ‘Home’ and ‘VerySafe

backup server’ locations. He clicks ‘Done’, and control returns to the main window. The

list of ‘Current destinations’ at the top of the window reflects these changes.

• He launches a standard file selection dialogue by clicking ‘Add file’, and selects one or

more files that he wishes to send to the current destination(s). The application calculates

the piece boundaries for each file, generates a header, then adds them to the list of ‘Pend-

ing files’ in the top pane. He repeats the process several times to add several different

types of files, specifying different storage destinations as desired. In this example, he
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Figure 4.7: The main window of the backup utility, showing the current progress.

Figure 4.8: The host entry and selection dialogue of the backup utility.
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chooses to send photos and documents to both ‘Home’ and ’VerySafe backup service’,

videos to ‘University’ and music to ‘Home’.

• When the device has network connectivity, the backup utility automatically locates and

connects to the nearest proxy. It uploads the pending files in the order that they appear

on the list, by first transferring the header, then any outstanding pieces. The application

incrementally updates the on-screen progress indicator for each file as it successfully up-

loads pieces to the proxy, until it is completely uploaded. Figure 4.7 portrays numerous

files at various levels of progress.

• The local proxy initiates the Internet transfer of each new file it receives the header for. It

routes the header to the destination proxies, which forward them on to the storage points.

Every storage point automatically accepts the transfer, causing its proxy to start down-

loading the file immediately and forward pieces as they arrive. The storage point writes

the data to the same directory structure as the original files, albeit within a dedicated

subdirectory.

• The backup utility stops uploading whenever network connectivity is interrupted, but

resumes silently upon reconnection to a proxy.

• When the storage point has a complete file, the backup utility receives confirmation of

delivery and moves the file from the ‘Pending files’ pane to the ‘Backed up files’ pane.

• At any point in time, the user can opt to click the ‘Delete all backed up files’ button. This

deletes the local copies of all files in the ‘Backed up files’ list, and clears their entry from

the window. He may also choose to delete an individual file by selecting it and clicking

’Delete selected file’.

Basic tests demonstrated that this backup suite works in practice. A server within

the university ran one proxy, while a home server ran another proxy and the storage point

application. A tablet PC running the backup utility was able to successfully store all selected

files, even when user mobility caused frequent dropouts in the WiFi connection.

The following sections present the programming interfaces for the library and the

application, using Python method syntax. These are quite instructive, because the library API

clearly outlines the functions that the core Walkabout design provides to applications, while

the application interface shows the main system events that are possible. They are the same

interfaces that the implementation of the backup suite uses, which proves they are sufficiently

functional to produce Walkabout applications.
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4.9.1 Client library API

Initialisation

• WalkaboutClient(appObject, configFile)

Create an instance of the client library. appObject is the client application, which must

follow the interface presented in Section 4.9.2. configFile specifies the Walkabout

configuration file, containing such information as the location of the user’s keypair and

the default download directory.

Uploading

• sendMsgFromBuffer(msg, consumerList, pieceLen, appData=None)

Send a message containing the binary data within the buffer msg to each of the con-

sumers in consumerList, with the piece length specified by pieceLen. The op-

tional appData attaches an additional string to the message header 1.

• sendMsgFromFile(name, consumerList, pieceLen, appData=None)

Send a message, containing arbitrary binary data drawn from the local file named name,

to each of the consumers in consumerList.

• sendShortMsg(msg, consumerList)

Send a short message containing the binary data within the buffer msg to each of the

consumers in consumerList. A short message has less delivery guarantees, but is

likely to experience faster delivery times (see Section 4.5).

Downloading

• downloadMsg(sig, wantsMsg=True, saveAsFile=True, name=None)

Specify with wantsMsg whether the message identified by sig will be downloaded.

saveAsFile specifies whether to store the message in the file at name, or to deliver

the message data directly to the application. If saveAsFile is true but name is not

specified, then the file name will either be the default value provided in the header (if

the original upload was a file) or the hexadecimal string representation of sig (if the

original upload was a buffer).

1In Python, a method parameter that is followed by “=<value>” is optional, and the parameter will take that
default value if nothing is specified.
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4.9.2 Client application interface

Uploading

• uploadProgressAlert(header, numPieces)

Called each time a message piece is uploaded to a proxy. Indicates that numPieces of

the message with header have been uploaded in total.

• completionAlert(header, results)

Called when all consumers have either downloaded or rejected the message with header.

results contains the result for each consumer.

• failureAlert(sig, consumer)

Called if the delivery of the short message identified by sig to consumer failed, most

likely because consumer was unavailable when the message was sent.

Downloading

• wantsMsgAlert(header)

Called when a new header arrives. The application responds by calling the library’s

downloadMsg method. This method is not called for short messages, which are down-

loaded automatically,

• downloadProgressAlert(header, numPieces)

Called each time a message piece is downloaded from a proxy. Indicates that numPieces

of the message with header have been downloaded in total.

• bufferAlert(header, msg)

Called when the message with header has downloaded completely, and is provided in

the buffer msg.

• fileAlert(header, name)

Called when the message with header has downloaded completely, and is available at

the file name.

• shortAlert(msg)

Called when the short message in msg has been received.
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4.10 Summary

This chapter forms the first part of Contribution C2 from Section 1.4. It presents

the design of the Walkabout architecture, which provides a store-and-forward delivery mecha-

nism to client devices. The location independent addressing, resumable transfers and message

caching within the overlay all work to ensure that transfers will succeed regardless of the mo-

bility patterns of the communication endpoints. The architecture is fault tolerant, secure, and

ready for deployment in existing networks. This chapter also details the design and operation

of an application that was built upon a prototype implementation of the architecture. Finally, it

presents the core client API that applications use to access the message delivery service.

The next chapter tests the performance of the message delivery through simulation,

and proves that this design makes it practical for mobile devices to carry out Internet transfers

under most circumstances.
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Core system evaluation

This chapter covers many experiments that test the performance of Walkabout through

simulation, to determine the circumstances that enable practical transfers involving mobile de-

vices. It starts by exploring some of the inner workings of Walkabout, to outline how different

parameters can affect performance. Then it compares the performance of Walkabout to com-

mon existing transfer techniques, for a variety of different device mobility times, mobility

patterns and network speeds.

5.1 Experimental setup

A series of experiments were designed to test the Walkabout model under a variety

of conditions, and constructed using the OMNeT++ / INET framework (Varga, 2001). All

network communications used TCP/IP, which OMNeT++ models realistically down to the data

link layer. Only the core Walkabout model from Section 4.3 was tested, omitting such features

as cache management and security. This section presents the standard test network used in all

the simulations, and the metrics used to evaluate the results.

5.1.1 Test network

All of the experiments in this chapter used a test network that represents a simplified

view of the Internet, as seen in Figure 5.1. The model ignores the complexity within the core

of the Internet, and simply treats it as a cloud with sufficiently high bandwidth to support all

transfers at their maximum speed. There are 100 sub-networks connected directly to the Inter-

net cloud, with bandwidth of 100KB/s in both directions and 10ms latency. These symmetric

links provide a simple platform to observe Walkabout’s performance, but are not necessarily
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Figure 5.1: The test network.
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Figure 5.2: The contents of a single sub-network.
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indicative of real world conditions. In situations where performance would be affected, the

experiments were repeated with the downlink speed from the Internet to the sub-network raised

to 500KB/s, to reflect the asymmetric nature common to many home Internet connections.

Each sub-network contains a router with a fixed client and a Walkabout proxy at-

tached via 100Mbps Ethernet links. Figure 5.2 demonstrates what these sub-networks look

like. Transfers across the Internet experience a latency proportional to the numerical “dis-

tance” between the routers. Communication between networks numbered consecutively, such

as networks 10 and 11 or networks 99 and 0, are subject to the shortest latency of 2ms, scal-

ing up to those networks furthest apart, such as networks 0 and 50, which experience 100ms

latency.

There are also 50 mobile clients moving around the network, which follow a mobility

pattern determined by the particular experiment. Simulating this many clients provides a de-

gree of variation across the different transfers, which operate between uniformly random pairs

of clients. Only one transfer operates in the network at any given time unless otherwise stated.

When a consumer connects to a router in one of the sub-networks, it does so over a 2MB/s

wireless link with 3ms latency (approximating a good quality 802.11g connection). The wire-

less model is simplified to isolate the mechanisms of Walkabout from the effects of interference

and signal strength, resulting in a connection that always provides a constant transfer speed.

Traffic sent over the DOLR service is managed by a virtual registry module, which

monitors publications and maps identifiers to proxy addresses. Rhea et al. (2004) found that

their Bamboo DHT had a mean lookup latency of around 1.5s in the worst case. Therefore, any

notifications routed to a DOLR identifier in these experiments experience additional latency as

they pass through the central Internet cloud, determined by a triangular distribution on [0.5s-

2.5s] with mode 1.5s, before being forwarded on to the appropriate proxy. This is considered

to be a pessimistic, yet realistic routing cost.

5.1.2 Evaluation criteria

One of the most important criteria for the evaluation of Walkabout is the message

delivery time, which is the amount of time from when the producer starts uploading the header

for a new message, up until the consumer receives the final piece. Message size varies within

the experiments, so a more effective comparison metric is the size of the message divided by the

message delivery time, which shall be defined as the effective transfer speed. This value takes

all delays relating to startup time and data overheads in to account, such that if two transfers

have an identical throughput speed, but one of them has more overheads and therefore takes

longer to complete, it will have a lower effective transfer speed.
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The total transfer data refers to the amount of Internet traffic generated over the

duration of a transfer that is message related. This figure includes the actual message traffic

and, in the case of Walkabout, such control notifications as message headers, peer updates and

block requests. It ignores any client-related signalling such as location updates. An important

related metric is the data overhead that the transfer incurs. This is calculated by:

Data Overhead =
Total Transfer Data− (Message Size×Number of Consumers)

Message Size×Number of Consumers

=
Total Transfer Data

Message Size×Number of Consumers
− 1

The criteria of client upload or download speed are also pertinent in some scenarios,

as they give an indication of how effectively the client is using the local link when compared

to the maximum speed of 2MB/s. This is calculated by dividing the size of the message by

the cumulative time for each connection, counted from when they begin the transfer of the first

byte of message-related data, up until they complete the last.

Where appropriate, plots include error bars to denote the standard error. However,

due to the uniform topology used in these simulations, many of the results exhibit very little

variation between runs. In particular, the reference models of direct, FTP and multicast in

Section 5.3 typically have standard error of less than 0.5%. When this is the case, error bars

are omitted from the plots to aid readability.

The networks used in these experiments feature uniform link speeds, which is highly

unlikely to occur in a real world situation, where there is a vast array of possible Internet Service

Providers (ISPs), each with a number of different plans available. The results presented here

should not be viewed as absolute measures of performance, but rather as a clear indication of

the trends that can be expected when Walkabout is deployed in a real network.

5.2 Exploration of base parameters

As with many network applications, the performance of Walkabout is dependent

upon the value of several parameters. If set correctly, these parameters can enable the In-

ternet transfer between proxies to take place at speeds approaching their link maximum. If

set incorrectly, though, the transfer protocol is subject to overheads and delays that can have a

crippling effect on performance. It is therefore very important to find suitable values for these

parameters before a fair comparison can be made to other data transfer techniques.
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This section explores two of the pivotal parameters, being the number of simultane-

ous data requests that a proxy makes to each peer and the message piece size. Each parameter

is discussed to determine its importance, and the impact that different values can be expected

to have upon performance. A range of values for each parameter are then tested through simu-

lation using the network presented in Section 5.1.1, and some general rules are derived.

5.2.1 Request window size

The Walkabout peer-to-peer transfer protocol is receiver-driven, where the proxy

downloading data on behalf of a consumer determines the required pieces, then places block

requests with the appropriate peers. The number of blocks that a proxy can request simul-

taneously from each peer is restricted by its Request Window Size (RWS). Once this limit is

reached, the proxy can not place any further requests until a block delivery arrives from that

peer. The size of this window might be expected to have a significant effect on the efficiency

of a transfer, so this section explores that.

This window-based transfer scheme is important in making full use of a connection.

If a proxy were only able to request a single block at a time, the downlink would remain largely

idle during the time it took for a request to reach a peer, and for the first bytes of the new block

to arrive in return. Requesting multiple blocks at once keeps the “pipeline” full, such that

there is always data downloading while a new request is being serviced, and the link is used to

capacity.

The amount of data D1 that could potentially be downloaded during the time it takes

for the response to a block request to arrive is given by the bandwidth × delay product:

D1 = Downlink Speed× Round Trip Time

There are 16 blocks per piece, so the amount of data D2 that fills a full window of block

requests is given by:

D2 = RWS × Piece Size
16

To ensure that the RWS is large enough to keep the link active at all time, it must have a value

such that D2 ≥ D1. The RWS must also be at least 2, so that there will always be at least one

block downloading while another is being requested. Therefore:

RWS ≥ max

(
16×Downlink Speed× Round Trip Time

Piece Size
, 2

)
(5.1)
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Figure 5.3: Impact of RWS on the average effective transfer speed.

This indicates that the minimum RWS is dependent upon the message piece size and the net-

work properties.

In order to test Equation 5.1, simulations were performed using the network from

Section 5.1.1, where each proxy has a symmetric 100KB/s Internet link, and communications

with peers are subject to a round-trip-time of between 40ms and 240ms (due to a link latency

of between 20ms and 120ms in each direction, dependent upon distance). Message transfers

of 50MB to 200MB were carried out between two random fixed clients, with the piece size

varying between 16KB and 4MB.

The results are presented in Figure 5.3. As expected, they show that for all piece

sizes, an increase in the RWS leads to an improvement in the average effective transfer speed

for the file, until the maximum for the piece size is reached. Smaller piece sizes, and therefore

smaller block sizes, require a larger window to reach full speed, of 18 for 16KB pieces and 5

for 64KB pieces. They exhibit a large amount of variation, and do not stabilise immediately

upon reaching the maximum value, which is an indication of how the susceptible the small

blocks are to the changing network conditions between runs. By contrast, the larger piece sizes

only require a window size of 2. The RWS values that provide maximum link utilisation for

all piece sizes match the calculations for a round-trip-time of under 200ms. If the downlink

was faster or the link latency greater, Equation 5.1 indicates that the required RWS would be

expected to increase.
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While the minimum value for the RWS has a large bearing on performance, the max-

imum value is not always as important. Each additional request increases the delay between

when the block is requested and when it is received, which commits a proxy to making that

download further in advance. This is not a problem when there is only a single fixed consumer,

as there is only a single source for each block, and they need to get them all eventually anyway.

Similarly, when the producer or consumer are mobile, there may be multiple piece sources

present across the overlay, but their availability remains largely fixed. Thus the proxy is able

to make a block request according to the rules from Section 4.3.4, confident that it will still be

the best choice by the time the block is delivered.

When there are multiple consumers, though, the piece availability across the overlay

is highly dynamic, and peers need to coordinate their downloads to make the overall transfer as

efficient as possible. In particular, peers want to minimise the amount of stress on the source

proxy (the one that the producer is uploading to), by requesting unique blocks from it whenever

possible. Block requests made further in advance, as a result of a larger RWS, are at risk of

being poor choices by the time they are serviced. These inefficient block choices would be

expected to have an adverse impact on transfer speeds, and Figure 5.4 supports this claim.

The figure depicts the relationship between RWS and effective transfer speed, for a range of

consumer counts and piece sizes. It shows that there is clear downward trend in effective

transfer speeds for larger pieces sizes as RWS increases. Smaller piece sizes are affected less,

and actually maintain a steady speed for a wide range of window sizes, as the regular updates

between peers and short block delivery times enable efficient piece selection.

More consumers means more peers, and the downlink bandwidth is split between

connections to all of them. This will generally lead to a decreased download speed per peer,

unless the downlink is fast enough to accommodate the full uplink speed of each peers. Ac-

cording to Equation 5.1, this decrease in bandwidth should lead to a proportional decrease in

the RWS required to reach full speed, and this is observable in the 16KB and 64KB plots of

Figure 5.4. Similarly, the negative effect that a high RWS has on transfer speed becomes more

pronounced as the number of consumers increases in the 256KB, 1MB and 4MB plots, and

there is even a slight downturn for 10 consumers in the 64KB plot.

Despite the effects on performance at the lower and upper bounds of window size,

each piece size exhibits a value for the RWS where performance stabilises at or near peak

performance across all consumer counts. Therefore, the values presented in Table 5.1 will

be used for the RWS in all future experiments that use the sample network with 100KB/s
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Figure 5.4: Impact of RWS and the number of consumers on the average effective transfer speed.
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Table 5.1: Optimal RWS for future experiments.

Piece Size RWS

16KB 30
64KB 10

256KB 2
1MB 2
4MB 2

connections. However, the RWS is heavily dependent upon the network conditions, so it should

not remain fixed in practice. Rather, the calculated window size from Equation 5.1 should be

used as a starting point, then adjusted and monitored to achieve maximum performance. It

should then be recalculated periodically, so that it adapts to changing network conditions.

5.2.2 Piece size

When a producer first generates a message, it starts by splitting the data in to pieces.

The piece size is fixed for the lifetime of the message, and while it may take any value, it should

divide evenly by the number of blocks per piece (which is currently set at 16). Piece size has a

strong influence on overall transfer efficiency of all the parameters, as this section shows.

The number of pieces in a message directly influences the number and size of most

notifications in Walkabout’s Internet transfer protocol, and therefore directly influences the

amount of excess data generated while transferring the message. It is calculated through the

simple relation:

Number of Pieces =
⌈

Message Size
Piece Size

⌉
(5.2)

A series of experiments were carried out to determine how much varying the piece

size (and therefore the number of pieces) affects transfers between random pairs of fixed pro-

ducers and consumers in the network from Section 5.1.1. Transfers of file sizes ranging from

1MB to 1GB were tested against piece sizes of 16KB, 64KB, 256KB, 1MB and 4MB. Fig-

ure 5.5 shows the inverse relationship between piece size and average overheads, where a

small piece size of 16KB leads to large overheads of 7.25% on average, ranging through to

4MB pieces yielding small overheads of only 0.03%. These differences in overhead translate

to the clear differences in effective transfer speed seen in Figure 5.6. The rates for 256KB,

1MB and 4MB pieces are all similar, at approximately 95KB/s for most file sizes, with the

difference between the 1MB and 4MB rates indicating that there would be little advantage to

increasing piece size beyond 4MB. The slower effective speeds for smaller files are due to the
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extra time taken to locate the consumer via DOLR and initialise the transfer, where the few

seconds of startup cost translate to a significant proportion of the otherwise short transfers.

A breakdown of how much the different notification types contribute to the over-

heads is shown in Figure 5.7. Block requests and block delivery headers dominate overheads,

regardless of piece size. This is because even though there are less blocks to request when the

piece size is higher, the header and message updates are proportionally smaller. The unusual

case of 1MB transfers with 4MB pieces are the exception because the entire message fits inside

one piece, and therefore very few block requests are required to complete the transfer.

These results would seem to indicate that a large piece size is usually the best option,

particularly when dealing with the large files that are the target domain for Walkabout. How-

ever, this is not always the case. Because a piece is the atomic unit of transfer between a proxy

and a client, interruption to a mobile client’s network connection will require any incomplete

piece transfers to be restarted from the beginning. While the larger piece size has been shown

to be effective for fixed clients, it could lead to a significant amount of wasted transfer time if

either a producer or consumer is moving. Similarly, a proxy needs more time to download all

the blocks across the Internet that are required to complete the larger pieces. Thus the amount

of data that they can acquire and transfer successfully to the consumer while it is connected is

going to be less than if the piece size were smaller.
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Figure 5.8 shows how the different piece sizes affect the transfer speeds when mes-

sages are addressed to multiple consumers. Piece sizes from 16KB to 256KB are seen to scale

well as the consumer count increases, with only a slight drop in speed. However, there is a

steady drop in speed for the 1MB and 4MB piece transfers, even though they are configured

with the optimal RWS of 2. Similar to the effects of an increase in RWS seen in the previous

section, these drops are related to inefficient block selection. When a peer tries to download

a block from the source peer, it selects one from a piece that is currently unavailable on any

other peer, to ensure that the source proxy’s bandwidth is not wasted uploading the same blocks

multiple times. Unfortunately, the proxies do not have any knowledge about what blocks other

peers are requesting from the source, and when there are less pieces in the message (as a result

of larger pieces) and more peers downloading the message (as a result of more consumers),

there is a higher probability that they request the same thing. They do not learn about this clash

until one of the peers finishes downloading all 16 blocks that make up the piece, so when piece

sizes are large, this can lead to a significant waste of the source’s uplink bandwidth.

The relation between the stress placed on the source peer and decreased transfer

speeds can be seen quite clearly in Figure 5.9, which shows how different conditions influence

the amount of data that the source peer needs to provide. At a minimum, the source must

upload 100% of the message, and anything beyond this will slow the overall transfer down.

The figure illustrates how smaller piece sizes place a relatively light load on the source, due to

there being minimal chance of peers requesting blocks from the same piece, and a relatively

small cost when they do. The larger pieces of 1MB and 4MB place more strain on the source

peer as the number of consumers grow, which translates to lower effective transfer speeds. In

fact, the correlation between data uploaded by the source and the download speed is so strong

that Figure 5.8 and Figure 5.9 are almost exact reflections of each other.

Download speeds for multiple consumers could be improved if proxies were to ne-

gotiate with their peers before they request blocks from the source. This could significantly

reduce the number of duplicate uploads by the source and provide a corresponding increase

in effective transfer speed, particularly when piece sizes are large. However, this would also

complicate the transfer protocol, and is only suggested here as a future possibility.

5.2.3 Recommendations

Taking all factors in to account, 256KB is the best all-round piece size for single

consumer messages. It has very low overhead, which leads to an effective transfer speed only

marginally less than the larger piece sizes, and pieces are quick to transfer across local networks
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(about 1
8 of a second each across a 2MB/s wireless link). It also scales well for messages sent to

multiple consumers, with an acceptable decrease in transfer speed. When sending to multiple

consumers, though, 64KB pieces present a faster option, as the higher overheads are offset

by a more stable, scaleable transfer speed across a wide range of RWS. The RWS is heavily

dependent on the network properties, but for messages sent across the test network, a value of

2 is suitable for 256KB pieces, while a value of 10 is suitable for 64KB pieces.

Performance gains could potentially be achieved by increasing the piece size if the

participating devices are mostly stationary, or decreasing it if the Internet speeds are low and/or

the devices are moving very rapidly, but it is difficult for the producer to make such predictions

about the entire transfer process. Thus 256KB pieces were used as the default option for the

other single consumer experiments in this thesis, and 64KB pieces for the multiple consumer

experiments.

5.3 Comparison to existing techniques

As Chapter 3 demonstrates, existing techniques for transferring data to mobile de-

vices fall into several different categories. This section presents simulations of direct transfer,

application-level multicast and FTP models, which represent the registry-, redirection- and

storage-based methods respectively. These were tested under the same conditions as Walka-

bout, to measure their comparative performances. Each experiment featured runs with random

message sizes varying uniformly between 5MB and 200MB, intended to represent a range of

common sizes for photos, music, and video files, as indicated by Chapter 2.

The direct model requires both the producer and consumer to be connected simul-

taneously for the transfer to take place. The producer always knows when and where the

consumer is connected, and so it resumes the transfer of any interrupted messages when it can

reach the consumer, from the exact point in the byte stream where it left off. Cellular transfer

is an alternative direct model that is not simulated in this thesis, due to such reasons as imprac-

tical cost and speed, as discussed in Chapter 1. If a simple cellular model was included in the

results, it would appear as a relatively constant low speed transfer that is unaffected by client

disconnection.

The centralised models of multicast and FTP require a dedicated server to also be part

of the network. These models introduce a single host attached directly to the Internet cloud by a

link with a very high bandwidth of 10Gbps and 1ms link latency, that clients register with when

they connect. The producer uploads its message directly to the server while it is connected, and
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the method of forwarding depends upon the model. Multicast data is forwarded as it arrives

(or held until the consumer is next available), while FTP data is not forwarded until the entire

message is available at the server. As with the direct model, broken transfers are resumed from

the point in the message where they were interrupted.

The connection patterns that a client connecting to and disconnecting from net-

works can experience range between two extremes. At one extreme, a consumer may always

reconnect back to the same network, while at the other they might be constantly moving, never

visiting the same network twice. These patterns are referred to respectively as reconnecting

and migrating from this point forward. While they are used here to illustrate the bounds for

simulation results, a realistic connection pattern would be expected to lie somewhere between

these two, and Section 5.3.4 investigates this.

The initial tests in this section ran with fixed producers and consumers, to observe

the base performance of Walkabout. Once mobile clients were introduced, the client(s) on

the other end of the transfer remained fixed, so that the effects of mobility could be observed

clearly. Table 5.3 summarises the experimental parameters used in remainder of this chapter.

5.3.1 Fixed producer and fixed consumer

For this simple experiment, the end-to-end delivery times and application data over-

heads were measured when both the producer and consumer were fixed devices. 50 simulation

runs were performed for each model. While Walkabout is aimed at a mobile scenario, it is

expected that it should still exhibit an acceptable level of performance in the fixed case, and the

results support this.

Table 5.2 shows the effective transfer speeds and data overheads for each of the

models. Being the simplest, the streaming models of direct and multicast exhibit the highest

speeds, while FTP is half as fast, because the message must first be delivered to the server in

full and then delivered the consumer before the transfer is complete. Similarly, both centralised

methods experience 100% overheads because the message data is sent across the Internet twice

in the course of the transfer. Walkabout transfers experience a DOLR delay during the initial

Table 5.2: Walkabout transfer performance between two fixed devices.

Transfer Method Avg. Effective Transfer Speed (KB/s) Avg. Overheads

Direct 96.8 0.0%
FTP 48.4 100.0%

Multicast 96.8 100.0%
Walkabout 95.9 0.5%
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Figure 5.10: Impact of the number of consumers on the average effective transfer speed between a fixed
producer and multiple fixed consumers.

transfer establishment, as well as a slight traffic overhead, but once the transfer is established,

the pipelining of block requests makes it as nearly efficient as a streaming protocol.

These results confirm that, as a baseline indicator of performance, Walkabout is only

1% slower than a direct transfer when both endpoints are fixed. Therefore if a mobile device

were to remain static for an extended period of time, it would not be adversely affected if it

were to continue communicating via Walkabout.

5.3.2 Fixed producer and multiple fixed consumers

One of the benefits of a co-operative peer-to-peer transfer system is that it should be

expected to scale well for messages sent to multiple recipients, because the proxies that form

the overlay can share the load of providing data to each other. Section 5.2.2 confirms this to be

true of Walkabout, and Figure 5.10 shows its performance relative to the alternative methods.

It strongly outperforms the direct transfer method, which needs to upload an entire copy of

the message for each additional consumer and is therefore very badly affected. Walkabout

also continues to perform better than FTP, but the massive bandwidth at the server allows the

centralised methods to scale to multiple consumers with no change in speed, while Walkabout

does trend slightly downwards. The unwavering high speed of multicast suggests that when

participants are fixed, its scalability would make it the preferred method to deliver to a large

number of consumers.

85



5.3. Comparison to existing techniques

The decrease in Walkabout’s speed as consumers are added is not related to the data

overheads of signalling peers, as might be expected. Figure 5.11 confirms that Walkabout

experienced only a marginal increase in overheads, from 1.8% for one consumer to 2.3% for

ten. Rather, the decrease in speed is due to the proxy block selection algorithm, which causes

the source proxy to make inefficient use of its upload capacity as the number of consumers

increases, as was explored in Section 5.2.2 and seen in Figure 5.9. Walkabout is not targeted at

delivery to a large number of consumers, so this performance is acceptable.

5.3.3 Mobile producer and fixed consumer

This experiment explores the scenario from Section 2.2 of a mobile device uploading

to a fixed server. The mobile producer was tested under both reconnecting and migrating

connectivity patterns, where the connection time for each run was fixed at a value between 10

seconds and 30 minutes, and the disconnection time was always 1 minute.

Figure 5.12 reveals that effective transfer speeds for the reference models were all

badly affected by the shorter connection times, but that Walkabout remained largely unaffected.

This is due to the difference between the local network and Internet connection speeds. While

connected, a Walkabout producer is able to upload data to its proxy faster than the proxy at the

consumer’s end is able to retrieve it across Internet. This creates a buffer of message pieces at

the local proxy, which continues to provide data for download after the producer disconnects.

The buffer is large enough that the transfer is able to continue without interruption until the

producer reconnects and starts uploading again. The overall speed is effectively the same as

if the transfer was between two fixed devices. The speeds for the direct and multicast models

eventually matched those of Walkabout when the session time reached 30 minutes, which was

long enough for the entire transfer to take place without interruption under both methods for

nearly all file sizes.

Overheads were the same as in Table 5.2, apart from a slight increase in the Walk-

about values when a producer was following a migrating connection pattern. This was due to

the data cost of introducing a new proxy to the message overlay each time, but was not large

enough to affect the transfer speeds. In fact, whether the producer is migrating or reconnecting

did not make any difference to the transfer speeds in this experiment.

The buffering is evident when examining the average producer upload speed for each

method, which is calculated through dividing the message size by the cumulative amount of

time that the producer spends connected, between when it delivers the first and last bytes of the

message. Table 5.4 shows that this upload speed in this experiment was the same for each of
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Figure 5.11: Impact of the number of consumers on average data overheads between a fixed producer
and multiple fixed consumers.
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Figure 5.12: Impact of connection time on the average effective transfer speed between a mobile pro-
ducer and a fixed consumer.

87



5.3. Comparison to existing techniques

Table 5.4: Average producer upload speed.

Transfer Method Speed (KB/s)

Direct 96.8
FTP 96.8

Multicast 96.8
Walkabout (10s connection) 1969.8

Walkabout (120s connection) 1981.7

the reference models, at just under 100KB/s, indicating that they were restricted by the Internet

uplink speed. By contrast, the average producer upload speed for Walkabout was much faster,

approaching the 2MB/s speed of the wireless link. There is a slight setup cost for a Walkabout

upload each time a device connects, which explains why upload speeds were marginally lower

for short connection times, but they stabilised once a single connection period was sufficient to

upload the entire message for all file sizes used in the experiment.

This fast upload speed is one of the key strengths of Walkabout. Mobile devices

may only have limited connectivity, but if they can upload their data at local speed, rather than

Internet speed, they can inject more of their message pieces into the overlay whenever they are

connected. This makes it practical for a mobile user to intentionally linger at a WiFi hotspot

long enough to send a large file, or even to continue moving and upload the message in pieces

as they come into brief contact with hotspots along their path. Yet despite the small contact

time required, the effective transfer speed (and thus end-to-end transfer time) tends to remain

better under Walkabout than the alternatives. For example, a Walkabout device with 10 second

connection periods in this experiment was able to deliver its message to the fixed consumer

faster on average than a direct transfer device with 20 minute connection periods!

As a general rule, a mobile producer moving in and out of network coverage can

sustain an uninterrupted full speed transfer if, each time they disconnect, they had already been

connected long enough for the proxy to buffer the transfer until they reconnect somewhere.

The transfer can continue if:

Disconnection Time ≤ Local Uplink Speed× Connection Time
Internet Uplink Speed

(5.3)

Note that this is a simplification, omitting such factors as the client-to-proxy session

establishment time that slightly reduces the available connection time. This equation holds true

when the producer is returning to the same network each time, but the next section explores

some additional interesting results that can arise if a consumer is moving between networks

where the downlink speeds are greater than the uplink speeds.
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Asymmetric networks

Until now, the experiments in this chapter have only considered symmetric links

between networks and the Internet, because one-to-one transfers are generally limited by the

speed of the slowest link along their connection path. However, interesting results are ob-

servable when a producer is moving rapidly between networks with asymmetric links to the

Internet, as is common in home Internet connection technologies such as ADSL. To test this,

the previous experiment was repeated to compare reconnecting Walkabout producers to mi-

grating ones, with the Internet downlink speeds raised to 500KB/s. The RWS remained at the

optimal value of 2, because even though the downlink speed was greater, the uplink speed still

limited the individual connections to 100KB/s.

As Figure 5.13 shows, the reconnecting transfer speed remained the same as in the

previous experiment, as it was restricted by the 100KB/s upload speed of the producer-side

proxy. However, when the producer was moving rapidly between networks, there was a notice-

able increase in transfer speed to over 200KB/s. At lower connection times, a migrating pro-

ducer is able to upload data to multiple proxies before it exhausts its supply of unique pieces,

which creates buffers of data in multiple locations, provided that the ratio of each disconnec-

tion to connection satisfies Equation 5.3. This provides the proxy downloading on behalf of

the consumer with multiple sources, and it is able to download from them in parallel.
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This is an interesting result, because it shows that Walkabout can increase the effec-

tive transfer speed for mobile devices beyond what is possible for fixed devices in the same sit-

uation. By creating multiple repositories for a message, it is effectively increasing the available

upload speed, which is often the bottleneck in transfers over asymmetric links. This property

could potentially be exploited if the producer wanted to accelerate the transfer, by repeatedly

uploading the message to different proxies, to increase the overall availability and therefore the

effective transfer speed.

5.3.4 Fixed producer to mobile consumer

This experiment represents the scenario from Section 2.3 of a mobile consumer de-

vice downloading a file from a fixed server. When a connection is available, the download to

the consumer is simply a direct transfer for all methods, so there is little of interest to observe.

However, different disconnection times alter the amount of data that a Walkabout proxy can

buffer in a consumer’s absence. This can lead to download speed improvements if the con-

sumer returns to the same proxy, but can also increase data overheads if they do not. Therefore,

the connection time in this experiment was fixed to 1 minute, while the disconnection time

varied between 10 seconds and 30 minutes for each set of runs. All transfers began during the

consumer’s initial connection period.

As the consumer disconnection time increases, it accounts for an increasingly domi-

nant proportion of the message delivery time. This has an unavoidable impact on the effective

transfer speed, such that even the very best methods trend downwards sharply. By contrast,

good transfer methods will improve the consumer’s download speed while it is connected, by

getting data to the correct proxy before it arrives, or providing ways for the proxy to down-

load on demand at higher rates. So when a consumer is mobile, the consumer download speed

(measured from when the consumer receives the first byte of the message) is a better indication

of performance, and is the focus of the following sections.

The performance of direct, FTP and multicast transfers do not change as a result of

the consumer’s connection patterns, but Walkabout is extremely sensitive to them. Therefore,

this experiment used migrating patterns for the reference models and both reconnecting and

migrating patterns for Walkabout.
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Figure 5.14: Impact of disconnection time on the average effective transfer speed between a fixed
producer and a mobile consumer.

Reconnecting consumer

A consumer device could keep returning to the same proxy over the duration of a

transfer if it is within a building or on a campus, but disconnect periodically due to fluctuating

network coverage or to preserve power. In this localised movement scenario, the consumer-side

proxy relays pieces to a connected consumer as it receives them, or buffers them if the consumer

is absent. Upon reconnection, the consumer downloads the buffered data at local speeds, which

offsets some of the time lost to disconnection. Figure 5.14 shows that this buffering enables

Walkabout transfers to have a much higher average effective transfer speed than the alternatives,

which are restricted to downloading over the Internet when the consumer is present. As the

disconnection time rises, the main reason for Walkabout’s decrease in speed is the time lost

to disconnection itself, because the proxy completes the download in the consumer’s absence,

but can’t actually deliver it until they reconnect. Even then, the transfer speed remains close to

what would be possible if the consumer was fixed instead, for all but the longest disconnection

times.

The increased buffering at the proxy as disconnection times increase leads to a larger

average consumer download speed. Figure 5.15 shows that while it is significantly faster than

the Internet speed, the average never reaches the maximum possible local speed of 2MB/s in

this experiment. This is because the consumer downloads at this speed when it first reconnects,
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Figure 5.15: Impact of disconnection time on the average consumer download speed for a mobile
consumer.

but quickly exhausts all the data in the buffer and falls back to receiving pieces at Internet

speed. The download speed for the reference methods are all equivalent, as their bottleneck is

the speed at which the proxy can download data on demand.

In a similar fashion to how a faster upload speed is useful to a producer device,

this increased download speed can be useful for the consumer device. A user does not need

to maintain a connection to download a message, but can instead leave their device off or

disconnected from the network (to preserve power, for example) and connect periodically to

download the available messages in bursts. It also means that if the user is in an area that has

unreliable network coverage, they can carry out large transfers at much the same speed as if

they were directly connected, even if their connection is prone to dropouts.

Migrating consumer

In contrast to the reconnecting scenario, Figure 5.14 shows that the effective transfer

speeds for a migrating Walkabout consumer are instead comparable to those of the reference

models, albeit slightly less on account of the time spent setting up the transfer at each new

proxy. This is because there is no chance for the proxies to build up a reserve of message

data, and they must resort to downloading it on demand when the consumer connects. This

also restricts the consumer download to the speed at which the proxy can stream the data.

However, Figure 5.16 reveals that the data overheads increase proportionally with the increase
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Figure 5.16: Impact of disconnection time on average data overheads between a fixed producer and a
mobile consumer.

in disconnection time, climbing to over 1000% when devices disconnect for half an hour. These

overheads are the result of the proxies continuing to download blocks during the consumer’s

absence, such that if the consumer never returns to that proxy, the time spent downloading all

these pieces is effectively wasted. It should be noted that the overheads only start to plateau

when the disconnection periods are long enough that each proxy runs out of unique data to

download.

These overheads are very large, but modifications to the Walkabout protocol could

reduce them. The simplest method is for the proxy to only download a message while a con-

sumer is connected, but this eliminates the potential for speed benefits if the consumer does

return to that proxy in the future. A better approach would be to selectively choose which

consumers to download for. By recording how often it has seen a client, a proxy could decide

whether the client is likely to return, and therefore whether it should continue to download

pieces in their absence. The ideal approach, though, would be to predict where the consumer

is going, and to have that proxy download the pieces instead. The next chapter explores exten-

sions to Walkabout that enable this.
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Figure 5.17: Impact of disconnection time on the average consumer download speed between a fixed
producer and a mobile consumer, when network links are asymmetrical.

Asymmetric networks

Asymmetric links can improve the effective transfer speeds for migrating consumers.

It is not possible to raise them beyond the performance of a reconnecting client, as in the mobile

producer scenario, but they can at least get closer to this upper limit.

As evidenced by Figure 5.17, raising the Internet download speeds for each sub-

network to 500KB/s then repeating the previous experiment led to consumer download speed

improvements for migrating Walkabout, FTP and multicast (when compared to results for the

symmetric network in Figure 5.15). The common factor is that when the consumer connects,

the new proxy is able to take advantage of the improved downlink speed to acquire data at a

faster rate than the producer can provide directly.

This is an obvious consequence for the centralised methods, as the very high band-

width at the server can saturate the proxy’s downlink until all the stored data is exhausted. For

multicast, the length of the intermediate disconnection periods dictate how much stored data

there is. Once it is long enough for the producer to upload enough data to sustain a full speed

download during the ensuing connection period, the speed levels out. The consumer download

speed during the initial connection is only 100KB/s, as there is no stored data on the server,

and this keeps the average speed from reaching 500KB/s. By contrast, FTP always supports

the maximum consumer download speed, but this is because the consumer-side transfer does
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Figure 5.18: Impact of disconnection time on the average effective transfer speed between a fixed
producer and a mobile consumer, when network links are asymmetrical.

not begin until the entire message has been uploaded to the server. So the consumer download

speed remains fast, but the initial delay means that the the improvement in the effective trans-

fer speed is not quite so dramatic. Figure 5.18 shows that while multicast always has a higher

effective transfer speed than migrating Walkabout, FTP does not until the disconnection period

grows quite large, when the high consumer download speed offsets the long startup time.

The improvement in migrating Walkabout is a result of parallel transfers. Each proxy

that the consumer visits will continue to download new pieces after its departure. Ideally,

the consumer would reconnect to download them at local speed, but if it connects elsewhere

instead, these pieces become available as an additional download source to the new proxy.

When there are multiple peers offering pieces that the consumer needs, the proxy is able to

download from them all simultaneously, at a speed limited by either their combined uplink, or

its own downlink. This increases the consumer’s download speed, thus reducing the amount of

time it needs to be connected to complete the message.

Creating these multiple data sources is the key to improving consumer download

times under asymmetric network conditions. Larger messages, slower link speeds or shorter

consumer connection periods cause a migrating consumer to visit more unique proxies before

a transfer completes. However, multiple peers only add to the download speed if they can

provide pieces that the consumer actually needs. Longer disconnection periods increase the

number of useful pieces that each proxy acquires, enabling them to contribute to accelerated
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Figure 5.19: Impact of disconnection time on average data overheads between a fixed producer and a
mobile consumer, when network links are asymmetrical.

downloads further in to the future. Figure 5.17 shows this relation between disconnection time

and a migrating consumer’s download time. Even if conditions are favourable, the increase in

consumer download speed is a gradual process, which ramps up with each additional proxy the

consumer visits. This explains why the download speed shown here never reach the maximum

downlink speed of 500KB/s (on average).

These improved speeds also have the benefit of reducing Walkabout’s overheads, as

seen in Figure 5.19. This is because after a consumer departs, the proxy continues downloading

until the consumer rejoins the network, or it has all the pieces that the consumer still requires.

Faster download speeds allow a consumers to acquire more pieces per connection period, so

these needs grow progressively smaller, and each successive proxy will download less than

they would if links were slower. Unfortunately, the overheads still remain quite high, so simply

raising the download speed does not remove the need for a predictive solution.

On the whole, the asymmetric connections benefits FTP and multicast more than mi-

grating Walkabout, although it does see some improvement. Neither reconnecting Walkabout

or direct transfers benefit from the downlink speed increase, as they remain solely restricted by

the uplink speed at the producer.
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Real-world movement patterns

As has been stated previously, the reconnecting and migrating patterns are the ex-

tremes of possible client movements. In reality, a client would be expected to have a move-

ment pattern that falls somewhere in between, where it visits a selected set of locations on a

regular basis, but does occasionally encounter new locations. The previous experiments in this

chapter show that Walkabout performs poorly when a consumer is migrating, but do not indi-

cate how common this movement pattern is. Therefore, this section determines what a realistic

movement pattern looks like and how a mobile consumer performs when it follows one.

The movement set collected at Dartmouth College, New Hampshire, USA, between

2001 and 2004 (Kotz et al., 2005) contains a large amount of user mobility data. It com-

prises the logs for 623 access points across 182 buildings, presented as the access point con-

nection history of 13889 unique wireless devices over this period. The size of the campus

(approximately one square kilometre – see Figure 5.20) and the numerous devices following

regular patterns makes this data set the ideal basis for a realistic Walkabout trace set.

The experimental movement set was created by simplifying these device connection

histories. Consecutive connections within the same building were condensed down to a single

connection, so that the traces became a series of transitions between buildings. This had the

side-effect of removing the possibility that a device could reconnect immediately to the same

network it was last at. The processed device traces were sorted by how many connections they

made, and the top 50 most populous were selected for use by clients in the experiments. These

traces were selected to represent highly mobile devices that can thoroughly test Walkabout’s

performance. The experiments focused on the real-world sequence of movements, but provided

their own connection and disconnection times, so that the results were readily comparable to

the other movement patterns.

The underlying movement patterns in the resultant traces are observable in the path

lengths. Each time a client connects to a network, the path length indicates how many con-

nections it has been since since the client was last there. When a device is migrating, all path

lengths are 0 (as it is always visiting a new network), while a reconnecting device always has a

path length of 1. In practice, the path lengths would be expected to vary. Figure 5.21(a) shows

the distribution of path lengths across the entire movement set, while Figure 5.21(b) shows

the results for the top 50 most populous traces, which were the ones used in the experiments.

They reveal that the realistic movement patterns tend to be quite repetitive, with the majority of

movements being to a network the device has visited recently. In fact, most movements have

a path length of 2, where a device has moved from one network to another, then back again.
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Figure 5.20: The main campus of Dartmouth College (Trustees of Dartmouth College, 2007).
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Figure 5.21: Path lengths derived from the Dartmouth college movement traces.

This effect is most pronounced amongst the top 50 traces, where 83% of all movements are

of path length 2. This repetitive motion should be expected to suit Walkabout well, as there

is a high probability that when a client moves, it will connect to a location that has previously

downloaded data on its behalf.

To test how Walkabout performs under these real-world movement patterns, they

were applied to a repeat of the experiment from Section 5.3.4. Each of the 182 Dartmouth

campus buildings was established as an individual entity in a neighbourhood. Each building

had its own sub-network, which was similar to the one in Figure 5.2, except that its Internet

link bandwidth was an asymmetric 500KB/s downlink and 100KB/s uplink. The 50 clients

moved around the network following patterns derived from the top device traces, with a fixed

connection and varying disconnection time.

Figure 5.22 presents the average consumer download speeds under these conditions.

The non-Walkabout transfer methods remain unaffected by the change in movement pattern, as

the consumer simply downloads directly whenever it is connected. By contrast, the real-world

movements do have a large impact on Walkabout, with the results falling between the lev-

els for reconnecting and migrating consumers. The speeds improve upon those for migrating

consumers, due to the repetitive movements and the high chance that a consumer will revisit

a proxy that has pieces available for it to download at local speed. The different device pat-

terns mean that there is quite a large spread of results, but as disconnection times increase,

Walkabout’s consumer download speeds are higher on average than the other methods under

real-world conditions. They do not reach the speeds that a reconnecting consumer experiences,

though, showing that there is still scope for improvement.
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Figure 5.22: Impact of disconnection time on the average consumer download speed between a fixed
producer and a mobile consumer following real-world movement patterns.
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Figure 5.23: Impact of disconnection time on average data overheads between a fixed producer and a
mobile consumer following real-world movement patterns.
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The Walkabout overheads for a real-world consumer, as seen in Figure 5.23, are also

between those for a reconnecting and a migrating consumer. They are significantly lower than

the high levels that a migrating consumer experiences, but still rise quickly to over 100%,

exceeding the overheads for all of the other methods. If the Internet links are under-utilised,

then these overheads might be an acceptable trade-off in pursuit of the potential speed increases

that repetitive patterns can produce. While the real-world patterns do improve overheads on

the whole, but they are still quite high, and the system extensions in the next chapter aim to

reduce them further.

5.4 Summary

This chapter shows that Walkabout scales well to large files and multiple consumers.

Transfers achieve high performance levels under any kind of producer mobility, and when a

consumer is fixed or constantly reconnecting to the same proxy. These conditions enable ef-

fective transfer speeds that are close or equal to what would be possible between fixed devices,

and therefore make it practical for mobile devices to carry out large data transfers across the In-

ternet. A rapidly moving producer can also lead to transfers that actually exceed the maximum

possible for a fixed device, by delivering pieces to multiple proxies in a way that increases the

effective uplink speed that is available to them. Together, these results complete Contribution

C2 from Section 1.4.

Walkabout transfers to mobile consumers that are moving between networks remain

impractical, as a result of the low speeds and high overheads that they incur. The next chapter

formulates an extension to Walkabout that coordinates pre-emptive message delivery, so that

consumers following any mobility pattern will find cached pieces waiting for them when they

connect to a proxy. Chapter 7 tests this extension through further simulation, to prove that

Walkabout can make Internet transfers practical for all mobile devices.
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Chapter 6

Extended system design

The basic Walkabout architecture described and tested in the previous chapters par-

tially achieves the goals specified in the introduction of this thesis. It improves transfer times

for most message transfers involving mobile devices, and makes it practical for them to transmit

larger files. However, it still has some shortcomings which need to be addressed. This chap-

ter covers some extensions to Walkabout that, while not required as part of its fundamental

operation, do offer improvements that make it a more powerful and usable system.

The most serious concern is that under certain patterns of consumer movement, the

standard model is unsuitable. When a consumer is constantly moving between unique loca-

tions, the data overheads are many times the size of the actual message, yet the delivery times

are no better than for existing methods such as direct transfers or application-level multicast.

This needs to be addressed if Walkabout is to be applied to all mobile situations, so Section 6.1

presents a pre-emptive message delivery service that can make transfers practical under all

consumer movement patterns.

Another issue is that the form of addressing specified so far is very low level and only

enables transfers directly between devices. Managing lists of other people’s devices and their

associated keys has the potential to become unwieldy very quickly, so it is far more practical to

track a single identity for each person, and let the recipient decide which device should receive

it. Section 6.2 proposes a higher level addressing abstraction that allows Walkabout to remain

manageable as the number of user devices grow.

One of the main targets of Walkabout are devices which generate content, such as

cameras. Even though Table 2.1 shows that these devices do commonly feature some form

of wireless networking, they may be closed devices without the option to install additional

software. The ultimate goal is that the standard firmware for these devices will eventually
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include a Walkabout client, but until such time, it would be desirable to provide some way

for these limited devices to connect in to the service. Therefore, Section 6.3 also introduces a

standard mechanism to provide system support for limited devices.

6.1 Client manager

As shown through simulation in Chapter 5, a migrating consumer represents the

worst-case scenario for Walkabout. The constant movement means that the consumer never

returns to a previously visited location, so it never experiences the speed benefits that arise

from downloading cached pieces at local speed. However, because the default proxy behaviour

is to continue requesting blocks until the consumer reconnects elsewhere, the data overheads

can still reach many times the size of the actual message. These problems can be solved by

adopting a more proactive approach to proxy downloads. For example, if a migrating con-

sumer’s disconnection causes its next visited proxy to start downloading its messages, then it

will find pieces waiting when it reconnects, and experience significant improvements in trans-

fer speed. Therefore, this section presents a pre-emptive proxy selection and message delivery

service to augment the basic Walkabout model.

A client manager is an optional program that operates on behalf of a particular client

and coordinates the delivery service. It intercepts any message headers addressed to the client,

then follows a message distribution policy (MDP) to coordinate the overlay transfers. The

MDP determines which proxies should be overlay peers and when they should be downloading

the message, in an effort to deliver it to the consumer as quickly as possible. These decisions

are made in response to client movement, and may involve a prediction algorithm to determine

which proxy a client is likely to move to next. Users are able to configure their client man-

agers with whatever combination of MDP and prediction algorithm that they like, and can even

choose to modify configurations on demand if their movement behaviour changes. Typical

prediction would involve some kind of analysis of a client’s movement history, as covered in

Section 3.5. Figure 6.1 shows how a client manager’s different components fit together in a

layered fashion.

A client that has a manager is said to be in managed mode. Users are not required to

run a manager for their client devices, and if they can not install one or do not wish to have one,

clients can easily operate in the regular unmanaged mode. Client managers exist to coordinate

message delivery to mobile consumers, so if a device sends messages but never receives them

(a camera, for example), or if it is stationary, there is no reason for it to have one.
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Client Manager

Message Distribution Policy

Prediction Algorithm

Figure 6.1: The layered client manager components.

6.1.1 Manager creation

A client manager needs to be installed in a stable location, so that it is has high

availability and is therefore able to build up a solid movement history for its client. It would

typically run alongside a proxy on a user’s home server, but could also be a stand-alone service

running on some other reliable machine.

The manager’s role is to assume the identity of the client it is responsible for, so that

it can intercept message headers and learn about client movements. The user configures the

manager with the public key of the client, causing it to publish the client’s key hash to the

DOLR at launch. If the manager finds a proxy with an existing publication for its key hash

when it launches, it negotiates with them to switch the client from unmanaged to managed

mode. It also checks the publication periodically, acting to resume control of the client if a

proxy or another client manager has overwritten the publication.

6.1.2 Client connection and disconnection

Any time that a client connects to or disconnects from a proxy, that proxy routes a

location update to the client manager. This allows the manager to update the client’s movement

history, and to start or stop proxy downloads as directed by its MDP.

Because a client manager is optional, a client indicates whether it has one as part of

its initial connection to a proxy. If the client does have a manager, the proxy attempts to make

contact, and receives headers in response for the messages that it should download. If the proxy

is unable to reach the manager for some reason, it publishes the key hash itself and the client

reverts to unmanaged mode. However, if the client manager was only temporarily unavailable,

it will detect the proxy’s publication during one of its periodic checks and negotiate to return

the client to managed mode.
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When a client in unmanaged mode disconnects, the proxy simply continues down-

loading their messages without notifying any other host. By contrast, the proxy sends a discon-

nection notification to the client manager when in managed mode, so that it can coordinate the

transfer as necessary and build a record of client movements. This notification includes the last

known piece map for each of the client’s messages, so that if the manager wishes to initiate a

download on another proxy while the client is disconnected, it is able to tell them what pieces

the client still needs. The manager may not always receive this notification, possibly due to

network issues or the proxy mistakenly thinking that the client is unmanaged. While this can

affect the efficiency of the transfer in the short term, normal operation can resume once the

manager receives its next notification from the client.

A client may reconnect to the same proxy repeatedly if it is moving between access

points on the same network, or if its wireless connection is unreliable. This behaviour can have

undesirable effects on the client manager. Firstly, it can pollute the recorded movement history

with many connections at the same location, which would then affect the accuracy of future

predictions. The other issue is that a momentary disconnection may trigger the download at

another proxy, which would adversely affect transfer performance if the client was not actually

moving.

The simplest solution is to set a time threshold at the proxy, to prevent it from report-

ing a disconnection unless it is over a minimum length (which would be in the order of several

seconds). When tuned to the specific network conditions, this would be expected to detect most

instances of momentary disconnection. This approach requires caution, because performance

could be affected if notifications for real movements are delayed due to an unnecessarily long

threshold. Alternatively, the proxy could use knowledge of the physical access point location

and recent client movement history to decide when to notify the client manager. For example, if

the client disconnects from an access point on the top floor of its building, the proxy might wait

30 seconds before notifying the client manager; but if the client disconnects from the foyer, and

its recent movement has been in the direction of the exit, then the proxy may notify the client

manager instantly.

6.1.3 Prediction algorithm

The prediction algorithm analyses the information available at the client manager to

determine where the client is likely to connect in the future. This evidence is typically drawn

from the proxy connection history of the client, which the client manager collects automatically

as the client moves. It could also be supplemented by other sources, such as diary appointments

106



6.1. Client manager

or an external tracking service that provides the user’s real-world position. The ideal algorithm

would analyse this evidence to decide upon a single proxy with 100% certainty every time, but

this is unlikely to be attainable in practice.

Markov predictors, as discussed in Section 3.5, are a simple yet effective way to pre-

dict movement patterns based upon historical evidence. Therefore, a Markov-based prediction

algorithm is used to assess the viability of prediction-based client managers in Chapter 7.

6.1.4 Message distribution policy

The message distribution policy (MDP) dictates the message download behaviour

of proxies, so that the client manager’s consumer has the largest possible pool of pieces to

download from at high speed while it is connected. The faster the consumer receives pieces,

the less time it takes to complete the entire message transfer. The MDP is called upon to make

these decisions in response to client connection and disconnection notifications, and upon the

receipt of new message headers. It would usually, but not always, be informed by a prediction

algorithm.

Any time the MDP triggers a particular message download at a proxy, the manager

sends across the header, with instructions to start the download immediately. The header is

also accompanied by the client’s last known piece map, so that the proxy knows what the client

pieces still needs. The proxy uses this information to join the overlay, if it is not already a

member, and to start requesting blocks from the overlay peers.

The client manager also has the ability to tell proxies to stop downloading a message

on behalf of a consumer. One reason it might do this is if the client just disconnected from that

proxy. The other reason would be if an incorrect prediction caused the client manager to start

the download at one proxy, but the client actually connected to a different one. The proxy is

not required to stop the download, as it may wish to continue downloading on behalf of other

consumers. If the proxy stops downloading it still remains as an overlay member, so that can

improve future transfer times by offering any pieces it has to its peers.

The most promising MDP is predict-on-disconnection, as seen in Figure 6.2, because

it has the potential to provide moving consumers with the local caches that are usually only

available to reconnecting consumers. Under this policy, the client’s current proxy is the only

one that downloads the message while the client is connected. When the manager learns that

the client has disconnected, it consults the prediction algorithm to determine where the client

is most likely to move to, and prompts that proxy to start downloading the message. It also

tells the proxy that is currently downloading to stop. If the manager receives any new message

107



6.1. Client manager

P1 P3

P2 Consumer

Producer

Client
Manager

(a) The consumer is initially connected to P2, which is
downloading blocks from P1.

P1 P3

P2

Consumer

Producer

Client
Manager

Disconnection
Notification

(b) The consumer disconnects, and P2 informs the
client manager.

P1

P2

Producer

Client
Manager

Stop

H

P3

Consumer

(c) The client manager predicts that the consumer will
move to P3, so it sends the header to P3 and tells P2 to
stop downloading.

P1

P2

Producer

Client
Manager

P3

Consumer

(d) P3 starts downloading blocks from P1 and P2.

P1 P3

P2

Producer

Client
Manager

Consumer

Connection
Notification

(e) The consumer connects to P3 and starts downloading cached pieces imme-
diately. P3 tells the client manager that the consumer has connected.

Figure 6.2: The predict-on-disconnection message distribution policy in action.
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headers while the client is in transit, it forwards them to the predicted proxy too. The hope is

that if the prediction is correct, the client will connect to the proxy to find that there are already

pieces waiting in the local cache, that can be downloaded at local speed. If the client connects

to a different proxy instead, the client manager stops the download on the incorrectly chosen

proxy, and starts it on the correct one.

A predict-on-connection MDP might be expected to further improve transfer speeds,

at the risk of greater data overheads if prediction is incorrect. When the client connects to a

proxy, the manager immediately starts the download at the next predicted proxy, so that both

proxies are downloading simultaneously. The intention is that by the time the client connects to

that predicted proxy, there should be a bigger buffer of message data waiting than if the down-

load had only started when the client disconnected. In practice, though, this is unlikely to hap-

pen. If the downlink speeds are greater than the uplink speeds, as is typical, any pieces that the

predicted proxy completes will be immediately advertised to and retrieved by the consumer’s

current proxy. The client will download all the unique pieces that the predicted proxy acquires

during this time, and so there will never be any benefit gained by splitting the source proxy’s

limited uplink speed between multiple peers. Better performance would be achieved by sim-

ply concentrating on delivery to the client’s current proxy, as in the predict-on-disconnection

policy. This method would be beneficial, though, if the source proxy has an uplink speed that

is greater than the destination downlink speeds. This allows it to simultaneously saturate the

downlink of both the current and predicted proxies, so that the predicted proxy is able to build

the buffer of unique pieces that the MDP aims to create.

These prediction-based policies can be extended so that any number of proxies are

selected each time the client connects or reconnects. This could be useful if the manager is

unsure where the client is heading, or wishes to start the downloads even further in advance

to gain a greater advantage. This has the potential to improve transfer times, but only under

favourable network conditions, and at the cost of great overheads. A more sophisticated ap-

proach is to offer different client piece maps to the proxies, where the proxies with the highest

probabilities are asked to download more, to limit the amount of unnecessary data downloads.

The supernode MDP, as illustrated by Figure 6.3, is an alternative on-disconnection

policy that does not involve any prediction. Instead, the client manager introduces a proxy with

a very fast uplink and downlink to the overlay, that will never contact a client directly. This is

the supernode. When the client is connected, its current proxy is the only one that downloads

message data, but when it disconnects, the supernode becomes the only proxy that does. This

causes the supernode to build up a cache of pieces, so that when the client reconnects, its new

proxy can obtain blocks rapidly from both the source proxy and the supernode.
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(d) The header causes P3 to start downloading blocks
from P1 and the supernode. The client manager tells the
supernode to stop downloading.

Figure 6.3: The supernode message distribution policy in action.

This MDP is most effective when proxy downlink speeds are faster than peer uplink

speeds, and when the consumer is moving rapidly in an unpredictable pattern. Even though

the consumer will never encounter a local cache of pieces when it connects to a proxy, it is

still able to obtain pieces at a faster rate than if it were unmanaged. This is because access

to the supernode means that its proxy can download blocks on demand at a rate limited by

its own Internet downlink, rather than the source proxy’s uplink. The data overheads are also

kept under control, because the only proxies that ever download the message are those that the

consumer is currently connected to, or the supernode. A drawback of this approach is that it

requires access to a fast server, which may be difficult to obtain, unless it is provided by an

ISP, a large organisation such as a university, or a web company like Google (2007c) or Yahoo!

(2007c).

There is great scope to explore the impact of different MDPs on the speed and ef-

ficiency of managed Walkabout transfers. The predict-on-disconnect and supernode policies
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should provide the most benefits under general conditions, and so the next chapter evaluates

them through simulation.

6.1.5 Message completion

Once a consumer completes or rejects a download, the proxy informs the client man-

ager, so that it knows to delete all state associated with the message. It maintains the record of

client movements that occurred during the delivery, as these can help to make more accurate

predictions in the future.

6.1.6 Additional functionality

There is the potential that, just like email today, unsolicited Walkabout messages

could become a problem. Even if the consumer constantly rejects them, they could still lead

to significant numbers of message headers being delivered to consumers, wasting the time that

could be used to download messages that they want. In addition, if a proxy receives a header

for a client that is disconnected, it will assume that they will want the entire messsage until

it learns otherwise, so these unsolicited message could result in significant amounts of wasted

Internet bandwidth at the proxies, too.

Because the client manager is the first point of contact for all messages addressed to a

managed client, it is in the perfect position to fight unsolicited messages. In a similar fashion to

email filtering, it could examine the metadata within the message header to determine whether

it believes its client will be interested, and forward or drop the header accordingly. Consumers

could also create their own filtering rules on the client manager.

It should be noted that short messages are also intercepted by the client manager.

This type of message is intended for real-time communications, so the client manager only

forwards them if the client is connected at the time. Otherwise, it simply discards them.

6.2 Identity tracker

One problem with the basic Walkabout message delivery model is that when a pro-

ducer wishes to send a message, it needs to specify the exact devices that are the consumers.

This is manageable when a user configures communications between their own devices, but can

become impractical when one user wishes to send a message to another. The person sending

the message may not always know the best device to contact the recipient on at that point in
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Identity Group
Laptop

id = key hash 1
Phone

id = key hash 2

PDA

id = key hash 3

Identity Tracker

rule 1 key hash 1
rule 2 key hash 2
rule 3 key hash 1 & 3

id = identity hash

Figure 6.4: An identity tracker and its identity group.

time, or the specific key hash required. This approach is also inflexible, as the recipient has no

way of indicating which devices they would actually prefer to receive messages on.

An example of a more desirable addressing model can be seen with email. The sender

simply specifies the recipient’s email address when they send the message. When the recipient

chooses to check their email, they access it using the most practical device at the time, which

could be a mail application on their desktop or laptop computer, a web mail interface on a

friend’s computer, their phone or their PDA. This is both simple for the sender, and flexible for

the recipient.

This section presents the identity tracker, an extension to Walkabout that provides a

high-level addressing abstraction. It enables a user to unify their devices under one globally

addressable key hash, so that the sender only needs to know one identity to send them a mes-

sage. The user specifies which devices they would like to receive which messages, and can

choose to multicast them for delivery to multiple devices. Figure 6.4 outlines the relationship

between a sample identity tracker and the devices that it represents.

6.2.1 Tracker creation

A user that wishes to use an identity tracker generates a key pair to represent their

global identity. They load the pair on to any device that is part of the identity group, as well

as on the identity tracker service, which is installed in a stable location. The identity tracker

publishes the hash of the identity’s public key (the identity hash) to the DOLR. Finally, the user

distributes their public key to anyone who may wish to contact them.
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6.2.2 Device and rule registration

The user establishes their identity group by registering the keys of their individual

devices with the identity tracker. One of the advantages of this approach is that it centralises all

of the device public keys, so that nobody else needs to know what they are. The user can add

or remove devices, or even modify the keys, and messages will still be delivered appropriately

without the sender having to update anything.

A set of rules determines how different messages are distributed to devices. Each rule

specifies a simple expression that maps message header metadata to a list of identities. Any

of the standard header fields can be used in the expression, and applications can specify their

own tags as part of the freeform application data field. These rules are similar in concept to the

subscriptions used by content-based publish/subscribe messaging systems, so a filter language

based on the one that Elvin uses (Mantara Software, 2003) would be suitable, for example.

The identity tracker applies the rules to any message headers that it receives, and

forwards them to the desired devices. For example, a user could specify that they wish to

receive all messages from their friends that are less than 1MB on their mobile phone, but that

all others should be directed to their laptop. The language that describes these rules could also

be extended to incorporate time spans, so that certain rules only apply at certain times. As

another way of combating unsolicited or unsuitable messages, a rule may instead specify to

drop a message.

The user can add, query, modify or delete group membership and rule sets from any

device that is part of the identity group. Every devices has a copy of the identity’s private key,

so it is used to sign the update notification. The tracker checks the signature before processing

the update, and only proceeds if it is able to verify it.

6.2.3 Delivering messages

To send a message to an identity group, a producer simply specifies the identity hash

as one of the consumers and uploads the message to a proxy. It can also use the identity’s public

key to encrypt the message. The local proxy then routes the header to the identity tracker. From

the point-of-view of the producer and the proxy, sending a message via an identity tracker is

identical to sending one directly to a device. However, an identity tracker is provided primarily

as a convenience, so producers are not required to route their messages through them. All of the

devices retain their original key hashes, allowing a producer to instead route to them directly if

it knows the appropriate key.
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When the identity tracker receives the header, it applies the rule set to the metadata

within the message header to determine the real consumers for the message. Depending on

how many matches there are, the output set can contain key hashes for zero, one, or multiple

consumer devices. If there are any matches, it associates the key hashes with the identity

hash in a new identity mapping header field (which is excluded when calculating the message

signature, because it can not be determined at the time of message creation). If there are no

matches, or the message is explicitly ignored, the identity tracker routes an immediate rejection

notification to the message tracker.

Once the modified header reaches a proxy, the delivery process is the same as in the

standard model, with the exception that the proxy looks in the identity mapping as well as

the standard list of consumers to determine which local clients it is delivering the message to.

When a client completes or rejects a message, the proxy returns the appropriate notification

to the identity tracker denoted by the identity mapping. The identity tracker aggregates all of

the responses, and routes a single notification to the message tracker when all consumers have

replied.

6.2.4 Groups

Identities can be aggregated into groups, to allow entire families or organisations to

be represented by a single identity. Each group member has a copy of the group key pair, which

they install on their devices, to enable group modification and message decryption. Groups are

managed by a regular identity tracker, which maintains registrations of the identity hash for

each of the users. A message header sent to the group is initially routed to the group’s identity

tracker, but is forwarded on to other identity trackers according to the rule set, until it ultimately

reaches the consumers. If a proxy receives multiple copies of the same header as a result of

these branching forwarding paths, it merges the identity mapping fields.

Groups can be nested within other groups to indefinite depth, but there are limitations

to this approach. Each DOLR delivery takes time in the order of seconds, so a long propagation

sequence could add up to a substantial amount of latency between when the producer sends the

header, and when it reaches each of the consumers. Also, while Walkabout has been shown

to scale well to a small number of consumers, it is not designed for a large number. Multiple

groups could lead to a very large number of final consumers, at which point some other delivery

mechanism would be a better choice. Finally, care also needs to be taken to avoid cycles

between identities.

Despite its limitations, the use of groups has the potential to offer a useful facility to

Walkabout, if it is managed carefully.
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6.2.5 User agents

While the basic approach is for the user to manually select how to direct messages

to devices, a more practical approach could be for an intelligent agent to do so on their behalf.

By looking at the user’s location (possibly through communication with the device client man-

agers), an agent could modify the rules without direct input from the user, so that they receive

their messages in the most appropriate manner. This agent could be an external program which

issues rule changes to the identity tracker, or part of the identity tracker itself, such that it for-

wards messages based upon more a complex decision process than a simple set of user defined

rules.

6.3 Simple device agents

Walkabout is an effective form of communication for wireless mobile devices, but it

may not always be possible to install the client software on the device. Therefore, there are

some types of devices that would benefit greatly from the service that are unable to access it,

such as Bluetooth or WiFi enabled cameras and media players (refer to Table 2.1 for the net-

working capabilities of some common devices). This section presents the design for a device

agent, a optional system component that provides a bridge between limited devices and Walka-

bout. It enables these devices to register their location, send messages to a location for backup,

and receive messages from any client. The agent may run on the same machine as the local

proxy, or it may be a separate node with its own wireless networking interface.

Different WiFi devices use different communication protocols. Sometimes, they will

only communicate with a particular piece of software, as with the Kodak EasyShare-One cam-

era range or the Microsoft Zune. This makes it difficult to generalise agent functionality, so

the design of the device agent relies upon plugins to provide support for different devices.

However, Bluetooth specifies standard protocols to exchange objects via the object push and

file transfer profiles, and these are widely supported. This section concentrates on how a de-

vice agent communicates with Bluetooth devices; any future plugins for WiFi devices should

attempt to follow the same approach.

When a Bluetooth-enabled device wants to use Walkabout, it simply searches for

and pairs with an available device agent in its environment. The device can not be expected to

have a public key, so the MAC address of its Bluetooth interface forms the basis of its identity

instead. The agent generates a registration notification that uses the hash of this MAC address

as the identity, then sends it to the local proxy in an manner that is analogous to a regular
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Photo

Address: MAC ProxyDevice Agent
Address: hash(MAC)

Proxy Backup Server
Address: hash(“BACKUP” + MAC)

H HH

To: hash(“BACKUP”+ MAC)

Figure 6.5: A simple device uploading to its backup server.

client-proxy registration. The proxy recognises the agent as a client, and publishes the hash to

the DOLR. The agent also notifies the proxy if it loses contact with the device.

To upload a file via Walkabout, the Bluetooth device simply pushes it to the device

agent using the regular Bluetooth object push or file transfer protocol. Unfortunately, there is

no reliable way for the device to specify Walkabout metadata with the file, so it is restricted

to a single destination – its dedicated backup server. This is a specialised Walkabout client

that uses a backup hash as its identity, derived by concatenating the string “BACKUP” and the

client’s MAC address, then hashing the result. When the agent receives a file from the device, it

generates the header and specifies the calculated backup hash as the message consumer. It then

breaks the file in to pieces and uploads them to the proxy. The subsequent transfer to the backup

server follows the regular Walkabout protocols, although the proxy does not forward the final

delivery notifications to the uploading device. Figure 6.5 summarises the upload process.

By contrast to the upload, a limited device is able to receive messages from anybody

(provided that the device actually supports file downloads). The device agent is registered under

the device’s identity, so it receives Walkabout message headers and pieces on their behalf, as

if it were a regular Walkabout client. When the message is complete, it simply pushes the file

to the device if it is still available. There is no way for a simple device to recognise message

pieces, so if a transfer to or from a device is interrupted, it must restart from the beginning upon

reconnection.

This approach does not take full advantage of Walkabout’s features, but it does allow

simple devices to make use of the location independent addressing, so that it is easy for them

to backup their files and receive downloads across the Internet.
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6.4 Summary

The extensions covered in this chapter provide a number of ways to improve the per-

formance, flexibility and availability of Walkabout. In particular, the client manager provides a

pre-emptive message delivery service that has the potential to overcome the performance prob-

lems with the core architecture that Chapter 5 identifies. Therefore, the design for the client

manager forms the first part of Contribution C3 from Section 1.4. The next chapter simulates

Walkabout deliveries when client managers are available, to measure how different MDPs and

prediction algorithms affect performance.
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Chapter 7

Client manager evaluation

Chapter 5 shows that Walkabout is a viable message transfer architecture in many

instances, but that it generates slow delivery times and high data overheads when consumers

are constantly moving between networks. This chapter uses simulation to provide evidence

that the client manager system extension proposed by Chapter 6 addresses these shortcomings.

It analyses transfer performance when client managers are configured with different message

distribution policies (MDPs) and prediction algorithms, and then compares them to each other

to determine which approaches perform best under which conditions.

7.1 Experimental setup

The experiments in this chapter were designed to test the performance of Walka-

bout transfers directed by client managers, and they were constructed once again using the

OMNeT++/INET framework. They explored client managers that use predict-on-disconnection

and supernode MDPs, and evaluated them using the primary metrics of consumer download

speed and data overheads.

7.1.1 Test network

These experiments were built upon the same simplified Internet configuration that

was used in Chapter 5. Asymmetric network links are common in home Internet connections,

so all sub-networks were provided with a 500KB/s downlink and 100KB/s uplink.

A client manager’s role is to improve performance for mobile consumers, so the

test network featured fixed producers and mobile consumers. Each consumer was randomly

allocated a home proxy, which was responsible for creating a client manager and publishing it
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to the DOLR service during network initialisation. Consumer connection periods were always

fixed at 1 minute, while disconnection periods varied between 10 seconds and 30 minutes.

Depending on the experiment, a consumer followed one of three different movement patterns:

• reconnecting, where it connects back to the same proxy after every disconnection;

• migrating, where it only reconnects to a proxy it has not visited previously, selected

using a uniform random distribution;

• a real-world pattern based upon the traces from Dartmouth College.

All message transfers took place between a single producer and consumer, with message sizes

ranging between 50MB and 200MB. The lower bound was raised from the 5MB that was used

in previous simulations, to increase the average delivery times and thus the number of proxies

that a consumer visits during a transfer. This was to provide a clearer picture of the effect that

prediction has, where appropriate. Table 7.1 summarises the experimental parameters used in

this chapter.

7.1.2 Evaluation criteria

The main role of the client manager is to coordinate proxy downloads so that any

time a consumer connects, there are pieces waiting for it to download at high speed. Therefore,

the average consumer download speed is the best indicator of how effective an MDP is. It is

often desirable to attain these speeds without generating too much excess data, so the metric of

average data overhead (as defined in Section 5.1.2) is also important.

In Section 5.3.4, the effective transfer speeds when delivering a message to an un-

managed reconnecting consumer were found to be close to those experienced by a fixed con-

sumer, and were therefore considered practical. This performance was due to the high down-

load speeds that the consumer experienced upon reconnection. In this chapter, those consumer

download speeds are used as a benchmark, so if a client manager enables a consumer with a

different movement pattern to achieve similar results, its performance will also be considered

practical.

The predict-on-disconnection MDP requires a prediction algorithm. Any time that

a client disconnects, the MDP queries this algorithm to predict which proxy it will connect

to next. The prediction accuracy describes how suitable the algorithm is to a given set of
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7.2. Predict-on-disconnection

conditions, and it is measured across all clients for the duration of a message by:

Prediction accuracy =
Total number of correct predictions
Total number of predictions made

A prediction is only made if the client manager has sufficient evidence to guess where the client

is headed; otherwise no prediction is offered, and the accuracy remains unaffected when the

consumer next connects.

As with Chapter 5, the results in this chapter are only indications of performance.

They show the trends as conditions change, but do not always translate to general conditions.

This is particularly evident when considering the exact points at which one approach becomes

more attractive than the alternatives.

7.2 Predict-on-disconnection

The predict-on-disconnection MDP is used by the client manager every time a con-

sumer disconnects. It aims to improve transfer performance by predicting where the consumer

will move to, then starting the message download at the appropriate proxy as soon as possible.

The intention is to have numerous pieces waiting in the proxy’s cache by the time the consumer

connects, which it can then download at local speed. The success of this MDP depends upon

the accuracy of its prediction algorithm. This section begins by looking at the results under

two theoretical prediction algorithms: one that always makes the correct decision, and one that

makes the correct decision with a varying degree of accuracy. These are then compared to a

Markov-based algorithm, which uses historical evidence to predict future movement.

7.2.1 Perfect prediction

As has been demonstrated previously, an unmanaged Walkabout transfer performs

best when a consumer is reconnecting, because every piece downloaded in the consumer’s ab-

sence is available for it to download at local speed immediately upon reconnection. A client

manager configured with the predict-on-disconnection MDP seeks to reproduce this behaviour

under all movement patterns, so that the consumer will always find the same amount of data

waiting for it, regardless of where it moves to. Figures 7.1 and 7.2 compare the performance

of an unmanaged reconnecting consumer (which exhibited the best performance in Chapter 5),

an unmanaged migrating consumer (which exhibited the worst performance) and a migrating

consumer that is managed by a perfect predict-on-disconnection MDP. Figure 7.1 shows that
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Table 7.2: Experimental results for a 200MB transfer using perfect prediction, with 10 second connec-
tion and 30 minute disconnection periods.

Movement pattern Avg. consumer download speed (KB/s) Avg. overheads

Migrating 1723.2 510.2%
Real-world 1738.5 137.0%

when this MDP is used, a client manager improves the migrating consumer’s average down-

load speed so much that it becomes indistinguishable from that of an unmanaged reconnecting

consumer.

The same is true of the message overheads presented in Figure 7.2. Under most

disconnection periods, overheads are close to zero for both the managed migrating and unman-

aged reconnecting consumers, which is a significant improvement upon the levels shown for

an unmanaged migrating consumer. There is a slight increase in overheads for the managed

consumer when the disconnection periods become so long, compared to the connection peri-

ods, that each proxy downloads more data than it can actually deliver to the consumer while it

is connected, even with the 2MB/s bandwidth that is available. There is a high chance that the

consumer will instead acquire the remaining pieces from a different proxy, so they will never

be delivered locally and thus become transfer overhead. The overheads seen here are only of

minor concern, as they remain quite low and are still significantly less than for an unmanaged

migrating consumer. If disconnection periods were to grow very long, and connection peri-

ods were correspondingly very short, then overheads could climb quite high, with each proxy

downloading nearly the entire message unnecessarily. The migrating consumer is an extreme

case, so Table 7.2 compares the performance to what a real-world consumer experiences, for

a 200MB transfer with 10 second connection and 30 minute disconnection periods. It shows

that while these conditions can lead to very high overheads in both instances, they are reduced

when movement patterns are more realistic, because some proxies have multiple opportunities

to transfer their pieces.

Fortunately, this extreme relation between connection and disconnection time is rare

enough that it can be safely ignored in the experiments presented here. If a consumer was

following this sort of pattern regularly, then the MDP could be modified to limit the number

of pieces that the predicted proxy caches. This could be achieved by delivering piece maps

that only contain a subset of the consumer’s needs, or by predicting connection time as well

as movement sequence and restricting the amount of time the proxy is asked to download

for. These approaches would restrict the amount of data the proxy downloads in a consumer’s

absence, but at the risk of missing out the potential performance gains if the consumer ever
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connects for a longer period. If overheads are excessive, this trade-off may be considered

worthwhile.

These results prove that a client manager running a predict-on-disconnection policy

has the potential to provide high download speeds and low overheads to a Walkabout consumer.

Under most conditions, perfect prediction provides the same performance as the best-case un-

managed reconnecting consumer. The overheads increase if consumer disconnection periods

are long and connection periods are short, but only enough to be of concern in extreme cases.

Unfortunately, perfect prediction is difficult to obtain, so this level of performance

would be unlikely in practice. These results do provide an upper level to strive for, though, and

a decent prediction algorithm should be able to get close. Later in this chapter, an approach

based on Markov chaining shows this to be true.

7.2.2 Imperfect prediction

In reality, a prediction algorithm would be expected to make mistakes. If it is good,

then these mistakes will not occur very often and the prediction accuracy will remain high.

When accuracy falls, transfer performance will probably fall too. This experiment examines the

relationship between prediction accuracy and transfer performance, by configuring the client

managers to use a variable accuracy prediction algorithm. The consumers follow real-world

movement patterns, and whenever one disconnects, the algorithm either correctly returns the

next proxy it will connect to, or an incorrect one chosen randomly from those that it has visited

previously.

Figures 7.3 and 7.4 outline the results of simulating transfers with varying levels

of prediction accuracy. Figure 7.3 shows that consumer download speed decreases gradually

with accuracy, due to the diminishing chance that a consumer will find cached pieces waiting

when it connects to a proxy. The effect is less pronounced when disconnection time is low,

because even a correct prediction will only provide proxies with limited opportunity to build

piece caches. Figure 7.4 shows that there is also a correlation between decreasing accuracy

and increasing overheads, as a result of the increased chance that a proxy will be asked to

pre-emptively download pieces on behalf of a consumer that does not arrive.

The most interesting points on these two plots are where their performance intersects

with the observed values for an unmanaged real-world consumer. This gives the minimum pre-

diction accuracy under these network conditions where it becomes worthwhile to have a client

manager running the predict-on-disconnection MDP. Figure 7.5 compares the results for an

unmanaged consumer to the closest slices taken from 3D plots of Figure 7.3 and Figure 7.4. It
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Figure 7.5: Crossover points between imperfect prediction and unmanaged transfers.

shows that consumer download speeds for an unmanaged consumer correspond to those expe-

rienced by a managed consumer with fixed accuracy in the range of 20-30%, and Figure 7.5(b)

shows the similar range of 10-30% for overheads. These crossover points are not exact, but do

reveal two important properties. The first is that a very low accuracy prediction algorithm can

harm transfer performance, so if a consumer’s movement is very unpredictable, an MDP other

than predict-on-disconnection should be used. The other property is that the crossover point is

quite low, at around 30%, which indicates that even a mediocre prediction algorithm may be

sufficient to extract some performance boost over an unmanaged transfer.

7.2.3 Markov prediction

While the predict-on-disconnection results presented so far in this chapter give an

indication of performance, the prediction algorithms used were purely theoretical. This section

presents a concrete example of a prediction algorithm that could be deployed in Walkabout

client managers, and an analysis of how effective it is.

The proposed algorithm uses O(2) Markov prediction with fallback (as covered in

Section 3.5) to select proxies based upon a client’s historical movement patterns. If multiple

proxies are found to be equally likely, then the most recently visited one is selected. This

approach has previously been used to predict device movement on an earlier version of the

Dartmouth traces, with moderate success (Song et al., 2006). It yielded the best results in

comparison to other O(k) Markov and Lempel-Ziv-based (Ziv & Lempel, 1978) methods, with

a median prediction accuracy of 72% when only those traces with more than 1000 transitions

between connection points were considered. The results for imperfect prediction from the

previous section suggest that this level of accuracy should be enough to significantly improve

consumer download performance beyond the unmanaged model.
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As Chapter 5 discusses, the Dartmouth traces were simplified for the purposes of

these simulations, such that they only represent movements between buildings. Therefore, the

Markov algorithm was applied to the modified traces to determine how accurate it is at pre-

dicting device movement patterns. Only those traces with more than 100 transitions between

buildings were considered, because the simplification reduced the size of the traces. The re-

sultant distribution of prediction accuracy can be seen in Figure 7.6. For the 4293 eligible

devices, the median prediction accuracy was reduced to 55%, while the average was 57%. This

is quite low, but it remains higher than the minimum accuracy of 30% required to justify a client

manager. The process was then repeated for the 50 device traces containing the highest num-

ber of transitions, as these most populous traces were the ones used in this chapter’s real-world

experiments. As Section 5.3.4 explains, these particular traces were chosen to thoroughly test

Walkabout’s performance. The results presented in Figure 7.7 reveal a much higher degree of

accuracy when predicting their movement, where the median was 87% and the average was

83%.

The degree of prediction accuracy obtained from the preliminary experiments was

promising, so the next step was to incorporate the algorithm in a client manager. The follow-

ing experiment simulated a series of message transfers between clients following the real-world

movement patterns. Each client manager was equipped with the predict-on-disconnection MDP

and the Markov prediction algorithm. The prediction algorithm processed the first 1000 move-

ments of its client trace during initialisation, to build up an adequate movement history. Each

client then began its movements at the first unprocessed entry. These transfers also were re-

peated with imperfect prediction algorithms, fixed at 57% and 83% accuracy, and for unman-

aged consumers.

Figure 7.8 presents the consumer download speeds for this experiment, and Fig-

ure 7.9 presents the data overheads. The Markov algorithm shows that it is a reasonable pre-

diction option, as it produces consumer download speeds that approach those of perfect pre-

diction. Average data overheads also remain below 40%, even during the longer disconnection

periods that cause an unmanaged transfer to have overheads in excess of 120%. These high

overheads were one of the major problems with the basic Walkabout model, so this improve-

ment is significant.

The 83% fixed accuracy predictor approximates the Markov algorithm for the top

50 clients, as shown by the similarity between the two sets of results. This implies that the

57% fixed accuracy predictor can be considered a fair approximation of how the Markov al-

gorithm would perform if it were applied to the larger set of available client traces. This
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Figure 7.6: Accuracy of the Markov predictor for each client across all traces with more than 100
transitions. Dotted line denotes the average accuracy.

 0

 2

 4

 6

 8

 10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
um

be
r 

of
 d

ev
ic

es

Prediction accuracy

Figure 7.7: Accuracy of the Markov predictor for each of the top fifty client traces. Dotted line denotes
the average accuracy.

129



7.2. Predict-on-disconnection

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  200  400  600  800  1000  1200  1400  1600  1800

A
ve

ra
ge

 C
on

su
m

er
 D

ow
nl

oa
d 

S
pe

ed
 (

K
B

/s
)

Disconnection Time (s)

Prediction
Perfect
Markov

83% accuracy
57% accuracy

Unmanaged

Figure 7.8: Impact of Markov prediction on the average consumer download speed, for real-world
movement traces.

0%

20%

40%

60%

80%

100%

120%

140%

 0  200  400  600  800  1000  1200  1400  1600  1800

A
ve

ra
ge

 O
ve

rh
ea

ds
 a

s 
P

er
ce

nt
ag

e 
of

 T
ot

al
 M

es
sa

ge
 D

at
a

Disconnection Time (s)

Prediction
Unmanaged

57% accuracy
83% accuracy

Markov

Figure 7.9: Impact of Markov prediction on average data overheads, for real-world movement traces.
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overall approximation reveals that Markov predictors can still be expected to yield noticeable

improvement in download speed and data overheads over an unmanaged transfer, even at the

lower average level of accuracy.

The overheads in Figure 7.9 remain quite high for the 57% accuracy predictor, but it

appears that this is an unavoidable consequence of the pursuit of download speed. Directing

a proxy to download pieces before a client arrives is a strategy that risks overheads for the

sake of a large potential speed boost. Even if the prediction is incorrect, these additional piece

sources help to boost overall speeds through parallel transfers. Costs are spread across multiple

hosts, and no proxy will ever have to download more than the size of the message itself plus an

insignificant control notification overhead. Figure 7.10 explores the average percentage of the

message that each proxy downloads, calculated by dividing the total overhead by the number of

unique proxies that the consumer contacts over the duration of the transfer. It shows that for the

Markov and fixed accuracy predictors, each proxy only downloads about half of the message

over the course of the transfer, which is a significant improvement over the unmanaged case.

By reducing the burden on individual proxies, accurate prediction should reduce the cost of

providing a proxy service, and therefore make it more practical for interested parties to do so.

The major drawback of using the Markov prediction algorithm is that it relies upon

historical evidence. If a client is moving to a network that it has not previously visited, there
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is no way for the client manager to predict this. If a client is truly following a migrating

pattern, a client manager that uses a predict-on-disconnection MDP and the Markov algorithm

is unable to provide any benefit during that period. Figure 5.21(a) presents the path lengths for

the real-world client traces, measuring how many other connections a client makes between

connections to a given access point. It shows that movements to new networks, represented

by zero-length paths, are relatively rare and that clients instead tend to repeatedly revisit the

same few networks. Movement to a previously unvisited proxy should therefore be infrequent

enough that it does not significantly affect performance.

These results show that O(2) Markov with fallback can be used to effectively predict

future movements for most clients, and therefore increase consumer download speeds and re-

duce overheads compared to unmanaged Walkabout message transfers. This is especially true

for clients with longer movement histories.

7.3 Supernode

If the predict-on-disconnection MDP uses an inaccurate algorithm, there is a good

chance that data will be sent to the wrong proxy upon consumer disconnection, leading to

transfer overheads. This bandwidth is not necessarily wasted, as it creates alternate sources

of data. The correct proxy could draw upon these peers at a later point in time, and possibly

increase its block download speed beyond what the source proxy’s uplink could provide. How-

ever, there may be situations where these overheads are not considered to be worth the potential

speed benefits, such as when home connections with monthly transfer quotas are involved. The

supernode MDP offers a solution to this by restricting overheads to a single host that can afford

them.

The supernode is a proxy that is guaranteed to have a fast connection to the Internet.

It is the only proxy that downloads from the source proxy while the consumer is disconnected,

so that it can provide blocks at a rate fast enough to saturate the new proxy’s downlink when the

consumer reconnects. This means that the consumer will experience the same moderately high

download speeds regardless of its movement pattern, but that there is no chance for the accel-

erated download of locally cached pieces. Because non-supernode proxies only ever download

when a consumer is present, their overheads will be almost non-existant.

The experiments that tested this MDP introduced a supernode to the network from

Section 7.1.1, which was connected to the Internet node by a very fast 1GB/s link with 1ms

latency (see Figure 7.11). When a proxy downloads blocks from the supernode, the maximum

132



7.3. Supernode

Internet

Sub-Network
0

Sub-Network
99

Sub-Network
30

Sub-Network
49

Sub-Network
51

Sub-Network
70

Sub-Network
50

Supernode

1GB/s

100KB/s500KB/s

Figure 7.11: The supernode test network.

connection speed is restricted to 500KB/s by its downlink, so the request window size (RWS)

of 2 used in previous experiments needed to be altered. Based upon Equation 5.1 and a con-

servative RTT of 200ms, the RWS was raised to 6. Consumers were compared when they were

unmanaged, or managed using the supernode MDP or predict-on-disconnection MDP with a

Markov prediction algorithm, under migrating and real-world movement patterns.

Figure 7.12 shows that the supernode policy generates a consumer download speed

close to that of Markov prediction when disconnection periods are low, until it plateaus sharply.

After that point, there is a small improvement in consumer download speed over what an un-

managed migrating consumer experiences, but it is slower than the others. There is a slight

difference in download speed between the migrating consumer and its real-world counterpart

under the supernode MDP, because the migrating consumer introduces a new proxy to the

overlay each time it moves, which incurs a slight initialisation delay.

The advantage of the supernode MDP can be seen in the data overheads shown by

Figure 7.13, which never exceed 100%. These levels are lower than for an unmanaged transfer,

but remain higher than for Markov prediction. However, this cost is almost entirely borne by the

supernode, which is selected because of its willingness to handle bulk data. The only overheads

that the other proxies experience are due to control notifications and the blocks that are already

en route when the consumer moves away. If the supernode’s downloads are removed from the

calculation, then the total overheads for any transfer it is involved with drop to nearly zero,

which is far less than any of the alternatives. This remains true regardless of the consumer’s

movement, even for the worst-case migrating pattern.
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Figure 7.12: Impact of the supernode MDP on the average consumer download speed, for 500KB/s
downlinks.
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Table 7.3: Supporting variables for Equation 7.1.

Variable Explanation

SNm Message data downloaded by the supernode during consumer disconnection
SNu Supernode uplink speed
Su Source proxy uplink speed
Cd Current proxy downlink speed
CSN

m Message data downloaded from the supernode by the current proxy
tc Consumer connection time at the current proxy
td Consumer disconnection time

The amount of data that accumulates at the supernode is a function of the consumer

disconnection time. When this disconnection time is low, the proxy’s fast downlink allows

the consumer to retrieve all the data that the source previously uploaded to the supernode in

its absence. A predict-on-disconnection scenario produces similar results under these circum-

stances, where the predicted proxy builds a cache of pieces in the consumers absence, and the

consumer downloads them at local speed upon connection. The initial burst of speed is faster

when the data is delivered in advance, but the average download speed is the same once all the

previously uploaded data is exhausted, and Figure 7.12 confirms this.

Once the disconnection time rises beyond a critical point, which is 240 seconds in

this experiment, the consumer is unable to retrieve all the cached data from the supernode. The

proxy’s downlink remains saturated for the duration of the transfer, which restricts the con-

sumer download speed to that level regardless of the amount of data that accumulated at the

supernode. By contrast, consumers with real-world movement patterns that are either unman-

aged or managed with accurate prediction can benefit from larger caches of local data when

they connect, and so their speeds continue to climb.

Finding a general formula for this turning point will reveal what the most favourable

conditions are for the supernode MDP. Table 7.3 presents a summary of the variables that the

following equations use. The key to finding this turning point is the amount of data CSN
m that

the consumer’s current proxy is able to download from the supernode, and thus forward to the

consumer, while the consumer is connected. The Internet links at the proxies are asymmetric,

with their downlink greater than their uplink, so it is assumed that Su ≤ Cd ≤ SNu. If it is

assumed that there is always an adequate supply of data at the source proxy, then the current

proxy will download some data from the source proxy, and all remaining downlink capacity

will be filled by the supernode as long as its supply of data remains. Therefore the first limiting
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condition on CSN
m is that the proxy can only download as much data from the supernode as the

remaining capacity allows:

CSN
m ≤ tc(Cd − Su)

The second limiting condition is that the proxy can only download as much data from the

supernode as the supernode accumulated during the previous consumer disconnection period:

CSN
m ≤ SNm = tdSu

The combined limit on the amount of data that the proxy can download from the supernode is:

CSN
m ≤ min (tc(Cd − Su), SNm)

The proxy’s downlink remains saturated for the duration of the consumer connection when the

available bandwidth is not enough to exhaust all of the data stored at the supernode:

CSN
m ≤ tc(Cd − Su) ≤ SNm

Therefore, the supernode MDP allows the proxy to make full use of its downlink when the

following holds true for the duration of a message transfer:

tc(Cd − Su) ≤ SNm = tdSu

Cd ≤ Su

(
1 +

td
tc

)
(7.1)

This simplifies matters by not taking into account that the network properties and client con-

nection patterns can vary over the course of the transfer. However, all of these properties are

fixed in the test network. For this experiment, the inequality of Equation 7.1 holds true while

td ≤ 240 seconds, which corresponds exactly to the beginning of the plateau in Figure 7.12.

The supernode MDP aims to maximise the amount of data that a consumer can down-

load while it is connected, by allowing it to download at a rate that is limited by the downlink of

its current proxy, and not the uplink speeds of the other overlay peers. Equation 7.1 shows that

once the downlink is saturated, it is not possible to improve the download speed any further

by increasing the consumer disconnection time or increasing the source proxy uplink speed.

However, an increase in proxy downlink speed can potentially yield improvements. In the

case of these experiments, a higher downlink speed should allow consumer download speeds
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Figure 7.14: Impact of the supernode MDP on the average consumer download speed, for 1MB/s
downlinks.

to increase as the disconnection time does, to flatten out at a higher value. A consumer that

is unmanaged or managed by a predict-on-disconnection MDP will not experience the same

improvements, because all of its downloads remain limited by the peer uplink speeds.

The next experiment repeated most of the conditions from the previous one, to test

the effect of increasing the proxy downlink speed. Every proxy retained the 100KB/s uplink,

but the downlink increased to 1MB/s and the RWS was raised to 12 accordingly. Equation 7.1

predicts that the supernode MDP should cause the consumer download speed to plateau at a dis-

connection time of 540 seconds, and Figure 7.14 confirms this. The supernode consumers ex-

perienced a significant jump in consumer download speeds at the longer disconnection periods

when compared to Figure 7.12, rising at a rate equal to the highly accurate Markov prediction.

They also outperformed the unmanaged real-world consumer when disconnection times were

between 3 and 15 minutes. Even after the speeds levelled out, the average supernode and un-

managed speeds remained close. There was no increase in performance for the non-supernode

methods, as they remained constrained by the proxy uplink speeds. Thus when proxy down-

link speeds are significantly faster than uplink speeds, the supernode MDP becomes a viable

alternative to a predict-on-disconnection MDP.

These results show that the supernode MDP does have a role. It is a low risk op-

tion, as all consumer movement patterns produce very similar consumer download speeds, and
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overheads are always minimised for the non-supernode proxies. The low overheads may be

particularly important if a consumer’s path is hard to predict, and a predict-on-disconnection

MDP would generate large amounts of excess traffic through poor proxy selection. As with an

accurate predict-on-disconnection MDP, its performance improves when disconnection times

are longer, because this increases the amount of stored data that is available for the consumer to

download at high speed when it connects. Performance of the supernode MDP improves signif-

icantly as the downlink speeds increase in relation to uplink speeds, and can equal the Markov

prediction-on-disconnection MDP, regardless of how predictable the client movement is.

7.4 Summary

Chapter 5 shows that Walkabout makes Internet transfers practical when they involve

mobile producers or mobile consumers with repetitive movements. This chapter demonstrates

that the use of client managers to organise pre-emptive message delivery improves consumer

download speeds, and thus effective transfer speeds, when consumers are mobile. This includes

the scenario where a highly mobile consumer visits many different locations, which was im-

practical under the original transfer model. These findings complete Contribution C3 from

Section 1.4.

A client manager using the predict-on-disconnection MDP and a perfect prediction

algorithm can deliver high download speeds to even the most mobile consumers, equalling

those that an unmanaged consumer with repetitive movements experiences. Therefore, an al-

gorithm that delivers perfect prediction makes all Walkabout transfers practical, regardless of

the consumer movement patterns. A Markov prediction algorithm provides high speeds as a

result of its accuracy, but it is only able to predict future movements based upon past move-

ments, making it unsuitable for a migrating consumer. Users can deploy their own specialised

prediction algorithms if a general approach does not produce the desired performance levels,

and Chapter 8 explores some possibilities. Even low accuracy prediction can deliver higher

speeds than are possible for an unmanaged transfer.

If movement is completely unpredictable, or overheads must be kept to a minimum,

then the supernode MDP is an appropriate alternative. It provides consistent consumer down-

load speeds regardless of the consumer’s movement pattern, and speeds are close to those for

accurate prediction-based methods when the proxy downlink bandwidth is high in comparison

to the uplink bandwidth of the other overlay peers. Overheads for the supernode never exceed

100%, and the overheads at the other overlay proxies are negligible.
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The results in this chapter prove that Walkabout can make it practical to deliver large

messages to any mobile consumer, regardless of its movement patterns. In combination with

the results from Chapter 5, these results show that Walkabout makes transfers involving any

mobile devices practical, and thus satisfies the aims identified in the introduction to this thesis.
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Chapter 8

Conclusions and future directions

This thesis presented the design for Walkabout, an architecture that uses local proxies

to provide asynchronous Internet messaging support to mobile devices. The use of local proxies

was shown to enable rapid local uploads and downloads, which make it practical for mobile

devices to send and receive arbitrarily large messages, regardless of their mobility patterns.

End-to-end transfer speeds were found to be high, reaching levels that were close or equal to

those achieved between fixed devices in many situations (and even exceeding them in some).

Walkabout enables a wide variety of mobile applications, that were previously ren-

dered impractical by the difficulties associated with transferring large data objects over the In-

ternet. Chapter 2 presented some examples of these, including applications for media backup,

distribution, retrieval and messaging. The architecture is easy to deploy on existing networks

using common hardware, and many existing devices have the necessary wireless networking

capabilities to access it.

8.1 Contributions

This thesis has advanced the state of the art in the field of mobile networking by way

of three major contributions.

Contribution C1 presents the literature that is related to this work. Chapter 3 ex-

plores the strengths and weaknesses of existing research when applied to Internet data transfers

involving mobile devices. It covers such areas as service discovery, the use of proxies, peer-

to-peer overlay networks, and how to locate, maintain communication with, and predict the

movement patterns of mobile devices. The review shows that Walkabout shares some similari-

ties with existing research such as Infostations and Haggle, but that it is unique as a complete

system.
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Contribution C2 covers the core design of the Walkabout architecture. Chapter 4

described the architecture, which provides a store-and-forward message delivery service that

enables mobile devices to take advantage of local networking speeds during their potentially

limited periods of connectivity. Chapter 5 tested this architecture through simulation, found

that it scales well to large files and multiple consumers, and that it makes mobile data transfers

practical in some situations. A mobile producer is always able to upload rapidly at local speed,

and the cache of data that accumulates at the proxy enables the Internet transfer to continue at

high speed, even if the producer disconnects. If the ratio of connection to disconnection time

is high enough, the effective transfer speeds are equal to those generated by a fixed producer.

If the producer is moving between networks rapidly, the creation of multiple data caches may

increase the effective uplink bandwidth to the point where transfer speeds actually exceed what

is possible for a fixed producer. Consumer download speeds are limited by the supply of data

that the proxy accumulates. If the consumer is constantly reconnecting to the same network,

the proxy accumulates data in its absence, and the consumer is able to download the stored data

at local speed upon reconnection. This too can generate high effective transfer speeds that are

unaffected by mobility. Speeds are lower, though still good, if a consumer only visits a small

number of networks in a repetitive movement pattern.

Contribution C3 covers the client manager extension to Walkabout. Chapter 6 de-

scribed this extension, where a host coordinates the data retrieval actions of the proxies in an

effort to pre-emptively deliver messages to the best location before a consumer connects. Chap-

ter 7 simulated the performance of the client manager, which depends upon the configuration

of a message distribution policy (MDP) and prediction algorithm. The results showed that the

addition of a client manager makes mobile data transfers practical in the remaining situations

where the original design did not. A predict-on-disconnection MDP with a perfect prediction

algorithm provides any mobile consumer with high download speeds upon connection, gen-

erating end-to-end transfer speeds that are close to what a fixed consumer would experience.

The Markov prediction algorithm was shown to be a practical option, with enough accuracy to

deliver high speeds for consumers with movement based upon real-world traces. A supernode

MDP offers moderate transfer speeds that are consistent regardless of the consumer’s move-

ment patterns, approaching those of accurate predict-on-disconnection distribution as proxy

downlink bandwidth increases in comparison to uplink bandwidth.

Existing methods for transferring large amounts of data across the Internet are im-

practical when mobile devices are involved. The central hypothesis of this research is that asyn-

chronous messaging supported by local proxies can make these transfers practical. Together,
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the contributions made by this thesis show that the Walkabout architecture uses this approach to

make Internet transfers practical for mobile devices, and therefore that the hypothesis is valid.

8.2 Future directions

While this thesis covers the complete design and evaluation of Walkabout, it still

leaves scope for enhancements. This section presents some of the directions that future re-

search could take, covering proxy message scheduling, support for streaming media, media

transcoding, and alternative client manager configurations. Where appropriate, it also offers a

basic outline of how these changes could be incorporated in to the existing architecture. The

section concludes by briefly summarising the remaining future research possibilities that were

suggested within this thesis.

8.2.1 Message scheduling

As described in Chapter 4, the standard action that a proxy takes when it receives

a new header is to join (or create) the message overlay, then exchange blocks with its peers

until all consumers have the message. This can become unmanageable for a proxy in a busy

environment, such as an office or a public access point. If the proxy receives a high volume of

headers, and thus participates in a large number of overlays simultaneously, each transfer will

only have access to a small share of the available bandwidth. A better approach is for the proxy

to concentrate on maximising the performance of just a few transfers at a time. Therefore,

an avenue for future research is to institute message scheduling on proxies and evaluate the

performance of different scheduling algorithms.

A proxy running a message scheduler would not join the overlay as soon as it receives

a new header, but would instead add that header to a priority queue. The scheduling algorithm

would determine the queuing priority, and dictate when the proxy should take a header from

the front of the queue to join an overlay, or leave an overlay and return the header to the end

of the queue. The queuing priority might be based upon the order that headers are received in,

who the message is addressed to or sent by, or the size of the message payload.

The simplest scheduling approach is for the proxy to join a small number of overlays

and focus solely on them until the message delivery is complete. This would include some

where the proxy is both downloading and uploading blocks, and others that are only uploads.

Each time a message transfer completes, the scheduler could take the next header from the

front of the queue and join the new overlay. Alternatively, the scheduler might only allocate a
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limited amount of time to each overlay, so that the proxy leaves the overlay and reintroduces

the header to the queue if the period is not long enough to complete the transfer.

Any future research in this area would need to determine the circumstances under

which different scheduling algorithms and parameters are effective. The different approaches

should aim to give all local users equal access to the service, while considering the effect that

fluctuating overlay membership could have on global message delivery performance.

8.2.2 Support for streaming media

Message delivery is atomic from the perspective of Walkabout client applications. A

consumer downloads any pieces that are available at the proxies it connects to, but only makes

the message available to local applications once it has all of the pieces. It does not matter

what order the consumer downloads these pieces in, so the proxies are able to select blocks,

and thus pieces, from their peers in the order that minimises total message delivery time. A

consequence is that Walkabout does not support streaming media, where the consumer plays

the contents of a media message as pieces arrive, rather than waiting for the entire message.

A possible research direction is therefore to adapt Walkabout’s message delivery so it does

support streaming media.

There are two types of streaming media to consider. A producer might stream the

contents of an existing media file, and this should only require minor modifications to Walk-

about’s delivery mechanisms. Streaming a continuous and potentially infinite stream of data,

such as live television or radio, would require more significant changes.

It may be possible to support the streaming of stored media within regular Walkabout

messages by making two changes made to the delivery process. The first is that proxies need

to modify their block selection algorithm, so that they retrieve blocks in sequential piece order

from their overlay peers. This change in policy could be triggered by the producer flagging that

delivery is streaming within the message header. The other change is that the consumer needs

to make pieces available to the media player application as they arrive, rather than waiting for

the entire message. If the application is able to build a big enough buffer of pieces each time

the device is connected, it may be possible to present the user with uninterrupted playback.

The sequential block selection algorithm is likely to provide slower overlay transfer

speeds than the original, but this does not present a major problem. While a consumer is con-

nected, the speed only needs to be fast enough to match the playback bitrate. The consumer

can use any additional bandwidth to buffer pieces for playback during disconnection. Main-

taining uninterrupted playback may also require support from the proxy’s scheduling algorithm,
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to provide a minimum quality-of-service level by prioritising streaming messages over those

more tolerant of delay. Future research could determine the best way to provide this stream-

ing support, evaluate how much difference the modified block selection algorithm makes to

transfer speeds in comparison to non-streaming transfers, and find what conditions allow for

uninterrupted playback.

Adapting Walkabout to support continuous streaming content would be more diffi-

cult. While it could potentially be achieved by sending a series of finite streaming messages, or

allowing the creation of overlays without prior knowledge of the entire message, there would

be little benefit in adding this support. Walkabout is aimed at devices that have limited, inter-

mittent connectivity, which are able to carry out bursts of asynchronous communication while

connected. Continuous streaming media is a synchronous application, because applications

consume data at the same rate it is created and there is no way to build a buffer without in-

curring a significant playback delay. If a consumer device’s connection patterns are consistent

enough for it to play a continuous stream, then it does not require the support of Walkabout

and could easily use some other protocol.

8.2.3 Media transcoding

When a mobile device downloads a media file over Walkabout, it may find that it is

unable to experience the full level of detail present within the original file. This would typically

be because its screen resolution is lower than that of a video or image, but could also be related

to other factors like media bitrate, colour depth, or encoding format. A less detailed version

of the file would be sufficient for the device, and would probably take less time to transfer

across the Internet. Section 3.4 showed how proxies have been used to transcode media and

improve delivery times to mobile devices, and this is something that may be worth introducing

to Walkabout in these situations.

The Internet is the main bottleneck in a Walkabout transfer, so either the producer or

the proxy that it uploads its pieces to should be responsible for adapting the media. The simplest

option is for the producer to do so, but shifting the task to the proxy does have advantages. If

the producer is a mobile device, then the proxy is probably more capable of carrying out the

intensive computations associated with transcoding. The other advantage is that the producer

does not need to have any knowledge of the capabilities of the consumer, or indeed that any

transcoding is being performed. It can simply upload the file as per normal, and let the proxy

handle the rest.
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If the proxy is responsible for transcoding, it can determine the best format through

communication with a user’s identity manager. An identity manager normally forwards mes-

sage headers to the appropriate consumers transparently. If the message contains media and

the recipient is a limited device, the identity manager could instead reply to the proxy, to

request that it transforms the media to a new resolution or format before delivery proceeds. If

the consumer does not have an identity manager, it could send its own transcode request back

to the source proxy upon receipt of the message header.

Transcoding a media message on the proxy has several potential issues. A proxy

initiating a regular Walkabout transfer can create the overlay and contact the consumers as

soon as it receives the header from the producer. However, a proxy that is going to transcode a

message needs to wait until it has all the pieces and has completed the transformation before the

delivery can start. This could lead to a significant transfer delay, even if the resultant message is

smaller than the original. A transcoded message will have a different header to the original and

thus require a separate delivery overlay, which will affect the efficiency of a transfer to multiple

consumers, particularly if each one requests a different format. There is also the problem that

if the producer is moving, a single proxy may not receive all of the pieces, and so one of them

would need to download the message in full from its peers before the transformation can occur.

Even with these problems, transcoding could deliver potential speed benefits. If the

message is smaller, it will take less time to transfer across the Internet and forward to the con-

sumer. The speed gains may be enough to offset the time lost during the initial transformation,

yet the output on the device may be indistinguishable from what the original file would yield.

8.2.4 Client manager modules

Chapter 7 showed that use of a client manager to coordinate pre-emptive delivery

can lead to high transfer speeds for mobile consumers. How high these speeds are depends

upon the MDP and prediction algorithm that the client manager is using. One area of potential

research is to produce new MDPs using different prediction algorithms, and evaluate how they

can help to improve transfer speeds in particular situations.

The predict-on-disconnection MDP tested in Chapter 7 has the potential to generate

high transfer speeds to mobile consumers, but the actual performance is governed by how ac-

curate the prediction algorithm is. Markov prediction analyses a device’s historical movement

sequences and was found to be effective when consumers have repetitive movement patterns.

It does not work well if their movements do not possess any underlying patterns, and it is

unable to determine when an otherwise predictable consumer is going to make a movement
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that is different to their regular patterns. Therefore Walkabout could benefit from prediction

algorithms that use other information in addition to or in place of movement history analysis.

Cellular networking could help to improve prediction in various ways. Knowledge

of mobile phone cell location could provide the prediction algorithm with a coarse-grained

tracking mechanism, or the client could use the cellular network to send regular GPS coordi-

nate updates to the client manager. Direct user input to inform the system of their movement

plans could yield great improvements, particularly if they are heading to a location that is not

part of their regular patterns. This would quickly become annoying for the user if they had

to provide input constantly, but it could provide valuable improvements in otherwise unpre-

dictable scenarios if used sparingly. Calendar integration could also be a less intrusive way

to get direct user input on their likely movements. If multiple context sources are available,

then a user modelling service could consider them all, resolve any conflicting information, and

provide the most likely location to the MDP.

8.2.5 Other possibilities

The following are some remaining possibilities for future research that were raised

during the course of this thesis:

• The formulation and evaluation of different proxy cache management policies (Sec-

tion 4.4).

• Creating a framework for the development of trust relationships between proxies (Sec-

tion 4.7).

• Coordinating block downloads between peers, in order to reduce the stress on the source

peer and therefore improve overall transfer speeds (Section 5.2.2).

• Evaluating the improvements in transfer speeds that could result from a producer repeat-

edly uploading pieces of a message to the different proxies it visits (Section 5.3.3).
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