4,865 research outputs found

    Community detection and stochastic block models: recent developments

    Full text link
    The stochastic block model (SBM) is a random graph model with planted clusters. It is widely employed as a canonical model to study clustering and community detection, and provides generally a fertile ground to study the statistical and computational tradeoffs that arise in network and data sciences. This note surveys the recent developments that establish the fundamental limits for community detection in the SBM, both with respect to information-theoretic and computational thresholds, and for various recovery requirements such as exact, partial and weak recovery (a.k.a., detection). The main results discussed are the phase transitions for exact recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at the Kesten-Stigum threshold, the optimal distortion-SNR tradeoff for partial recovery, the learning of the SBM parameters and the gap between information-theoretic and computational thresholds. The note also covers some of the algorithms developed in the quest of achieving the limits, in particular two-round algorithms via graph-splitting, semi-definite programming, linearized belief propagation, classical and nonbacktracking spectral methods. A few open problems are also discussed

    Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization

    Full text link
    We study the problem of detecting a structured, low-rank signal matrix corrupted with additive Gaussian noise. This includes clustering in a Gaussian mixture model, sparse PCA, and submatrix localization. Each of these problems is conjectured to exhibit a sharp information-theoretic threshold, below which the signal is too weak for any algorithm to detect. We derive upper and lower bounds on these thresholds by applying the first and second moment methods to the likelihood ratio between these "planted models" and null models where the signal matrix is zero. Our bounds differ by at most a factor of root two when the rank is large (in the clustering and submatrix localization problems, when the number of clusters or blocks is large) or the signal matrix is very sparse. Moreover, our upper bounds show that for each of these problems there is a significant regime where reliable detection is information- theoretically possible but where known algorithms such as PCA fail completely, since the spectrum of the observed matrix is uninformative. This regime is analogous to the conjectured 'hard but detectable' regime for community detection in sparse graphs.Comment: For sparse PCA and submatrix localization, we determine the information-theoretic threshold exactly in the limit where the number of blocks is large or the signal matrix is very sparse based on a conditional second moment method, closing the factor of root two gap in the first versio

    Projected Power Iteration for Network Alignment

    Full text link
    The network alignment problem asks for the best correspondence between two given graphs, so that the largest possible number of edges are matched. This problem appears in many scientific problems (like the study of protein-protein interactions) and it is very closely related to the quadratic assignment problem which has graph isomorphism, traveling salesman and minimum bisection problems as particular cases. The graph matching problem is NP-hard in general. However, under some restrictive models for the graphs, algorithms can approximate the alignment efficiently. In that spirit the recent work by Feizi and collaborators introduce EigenAlign, a fast spectral method with convergence guarantees for Erd\H{o}s-Reny\'i graphs. In this work we propose the algorithm Projected Power Alignment, which is a projected power iteration version of EigenAlign. We numerically show it improves the recovery rates of EigenAlign and we describe the theory that may be used to provide performance guarantees for Projected Power Alignment.Comment: 8 page

    A semidefinite program for unbalanced multisection in the stochastic block model

    Full text link
    We propose a semidefinite programming (SDP) algorithm for community detection in the stochastic block model, a popular model for networks with latent community structure. We prove that our algorithm achieves exact recovery of the latent communities, up to the information-theoretic limits determined by Abbe and Sandon (2015). Our result extends prior SDP approaches by allowing for many communities of different sizes. By virtue of a semidefinite approach, our algorithms succeed against a semirandom variant of the stochastic block model, guaranteeing a form of robustness and generalization. We further explore how semirandom models can lend insight into both the strengths and limitations of SDPs in this setting.Comment: 29 page
    • …
    corecore