810 research outputs found

    Quantum projection filter for a highly nonlinear model in cavity QED

    Get PDF
    Both in classical and quantum stochastic control theory a major role is played by the filtering equation, which recursively updates the information state of the system under observation. Unfortunately, the theory is plagued by infinite-dimensionality of the information state which severely limits its practical applicability, except in a few select cases (e.g. the linear Gaussian case.) One solution proposed in classical filtering theory is that of the projection filter. In this scheme, the filter is constrained to evolve in a finite-dimensional family of densities through orthogonal projection on the tangent space with respect to the Fisher metric. Here we apply this approach to the simple but highly nonlinear quantum model of optical phase bistability of a stongly coupled two-level atom in an optical cavity. We observe near-optimal performance of the quantum projection filter, demonstrating the utility of such an approach.Comment: 19 pages, 6 figures. A version with high quality images can be found at http://minty.caltech.edu/papers.ph

    Signal Reconstruction via H-infinity Sampled-Data Control Theory: Beyond the Shannon Paradigm

    Get PDF
    This paper presents a new method for signal reconstruction by leveraging sampled-data control theory. We formulate the signal reconstruction problem in terms of an analog performance optimization problem using a stable discrete-time filter. The proposed H-infinity performance criterion naturally takes intersample behavior into account, reflecting the energy distributions of the signal. We present methods for computing optimal solutions which are guaranteed to be stable and causal. Detailed comparisons to alternative methods are provided. We discuss some applications in sound and image reconstruction

    Inference of the genetic network regulating lateral root initiation in Arabidopsis thaliana

    Get PDF
    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in Systems Biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyse two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants to infer their regulatory network. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale-free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation

    Rate-distortion performance for joint source and channel coding of images

    Get PDF
    Caption title.Includes bibliographical references (p. 31-32).Supported by the German Educational Exchange Service (DAAD) as part of the HSP II-program, and in part by ARPA. F30602-92-C-0030 Supported by the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology. DAAH04-95-1-0103Michael J. Ruf, James W. Modestino

    New steerable pyramid steganography algorithm resistant to the Fisher Linear Discriminant steganalysis

    Get PDF
    This paper describes a new steganography algorithm based on a steerable pyramid transform of a digital image and the steganalysis of the existence of secret messages hidden by this new method. The data embedding process uses the elements of a Lee and Chen steganography algorithm which is adapted to the steerable pyramid transform domain. This article describes the Fisher Linear Disriminant (FLD) analysis and its steganalysis application, too. The main part of the paper is the description of the conducted research and the results of FLD steganalysis of stegoimages produced by the new steganography algorithm
    corecore