5 research outputs found

    Using Artificial Intelligence and Big Data-Based Documents to Optimize Medical Coding

    Get PDF
    Clinical information systems (CISs) in some hospitals streamline the data management from data warehouses. These warehouses contain heterogeneous information from all medical specialties that offer patient care services. It is increasingly difficult to manage large volumes of data in a specific clinical context such as quality coding of medical services. The document-based not only SQL (NoSQL) model can provide an accessible, extensive, and robust coding data management framework while maintaining certain flexibility. This paper focuses on the design and implementation of a big data-coding warehouse, and it also defines the rules to convert a conceptual model of coding into a document-oriented logical model. Using that model, we implemented and analyzed a big data-coding warehouse via the MongoDB database and evaluated it using data research mono- and multi-criteria and then calculated the precision of our model

    BiOSS: A system for biomedical ontology selection

    Get PDF
    In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service.Instituto de Salud Carlos III; FIS-PI10/02180Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; CN2012/217Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; CN2011/034Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; CN2012/211Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; ref. 209RT036

    Information quality measurement of medical encoding support based on usability

    No full text
    International audienceMedical encoding support systems for diagnoses and medical procedures are an emerging technology that begins to play a key role in billing, reimbursement, and health policies decisions. A significant problem to exploit these systems is how to measure the appropriateness of any automatically generated list of codes, in terms of fitness for use, i.e. their quality. Until now, only information retrieval performance measurements have been applied to estimate the accuracy of codes lists as quality indicator. Such measurements do not give the value of codes lists for practical medical encoding, and cannot be used to globally compare the quality of multiple codes lists. This paper defines and validates a new encoding information quality measure that addresses the problem of measuring medical codes lists quality. It is based on a usability study of how expert coders and physicians apply computer-assisted medical encoding. The proposed measure, named ADN, evaluates codes Accuracy, Dispersion and Noise, and is adapted to the variable length and content of generated codes lists, coping with limitations of previous measures. According to the ADN measure, the information quality of a codes list is fully represented by a single point, within a suitably constrained feature space. Using one scheme, our approach is reliable to measure and compare the information quality of hundreds of codes lists, showing their practical value for medical encoding. Its pertinence is demonstrated by simulation and application to real data corresponding to 502 inpatient stays in four clinic departments. Results are compared to the consensus of three expert coders who also coded this anonymized database of discharge summaries, and to five information retrieval measures. Information quality assessment applying the ADN measure showed the degree of encoding-support system variability from one clinic department to another, providing a global evaluation of quality measurement trends

    Information quality measurement of medical encoding support based on usability

    No full text
    corecore