110,315 research outputs found

    Accounting for Redundancy when Integrating Gene Interaction Databases

    Get PDF
    During the last years gene interaction networks are increasingly being used for the assessment and interpretation of biological measurements. Knowledge of the interaction partners of an unknown protein allows scientists to understand the complex relationships between genetic products, helps to reveal unknown biological functions and pathways, and get a more detailed picture of an organism's complexity. Being able to measure all protein interactions under all relevant conditions is virtually impossible. Hence, computational methods integrating different datasets for predicting gene interactions are needed. However, when integrating different sources one has to account for the fact that some parts of the information may be redundant, which may lead to an overestimation of the true likelihood of an interaction. Our method integrates information derived from three different databases (Bioverse, HiMAP and STRING) for predicting human gene interactions. A Bayesian approach was implemented in order to integrate the different data sources on a common quantitative scale. An important assumption of the Bayesian integration is independence of the input data (features). Our study shows that the conditional dependency cannot be ignored when combining gene interaction databases that rely on partially overlapping input data. In addition, we show how the correlation structure between the databases can be detected and we propose a linear model to correct for this bias. Benchmarking the results against two independent reference data sets shows that the integrated model outperforms the individual datasets. Our method provides an intuitive strategy for weighting the different features while accounting for their conditional dependencies

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    ProLanGO: Protein Function Prediction Using Neural~Machine Translation Based on a Recurrent Neural Network

    Full text link
    With the development of next generation sequencing techniques, it is fast and cheap to determine protein sequences but relatively slow and expensive to extract useful information from protein sequences because of limitations of traditional biological experimental techniques. Protein function prediction has been a long standing challenge to fill the gap between the huge amount of protein sequences and the known function. In this paper, we propose a novel method to convert the protein function problem into a language translation problem by the new proposed protein sequence language "ProLan" to the protein function language "GOLan", and build a neural machine translation model based on recurrent neural networks to translate "ProLan" language to "GOLan" language. We blindly tested our method by attending the latest third Critical Assessment of Function Annotation (CAFA 3) in 2016, and also evaluate the performance of our methods on selected proteins whose function was released after CAFA competition. The good performance on the training and testing datasets demonstrates that our new proposed method is a promising direction for protein function prediction. In summary, we first time propose a method which converts the protein function prediction problem to a language translation problem and applies a neural machine translation model for protein function prediction.Comment: 13 pages, 5 figure

    MODBASE, a database of annotated comparative protein structure models and associated resources.

    Get PDF
    MODBASE (http://salilab.org/modbase) is a database of annotated comparative protein structure models. The models are calculated by MODPIPE, an automated modeling pipeline that relies primarily on MODELLER for fold assignment, sequence-structure alignment, model building and model assessment (http:/salilab.org/modeller). MODBASE currently contains 5,152,695 reliable models for domains in 1,593,209 unique protein sequences; only models based on statistically significant alignments and/or models assessed to have the correct fold are included. MODBASE also allows users to calculate comparative models on demand, through an interface to the MODWEB modeling server (http://salilab.org/modweb). Other resources integrated with MODBASE include databases of multiple protein structure alignments (DBAli), structurally defined ligand binding sites (LIGBASE), predicted ligand binding sites (AnnoLyze), structurally defined binary domain interfaces (PIBASE) and annotated single nucleotide polymorphisms and somatic mutations found in human proteins (LS-SNP, LS-Mut). MODBASE models are also available through the Protein Model Portal (http://www.proteinmodelportal.org/)

    Prediction of protein-protein interactions using one-class classification methods and integrating diverse data

    Get PDF
    This research addresses the problem of prediction of protein-protein interactions (PPI) when integrating diverse kinds of biological information. This task has been commonly viewed as a binary classification problem (whether any two proteins do or do not interact) and several different machine learning techniques have been employed to solve this task. However the nature of the data creates two major problems which can affect results. These are firstly imbalanced class problems due to the number of positive examples (pairs of proteins which really interact) being much smaller than the number of negative ones. Secondly the selection of negative examples can be based on some unreliable assumptions which could introduce some bias in the classification results. Here we propose the use of one-class classification (OCC) methods to deal with the task of prediction of PPI. OCC methods utilise examples of just one class to generate a predictive model which consequently is independent of the kind of negative examples selected; additionally these approaches are known to cope with imbalanced class problems. We have designed and carried out a performance evaluation study of several OCC methods for this task, and have found that the Parzen density estimation approach outperforms the rest. We also undertook a comparative performance evaluation between the Parzen OCC method and several conventional learning techniques, considering different scenarios, for example varying the number of negative examples used for training purposes. We found that the Parzen OCC method in general performs competitively with traditional approaches and in many situations outperforms them. Finally we evaluated the ability of the Parzen OCC approach to predict new potential PPI targets, and validated these results by searching for biological evidence in the literature

    Predicting protein-protein interactions as a one-class classification problem

    Get PDF
    Protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been used to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. While it is easy to get a dataset of interacting protein as positive example, there is no experimentally confirmed non-interacting protein to be considered as a negative set. Therefore, in this paper we solve this problem as a one-class classification problem using One-Class SVM (OCSVM). Using only positive examples (interacting protein pairs) for training, the OCSVM achieves accuracy of 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with reliable accuracy
    corecore