290,237 research outputs found

    Impact of anisotropy and fracture density on the approximation of the effective permeability of a fractured rock mass using 2D models

    Get PDF
    Imperial Users onl

    Efficient construction of free energy profiles of breathing metal–organic frameworks using advanced molecular dynamics simulations

    Get PDF
    In order to reliably predict and understand the breathing behavior of highly flexible metal–organic frameworks from thermodynamic considerations, an accurate estimation of the free energy difference between their different metastable states is a prerequisite. Herein, a variety of free energy estimation methods are thoroughly tested for their ability to construct the free energy profile as a function of the unit cell volume of MIL-53(Al). The methods comprise free energy perturbation, thermodynamic integration, umbrella sampling, metadynamics, and variationally enhanced sampling. A series of molecular dynamics simulations have been performed in the frame of each of the five methods to describe structural transformations in flexible materials with the volume as the collective variable, which offers a unique opportunity to assess their computational efficiency. Subsequently, the most efficient method, umbrella sampling, is used to construct an accurate free energy profile at different temperatures for MIL-53(Al) from first principles at the PBE+D3(BJ) level of theory. This study yields insight into the importance of the different aspects such as entropy contributions and anharmonic contributions on the resulting free energy profile. As such, this thorough study provides unparalleled insight in the thermodynamics of the large structural deformations of flexible materials

    Computing Substrates and Life

    No full text
    Alive matter distinguishes itself from inanimate matter by actively maintaining a high degree of inhomogenous organisation. Information processing is quintessential to this capability. The present paper inquires into the degree to which the information processing aspect of living systems can be abstracted from the physical medium of its implementation. Information processing serving to sustain the complex organisation of a living system faces both the harsh reality of real-time requirements and severe constraints on energy and material that can be expended on the task. This issue is of interest for the potential scope of Artificial Life and its interaction with Synthetic Biology. It is pertinent also for information technology. With regard to the latter aspect, the use of a living cell in a robot control architecture is considered
    corecore