21,473 research outputs found

    Information Geometry of Spatially Periodic Stochastic Systems

    Get PDF
    We explore the effect of different spatially periodic, deterministic forces on the information geometry of stochastic processes. The three forces considered are f0=sin(πx)/π and f±=sin(πx)/π±sin(2πx)/2π , with f− chosen to be particularly flat (locally cubic) at the equilibrium point x=0 , and f+ particularly flat at the unstable fixed point x=1 . We numerically solve the Fokker–Planck equation with an initial condition consisting of a periodically repeated Gaussian peak centred at x=μ , with μ in the range [0,1] . The strength D of the stochastic noise is in the range 10−4 – 10−6 . We study the details of how these initial conditions evolve toward the final equilibrium solutions and elucidate the important consequences of the interplay between an initial PDF and a force. For initial positions close to the equilibrium point x=0 , the peaks largely maintain their shape while moving. In contrast, for initial positions sufficiently close to the unstable point x=1 , there is a tendency for the peak to slump in place and broaden considerably before reconstituting itself at the equilibrium point. A consequence of this is that the information length L∞ , the total number of statistically distinguishable states that the system evolves through, is smaller for initial positions closer to the unstable point than for more intermediate values. We find that L∞ as a function of initial position μ is qualitatively similar to the force, including the differences between f0=sin(πx)/π and f±=sin(πx)/π±sin(2πx)/2π , illustrating the value of information length as a useful diagnostic of the underlying force in the system

    An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning

    Full text link
    Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case of time series data that can ultimately be modelled as a spatially distributed system (e.g. a partial differential equation, PDE), but where we do not know the space in which this PDE should be formulated. Hence, even the spatial coordinates for the distributed system themselves need to be identified - to emerge from - the data mining process. We will first validate this emergent space reconstruction for time series sampled without space labels in known PDEs; this brings up the issue of observability of physical space from temporal observation data, and the transition from spatially resolved to lumped (order-parameter-based) representations by tuning the scale of the data mining kernels. We will then present actual emergent space discovery illustrations. Our illustrative examples include chimera states (states of coexisting coherent and incoherent dynamics), and chaotic as well as quasiperiodic spatiotemporal dynamics, arising in partial differential equations and/or in heterogeneous networks. We also discuss how data-driven spatial coordinates can be extracted in ways invariant to the nature of the measuring instrument. Such gauge-invariant data mining can go beyond the fusion of heterogeneous observations of the same system, to the possible matching of apparently different systems

    Spatially Adaptive Stochastic Methods for Fluid-Structure Interactions Subject to Thermal Fluctuations in Domains with Complex Geometries

    Full text link
    We develop stochastic mixed finite element methods for spatially adaptive simulations of fluid-structure interactions when subject to thermal fluctuations. To account for thermal fluctuations, we introduce a discrete fluctuation-dissipation balance condition to develop compatible stochastic driving fields for our discretization. We perform analysis that shows our condition is sufficient to ensure results consistent with statistical mechanics. We show the Gibbs-Boltzmann distribution is invariant under the stochastic dynamics of the semi-discretization. To generate efficiently the required stochastic driving fields, we develop a Gibbs sampler based on iterative methods and multigrid to generate fields with O(N)O(N) computational complexity. Our stochastic methods provide an alternative to uniform discretizations on periodic domains that rely on Fast Fourier Transforms. To demonstrate in practice our stochastic computational methods, we investigate within channel geometries having internal obstacles and no-slip walls how the mobility/diffusivity of particles depends on location. Our methods extend the applicability of fluctuating hydrodynamic approaches by allowing for spatially adaptive resolution of the mechanics and for domains that have complex geometries relevant in many applications

    Highly Canalized MinD Transfer and MinE Sequestration Explain the Origin of Robust MinCDE-Protein Dynamics

    Get PDF
    Min-protein oscillations in Escherichia coli are characterized by the remarkable robustness with which spatial patterns dynamically adapt to variations of cell geometry. Moreover, adaption, and therefore proper cell division, is independent of temperature. These observations raise fundamental questions about the mechanisms establishing robust Min oscillations, and about the role of spatial cues, as they are at odds with present models. Here, we introduce a robust model based on experimental data, consistently explaining the mechanisms underlying pole-to-pole, striped, and circular patterns, as well as the observed temperature dependence of the oscillation period. Contrary to prior conjectures, the model predicts that MinD and cardiolipin domains are not colocalized. The transient sequestration of MinE and highly canalized transfer of MinD between polar zones are the key mechanisms underlying oscillations. MinD channeling enhances midcell localization and facilitates stripe formation, revealing the potential optimization process from which robust Min-oscillations originally arose

    Drift of particles in self-similar systems and its Liouvillian interpretation

    Full text link
    We study the dynamics of classical particles in different classes of spatially extended self-similar systems, consisting of (i) a self-similar Lorentz billiard channel, (ii) a self-similar graph, and (iii) a master equation. In all three systems the particles typically drift at constant velocity and spread ballistically. These transport properties are analyzed in terms of the spectral properties of the operator evolving the probability densities. For systems (i) and (ii), we explain the drift from the properties of the Pollicott-Ruelle resonance spectrum and corresponding eigenvectorsComment: To appear in Phys. Rev.

    Landauer's erasure principle in a squeezed thermal memory

    Get PDF
    Landauer's erasure principle states that the irreversible erasure of a one-bit memory, embedded in a thermal environment, is accompanied with a work input of at least kBTln2k_{\text{B}}T\ln2. Fundamental to that principle is the assumption that the physical states representing the two possible logical states are close to thermal equilibrium. Here, we propose and theoretically analyze a minimalist mechanical model of a one-bit memory operating with squeezed thermal states. It is shown that the Landauer energy bound is exponentially lowered with increasing squeezing factor. Squeezed thermal states, which may naturally arise in digital electronic circuits operating in a pulse-driven fashion, thus can be exploited to reduce the fundamental energy costs of an erasure operation.Comment: 5 pages, 3 figure
    corecore