253,631 research outputs found

    Black hole evaporation: A paradigm

    Full text link
    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: i) resolution of the Schwarzschild singularity using quantum geometry methods; and ii) time-evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional space-time diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on space-time geometry and structure of quantum theory would be resolved.Comment: 21 pages, 4 figures, v2: new references and discussion of relation to other idea

    Information is Not Lost in the Evaporation of 2-dimensional Black Holes

    Full text link
    We analyze Hawking evaporation of the Callen-Giddings-Harvey-Strominger (CGHS) black holes from a quantum geometry perspective and show that information is not lost, primarily because the quantum space-time is sufficiently larger than the classical. Using suitable approximations to extract physics from quantum space-times we establish that: i)future null infinity of the quantum space-time is sufficiently long for the the past vacuum to evolve to a pure state in the future; ii) this state has a finite norm in the future Fock space; and iii) all the information comes out at future infinity; there are no remnants.Comment: 4 pages, 2 figure

    Sums over geometries and improvements on the mean field approximation

    Full text link
    The saddle points of a Lagrangian due to Efetov are analyzed. This Lagrangian was originally proposed as a tool for calculating systematic corrections to the Bethe approximation, a mean-field approximation which is important in statistical mechanics, glasses, coding theory, and combinatorial optimization. Detailed analysis shows that the trivial saddle point generates a sum over geometries reminiscent of dynamically triangulated quantum gravity, which suggests new possibilities to design sums over geometries for the specific purpose of obtaining improved mean field approximations to DD-dimensional theories. In the case of the Efetov theory, the dominant geometries are locally tree-like, and the sum over geometries diverges in a way that is similar to quantum gravity's divergence when all topologies are included. Expertise from the field of dynamically triangulated quantum gravity about sums over geometries may be able to remedy these defects and fulfill the Efetov theory's original promise. The other saddle points of the Efetov Lagrangian are also analyzed; the Hessian at these points is nonnormal and pseudo-Hermitian, which is unusual for bosonic theories. The standard formula for Gaussian integrals is generalized to nonnormal kernels.Comment: Accepted for publication in Physical Review D, probably in November 2007. At the reviewer's request, material was added which made the article more assertive, confident, and clear. No changes in substanc

    A Geometric Variational Approach to Bayesian Inference

    Get PDF
    We propose a novel Riemannian geometric framework for variational inference in Bayesian models based on the nonparametric Fisher-Rao metric on the manifold of probability density functions. Under the square-root density representation, the manifold can be identified with the positive orthant of the unit hypersphere in L2, and the Fisher-Rao metric reduces to the standard L2 metric. Exploiting such a Riemannian structure, we formulate the task of approximating the posterior distribution as a variational problem on the hypersphere based on the alpha-divergence. This provides a tighter lower bound on the marginal distribution when compared to, and a corresponding upper bound unavailable with, approaches based on the Kullback-Leibler divergence. We propose a novel gradient-based algorithm for the variational problem based on Frechet derivative operators motivated by the geometry of the Hilbert sphere, and examine its properties. Through simulations and real-data applications, we demonstrate the utility of the proposed geometric framework and algorithm on several Bayesian models

    An Uneventful Horizon in Two Dimensions

    Get PDF
    We investigate the possibility of firewalls in the Einstein-dilaton gravity model of CGHS. We use the results of the numerical simulation carried out by Ashtekar et al. to demonstrate that firewalls are absent and the horizon is drama free. We show that the lack of a firewall is consistent because the model does not satisfy one of the postulates of black hole complementarity. In particular, we show that the Hawking radiation is not pure, and is completely entangled with a long-lived remnant beyond the last ray.Comment: 28 pages, 4 figure
    corecore