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1 Introduction

Almost forty years after Hawking’s discovery that black holes radiate [1], our understanding

of the resulting black hole information paradox [2] remains in a state of confusion. Recent

arguments by AMPS [3] have given increased credence to the idea that the local semi-

classical approximation breaks down at the horizon, resulting in a ‘firewall’ and a failure of

the equivalence principle. (Related arguments have also been made in [4–8].) The AMPS

firewall was motivated by the inconsistency of a set of long-held assumptions about the

behaviour of black holes. These assumptions have been encapsulated as a set of postulates

for black hole complementarity [9]. The particular postulates in conflict are: i) Unitarity

of the S-matrix relating infalling matter to outgoing Hawking radiation ii) Validity of semi-

classical field theory outside of the stretched horizon, and iii) Validity of semi-classical field

theory in the infalling observer’s local reference frame, i.e. no drama. While the authors

of [3] maintain that a firewall is the most conservative solution (as defended most recently

in [10]), much debate continues as to how the postulates might otherwise be modified to

escape a contradiction [10–68].

A simplified setting in which to attempt to better understand the information paradox

and the possibility of firewalls is 1 + 1-dimensional gravity. While one does not expect

1 + 1-dimensional theories of gravity to be good models of black hole complementary in
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higher dimensions, the above postulates can be applied more broadly. If they all hold

true in two-dimensions, then by the reasoning of [3] they necessarily imply the existence

of firewalls.

We choose, in particular, to study the CGHS model [69] of dilaton-gravity with a large

number of scalar matter fields in a background where a left-moving null shell of matter

classically creates a black hole. This model (as well as other two-dimensional models)

affords important simplifications not present in higher dimensions. Firstly, the metric and

dilaton are not dynamical, but are determined in terms of the matter degrees of freedom. In

fact, solutions to the classical equations of motion can be written in closed form. Secondly,

the scalar field action is chosen such that the scalar fields only couple to the two-dimensional

metric and thus decouple into left and right moving sectors that propagate freely. The

asymptotic boundary also has more components than in higher dimensions, with both left

and right portions of future null infinity I+ and past null infinity I− (see figure 1). This

nicely separates the black hole information paradox into two separate questions [70]. The

recovery of information sent into the black hole is a question about the unitarity of evolution

of the state on I−R to I+
L . We will not address this question in this paper. Unitarity of

Hawking radiation and the existence of firewalls is a question about the evolution of the

state on I−L to I+
R . This is the question we will address here.1

In the classical CGHS black hole solution, the last ray of the black hole singularity is

at infinite affine parameter along I+
R , but at finite parameter along I−L . Thus I+

R causally

contains only a proper subset of I−L and we are left with a mixed state on I+
R . However,

the mean field analysis of [70–72] found that corrections to the Hawking radiation at late

times brought the last ray of the singularity to a finite affine parameter along I+
R (see

figure 1). This suggests that, instead, I+
R could be unitarily equivalent to I−L . A complete

understanding of the quantum evolution past the singularity would then give a pure state

on I+
R . Moreover, it was found that there is no singularity in the metric at the apparent

horizon. The smooth horizon together with purity of the state on I+
R suggest a tension

with the firewall argument.

In [70], it was argued that the purity of the state on I+
R implies that there are not

remnants in the CGHS model. By this, they meant that the state on the entirety of I+
R is not

entangled with another part of the future boundary. By contrast, earlier work [69, 73, 74]

had argued that the CGHS model does have remnants.

We elaborate on these earlier constructions to compute the entanglement entropy of

an interval of I+
R containing the majority of the Hawking radiation. We find it to be

highly entangled with the remaining state to the future of the last ray of the black hole

singularity, still on I+
R . The remaining state beyond the last ray has a relatively small,

universal (independent of the initial mass of the black hole) Bondi mass. This high-entropy,

low-energy object is exactly a remnant, as was previously found.

The large entanglement of the remnant evades the argument for firewalls because the

Hawking radiation is not in itself pure. While we expect a unitary S-matrix that evolves

1The corresponding cost of working in such a simplified model is a decreased explanatory power for

understanding higher dimensions. We comment on this in the discussion.
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the state at I−L to I+
R , the Hawking radiation is highly entangled with degrees of freedom

behind the last ray of the black hole singularity. One is, of course, free include the remaining

degrees of freedom in the definition of Hawking radiation, but what is important is the large

entanglement remaining when the Bondi mass is small. This is better called a remnant.2

Our conclusion is consistent with much early work on the CGHS model [69, 73, 74] and

with previous numerical studies of the CGHS model [77–81]. Our results are more robust

than this previous work because of our use of the mean field equations of [70–72] and of

their numerical evidence for universal properties for suitably macroscopic black holes. This

has allowed us to derive an analytical formula for the entanglement entropy of the Hawking

radiation that includes the effects of backreaction.

Work in a very similar spirit to this paper has been carried out previously by [82, 83]

in the RST model. We are able to carry out our analysis without the aid of the additional

symmetry in the RST model [77]. Likewise, we avoid concerns about the consistency of the

RST model [84]. Thus, our result is stronger evidence that remnants are a more generic

feature of 2-d dilaton gravity.

In recent work, [41], it has been suggested that there could be a firewall outside the

apparent horizon in related 2-dimensional models. We believe that there is sufficient control

over the numerical simulations outside the apparent horizon such that this conclusion is

not waranted. The arguments presented in this paper demonstrate instead how the firewall

paradox is avoided.

Moving mirror models of Hawking radiation manifestly do not have firewalls, irrespec-

tive of measurement issues raised in [85], because the state is prepared precisely to be in

the vacuum. Mirror trajectories that produce Hawking radiation always behave as some

form of remnant [86].

An outline of the paper is as follows: in section 2, we review the CGHS model and

discuss the mean field theory results of [70–72]. In section 3, we review the entanglement

entropy of an interval in a 1 + 1-dimensional CFT and give a simple formula for the

entanglement of the Hawking radiation at I+
R in the CGHS model. We also discuss the

equivalence of related calculations for the entanglement entropy of radiation from a moving

mirror. In section 4, we show that the entanglement entropy of the Hawking radiation in

the CGHS model is large and scales like the ADM mass MADM. We identify the modes

in the interval that carry the excess entanglement, as well as the degrees of freedom that

purify them across the last ray of the singularity. In section 5, we discuss the uplift of

these solutions to higher dimensions and the connections between remnants in 2D and

higher dimensions.

2 A review of the CGHS model

In this section we review the 2 dimensional dilaton-gravity model of [69]. The geometry

of this model is specified by a metric and a dilaton, given by gab and φ respectively. This

2We also emphasize — with the closely analogous case of a moving mirror — that the large entanglement

of the Hawking radiation can be purified by a state beyond the last ray that locally looks like the vacuum [75,

76]. There is not necessarily any further Hawking flux.
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Figure 1. The geometry of an evaporating black hole in the mean field approximation of the CGHS

model, as found by [70].

system closely resembles the one obtained from dimensional reduction of the s-wave sector

of 4 dimensional gravity, but differs in the form of the dilaton potential. The benefit of

studying such a model is that it is classically soluble in closed form, and is expected to

provide qualitative insights into the s-wave sector of 4 dimensional gravity. The action of

the geometric sector of this model is given by,

SG =
1

G

∫
d2x
√
ge−2φ

(
R+ 4∇aφ∇aφ+ 4κ2

)
, (2.1)

where G is the two dimensional gravitational constant and κ2 is a cosmological constant

term. This action was originally obtained as the low energy effective action for string

compactifications, where it describes the near horizon physics of extremal dilatonic black

holes [87].

Matter in this system is composed of N scalar fields, f i, whose action is,

SM = −1

2

∫
d2x
√
g ∇af i∇af i . (2.2)

Note that the dilaton is absent in this action, and thus the scalar field can be viewed as

living purely on the two dimensional spacetime given by the metric gab. This simplification

ensures that the scalar field couples to the geometry only via the constraints.

2.1 The classical solution

We will be adopting the conventions of Ashtekar et al. used in [70–72]. We will be working

in conformal gauge where the inverse metric takes the form gab = Ωηab, and so all the

metric information is encoded in Ω. We will be considering the fields as living on a fiducial
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minkowski manifold M0 with the flat metric ηab whose coordinates are z+ and z−. This

fiducial spacetime given by (M0, η) has null boundaries I±L,R, where the future(past) of

I−L,R(I+
L,R) covers all of M0. After redefining the dilaton as Φ ≡ e−2φ, and further defining

Θ ≡ Ω−1Φ, the classical equations of motion take the form,

∂+∂−Φ + κ2Θ = 0

Φ∂+∂− ln Θ = 0

∂+∂−f
i = 0 (2.3)

with the constraints,

−∂2
+Φ + ∂+Φ∂+ ln Θ =

G

2

∑
i

(∂+f
i)2

−∂2
−Φ + ∂−Φ∂− ln Θ =

G

2

∑
i

(∂−f
i)2 (2.4)

Conformal gauge still leaves unfixed the conformal subgroup of diffeomorphisms. This

is fixed by considering the solution,

Θ(z±) = eκ(z+−z−)

Φ(z±) = Θ(z±)− G

2

∑
i

∫ z+

−∞
dz′

+
eκz
′+
∫ z′+

−∞
dz′′

+
e−κz

′′+
(
∂f i+
∂z′′+

)2

(2.5)

where f i+ is the left moving part of the solution f i = f i+(z+) + f i−(z−) of the scalar field

equation. Setting f i = 0 we see that this solution describes a flat metric with a linear

dilaton; this is the so called throat limit of the extremal dilatonic black hole geometry

in [87].

As shown in [69], sending in a left moving scalar field shockwave creates a spacelike

black hole singularity at the locus where Φ = 0. Moreover, both I−L and I+
R are complete

with respect to gab, but the past of I+
R does not cover the entire spacetime, admitting a

horizon for right moving modes. Thus classically, I−L is not contained in the past of I+
R .

This is the basis of the information problem: the final state on I+
L is obtained from evolving

the state on I−L and tracing over part of the degrees of freedom that don’t make it to I+
R .

Since we are working in two dimensions, left and right movers completely decouple and we

can ask the question of unitarity for each one independently.

2.2 The mean field approximation

In [70–72], Ashtekar et al. numerically studied the CGHS black hole solution at large N ,

including the back reaction of the Hawking radiation on the geometry. In the large N ,

mean-field approach they disregard quantum fluctuations of the geometry, but not that

of matter. This approach was considered in earlier studies of both the CGHS model and

close variants thereof [69, 74, 77, 78, 88]. The quantum state chosen for the scalar field is

vacuum on I−L and a coherent state with the classical profile f0
+ on I−R , and thus 〈f̂ i+〉 = f0

+.

In keeping with matter fluctuations, the conformal anomaly [89] in two dimensions results
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in a non traceless stress tensor which sources the equations of motion. The modified

equations are,

∂+∂−Φ + κ2Θ = G〈T+−〉 ≡ N̄G~∂+∂− ln ΦΘ−1 (2.6)

Φ∂+∂− ln Θ = −G〈T+−〉 ≡ −N̄G~∂+∂− ln ΦΘ−1 (2.7)

where N̄ ≡ N/24, and where the constraints,

− ∂2
+Φ + ∂+Φ∂+ ln Θ = 12N̄G(∂+f

0
+)2

− ∂2
−Φ + ∂−Φ∂− ln Θ = 0 (2.8)

are specified on I−. The shockwave is introduced as the coherent state coming in from IR−
given by

12N̄(∂z+f
0
+)2 = MADMδ(z

+) (2.9)

where MADM is the ADM mass of the resulting Black hole.

The mean field equations can be shown to provide a quantum corrected singularity [74,

88]. After a quick manipulation of (2.6) and (2.7), we obtain the equation

κ2Θ− ∂+Φ∂−Φ

Φ
= (2N̄G~− Φ)∂+∂− ln ΦΘ−1 (2.10)

∝ (2N̄G~− Φ)Rg (2.11)

where Rg is the Ricci scalar of the metric gab = Φ−1Θηab. This implies a critical value for

the dilaton, Φcr = 2N̄G~, where either the left hand side of (2.10) vanishes or Rg diverges.

In the latter case we have a quantum singularity which occurs when the dilaton is nonzero.

While we will assume that the full quantum evolution smoothly resolves this singularity,

we believe our main conclusions will be unchanged should it be necessary to replace the

singularity with a local boundary condition at Φcr.
3

The size of an evaporating black hole can be tracked by the location of it’s apparent

horizon. Since the dilaton measures the area of the reduced 2-sphere, it can be used to

define trapped points in 2 dimensions. Throughout the evaporation, the apparent horizon

is then located at the future marginally trapped points, where ∂+Φ = 0 and ∂−Φ < 0.

Ashtekar et al. define the area on the future marginally trapped points as

aH =
1

κ2

(
Φ− 2N̄G~

)
(2.12)

The shift proportional to ~ is induced by the mean field equations as a quantum correction

to the singularity, which now occurs when Φ = 2N̄G~. This shift guarantees that aH
shrinks to zero size at the singularity.

3The boundary condition certainly will affect the evolution past the last ray, which we only speculate on,

but it will not substantially affect the evolution before the last ray. This region is affected by a boundary

condition in the linear dilaton region that is independent of the formation of the black hole. It is equivalent

to a different choice of initial state.
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Along I+
R , the mean field theory equations imply a balance equation in terms of a

quantum corrected Bondi mass and a quantum corrected Bondi flux [70]:

dMATV
Bondi

dy−
= −FATV (2.13)

where the corrected Bondi flux is given by

FATV =
N̄~G

2

[
d2y−

dz−2

(
dy−

dz−

)−2
]2

(2.14)

and the corrected Bondi mass is given by

MATV
Bondi =

dB

dy−
+ κB + N̄~G

d2y−

dz−2

(
dy−

dz−

)−2

. (2.15)

Here we have defined a new coordinate y− as the unique asymptotic time coordinate on

I+
R and take y+ = z+ such that the metric on I+

R is given by ds 2 = −(1 + Beκ(y−−y+) +

O(e−2κy+))dy− dy+ . B is likewise the subleading term in the expansion of Φ at large y+

Φ = eκ(y+−y−) +B(z−) +O(e−κy
+

) . (2.16)

For a more detailed discussion, see [72].

It is clear from the manifestly positive form of FATV that the Bondi mass uniformly

decreases along I+
R . While numerical computation showed [70] that the traditional Bondi

mass, considered in [69, 78–80, 90–92], can acquire a negative value at late times, the

corrected mass was found to remain positive.

The corrected Bondi flux is positive by definition, but this is not true of the traditional

Bondi flux. The relation between the modified Bondi flux and the traditional one is given by

FTrad = FATV + N̄~G
d

dy −

[
d 2y−

dz− 2

(
dy −

dz −

)−2
]

(2.17)

It was found [72, 93] that the mean field theory equations admit a scaling symmetry

that changes what is usually thought of as physically distinct parameters. This symmetry

is given by

Θ̃(z+, z−) = λΘ

(
z+, z− +

lnλ

κ

)
Φ̃(z+, z−) = λΦ

(
z+, z− +

lnλ

κ

)
Ñ = λN

f̃ i+(z+) = f i+(z+) (2.18)

– 7 –
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where all the new fields satisfy the mean field theory equations. This induces the following

change on the physical quantities

FATV → λFATV

MADM → λMADM

MATV
Bondi → λMATV

Bondi (2.19)

This implies that the dynamics of the geometry depends only on the invariant quantities

F ∗ = FATV/N̄

M∗ = MADM/N̄

M∗Bondi = MATV
Bondi/N̄

m∗ = M∗Bondi|Last ray (2.20)

Whether a black hole is macroscopic or not depends on how it’s physical properties

relate to the Planck scale. We adapt the conventions in [72]. There is an ambiguity in

defining the Planck mass and time in two dimensions, so we use the four dimensional

definitions instead, which are M2
Pl = ~/G4 and τ2

Pl = G4~. From dimensional reduction,

we have G = G4κ
2 and thus the Planck mass and time in two dimensional units are

M2
Pl =

~κ2

G
, and τ2

Pl =
G~
κ2

(2.21)

An invariant relation to the Planck scale is to compare the time it takes a black hole of

given ADM mass to evaporate via the non-backreacted Hawking flux, FHaw = N̄κ2~/2, to

the Planck time. Thus a black hole would be macroscopic if

MADM/F
Haw � τPl → M∗ � G~MPl (2.22)

2.3 Numerical results

The numerical simulation of [72] (see also [81]) bares a number of interesting results, some of

which had been unanticipated. We focus on a few that are of most interest to the discussion

at hand. Firstly, it was found that the dynamics was universal after a brief initial transient

period. Physical quantities, invariants under the rescaling discussed above, would match

a universal curve until the end of the evaporation process. It was found that for large

enough MADM, MATV
Bondi approaches a universal value of 0.864N̄ in Planck units. This is a

small mass, in that we expect it to evaporate in a time of order τpl. Further, there is no

‘thunderbolt’ curvature singularity along the last ray of the singularity [80]: the Ricci scalar

of the mean field theory metric is regular on the last ray and goes to zero as I+
R approached.

Further, in the mean field analysis the affine parameter along I+
R was found to be

finite on the last ray, and thus I+
R is incomplete. This, along with the finiteness of the

– 8 –
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Ricci scalar on the last ray, imply that I+
R might very well be extendible past the last ray

such that it is unitarily equivalent to I−L .

Upon close inspection of the Ricci scalar profile plots given in [72], it is clear that

the Ricci scalar diverges only at the singularity and is finite everywhere else including the

regions near the horizon. Thus firewalls are completely absent in this model. This at

first seems to be at odds with the paradox of [3], which states that an infalling observer

encounters high energy particles in the vicinity of the event horizon of a black hole. The

rest of this paper is dedicated to showing that the dynamics of this model do not satisfy

one of the postulates of black hole complementarity. The hawking radiation produced is

in a mixed state and is in fact entangled with the region beyond the last ray. We describe

this as a remnant scenario.

3 Entanglement entropy in 2D CFTs

A very useful concept for understanding the state of the late-time Hawking radiation will

be the entanglement entropy (or geometric entropy) of an interval [86, 94, 95]. This entropy

is simply the von Neumann entropy S = −TrρΣ ln ρΣ of the density matrix ρΣ for the state

having traced out all degrees of freedom localized outside an interval Σ.

For a 1 + 1-dimensional CFT, it was shown [86, 94] that the entanglement entropy of

an interval of length Σ in the vacuum state is given by

SΣ =
c+ c̄

6
ln

(
Σ
√
ε1ε2

)
, (3.1)

where εi are spatial UV cutoffs at either end and c, c̄ are the central charges. (An IR

cutoff Λ is also necessary, but here we work in the limit Σ � Λ where the entropy is

independent of Λ.)

This calculation of the entanglement entropy can easily be extended to non-vacuum

states that are related to the vacuum by a conformal transformation [76]. Because a

conformal transformation is just a change of basis that respects the division of degrees of

freedom into inside and outside the interval, the entanglement entropy will be invariant.

Thus the entropy of (Σ, ε1, ε2) in an appropriate non-vacuum state is given by

SΣ =
c+ c̄

6
ln

(
Σ̃√
ε̃1ε̃2

)
, (3.2)

where (Σ̃, ε̃1, ε̃2) are the transformed proper lengths of the interval and cutoffs in the con-

formally related vacuum.

This entropy diverges as we remove the UV cutoff at either end. What we are re-

ally interested in is the renormalized entanglement entropy, which measures the excess

entanglement relative to the vacuum:

Sren = Sbare − Svac , (3.3)

which then is given by

SΣ,ren =
c+ c̄

6
ln

(
Σ̃
√
ε1ε2

Σ
√
ε̃1ε̃2

)
. (3.4)

– 9 –
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3.1 Entanglement entropy of Hawking radiation in the CGHS model

In the case at hand, we are interested in the entanglement entropy of the right moving

modes across a region of I+
R , given in the affine coordinate y− along I+

R as
[
y−1 , y

−
2

]
.

The interval is chosen to contain the vast majority of the Hawking flux. Let the conformal

transformation that takes us to the vacuum be given by ỹ− = f(y−) along I+
R . To compute

the entanglement entropy of this region, we consider some spacelike interval bounded by[
y−1 , y

−
2

]
that is asymptotically close to I+

R so that

Σ̃

Σ
=
f(y−2 )− f(y−1 )

y−2 − y
−
1

, and
ε1ε2
ε̃1ε̃2

=
1

f ′(y−1 )f ′(y−2 )
, (3.5)

giving

SΣ,ren =
c

12
ln

(
(f(y−2 )− f(y−1 ))2

(y−2 − y
−
1 )2f ′(y−1 )f ′(y−2 )

)
. (3.6)

The transformation that takes us to the vacuum at I+
R is exactly the transformation that

makes the affine parameter along I+
R agree with that along I−L : z− = f(y−). Moreover,

for large negative y− there is no radiation emitted so that the affine parameters along I+
R

and I−L agree. Thus, if we take a long interval such that y−1 is sufficiently negative, then

we can conclude
(f(y−2 )− f(y−1 ))

(y−2 − y
−
1 )

≈ 1 and f ′(y−1 ) ≈ 1 , (3.7)

to arbitrarily high precision. We conclude that the renormalized entanglement entropy

takes the simple form

SΣ,ren = − c

12
ln
(
f ′(y−2 )

)
=

c

12
ln

(
dy−

dz−

) ∣∣∣∣
y−2

. (3.8)

The independence of the renormalized entropy from moving y−1 further to the past is

sensible. We expect the Hawking radiation to be largely independent of IR details of how

the black hole was formed. Moreover, the invariance of the entropy as we extend the interval

farther into the past implies that the excess entanglement is with degrees of freedom past

the last ray, not at large negative y−. Note, however, that there is a more complicated

dependence of the renormalized entropy on large relative changes in distances to the past

and future boundaries for certain classes of remnants. We discuss this briefly in 4.1.

When y− is sufficiently negative, the entropy also depends entirely on the change in

the cutoff on I+
R relative to I−L . Since we are considering the entropy of free right-moving

fields, the entanglement of degrees of freedom inside and outside the interval cannot change

from I+
R to I−L . In terms of modes on I−L , we find excess entanglement above the vacuum

because, by fixing the proper length of the cutoff, we are now counting the entanglement

of modes on I+
R that were above the cutoff on I−L [82]. However, when mapped forward

to I+
R , the identification of the modes carrying the excess entanglement is different. We

elaborate on this point in 4.1.

– 10 –



J
H
E
P
0
2
(
2
0
1
4
)
1
0
8

3.2 Entanglement entropy of radiation from moving mirrors

The above concepts are nicely illuminated by examining the closely analogous example of

radiation from a moving mirror in 1 + 1-dimensions [76]. We describe here an equivalence

between calculating the entanglement entropy in the CGHS model where the future and

past affine parameters are related by y− = f(z−) and doing the same computation for free

scalar fields reflecting off a mirror with trajectory given by y+ = f(y−).4 Most importantly,

moving mirrors allow us to more tangibly discuss the generic types of behaviour we can

expect after the last ray in the CGHS model.

Consider a mirror that moves in a flat background, ds 2 = −dy− dy+ , along the

trajectory y+ = f(y−). The mirror provides perfectly reflecting boundary conditions for

free scalar fields set in the vacuum along I−R . Again we are interested in the entropy of a

spacelike interval spanning the null interval
[
y−1 , y

−
2

]
. The entropy can be calculated again

by using a conformal transformation, ỹ− = f(y−), to map the configuration to the vacuum

where the mirror trajectory is given by y+ = ỹ−. As in the CGHS model considered above,

the entropy relative to the vacuum is determined by the rescaling of the interval and cutoffs

under the conformal transformation. Exactly as before, we find

SΣ,ren =
c

12
ln

(
(f(y−2 )− f(y−1 ))2

(y−2 − y
−
1 )2f ′(y−1 )f ′(y−2 )

)
. (3.9)

We are interested in a mirror trajectory such that for some Y −1 , we have f(y−) = y− for all

y− < Y −1 . Then given an interval
[
y−1 , y

−
2

]
such that y−1 � Y −1 , the entropy again reduces

as in the CGHS model

SΣ,ren = − c

12
ln
(
f ′(y−2 )

)
. (3.10)

Now suppose further that our mirror accelerates from rest until reaching a constant left-

moving velocity, ie. f ′(y−) < 1. It has a greater entanglement entropy than the vacuum.

As this entropy is unchanged when we take y− → −∞, the excess entanglement is with

modes across the boundary at y−2 . There is an interval of radiation along I+
R when the

mirror is accelerating followed by what locally appears to be the vacuum. The large amount

of entanglement between the radiating interval and the vacuum interval indicates that we

should understand this trajectory as the analog of a remnant [76].

As in the CGHS model, to better understand where the excess entanglement comes

from, we can simply map all questions of entanglement of different states on I+
R to the

entanglement of different intervals on I−R . We consider a fixed interval on I+
R for our

moving mirror and for the non-moving mirror vacuum. The two cases are illustrated in

figure 2. Because the majority of the length of the interval is contained in the region where

the mirror is not moving, the length of the interval on I−R is the same at leading order

for both the vaccuum and the moving mirror. However, the cutoff at y−2 is rescaled by a

factor of f ′(y−2 ), relative to the vacuum, when traced back to I−R . The excess entropy for

the moving mirror can thus be understood, in terms of modes on I−R , to be modes that

have been pulled down from above the UV cutoff.

4Classically there is also an equivalence of the flux produced by the two. With the corrected Bondi flux,

this is no longer the case.
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Figure 2. A set of right-moving modes on an interval of I+R can be mapped back to a set of left-

moving modes in the vacuum on I−R . The same interval on I+R , with different mirror configurations,

maps back to different length intervals on I−R . In this specific example, we see the intervals on I−R
differ, at leading order, only by the length of the cutoff at the future bondary.

Note that this example displays interesting behaviour for the renormalized entropy

when we make large changes in the location of boundaries. As we increase y−2 , at leading

order there is no change in SΣ,ren. But, as we continue to move y−2 farther along the region

of constant f ′(y−), eventually the length of portion of our interval in this region becomes

comparable to that in the region where the mirror is not moving, and our approximation

breaks down. In this regime, SΣ,ren is shrinking. If we were to further increase y−2 , we

eventually reach a regime where

Σ̃

Σ
≈ f ′(y−2 ) , and

ε1ε2
ε̃1ε̃2

≈ 1

f ′(y−2 )
, (3.11)

so that

SΣ,ren ≈
c

12
ln
(
f ′(y−2 )

)
< 0 . (3.12)

The interval is now actually even less entangled than it would be in the vacuum state. The

entropy can be completely rejuvenated now by simply moving y−1 sufficiently further to the

past. While this isn’t surprising when considering the modes on I−R , it is less intuitive in

terms of the state on I+
R . We explain this long-range behaviour in section 4.1.

As a separate example, we can also consider a mirror trajectory that, after accelerating

to a constant velocity and producing Hawking radiation, quickly decelerates back to zero

velocity in a short affine interval. We take y−2 after this deceleration, and note that length of

the corresponding interval on I−R is the same as in the vaccuum at leading order. Likewise,

the cutoffs are also now the same as in vacuum. Thus SΣ,ren ≈ 0. In this case the excess
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entanglement in the accelerating region is clearly purified by degrees of freedom that live

in a short decelerating interval. This example does not exhibit the interesting long-range

entanglement as did the previous case.

4 CGHS remnants

We now show that the renormalized entanglement entropy of the black hole radiation on

I+
R is large and scales like MADM. This excess entanglement (above the vacuum) is between

the radiation and the state in the causal future of the black hole. This remaining object

has a large entropy and a small Bondi mass; it is a remnant.

We can rewrite the mean-field corrected Bondi flux as

FATV =
N̄~G

2

[
d ln(dy−

dz− )

dy−

]2

=
N̄~G

2

[
ds(y−)

dy−

]2

. (4.1)

where we have defined the function s(y−) = ln(dy−

dz− ).

When M∗Bondi � MPl, we expect that the semi-classical description remains approxi-

mately valid and the black hole radiates at a constant rate set by the temperature T = κ~.

This is borne out by the numerical simulations [70], where it is found that, while M∗Bondi �
MPl, and after the formation of the apparent horizon, then dy−/dz− ≈ [κ(z−sing − z−)]−1

so that ds/dy− ≈ κ.

To leading order, for a large black hole, we can then write (2.13) as

dMATV
Bondi

dy−
≈ −κN̄~G

2

ds

dy−
. (4.2)

Integrating this equation from y− = −∞ to the last ray gives

2

κN̄~G
(
MADM −MATV

Bondi|Last ray

)
≈ s(y−sing)− s(−∞) . (4.3)

Because the future and past affine parameters agree at large negative y−, and recalling

that [70] found that MATV
Bondi|Last ray was universal and small as compared to our choice of

MADM, (MATV
Bondi|Last ray ≈ 0.84N̄Mp), this gives at leading order

S =
N

12
s(y−sing) ≈ 4MADM

κ~G
. (4.4)

We immediately recognize the left hand side of this equation as the renormalized entan-

glement entropy of a large segment of I+
R ending at y−sing. It contains contains almost all

of the black hole radiation. The entropy scales with MADM and so is large in comparison

to N̄Mp. A similar result was previously argued for using thermodynamic arguments (and

assuming necessary corrections to the late time Hawking flux) [90].

Note that from [70], we can extract this result from their numerical computation of

dy−/dz− for the infinite family of black holes with MADM = 8N̄Mp. One finds that

S = 13.4
N

12
. (4.5)
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This agrees well with our approximate analytic calculation, which in this case gives S = 4
3N

(the numerical simulation uses units where κ = ~ = G = 1). The fact that our analytic

result is slightly larger is expected as our approximation underestimates the rate of flux at

late times as compared to the numerical simulation.

As was argued earlier in section 3, this entropy is insensitive to our choice for the

boundary of the interval at some large negative y−. Thus, it is clear that the excess

entanglement is with the state to the future along I+
R . Moreover, the corrected Bondi mass

is small at y−sing and is always decreasing. We identify such a small mass state that has a

large entanglement entropy as a remnant. While the separation of degrees of freedom on

I+
R into Hawking radiation and a remnant is somewhat artificial, the salient point is that

the entropy is increasing as we include more of the Hawking radiation in our interval and

that the entropy is still large when the remaining Bondi mass is small.

It’s not possible to describe what the degrees of freedom that are entangled with

the Hawking radiation look like on I+
R without knowledge of dy−/dz− . Two general

possibilities were described in the analogous example of the moving mirror, where it either

continued at constant velocity, or decelerated to zero velocity. Indeed, if we had a positive

mass theorem for the modified bondi mass MATV
Bondi, then the modified flux would necessarily

have to approach zero. This is equivalent to the requirement of dy−/dz− = k.

Still assuming a positive mass theorem, we can go somewhat further: if the mirror is to

return to zero velocity in the original frame, then it must happen slowly. Thus, the remnant

is necessarily large on I+
R . To see this, consider the integrated flux after the last ray

∫ ∞
y−sing

F dy− =
κN̄~G

2

∫ ∞
y−sing

(
ds

dy−

)2

dy−

=
κN̄~G

2

∫ 0

s(y−sing)

(
dy−

ds

)−1

ds (4.6)

A positive mass theorem would give the constraint

MATV
Bondi|Last ray >

∫ ∞
y−sing

F dy− (4.7)

and, as s(y−sing) ≈ 2
κN̄~GMADM, we then must have that

∆y− =

∫ 0

s(y−sing)

(
dy−

ds

)
ds >

κN̄~G
2

s(y−sing)2

MATV
Bondi|Last ray

= s(y−sing)
MADM

MATV
Bondi|Last ray

(4.8)

As both s(y−) at the last ray and the ratio MADM/M
ATV
Bondi|Last ray are large, we must have

that the affine parameter over which the mirror returns to rest is large. We thus rule out the

class of mirror trajectories where the mirror quickly returns to rest in the original frame.

Nevertheless, it is worth noting that despite the fact that the remnant is large in terms

of the affine parameter y− on I+
R , it can still occupy a much shorter interval in terms of

z−, because at the last ray we have dy−/dz− is exponentially large (dy−/dz− ≈ eM∗).
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Figure 3. The radiated modes in the Hawking-like region are exactly the localized modes described

in [73]. They are entangled with partner modes across the last ray of black hole singularity.

4.1 Identifying entangled modes

We wish to understand what the degrees of freedom are in the remnant region that purify

the excess entanglement contained in the Hawking radiation. Recall that in the semi-

classical treatment of the CGHS model [73], we can divide I−L at the last ray into two

semi-infinite intervals. We take the last ray here to be at z− = 0. As the last ray is at

infinite affine parameter along I+
R , a basis of modes to the past of the last ray is given by

(letting κ = 1)

vω(z−) =
1√
2ω
eiω ln(−z−)Θ(−z−) (4.9)

which are positive frequency for z− near 0 (the region of Hawking radiation). A corre-

sponding choice of modes can be made to the future of the last ray

v̂ω(z−) =
1√
2ω
e−iω ln(z−)Θ(z−) (4.10)

We can also construct localized wavepackets

vjn = ε−1/2

∫ (j+1)ε

jε
dω e2πiωn/εvω (4.11)

peaked at z− = − exp(−2πn/ε) with width ε−1 in ln(−z−) and frequency ωj = jε. One

then finds [73] that in this basis, for small ε, the in-vacuum has the thermal form

|0〉in = Z−1/2
∑
njn

exp

(
− π

∑
jn

njnωj

)
|n̂jn〉|njn〉 (4.12)

where njn are occupation numbers for the localized wavepackets.
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Now in the mean field approximation, we can consider such wavepackets that are

localized in the predominant region where the radiation is Hawking-like. These modes

necessarily have the same entanglement as above and are purified by their partner modes

equidistant in z− across the last ray, ie. by the remnant. This is illustrated in figure 3.

(In terms of the affine coordinate y−, in the case equivalent to a constant velocity mirror,

y− = kz−, the Hawking radiation is contained in an interval of length ln(k) and is purified

by modes within a distance k past the last ray. In the case at hand, the length of the

purifying region scales as eM
∗
). Moreover, because we restrict our consideration to the

Hawking-like region, these modes are still the thermal radiation excited above the vacuum

at I+
R . Thus we can identify the entanglement of the excited Hawking radiation above the

vacuum at I+
R as contributing to the large entanglement entropy of the interval.

4.1.1 Long-range behaviour

While we have identified the modes that purify the Hawking radiation, this doesn’t account

for all of the excess entanglement in the interval, nor the change in entropy as we vary the

endpoints on large scales. Our calculations in section 3.2 showed that the renormalized

entropy falls as we expand Σ past the last ray, but it did so on a scale set by the overall

length of Σ. Moreover, we could again re-entangle the interval simply by moving the past

boundary sufficiently farther away so our original approximation was once again valid.

Because these large variations are in a regime where both boundaries of the interval

are far from the radiating region, the long-distance behaviour of the entanglement entropy

is due to modes outside of the radiation region; these modes are locally in their vacuum

configuration. It may seem puzzling that excess entropy above the vacuum can be due to

modes that are locally in their vacuum state. We now show, though, that the difference in

entropy with respect to the vacuum is due to the mismatch in the entanglement of these

modes across the radiating region. Moreover, unlike when we looked at the state I−, the

analysis of the entanglement on I+ is insensitive to the UV cutoff.

The separation of entanglement entropy from Hawking-like modes and from long-range

entanglement of the vacuum is most clear in the limit where a mirror instantaneously

changes from rest to a constant velocity in the original frame. Then on I+
R , the state is

everywhere in vacuum except at the kink in the mirror trajectory, where there is a mismatch

in phase in gluing the Rindler modes of the two regions of vacuum together.

The hatted Rindler modes to the future of the kink are shifted by

v̂′ω(z−) =
1√
2ω
e−iω ln(z−)eiω ln(k)Θ(z−) , (4.13)

where z− = kz+ after the kink. In terms of the localized modes described above, this

simply induces a shift such that v̂′jn is peaked near z− = exp(−2πn/ε + ln(k)) instead of

near z− = exp(−2πn/ε). We see that, relative to the true vacuum, the kinked vacuum has

modes prior to the kink entangled with modes localized further to the future.

This gives a nice picture of the entanglement entropy due to the mismatched vacuum

regions, as illustrated in figure 4. When the interval is much longer to the future of the

kink than it is to the past, there are many modes whose entangled partner across z− = 0
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Figure 4. (a) When the interval is much longer to the past of the kink than to the future, there

are many modes whose entangled partner is within the future boundary in the vacuum, but outside

the boundary in the kinked state. (b) When the interval is much longer to the future of the kink

than to the past, there are many modes who entangled partner is outside the past boundary in the

vacuum, but inside the boundary in the kinked state.

is still within the interval in the vacuum state, but has been stretched outside the interval

in the kinked vacuum state. This generates the large renormalized entropy.

Conversely, when the interval is much longer to the past of the kink than it is to the

future, there are many modes to the future of z− = 0 whose entangled partners are outside

of the interval in the vacuum state, but are inside of the interval in the kinked vacuum.

This generates the negative renormalized entropy found.

5 Discussion and conclusions

5.1 Lifting to higher dimensions

It was shown in [87] that the CGHS action, (2.1), (2.2), describes the physics of the near

horizon region of extremal dilatonic black holes in both four and five dimensions. There

are several inequivalent ways of taking the extremal limit which push either the Horizon

or the mouth infinitely far away. The classical CGHS action, which gives rise to the black

hole solution and the flat dilaton solution, describes the physics of a geometry with a fixed

sized throat, and thus corresponds to the limit where the mouth is pushed to infinity. The

Horizon limit metric and dilaton are given by,

ds2 =
1

κ2

(
− tanh2 x dt2 + dx2 +

dΩ2
(d)

(10− 3d)

)
, e2(φ−φ̂0) =

cosh−2 x

(10− 3d)κ2
(5.1)

where d is the dimension of the two- or three-sphere on which we reduce to obtain the 2-

dimensional CGHS action, and φ̂0 is the value of the dilaton at infinity, which is held fixed

when taking the extremal limit. The overall constant, κ2, which appeared as a cosmological
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constant term in the CGHS action, takes on the values 1/4Q2 and 1/Q in the four and five

dimensional cases respectively, where Q is the magnetic charge associated with a gauge

field that points in the Sd directions. Taking x � 1 we obtain the metric and dilaton of

the throat limit,

ds2 =
1

κ2

(
−dt2 + dx2 +

dΩ2
(d)

(10− 3d)

)
, φ = −x+ φ̂0 + ln

(
2/κ√

10− 3d

)
(5.2)

The problem we are studying corresponds to throwing in a pulse into the flat linear

dilaton region. In the classical case, the solution corresponds to patching the two so-

lutions (5.1) and (5.2) along the infalling null shockwave (with an appropriate shift of

the coordinates). The geometry develops a horizon, which on the null shockwave is lo-

cated at x = 1
2 ln GMADM

κ . In order for this to carry through to the uplifted case requires

ln GMADM
κ � 1, since the blackhole in the classical CGHS case forms from throwing a pulse

into the flat linear dilaton region. The classical uplifted picture then corresponds to the

horizon, of the dilatonic black hole being pulled up the throat by the infalling matter.

In the mean field approximation scenario of [72], the infalling excitation forms an

apparent horizon, which emanates from the null shockwave at x ∼ 1
2 ln GMADM

κ . To discuss

the uplift we have to assume the nature of the geometry past the last ray. Before the

last ray, it was shown that the geometry near I+
R is asymptotically flat and that dy−/dz−

approaches a constant at the last ray. Assuming that quantum gravity effects are confined

to the vicinity of the singularity, we consider the case where the geometry is extended all

the way past the last ray near I+
R . Thus at late times the geometry transitions back to the

throat limit of the extremal dilatonic black hole, although in rescaled coordinates.

As we have shown, the horizon formed by the infalling excitation evaporates predom-

inantly in the manner of Hawking, producing radiation purely entangled with the region

behind the last ray. In the uplifted picture, the radiation is entangled with excitations

deep down the throat, and thus the throat geometry itself can be viewed as a remnant.

This suggests the same remnant scenario considered previously under the name of cor-

nucopions [74]. Our conclusion is somewhat unsatisfactory, due to the much-discussed

issues with remnants in higher dimensions, including the possibility of infinite remnant

pair-production (see, for example, [96–100]). Perhaps more importantly, remnants are in-

compatible with AdS/CFT [3]. We stress, though, that remnants in the two-dimensional

model do not necessarily imply remnants in the uplift, as reduction and quantization do

not always commute.5

5.2 Conclusions

We have demonstrated that a black hole in the CGHS model does not result in a firewall,

but rather, as previously expected, decays to a highly-entangled remnant: there is a large

entanglement between an interval containing the majority of the Hawking flux and the

matter state to the future of the last ray. The entanglement scales with the ADM mass of

the black hole, while the remnant has a small, universal corrected Bondi mass.

5We thank Don Marolf for emphasizing to us the possibility of markedly different behavior in the uplift.
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The lift of the CGHS solution to higher dimensions gives a well-known picture of a

near-extremal black hole Hawking radiating back down to extremality. The model then

also suggests a higher-dimensional remnant, which lives in the throat outside the extremal

horizon. Remnants are problematic due to issues with pair-production and are incompatible

with AdS/CFT. While our result may be taken as mildly cautionary to the firewall proposal,

we emphasize instead that this is strongly suggestive that the CGHS model, as presently

understood, misses essential features of higher-dimensional gravity. Indeed, the model is a

renormalizable local field theory and manifestly is not holographic.

It would be much more interesting to study non-local modifications of the CGHS

model or altogether different two-dimensional models that better capture the postulates

of complementarity. This would be a more useful toy model in which to search for the

dynamical (non-)formation of firewalls.
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