86 research outputs found

    Digested information, a non-semantic motivation for agent-agent interaction

    Get PDF
    This paper is published under Creative Commons Licence 3.0Digested Information is a theory that aims to explain, at the non-semantic level of Information Theory, why it makes sense for one agent to observe another. Based on the formalism of Relevant Information, defined as the minimum amount of information an agent needs in order to determine its optimal strategy, I argue that, following its own motivation, an agent (1) obtains relevant information from the environment (2) displays it in the environment through its own actions, and (3) is likely to display information in a higher density in regard to its bandwidth than other parts of the environment. Furthermore, I argue that this information is also relevant to other, similar, agents and that this could be used to motivate agent-agent interaction (such as observing other agents) in a framework where agent behaviour is determined by information maximisation

    Information-theoretic measures as a generic approach to human-robot interaction : Application in CORBYS project

    Get PDF
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/AuthorThe objective of the CORBYS project is to design and implement a robot control architecture that allows the integration of high-level cognitive control modules, such as a semantically-driven self-awareness module and a cognitive framework for anticipation of, and synergy with, human behaviour based on biologically-inspired information-theoretic principles. CORBYS aims to provide a generic control architecture to benefit a wide range of applications where robots work in synergy with humans, ranging from mobile robots such as robotic followers to gait rehabilitation robots. The behaviour of the two demonstrators, used for validating this architecture, will each be driven by a combination of task specific algorithms and generic cognitive algorithms. In this paper we focus on the generic algorithms based on information theoryFinal Accepted Versio

    Geometry of Information Integration

    Full text link
    Information geometry is used to quantify the amount of information integration within multiple terminals of a causal dynamical system. Integrated information quantifies how much information is lost when a system is split into parts and information transmission between the parts is removed. Multiple measures have been proposed as a measure of integrated information. Here, we analyze four of the previously proposed measures and elucidate their relations from a viewpoint of information geometry. Two of them use dually flat manifolds and the other two use curved manifolds to define a split model. We show that there are hierarchical structures among the measures. We provide explicit expressions of these measures

    A Tale of Two Animats: What does it take to have goals?

    Full text link
    What does it take for a system, biological or not, to have goals? Here, this question is approached in the context of in silico artificial evolution. By examining the informational and causal properties of artificial organisms ('animats') controlled by small, adaptive neural networks (Markov Brains), this essay discusses necessary requirements for intrinsic information, autonomy, and meaning. The focus lies on comparing two types of Markov Brains that evolved in the same simple environment: one with purely feedforward connections between its elements, the other with an integrated set of elements that causally constrain each other. While both types of brains 'process' information about their environment and are equally fit, only the integrated one forms a causally autonomous entity above a background of external influences. This suggests that to assess whether goals are meaningful for a system itself, it is important to understand what the system is, rather than what it does.Comment: This article is a contribution to the FQXi 2016-2017 essay contest "Wandering Towards a Goal

    Linear combination of one-step predictive information with an external reward in an episodic policy gradient setting: a critical analysis

    Get PDF
    One of the main challenges in the field of embodied artificial intelligence is the open-ended autonomous learning of complex behaviours. Our approach is to use task-independent, information-driven intrinsic motivation(s) to support task-dependent learning. The work presented here is a preliminary step in which we investigate the predictive information (the mutual information of the past and future of the sensor stream) as an intrinsic drive, ideally supporting any kind of task acquisition. Previous experiments have shown that the predictive information (PI) is a good candidate to support autonomous, open-ended learning of complex behaviours, because a maximisation of the PI corresponds to an exploration of morphology- and environment-dependent behavioural regularities. The idea is that these regularities can then be exploited in order to solve any given task. Three different experiments are presented and their results lead to the conclusion that the linear combination of the one-step PI with an external reward function is not generally recommended in an episodic policy gradient setting. Only for hard tasks a great speed-up can be achieved at the cost of an asymptotic performance lost

    A Bivariate Measure of Redundant Information

    Get PDF
    We define a measure of redundant information based on projections in the space of probability distributions. Redundant information between random variables is information that is shared between those variables. But in contrast to mutual information, redundant information denotes information that is shared about the outcome of a third variable. Formalizing this concept, and being able to measure it, is required for the non-negative decomposition of mutual information into redundant and synergistic information. Previous attempts to formalize redundant or synergistic information struggle to capture some desired properties. We introduce a new formalism for redundant information and prove that it satisfies all the properties necessary outlined in earlier work, as well as an additional criterion that we propose to be necessary to capture redundancy. We also demonstrate the behaviour of this new measure for several examples, compare it to previous measures and apply it to the decomposition of transfer entropy.Comment: 16 pages, 15 figures, 1 table, added citation to Griffith et al 2012, Maurer et al 199

    PyPhi: A toolbox for integrated information theory

    Full text link
    Integrated information theory provides a mathematical framework to fully characterize the cause-effect structure of a physical system. Here, we introduce PyPhi, a Python software package that implements this framework for causal analysis and unfolds the full cause-effect structure of discrete dynamical systems of binary elements. The software allows users to easily study these structures, serves as an up-to-date reference implementation of the formalisms of integrated information theory, and has been applied in research on complexity, emergence, and certain biological questions. We first provide an overview of the main algorithm and demonstrate PyPhi's functionality in the course of analyzing an example system, and then describe details of the algorithm's design and implementation. PyPhi can be installed with Python's package manager via the command 'pip install pyphi' on Linux and macOS systems equipped with Python 3.4 or higher. PyPhi is open-source and licensed under the GPLv3; the source code is hosted on GitHub at https://github.com/wmayner/pyphi . Comprehensive and continually-updated documentation is available at https://pyphi.readthedocs.io/ . The pyphi-users mailing list can be joined at https://groups.google.com/forum/#!forum/pyphi-users . A web-based graphical interface to the software is available at http://integratedinformationtheory.org/calculate.html .Comment: 22 pages, 4 figures, 6 pages of appendices. Supporting information "S1 Calculating Phi" can be found in the ancillary file

    Informative and misinformative interactions in a school of fish

    Get PDF
    It is generally accepted that, when moving in groups, animals process information to coordinate their motion. Recent studies have begun to apply rigorous methods based on Information Theory to quantify such distributed computation. Following this perspective, we use transfer entropy to quantify dynamic information flows locally in space and time across a school of fish during directional changes around a circular tank, i.e. U-turns. This analysis reveals peaks in information flows during collective U-turns and identifies two different flows: an informative flow (positive transfer entropy) based on fish that have already turned about fish that are turning, and a misinformative flow (negative transfer entropy) based on fish that have not turned yet about fish that are turning. We also reveal that the information flows are related to relative position and alignment between fish, and identify spatial patterns of information and misinformation cascades. This study offers several methodological contributions and we expect further application of these methodologies to reveal intricacies of self-organisation in other animal groups and active matter in general
    • …
    corecore