16,667 research outputs found

    The Appreciative Heart: The Psychophysiology of Positive Emotions and Optimal Functioning

    Get PDF
    This monograph is an overview of Institute of HeartMath's research on the physiological correlates of positive emotions and the science underlying two core HeartMath techniques which supports Heart-Based Living. The heart's connection with love and other positive emotions has survived throughout millennia and across many diverse cultures. New empirical research is providing scientific validation for this age-old association. This 21-page monograph offers a comprehensive understanding of the Institute of HeartMath's cutting-edge research exploring the heart's central role in emotional experience. Described in detail is physiological coherence, a distinct mode of physiological functioning, which is generated during sustained positive emotions and linked with beneficial health and performance-related outcomes. The monograph also provides steps and applications of two HeartMath techniques, Freeze-Frame(R) and Heart Lock-In(R), which engage the heart to help transform stress and produce sustained states of coherence. Data from outcome studies are presented, which suggest that these techniques facilitate a beneficial repatterning process at the mental, emotional and physiological levels

    How Does the Body Affect the Mind? Role of Cardiorespiratory Coherence in the Spectrum of Emotions

    Get PDF
    The brain is considered to be the primary generator and regulator of emotions; however, afferent signals originating throughout the body are detected by the autonomic nervous system (ANS) and brainstem, and, in turn, can modulate emotional processes. During stress and negative emotional states, levels of cardiorespiratory coherence (CRC) decrease, and a shift occurs toward sympathetic dominance. In contrast, CRC levels increase during more positive emotional states, and a shift occurs toward parasympathetic dominance. Te dynamic changes in CRC that accompany different emotions can provide insights into how the activity of the limbic system and afferent feedback manifest as emotions. The authors propose that the brainstem and CRC are involved in important feedback mechanisms that modulate emotions and higher cortical areas. That mechanism may be one of many mechanisms that underlie the physiological and neurological changes that are experienced during pranayama and meditation and may support the use of those techniques to treat various mood disorders and reduce stress

    Multivariate correlation measures reveal structure and strength of brain–body physiological networks at rest and during mental stress

    Get PDF
    In this work, we extend to the multivariate case the classical correlation analysis used in the field of network physiology to probe dynamic interactions between organ systems in the human body. To this end, we define different correlation-based measures of the multivariate interaction (MI) within and between the brain and body subnetworks of the human physiological network, represented, respectively, by the time series of delta, theta, alpha, and beta electroencephalographic (EEG) wave amplitudes, and of heart rate, respiration amplitude, and pulse arrival time (PAT) variability (eta, rho, pi). MI is computed: (i) considering all variables in the two subnetworks to evaluate overall brain-body interactions; (ii) focusing on a single target variable and dissecting its global interaction with all other variables into contributions arising from the same subnetwork and from the other subnetwork; and (iii) considering two variables conditioned to all the others to infer the network topology. The framework is applied to the time series measured from the EEG, electrocardiographic (ECG), respiration, and blood volume pulse (BVP) signals recorded synchronously via wearable sensors in a group of healthy subjects monitored at rest and during mental arithmetic and sustained attention tasks. We find that the human physiological network is highly connected, with predominance of the links internal of each subnetwork (mainly eta-rho and delta-theta, theta-alpha, alpha-beta), but also statistically significant interactions between the two subnetworks (mainly eta-beta and eta-delta). MI values are often spatially heterogeneous across the scalp and are modulated by the physiological state, as indicated by the decrease of cardiorespiratory interactions during sustained attention and by the increase of brain-heart interactions and of brain-brain interactions at the frontal scalp regions during mental arithmetic. These findings illustrate the complex and multi-faceted structure of interactions manifested within and between different physiological systems and subsystems across different levels of mental stress

    Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological Networks

    Get PDF
    The framework of information dynamics allows the dissection of the information processed in a network of multiple interacting dynamical systems into meaningful elements of computation that quantify the information generated in a target system, stored in it, transferred to it from one or more source systems, and modified in a synergistic or redundant way. The concepts of information transfer and modification have been recently formulated in the context of linear parametric modeling of vector stochastic processes, linking them to the notion of Granger causality and providing efficient tools for their computation based on the state–space (SS) representation of vector autoregressive (VAR) models. Despite their high computational reliability these tools still suffer from estimation problems which emerge, in the case of low ratio between data points available and the number of time series, when VAR identification is performed via the standard ordinary least squares (OLS). In this work we propose to replace the OLS with penalized regression performed through the Least Absolute Shrinkage and Selection Operator (LASSO), prior to computation of the measures of information transfer and information modification. First, simulating networks of several coupled Gaussian systems with complex interactions, we show that the LASSO regression allows, also in conditions of data paucity, to accurately reconstruct both the underlying network topology and the expected patterns of information transfer. Then we apply the proposed VAR-SS-LASSO approach to a challenging application context, i.e., the study of the physiological network of brain and peripheral interactions probed in humans under different conditions of rest and mental stress. Our results, which document the possibility to extract physiologically plausible patterns of interaction between the cardiovascular, respiratory and brain wave amplitudes, open the way to the use of our new analysis tools to explore the emerging field of Network Physiology in several practical applications

    USSR Space Life Sciences Digest, issue 1

    Get PDF
    The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 130, July 1974

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1974

    The Dynamic Role of Breathing and Cellular Membrane Potentials in the Experience of Consciousness

    Get PDF
    Understanding the mechanics of consciousness remains one of the most important challenges in modern cognitive science. One key step toward understanding consciousness is to associate unconscious physiological processes with subjective experiences of sensory, motor, and emotional contents. This article explores the role of various cellular membrane potential differences and how they give rise to the dynamic infrastructure of conscious experience. This article explains that consciousness is a body-wide, biological process not limited to individual organs because the mind and body are unified as one entity; therefore, no single location of consciousness can be pinpointed. Consciousness exists throughout the entire body, and unified consciousness is experienced and maintained through dynamic repolarization during inhalation and expiration. Extant knowledge is reviewed to provide insight into how differences in cellular membrane potential play a vital role in the triggering of neural and non-neural oscillations. The role of dynamic cellular membrane potentials in the activity of the central nervous system, peripheral nervous system, cardiorespiratory system, and various other tissues (such as muscles and sensory organs) in the physiology of consciousness is also explored. Inspiration and expiration are accompanied by oscillating membrane potentials throughout all cells and play a vital role in subconscious human perception of feelings and states of mind. In addition, the role of the brainstem, hypothalamus, and complete nervous system (central, peripheral, and autonomic)within the mind-body space combine to allow consciousness to emerge and to come alive. This concept departs from the notion that the brain is the only organ that gives rise to consciousness

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 299)

    Get PDF
    This bibliography lists 96 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1987
    • …
    corecore