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In this work, we extend to the multivariate case the classical correlation analysis used in
the field of network physiology to probe dynamic interactions between organ systems
in the human body. To this end, we define different correlation-based measures of the
multivariate interaction (MI) within and between the brain and body subnetworks of the
human physiological network, represented, respectively, by the time series of δ, θ, α,
and β electroencephalographic (EEG) wave amplitudes, and of heart rate, respiration
amplitude, and pulse arrival time (PAT) variability (η, ρ, π). MI is computed: (i) considering
all variables in the two subnetworks to evaluate overall brain–body interactions; (ii)
focusing on a single target variable and dissecting its global interaction with all other
variables into contributions arising from the same subnetwork and from the other
subnetwork; and (iii) considering two variables conditioned to all the others to infer the
network topology. The framework is applied to the time series measured from the EEG,
electrocardiographic (ECG), respiration, and blood volume pulse (BVP) signals recorded
synchronously via wearable sensors in a group of healthy subjects monitored at rest
and during mental arithmetic and sustained attention tasks. We find that the human
physiological network is highly connected, with predominance of the links internal of
each subnetwork (mainly η−ρ and δ−θ, θ−α, α−β), but also statistically significant
interactions between the two subnetworks (mainly η−β and η−δ). MI values are often
spatially heterogeneous across the scalp and are modulated by the physiological state,
as indicated by the decrease of cardiorespiratory interactions during sustained attention
and by the increase of brain–heart interactions and of brain–brain interactions at the
frontal scalp regions during mental arithmetic. These findings illustrate the complex
and multi-faceted structure of interactions manifested within and between different
physiological systems and subsystems across different levels of mental stress.

Keywords: network physiology, brain–heart connection, cardiovascular oscillations, EEG waves, physiological
stress, time series analysis, wearable devices
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INTRODUCTION

Network physiology is a novel research field describing the
human organism as an integrated network in which nodes
correspond to the organs and edges map organ interactions
(Bashan et al., 2012; Bartsch et al., 2015; Ivanov et al.,
2016). Since the human physiological network is highly
dynamic, the strength of the interactions among organs
changes over time across different physiological states as a
response to cognitive or homeostatic control mechanisms
(e.g.: rest or stress; emotion elicitation; consciousness or
unconsciousness; wake, sleep, sleep stages), or due to pathological
conditions (Jänig, 2008; Bashan et al., 2012; Waterhouse, 2013;
Valenza et al., 2016; Zanetti et al., 2019b). The continuous
and dynamic interaction among organs is fundamental for
maintaining the individual in good health; a failure in such
interaction mechanisms could provoke diseases related to
organ dysfunctions or, in the worst case, even the collapse
of the whole organism (Ivanov et al., 2016). Therefore,
taking into account the human body as a whole and
investigating the interactions among multiple organs can
provide additional information to that obtained focusing
on each physiological system individually (Bartsch et al.,
2015). This can now also be easily achieved in non-clinical
conditions thanks to the widespread adoption of wearable
sensors and systems allowing the non-invasive synchronous
acquisition of multiple signals from different physiological
districts (Heikenfeld et al., 2018; Jovanov, 2019; Pernice et al.,
2019c; Vinciguerra et al., 2019).

Among the variety of organ system interactions, brain–
heart interactions play an important role since they underlie
the activity of the autonomic nervous system (ANS) and the
central nervous system (CNS), which are strictly interconnected
through anatomical and functional links and influence each other
continuously (Thayer et al., 2012; Beissner et al., 2013; Silvani
et al., 2016). Effects of such interactions have also practical
importance, as, for instance, cerebral diseases like ischemic stroke
and transient ischemic attacks can be due to cardiac arrhythmias
such as atrial fibrillation (Marini et al., 2005; Buchwald et al.,
2016). On the other hand, the heartbeat dynamics are typically
affected by the ANS response to emotional stress, arousal,
and physical activity (Dimsdale, 2008; Silvani et al., 2016).
In particular, it has been shown that both mental load and
physiological stress produce repeatable variations not only in the
brain activity (Gevins et al., 1998; Berka et al., 2007; Al-shargie
et al., 2018), but also in the dynamic control of the cardiovascular
function and heart rate variability (HRV) (Petrowski et al., 2017;
Kim et al., 2018; Pernice et al., 2018, 2019a); these effects can be
of clinical relevance as they can ultimately increase the risk of
heart attacks and stroke (Steptoe and Kivimäki, 2013; Al-Shargie
et al., 2016). Moreover, besides the interplay between brain and
heart, the network of interactions sub-serving the regulation
of the homeostatic function encompasses other physiological
rhythms, such as the respiratory drive (Pfurtscheller et al.,
2019; Javorka et al., 2020), the cardiovascular and baroreflex
functions (Krohova et al., 2019, 2020; Ringwood and Bagnall-
Hare, 2020), and other less studied but significant vital signs,

e.g., including muscular and ocular activities (Ivanov et al., 2017;
Boonstra et al., 2019).

In this context, a main challenge that has emerged in the last
years is the development of proper time series analysis techniques
capable of suitably quantifying the interactions among different
physiological systems starting from the output signals measured
from the different organs. The pioneering works in the emerging
field of network physiology have used simple cross-correlation
measures, showing that they can be a reliable tool to quantify
brain–body and brain–brain interactions across different sleep
states (Bashan et al., 2012; Lin et al., 2020). In fact, cross-
correlation is a well-established tool that has been widely used in
many fields of biomedical signal processing, e.g., for assessing the
connection between pairs of brain areas in functional magnetic
resonance imaging (fMRI) (Cao and Worsley, 1999; Li et al.,
2009). Crucially, this approach has also been extended to take
into account one or more control variables through the so-
called partial correlation (Marrelec et al., 2006; Wang et al.,
2016). The latter has been widely employed for the study of
brain connectivity, where the coupling between two time series
is often assessed removing indirect effects from other multiple
series through the use of partial correlation matrices (Marrelec
et al., 2006; Oliver et al., 2019). More sophisticated analysis
techniques have been proposed for the study of dynamic brain–
heart and brain–body interactions, e.g., information-theoretic-
based measures able to assess the information produced by each
physiological system and transferred to the other connected
systems starting from their output time series, which exploit,
for example, Granger Causality or penalized regression (we
refer the reader to Faes et al., 2014; Duggento et al., 2016;
Greco et al., 2019; Zanetti et al., 2019a; Antonacci et al.,
2020 for further details) or different approaches like the one
calculating the maximal information coefficient (Valenza et al.,
2016). However, correlation-based measures have the advantage
of being simple, computationally efficient, and usable also for
short data sequences. These advantages are highly desirable in
the field of network physiology where often only short stationary
sequences can be obtained in the challenging analysis conditions
where physiological states change transiently with time (Ivanov
et al., 2016; Valente et al., 2018). Moreover, the availability of
efficient estimators favors their implementation in non-invasive
IoT applications using wearable sensors and providing real-time
evaluations (Baig et al., 2017; Baker et al., 2017; Pernice et al.,
2019c; Vinciguerra et al., 2019).

In the present study, the correlation-based approach to the
study of physiological interactions is extended to the multivariate
case, providing a formalism and a set of measures for quantifying
how blocks of time series are correlated, how the correlation
between a “target” time series and multiple “source” series can be
dissected into meaningful contributions, and how a multivariate
implementation of the concept of partial correlation allows to
infer the topology of networks of physiological interactions.
Specifically, extending our preliminary analyses carried out in
Pernice et al. (2019d), we measure the overall brain–body
interactions as the multivariate correlation between the time
series representative of the different brain rhythms [δ, θ, α, and
β electroencephalographic (EEG) power] and the time series of
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heart rate, respiratory, and pulse arrival time (PAT) variability.
Then, for each target time series from one of the two physiological
subnetworks (brain or body), we compute interaction measures
explaining how the multivariate correlation between the target
and the other series arises from within- and between-subnetwork
interactions, or from pairwise interactions. Our analysis is
performed in a group of young healthy subjects monitored at
rest and during different levels of mental stress, mapping the
interaction measures across the scalp EEG electrodes to evidence
possible regional effects, and assessing the statistical significance
of the proposed measures to reconstruct the topology of brain
and body interactions in the different physiological states.

MATERIALS AND METHODS

Hardware Used for Data Acquisition
Data used in this study were acquired using non-invasive
wearable sensors (Zanetti et al., 2019b). In detail, the signals
consisted of electrocardiographic (ECG), EEG, respiratory, and
blood volume pulse (BVP) waveforms recorded using different
devices. A sensorized t-shirt provided by Smartex (Prato,
Italy) was employed for acquiring both the ECG (lead II,
sampling frequency of 250 Hz) and the breath signal (sampling
rate of 25 Hz). The E4 wristband provided by Empatica
(Milano, Italy) with a photoplethysmographic (PPG) sensor
has been used for BVP signal (sampling rate of 64 Hz).
Finally, for EEG data, the EPOC PLUS wireless headset
provided by Emotiv (San Francisco, CA, United States) has
been employed, recording 14 signals from electrodes positioned
on the scalp according to a reduced version of the 10-20
international placement system (see Figure 1A). All the data
were acquired synchronously and sent wirelessly via Bluetooth
to a personal computer for the subsequent post-processing and
analyses. Particular care has been paid to ensure the correct
positioning of the wearable devices on the body. Moreover,
an appositely designed method for ensuring synchronization
of the different acquired biosignals has been employed, based
on the linear warping of the time axis with respect to the
Smartex signal taken as a reference. We refer the reader to
Zanetti et al. (2019b) for further details and the complete
synchronization procedure.

Measurement Protocol
Eighteen young healthy volunteers (13 males, five females;
age range: 20–30 years) were monitored during a
measurement protocol consisting of three experimental
conditions corresponding to different levels of mental stress
(Zanetti et al., 2019a):

(i) A resting condition (REST), lasting 12 min and consisting
in watching a video showing landscapes with relaxing
background music;

(ii) A sustained attention task (GAME) lasting 12 min and
consisting in playing a serious game, i.e., following a cursor
on the screen while trying to avoid some obstacles;

(iii) A mental arithmetic test (MENTAL) lasting 7 min during
which the volunteer had to carry out the maximum possible
number of three-digit sums and subtractions.

The three above-described conditions actually correspond to
an increasing level of stress, since a sustained attention task
produces higher mental involvement than a fully relaxed state,
still not being as stressful as carrying out fast and continuous
arithmetic calculations (Zanetti et al., 2019a).

The experiment was approved by the Ethics Committees
of the University of Trento. All volunteers participating in
this study provided written informed consent. Further details
on the measurement protocol employed for this study can be
found in Zanetti et al. (2019a).

Time Series Extraction
Data processing was carried out offline employing MATLAB
R2019b (MathWorks, Natick, MA, United States). To allow the
analysis of brain–body interactions, the acquired physiological
signals were processed extracting synchronous time series
representative of the dynamical activity of the body and brain
intended as separate physiological districts (sub-networks). ECG
recordings were first preprocessed to correct for artifacts and to
remove baseline wander and high-frequency noise, respectively,
using a high-pass filter (half power frequency of 1 Hz) and
a low-pass filter (half power frequency of 20 Hz); zero-phase
filtering was adopted to avoid group delays. Afterward, a template
matching algorithm (Dobbs et al., 1984; Speranza et al., 1993;
Oweis and Al-Tabbaa, 2014; Zanetti et al., 2019a) was employed
to extract the R peaks and thus obtain R-R interval (RRI) time
series (variable η). R peaks detection was carried out finding the
local maxima of the cross-correlation between a template of the
QRS complex and the ECG, applying a threshold on the cross-
correlation, and finally locating the time of the R peak at the time
of the maximum value of the aligned template (Dobbs et al., 1984;
Oweis and Al-Tabbaa, 2014). Tachograms were visually inspected
to assess the accurate detection of R peaks, or otherwise to correct
for missing and ectopic beats (Zanetti et al., 2019a). The breathing
signal was sampled at the same time instants of the R peaks in the
ECG to obtain the respiratory time series (variable .). To assess
the dynamical activity of the cardiovascular system, the PAT time
series (variable π) was extracted as the sequence of consecutive
time intervals between the ECG R peak and the maximum
derivative of the BVP signal for each given cardiac cycle (Gao
et al., 2016). As regards the brain district, the power spectral
density (PSD) was calculated for each EEG signal using a 2-s
sliding window with 50% overlap. In each window, the spectral
power in the frequency bands 0.5–3, 3–8, 8–12, and 12–25 Hz
(respectively, δ, θ, α, and β) was measured through integration of
the spectral profile within each band, extracting brain time series
which resulted sampled at 1 Hz. The procedure was repeated for
the signals recorded from all electrodes, to extract the spatial
distribution of the EEG band-power time series. Maps were
generated through interpolation, over a 100 × 100 grid, of the
values of EEG band-power time series using the MATLAB built-
in biharmonic spline method. The interpolation was used only
for visualization purposes, while all the analyses were carried
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FIGURE 1 | Schematic representation of the data acquisition and analysis steps. (A) Graphical representation of the positioning of the 14 EEG electrodes over the
scalp. (B) Physiological systems and variables considered in this work: cardiac variable η (R–R interval of the ECG), respiratory variable . (respiration amplitude), and
cardiovascular variable π (pulse arrival time) for the body subnetwork X; amplitude of the δ, θ, α, and β EEG waves for the scalp subnetwork Y; the two subnetworks
form the overall physiological network Z. (C) Venn diagrams depicting the multivariate interaction measures used in this work: on the left, multivariate brain–body
interaction, quantifying the variability shared by the two subnetworks X and Y (light green area); in the middle, “direct” interaction between two individual variables
(here, the cardiac and respiratory variables η and .), when all other variables are considered (orange area); on the right, decomposition of the interaction between
one target variable (here, the cardiac variable η) and all other variables (green + blue areas) as the sum of the interactions internal to the target subnetwork (here, the
body subnetwork X; green area) and the interactions exclusive of the other subnetwork (here, the brain subnetwork Y; blue area).

out on the acquired data. The brain time series extracted in this
way were synchronous with those obtained resampling at 1 Hz
the three cardiovascular time series using spline interpolation
(Zanetti et al., 2019a). The rate of 1 Hz, which sets a time scale
for the analysis which is compatible with the spectrum of heart
rhythms, has already been used in previous studies in the field of
network physiology for analyzing the time series from different
body locations (Bashan et al., 2012; Bartsch et al., 2015). The
uniformity of the final sampling rate and the synchronization
of the signals acquired from the different devices, carried out
according to the procedure described in Section “Hardware Used
for Data Acquisition,” permitted to obtain synchronous time
series for all the physiological districts. Each time series consisted
of 300 samples (corresponding to 5 min of signal recording) and
particular care was taken to avoid transient phenomena during
the different conditions. This has been accomplished starting the
considered time window 3 min after the beginning of the REST
phase, and from 1 to 2 min after the start of a MENTAL or
GAME condition (not more to avoid habituation of the volunteer
to the more stressful condition). All time series were checked for
a restricted form of weak sense stationarity using the algorithm

proposed in Magagnin et al. (2011), which randomly extracts a
given number of sub-windows from each time series and assesses
the steadiness of mean and variance across the sub-windows.

In the following, we will denote X as the body subnetwork,
consisting of the η, ., and π variables, while Y denotes the
brain subnetwork (scalp areas), consisting of the δ, θ, α, and
β variables. We are aware that recent studies have highlighted
that particular care should be assumed making inferences about
brain regions when using EEG signals acquired on the scalp
(Lai et al., 2018; Van de Steen et al., 2019), and will discuss this
issue in Section “Discussion.” Figure 1 schematically depicts the
approach followed in this study, with the time series analyzed
(Figure 1B) and the measures of multivariate interaction (MI)
(Figure 1C) which are presented in detail in the next subsection.

Multivariate Interaction Analysis
In this work, the time series measuring the output values of the
different physiological systems introduced in the previous section
are interpreted as consecutive observations of random variables
mapping the system states. A typical approach used in network
physiology to study the interactions between two physiological
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variables x and y is to quantify their linear correlation (Bashan
et al., 2012; Lin et al., 2020). The most common measure is the
squared Pearson’s correlation coefficient, defined as:

ρ2(x; y) ≡
62

x;y

6x6y
(1)

where 6x = E[(x−mx)
2
] and 6y = E[(y−my)

2
] are the

variance of x and y being mx = E[x] and my = E[y] their mean
values, and 6x;y = E[(x−mx)(y−my)] is their covariance (E
represents the expectation operator). The squared correlation is
a symmetric normalized measure of linear dependence between
x and y, i.e., ρ2 (x; y) = ρ2 (y; x), which ranges from 0 to 1
moving from the absence of correlation to full correlation.

While Eq. 1 is the most commonly known expression for
the squared correlation, it can also be formulated in terms of
the determinant of the covariance matrix of the vector variable
concatenating x and y, W = [xy], as

ρ2(x; y) = 1−

∣∣∣6[xy]
∣∣∣

6x6y
,

6[xy] = 6W = E
[
(W −mW)T (W −mW)

]
, (2)

or in terms of the residuals of a simple linear regression model
of the type x = ay+ b+ u, where a and b are the regression
coefficients and u is the prediction error, as

ρ2(x; y) = 1−
6x|y

6x
, 6x|y = 6u, (3)

in which 6x|y is the so-called partial variance, i.e., the variance
of the error of the regression of x on y. The derivation of Eqs 2
and 3 is reported in the Appendix.

In the present work, we extend the above measures to the
multivariate case, considering the random vectors X and Y that
collect the variables of the so-called body subnetwork composed
by the cardiac, respiratory, and cardiovascular processes, and the
variables of the brain subnetwork composed by the EEG power-
band processes. With the notation introduced above, the body
and brain variables are the P-dimensional vector X = [η ρ π]
and the Q-dimensional vector Y = [δ θ α β] (P = 3,Q = 4),
which are further grouped in the vector describing the state of
the whole physiological network, Z = [XY] = [Z1 · · ·ZM]
(M = P + Q = 7). Then, denoting as 6X =

E
[
(X −mX)T(X −mX)

]
, 6Y = E

[
(Y −mY)T(Y −mY)

]
and

6Z = E
[
(Z −mZ)T(Z −mZ)

]
the P × P, Q × Q, and M × M

covariance matrices of X, Y, and Z, we define the multivariate
correlation between X and Y extending Eq. 2 as follows:

ρ2(X;Y) ≡ 1−

∣∣6[XY]
∣∣

|6X| |6Y |
, 6[XY] = 6Z. (4)

This definition also has a straightforward interpretation in
terms of linear regression. Indeed, considering the regression
X = YA+ B+ U, where A and B are parameter vectors of
dimension Q× P and 1× P, and U is an 1× P vector of residuals,

and defining the so-called partial covariance of X given Y as
6X|Y ≡ 6X − 6X;Y6−1

Y 6Y;X being 6X;Y and 6Y;X the cross-
covariance matrices (Barnett et al., 2009), it can be shown (see
Appendix) that the multivariate correlation can be formulated in
analogy to Eq. 3 as

ρ2(X;Y) = 1−

∣∣6X|Y
∣∣

|6X|
, 6X|Y = 6U . (5)

From Eq. 5, it is clear that the squared multivariate correlation
is related to the covariance matrix of the prediction error
of a multivariate linear regression. Moreover, it is symmetric
(ρ2(X;Y) = ρ2(Y;X)) and ranges from 0 to 1, indicating,
respectively, uncorrelation (obtained when A = 0) and full
linear dependence (obtained when U = 0) between X and Y .
Here, we further define a logarithmic version of the multivariate
correlation between X and Y , which we denote as MI:

R (X;Y) ≡ −ln
(
1− ρ2(X;Y)

)
= ln

|6X|∣∣6X|Y
∣∣ . (6)

The MI measure defined in Eq. 6 is null when X and Y are
uncorrelated and, contrary to the squared correlation, it tends to
infinity when X and Y are completely correlated. Also, we note
that the MI can be expressed as the difference between two terms
related to the covariance structure of the vector variables as:

R (X;Y) = V (X)− V (X | Y), (7)

where V (X) = ln |6X| is a logarithmic form of the so-called
generalized variance of X and V (X | Y) = ln

∣∣6X|Y
∣∣ is the

logarithmic generalized partial variance of X given Y (Barrett
et al., 2010), quantifying, respectively, the overall variability
within X and the part of such variability that remains after
regressing X on Y . Eq. 7 is depicted graphically in the Venn
diagram of Figure 1C (left). The MI measure defined in Eqs 6
and 7 is motivated by its link to information-theoretic quantities
when the variables are jointly Gaussian (see Appendix), and
because it offers the possibility to decompose in a meaningful
way the variability shared between group of variables, as seen
in the following.

Next, to quantify how a single physiological process is linked
to the others, we derive measures of the MI between a scalar
variable and a vector variable. To this end, let us consider a
“target” scalar variable in the body subnetwork, xi ∈ X, and
denote as Xi

= X\xi the remaining variables in X (i = 1,...,P);
similarly, a target variable yj ∈ Y can be chosen in the brain
subnetwork, separating it from the other variables Y j

= Y\yj
(j = 1,...,Q). Then, the interaction between the target variable and
all other variables in the network is defined as:

R(xi;Xi,Y) = V (xi)− V(xi|Xi,Y),

R
(
yj;Y j,X

)
= V

(
yj
)
− V

(
yj
∣∣ Y j,X

)
, (8)

where the generalized variances and partial variances
are V (xi) = ln 6xi , V

(
yj
)

= ln 6yj , and
V(xi|Xi,Y) = ln 6xi|Xi,Y , V(yj|Y j,X) = ln 6yj;Y j,X . For
example, for the cardiac variable xi = η, such that Xi

= [.π],
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we have R (η; ., π,δ, θ, α,β) = ln(6η)− ln(6η|.πδθαβ)
[Figure 1C (right), blue + green]. In a similar way, the
interaction between a target variable of a given subnetwork
(brain or body) and the remaining variables in the same
subnetwork is quantified as

R
(
xi;Xi)

= V (xi)− V
(
xi
∣∣ Xi),

R
(
yj;Y j)

= V
(
yj
)
− V

(
yj
∣∣ Y j)
; (9)

a graphical example with xi = η is in Figure 1C (right, green).
Moreover, conditional interactions can be measured to assess the
link between two variables after removing the common effect that
a group of other variables has on them. Here, we measure the
interaction between one target variable in a subnetwork and all
variables in the other subnetwork, conditioning on the remaining
variables in the first subnetwork, as follows:

R
(
xi;Y

∣∣ Xi)
= V

(
xi|Xi)

− V
(
xi
∣∣ Xi,Y

)
,

R
(
yj;X

∣∣ Y j)
= V

(
yj|Y j)

− V
(
yj
∣∣ Y j,X

)
; (10)

a graphical example with xi = η is in Figure 1C (right,
blue). We note that Eqs 9 and 10 achieve a decomposition
of Eq. 8, i.e., R(xi;Xi,Y) = R

(
xi;Xi)

+ R
(
xi;Y

∣∣ Xi) and
R(yj;Y j,X) = R

(
yj;Y j)

+ R
(
yj;X

∣∣ Y j). For instance,
Figure 1C (right) depicts how the extent of common variability
shared between the cardiac variable and all other physiological
variables, R(η;π, ρ,Y), can be expanded as the sum of the
variability the cardiac variable shares with the two other variables
of the body subnetwork, R(η;π, ρ), and the variability that
it shares with the brain subnetwork but not with the body
subnetwork, R(η;Y|π, ρ).

Finally, we define a measure of the “direct” interaction
between two individual physiological processes zi, zj ∈ Z
conditioned to all other processes in the overall network as
the quantity:

R(zi; zj|Z\{zi, zj}) = V
(
zj
∣∣Z\{zi, zj})− V

(
zj
∣∣ Z\{zj}), (11)

which quantifies the extent of common variability
between zj and zi that is not shared with any other variable
in the network Z. For instance, the direct interaction
between the cardiac and respiratory variables is given by
R (η; . |π,δ, θ, α,β) = ln(6η|π,δ, θ,α,β)− ln(6η|.,π,δ, θ,α,β)
(Figure 1C, middle).

Data Analysis and Statistical Analysis
All the measures presented in the previous subsection were
computed from the M = 7 time series collected from each of the
18 subjects in the three analyzed experimental conditions (REST,
MENTAL, and GAME). Moreover, for all measures involving
the brain processes (vector variable Y), the computation was
repeated, for each of the 14 scalp electrodes, extracting theQ = 4
brain time series δ, θ, α, and β from the EEG signal acquired
on that electrode while considering the same P = 3 body time
series (see Figure 1A). For each set of time series, the analysis
was computed using the ordinary vector least squares approach to
identify the linear regression models needed for the computation

of the generalized partial variances in Eq. 7 and of the partial
variances in Eqs 8–11.

After computation of each interaction measure, its statistical
significance was tested, individually for each computation, by
using a parametric Fisher statistic (Brandt and Williams, 2006)
under the null hypothesis that the coefficients of the considered
linear relationship are all zero (Montalto et al., 2014; Siggiridou
and Kugiumtzis, 2015). In all those cases in which it is necessary
to solve two different linear regression problems with scalar
predicted variable, i.e., for the computation of R(xi;Y|Xi),
R(yj;X|Y j) and R(zi; zj|Z\{zi, zj}), the test statistic is:

F =
RSSR−RSSF

pF−pR
RSSF
N−pF

, (12)

where RSSR and RSSF are the residual sum of squares of
the reduced and full regression (leading to compute the first
and second V (· | ·) terms, respectively), pR and pF are the
number of coefficients used in the reduced and full regression,
and N is the time series length. The interaction measure
is considered statistically significant if F is larger than the
critical value of the Fisher distribution with (pF − pR, N − pF)
degrees of freedom at the significance level α0.05. When it
is necessary to solve only one linear regression problem, i.e.,
for the computation of R

(
yj;Y j), R (y;Y j,X

)
, R

(
xi;Xi), and

R
(
xi;Xi,Y

)
, the RSSR reduces to the variance of the predicted

variable, 6X . Lastly, for the computation of R (X;Y) in which
X and Y are both multivariate, RSSR is the generalized variance
of X, |6X|, and RSSR is the generalized partial variance of X
given Y , |6 X|Y |.

As regards the statistical analysis, the deviation from
homogeneity of the spatial distribution of each interaction
measure was assessed using the non-parametric Kruskal–Wallis
test, which was also used to assess the statistical significance of the
difference across conditions (REST, MENTAL, and GAME) of the
median of the distribution of the measure computed over the 18
subjects, followed in this case by post hoc Dunn–Šidák test with
correction for multiple comparisons (Šidák, 1967; Sawilowsky,
2007) to assess pairwise differences (REST vs. MENTAL, REST vs.
GAME, MENTAL vs. GAME). Non-parametric tests were used
because the hypothesis of normality of the distribution of each
measure was rejected according to the Anderson–Darling test
(Anderson and Darling, 1952).

RESULTS

Results are presented showing the median values, across the
subjects, of the various interaction measures in the three
considered conditions (REST, MENTAL, and GAME). The spatial
distribution of each measure is obtained performing the analysis
at every EEG electrode location, and is represented with color-
coded values carrying out an interpolation over the schematic of
the scalp. In addition, figures show the results of the statistical
significance analysis, reporting the number of subjects for which
the measure was found to be significantly larger than zero
according to the Fisher F-test. We refer the reader to the
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Supplementary Material for the complete table of results in
terms of median MI values, p-values of Kruskal–Wallis and
post hoc pairwise comparison test, and of number of subjects
with statistically significant MI according to Fisher F-test for
the Figures 2–8.

MI Between Each Subnetwork as a
Whole
Figure 2 shows the median MI index R (X;Y) computed between
the brain and body subnetworks (Figure 2A), and the number
of subjects which showed statistically significant MI (Figure 2B),
mapped across the scalp in the three analyzed conditions. The
index R (X;Y) can be thought as a measure of the overall
connectivity between the body and brain subnetworks, each one
considered as a whole. In almost all subjects and especially
during the REST and MENTAL conditions, the two subnetworks
share statistically significant amounts of information at all
the EEG electrodes positions (Figure 2B). In each condition,
the Kruskal–Wallis test showed homogeneity (p-value > 0.05)
for the spatial distribution of the MI index (the visually
heterogeneous patterns in Figure 2A may be due to interpolation
effects due to the limited number of non-uniformly distributed
electrodes). The overall connectivity tends to decrease going
from REST to MENTAL and then to GAME (Figure 2A);
compared to REST, the decrease is statistically significant for
the AF4 frontal electrode during MENTAL and for the F7
electrode during GAME.

MI Between a Target and All Other
Processes in the Brain–Body Network
Figure 3 reports the spatial distribution on the scalp of
the median values of the MI between a target i of the
body subnetwork and all other processes, i.e., R(xi;Xi,Y) (a),
alongside with the number of subjects which showed statistically
significant MI according to the F-test (b). This measure evaluates
the degree of connectivity between the considered body process
and all other processes in the overall network. Considering the
cardiac variable η or the respiratory variable ρ as the target, the
MI value was found to be high and statistically significant in all
subjects during REST and MENTAL (with a slight decrease in the
median values during MENTAL), while it decreased markedly in
magnitude during GAME, also resulting statistically significant in
a lower number of subjects. The decrease from REST to GAME
was statistically significant at all locations with target η, and at
the locations of the electrodes AF3, F7, T7, FC5, FC6, P7, P8, O1,
and O2 with target ρ. On the contrary, when the cardiovascular
process π was taken as the target, the MI value was low and
was significant in a smaller number of subjects (around 50%),
without displaying any significant variations across conditions.
The Kruskal–Wallis test showed homogeneity (p-value > 0.05)
for spatial distributions of R(xi;Xi,Y) in all the cases. These
results denote a high degree of connectivity between the cardiac
and respiratory processes and the other network processes,
decreasing with the GAME task, and an overall low connectivity
for the cardiovascular process.

Figure 4 reports the spatial distribution on the scalp of
the median values of the MI between a target j of the brain
subnetwork and all other processes, i.e.,R(yi;Y j,X) (a), alongside
with the number of subjects which showed statistically significant
MI according to the F-test (b). The measure evaluates the
connectivity between the considered brain rhythm and all other
processes in the overall network. The MI relevant to the δ, θ, and
α brain variables showed a tendency to increase, when assessed
for electrodes located in the frontal area of the scalp, during the
mental arithmetic condition compared to the resting state, and
to return to baseline values during the serious game condition.
The index R(yi;Y j,X) increased significantly at the AF3, AF4,
and F7 electrodes for θ and at the AF3 and F7 electrodes for
α, moving from REST to MENTAL, reflecting an increased
interaction between such rhythms and the whole network during
mental workload in the frontal region, and decreased significantly
at AF3, AF4, and F7 electrodes for δ, θ, and α moving from
MENTAL to GAME; the decrease was statistically significant also
at the left parietal P7 and right occipital O2 electrodes when
yj = α and comparing GAME to REST. A different behavior was
observed taking the process β as target, with no variations of the
median MI values going from REST to MENTAL, a decrease at
the P7, P8, and O2 electrodes going from REST to GAME, and
a decrease at the O2 electrode going from GAME to MENTAL;
this suggests a decreased connectivity between the β rhythm and
all others localized to the parietal and right occipital regions. The
Kruskal–Wallis test showed a heterogeneous spatial distribution
of R(yi;Y j,X) (p-value < 0.05) when yi = θ during all three
conditions, when yi = δ during REST and MENTAL, when
yi = α during MENTAL, and when yi = β during GAME.
The F-test showed statistically significant values of R(yi;Y j,X)
for almost all subjects when yi = θ, yi = α, and yi = β (in
particular during REST and MENTAL), while it was significant
for a lower number of subjects (around 60%) when yi = δ

(especially during GAME).

MI Between a Target and All Other
Processes in the Brain or Body
Subnetwork
Figure 5 depicts the distribution of the MI between a target in
the body subnetwork and the two other variables belonging to
the same subnetwork, R(xi;Xi), in the three conditions, together
with the number of subjects with statistically significant MI. This
index assesses the internal connectivity of the body subnetwork,
measured between one process and the two others, while pairwise
“direct” connectivity can be inferred from Figure 9. For each
target node, its interaction within the body subnetwork was
found high and significant at REST and decreased progressively
during the MENTAL and GAME conditions. The decrease of MI
values from REST to GAME is statistically significant for η and ρ

taken as targets. The values of R(xi;Xi) computed with xi = η

and xi = ρ were statistically significant in almost all subjects
during REST and MENTAL, and decreased slightly during
GAME; when xi = π, the statistical significance was lower in all
conditions and reached the minimum of 50% of subjects during
GAME. Overall, these results suggest a strong connectivity within
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FIGURE 2 | Spatial distribution of (A) the median multivariate interaction between brain and body, R(X; Y), and (B) the number of subjects with statistically significant
values of the index, in the three analyzed conditions (REST, MENTAL, and GAME). Markers are located at EEG electrode positions and in (A) are colored according
to the results of statistical analysis (white: p < 0.05 MENTAL vs. REST or GAME vs. REST).

FIGURE 3 | Spatial distribution over the scalp of (A) the median multivariate interaction between a target xi of the body subnetwork and all remaining variables,
R
(
xi;X i, Y

)
, and (B) the number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index

is computed with target corresponding to the cardiac process η (upper row panels), to the respiratory process ρ (middle row panels), and to the cardiovascular
process π (lower row panels). Markers are located at EEG electrode positions and in (A) are colored according to the results of statistical analysis (white: p < 0.05
MENTAL vs. REST or GAME vs. REST). Asterisk (*) on an electrode indicates p < 0.05 MENTAL vs. GAME.

the body subnetwork, mainly arising from cardiorespiratory
interactions and declining during mental workload.

Figure 6 depicts the distribution of the MI between a target
in the brain subnetwork and the three other variables belonging
to the same subnetwork, R(yj;Y j), as well as the number of
subjects with statistically significant MI. This index assesses
the connection of the considered brain rhythm with all the
others taken together, while the pairwise connectivity between
rhythms can be inferred from Figure 9. For this measure,
results are similar to those obtained for the global measure
R(yj;Y j,X), showing a tendency of the measure to increase
from REST to MENTAL in the frontal region of the scalp
(statistically significant at the AF3, AF4, and F7 electrodes
when yj = θ, at the AF3 and F7 electrodes when yj = α,
and at the AF3 electrode when yj = δ), and a tendency to
decrease in the same region moving from MENTAL to GAME
(significant for AF3, AF4, and F7 when yj = δ and yj = α,
and also for F8 when yj = θ); other significant changes for

yj = α involved the P7 and O2 electrodes when comparing
GAME and REST, and for yj = θ the electrode FC5 when
comparing GAME and MENTAL. These results indicate an
increased connectivity of δ, α, and especially θ rhythms with
all the others during mental workload in the frontal region,
and a decreased connectivity of α with all the others during
GAME in the left parietal and right occipital zones. Different
trends were shown when yj = β: the MI was substantially
unchanged from REST to MENTAL, and decreased during
GAME (with significant changes at the electrodes P7, P8, and
O2 when compared to REST, and at O2 when compared
to MENTAL), thus showing a decreased connectivity of β

rhythm with all the others during GAME in the parietal
and right occipital regions. The Kruskal–Wallis test showed
spatial inhomogeneity (p-value < 0.05) with regard to δ and θ

power in all the three conditions, only during MENTAL with
regard to α power, and only during GAME with regard to
β power. According to the F-test, the interaction values were
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FIGURE 4 | Spatial distribution over the scalp of (A) the median multivariate interaction between a target yj of the brain subnetwork and all remaining variables,
R(yj;Y j, X), and (B) the number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index is
computed with target corresponding to the EEG power band processes δ, θ, α, β (from upper to lower row panels). Markers are located at EEG electrode positions
and in (A) are colored according to the results of statistical analysis (white: p < 0.05 MENTAL vs. REST or GAME vs. REST). Asterisk (*) on an electrode indicates
p < 0.05 MENTAL vs. GAME. Hash symbols indicate results of Kruskal–Wallis test (#: p < 0.05, non-homogeneity of the spatial distribution).

FIGURE 5 | (A) Distributions of the multivariate interaction between a target xi of the body subnetwork and the two other variables of the same subnetwork,
R
(
xi;X i), and (B) number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index is

computed with target corresponding to the cardiac, respiratory, and cardiovascular processes η, ρ, and π. In (A), pKW indicates results of Kruskal–Wallis test, while
hash symbols indicate a p-value lower than 0.05 obtained using post-hoc test for the analysis between REST and the considered condition (#: p < 0.05 MENTAL vs.
REST or GAME vs. REST).
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FIGURE 6 | Spatial distribution over the scalp of (A) the median multivariate interaction between a target yj of the brain subnetwork and the three other variables in
the same subnetwork, R(yj;Y j), and (B) number of subjects with statistically significant values of the index, in the three analyzed conditions (REST, MENTAL, and
GAME); the index is computed with target corresponding to the EEG power band processes δ, θ, α, β (from upper to lower row panels). Markers are located at EEG
electrode positions and in (A) are colored according to the results of statistical analysis (white: p < 0.05 MENTAL vs. REST or GAME vs. REST). Asterisk (*) on an
electrode indicates p < 0.05 MENTAL vs. GAME. Hash symbols indicate results of Kruskal–Wallis test (#: p < 0.05, non-homogeneity of the spatial distribution).

statistically significant in the large majority of subjects for all
measures and conditions.

Conditional MI Between a Target in a
Subnetwork and the Whole Other
Subnetwork
Figure 7 reports the spatial distribution on the scalp of the
median values of the conditional MI between a target i of the
body subnetwork and the whole brain subnetwork, given the
remaining variables in the body subnetwork, i.e., R(xi;Y|Xi)
(Figure 7A), alongside with the number of subjects which
showed statistically significant conditional MI according to the
F-test (Figure 7B). This measure evaluates the strength of the
connection of a body process with all the brain rhythms, after
conditioning on effects of the other body processes. Contrary
to the MI measures previously analyzed, the conditional MI
showed overall lower values, as R(xi;Y|Xi) was on average an
order of magnitude smaller than R(xi;Xi), and weaker statistical
significance, as the F-test rejected the null hypothesis only
for few subjects (always less than 50%) in all the conditions
and electrodes. The conditional MI showed a tendency to
decrease during GAME when xi = η (significantly lower values
at F8 compared to REST) and when xi = ρ (significantly
lower values at F7 compared to REST, and at F7, F3, and

P7 compared to MENTAL), while it was uniformly low when
xi = π. The Kruskal–Wallis test showed homogeneity (p-
value > 0.05) for the spatial distributions of R(xi;Y|Xi) in the
three considered conditions.

Figure 8 reports the spatial distribution on the scalp of the
median values of the conditional MI between a target j of the
brain subnetwork and the whole body subnetwork, given the
remaining variables in the brain subnetwork, i.e., R(yj;X|Y j)
(Figure 8A), alongside with the number of subjects which
showed statistically significant conditional MI according to the
F-test (Figure 8B). This measure evaluates the strength of the
connection of a brain rhythm with all the body processes, after
conditioning on effects of the other brain rhythms. Also in this
case, the values ofR(yj;X|Y j) were much weaker than those of the
unconditional measure R(yj;Y j) and exhibited markedly lower
statistical significance (compare Figure 8 with Figure 6). The
conditional MI showed a tendency to increase during MENTAL
when yj = δ and when yj = β (significantly higher values
compared to REST, respectively, at P7 and at AF3), and to
decrease during GAME when yj = θ and when yj = α

(significantly lower values compared to REST, respectively, at
F7 and at F7, O2); an increase from MENTAL to GAME was
observed at AF4 when yj = θ. These results, together with
those of Figure 7, highlight the presence of weak connectivity
between the brain and body processes, with no precise trends
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FIGURE 7 | Spatial distribution over the scalp of (A) the median multivariate interaction between a target xi of the body subnetwork and all variables of the brain
subnetwork, conditioned on the two remaining variables of the body subnetwork, R

(
xi;Y |X i), and (B) the number of subjects with statistically significant values of

the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index is computed with target corresponding to the cardiac process η (upper row
panels), to the respiratory process ρ (middle row panels), and to the cardiovascular process π (lower row panels). Markers are located at EEG electrode positions
and in (A) are colored according to the results of statistical analysis (white: p < 0.05 MENTAL vs. REST or GAME vs. REST). Asterisk (*) on an electrode indicates
p < 0.05 MENTAL vs. GAME. Hash symbols indicate results of Kruskal–Wallis test (#: p < 0.05, non-homogeneity of the spatial distribution).

FIGURE 8 | Spatial distribution over the scalp of (A) the median multivariate interaction between a target yj of the brain subnetwork and all variables of the body
subnetwork, conditioned on the three remaining variables of the brain subnetwork, R(yj;X|Y j), and (B) the number of subjects with statistically significant values of
the index, in the three analyzed conditions (REST, MENTAL, and GAME); the index is computed with target corresponding to the EEG power band processes
δ, θ, α, β (from upper to lower row panels). Markers are located at EEG electrode positions and in (A) are colored according to the results of statistical analysis (white:
p < 0.05 MENTAL vs. REST or GAME vs. REST). Asterisk (*) on an electrode indicates p < 0.05 MENTAL vs. GAME. Hash symbols indicate results of Kruskal–Wallis
test (#: p < 0.05, non-homogeneity of the spatial distribution).
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FIGURE 9 | Topological representation of the interaction between pairs of nodes zi and zj of the physiological network (zi, zj ∈ Z = {η, ρ, π, δ, θ, α, β}), provided by
the statistically significant values of the conditional MI measure R(zi; zj |Z\{zi, zj}), during the three considered states (REST, MENTAL, and GAME). Thickness of the
lines is proportional to the number of subjects for which the corresponding link is statistically significant (p < 0.05, Fisher’s F-test). Red, blue, and black lines denote
the links relevant to body–body, brain–brain, and brain–body interactions.

in terms of spatial localization and just a few statistically
significant variations during MENTAL or GAME. The Kruskal–
Wallis test showed homogeneity (p-value > 0.05) for the spatial
distributions of R(yj;X|Y j) in almost all of the cases, except than
the case yj = α during GAME.

Direct Interactions Between Pairs of
Processes Based on Conditional MI
Figure 9 reports the network representation of the direct
interactions between pairs of variables of the physiological
network across the three analyzed conditions, depicted on
the basis of the conditional MI measure R(zi; zj|Z\{zi, zj}).
This measure evaluates the pairwise connectivity between two
processes in the context of all other processes in the whole
physiological network. In the figure, networks are constructed
counting the subjects for which the measure was statistically
significant, and for visualization purposes are reported for the
subset of the scalp electrodes for which most significant variations

were observed in the previous analyses (frontal: AF3, AF4, F7;
central: FC5; parietal: P7, P8; occipital: O2; temporal: T7, T8).

The network analysis allows to investigate the topological
structure underlying the MIs detected previously, as well as
their changes across conditions. As regards the body subnetwork
(red links), the topology is quite consistent across electrodes
for any considered experimental condition. At REST, strong
interconnections are observed between the η and ρ nodes,
and significant (though generally weaker) connections are also
observed between η and π and between π and ρ. During
MENTAL, the connection η–ρ remains significant in almost all
subjects, while the two other links (η–π and π–ρ) are generally
less evident. The weakening of the links in the body subnetwork
is even more evident during GAME, involving also a decrease in
the number of the connections between η and ρ.

Analyzing the brain subnetwork (blue links), we found that it
is fully connected (i.e., it shows absence of isolated nodes) for any
scalp electrode and experimental condition. The most evident
connections are those involving the pairs of nodes δ–θ, θ–α, and
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α–β, while the connections δ–α, δ–β, and θ–β are weaker and
less consistent across spatial locations. This topology is present in
all conditions at REST and persists in the other conditions, even
though with some noticeable anatomical variations moving from
one condition to another. During MENTAL, the connections
δ–θ, θ–α, and α–β were reinforced in the frontal areas of the
scalp (AF3, AF4, F7, FC5) and in the right temporal area (T8).
A slightly larger variability in the topology was observed during
GAME, with connection strength similar to REST although with
some local difference (e.g., emergence of θ–β connections at F7,
decrease of α–β connections at P7, increase of δ–θ connections at
T7, and decrease at T8).

Brain–body interactions (black links) are less evident and
more sparse, supporting in terms of the fully multivariate
measure R(zi; zj|Z\{zi, zj}) the results of Figures 7, 8 where
a limited number of significant values of R(xi;Y|Xi) and
R(yj;X|Y j) were observed. Though weak, interactions between
the brain and body subnetwork were almost always detected (the
two subnetwork were isolated only at AF3 during REST, and at
AF3, F7, P8, O2 during GAME). Such interactions were mostly
involving the η node of the body subnetwork (in 29 out of the
40 brain–body connections shown in Figure 9), often linked to
the β node of the brain subnetwork (in 13 cases), or the δ node
of the brain subnetwork (14 connections), and only sporadically
the remaining nodes. Overall, brain–body connections increased
moving from REST to MENTAL (from 13 to 19 links shown in
Figure 9) and decreased during GAME (eight links); the scalp
electrodes where this behavior was more striking are located in
the frontal (AF3, F7) and temporal (T7, T8) areas.

DISCUSSION

The main results of this work can be summarized as follows:
(a) the brain and body subnetworks of the human physiological
network exhibit significant degrees of internal and reciprocal
interaction; (b) internal interactions (brain–brain and body–
body) are predominant, confirming the existence of significantly
correlated variations in the amplitude of the different brain
waves on one side (Lin et al., 2020), and of cardiovascular and
cardiorespiratory interactions on the other side (Porta et al.,
2012; Schulz et al., 2013); (c) cardiorespiratory interactions
are the predominant form of interaction within the analyzed
body subnetwork, and decrease significantly during sustained
attention (and less evidently during mental stress); (d) brain–
brain interactions are sustained by a quite consistent topological
structure, and are significantly stronger in the frontal scalp areas
during mental stress; (e) brain–body interactions are weaker
than within-subnetwork interactions, but are often statistically
significant and are modulated by the physiological state, being
stronger during the mental stress task and weaker during the
sustained attention task.

Our results suggest the presence of strong interactions within
and between the brain and body subnetworks which vary
according to the stress level elicited by the adopted protocol, as
highlighted by the analysis of the MI measureR (X;Y) (Figure 2).
This finding is in line with those of several investigations in

the field of network physiology showing that significant degrees
of interaction within and between organ systems sustain the
physiological regulation in different physiological states, e.g.,
including sleep stages (Ako et al., 2003; Bashan et al., 2012;
Bartsch et al., 2015; Lin et al., 2020) or physiological stress
(Faes et al., 2017b; Valente et al., 2018; Krohova et al., 2019).
Nevertheless, exploiting the decomposition of the overall MI
measure into measures eliciting the correlations relevant to a
single target variable and selected groups of other variables,
it has been possible to infer that the interactions within each
subnetwork prevail over brain–body interactions. This fact
is documented by the low absolute values and fraction of
subjects with statistically significant interaction observed for
the conditional MI measures R(xi;Y|Xi) and R(yj;X|Y j) (see
Figures 7, 8), as well as from the similar trends obtained for
MI (Figures 3, 5) and conditional MI measures (Figures 4, 6).
Weaker interactions between the brain and body subnetworks
were observed in the same experimental settings also in recent
studies performing dynamic analyses (Zanetti et al., 2019a;
Antonacci et al., 2020).

The interactions occurring within the body subnetwork
formed by cardiac, cardiovascular, and respiratory dynamics
(Figure 5 and red links in Figure 9) were remarkable and
quite consistent across conditions, evidencing a predominance
of cardiorespiratory coupling and a weakening during mental
stress and particularly during sustained attention. The strong
link between the cardiac and respiratory variables, corresponding
to the heart period and respiratory amplitude time series,
is due to the respiratory sinus arrhythmia (RSA), a well-
known physiological mechanism whereby the breathing activity
modulates the variability of the heart rate (Yasuma and Hayano,
2004; Ben-Tal et al., 2012; Porta et al., 2012; Krohova et al., 2019).
Our results are in agreement with those obtained in previous
works using different and more sophisticated techniques, e.g., in
Zanetti et al. (2019a) computing the information the information
exchanged dynamically between heart period and respiration,
and in Krohova et al. (2019) applying multiscale entropy
methods. In the latter study, the weakening of the influence of
respiration on heart rate has been ascribed to the inhibition
of parasympathetic activity provoked by stress challenges and,
when compared to other stressors like postural changes, to the
lack of activation of baroreflex-mediated RSA mechanisms. We
also found that the cardiovascular variable analyzed here, i.e.,
the PAT, strongly interacts with the cardiac period and the
respiration amplitude. This link is mostly probably due to the
known influence of heart rate on stroke volume and blood
pressure that in turns varies the PAT, which is also influenced
by respiration (Drinnan et al., 2001; Wang et al., 2014); the
mechanism is such that respiration affects the intra-thoracic
pressure provoking changes in blood pressure and then also heart
rate, with PAT variations following some beats later (Cavalcanti,
2000; Drinnan et al., 2001).

Considering the interactions of the processes belonging to
the brain subnetwork (Figure 6), our results highlight a marked
increase in the frontal region occurring during the mental
arithmetic task (but not during the attention task) for the links
involving the δ, θ, and α EEG power time series. This finding
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supports from the point of view of connectivity between different
brain rhythms the well-known fact that mental arithmetic tasks
and operations with numbers produce an activation of specific
prefrontal cortical areas (Inouye et al., 1993; Menon, 2010;
Arsalidou and Taylor, 2011; Friedrich and Friederici, 2013).
Moreover, the decrease observed in the parietal and right
occipital regions moving from rest to serious game when the MI
term R(yj;Y j) was computed for the α and β EEG rhythms is
in accordance with previous findings in the literature showing
that parietal cortical regions, mainly in the right hemisphere,
are involved in sustained attention tasks (Lawrence et al., 2003;
Molteni et al., 2007; Klimesch, 2012; Saalmann et al., 2012;
Behzadnia et al., 2017; Mitko et al., 2019); the modulation of
EEG rhythms during sustained attention was previously observed
regarding high-frequency waves (in the β and gamma ranges)
in Molteni et al. (2007), with changes localized mostly in the
right hemisphere and in the parietal region, and regarding the α

rhythm in Behzadnia et al. (2017), showing that a greater decrease
in the α power is associated with better performance during
the task. Our study goes beyond the above described findings,
also showing that the observed changes in the coupling strength
between brain wave dynamics are supported by the topology
of the brain–brain network and to its reorganization during
mental stress and sustained attention. Remarkably, structured
reorganizations of the connectivity and topology of physiological
networks consequent to transitions across different physiological
states have been previously reported in the context of sleep
analysis (Bashan et al., 2012; Faes et al., 2015b; Lin et al.,
2020). Bashan et al. (2012) demonstrated that the strength of
brain–brain links is high during light sleep and deep sleep, and
is lower during rapid eye movement (REM) sleep; Lin et al.
(2020) reported strong β–α and θ–α links in awake subjects
and when significant positive correlation is present between a
pair of brain waves; in Faes et al. (2015b), strong dynamical
interactions along the directions β->α and δ->θ were revealed
during sleep employing time-lagged causality measures such as
Granger causality and transfer entropy.

The analysis of brain–heart interactions, evidenced
particularly by the network topology in Figure 9, documented an
increased connectivity between the brain and body subnetworks
during mental stress (especially in the frontal scalp areas), and
a reduction during sustained attention when conditions of
isolation of the two sub-networks were often encountered (e.g.,
at electrodes AF3, F7, P8, and O2). The increased brain–body
connectivity during the mental arithmetic task is likely related
to the widely studied compensatory responses co-occurring
in the central and ANSs to the internal and environmental
stimuli evoked by stress (see, e.g., Silvani et al., 2016 for a
review on the topic). As regards the use of multivariate time
series analysis techniques, findings similar to those reported
here were obtained performing a dynamic analysis based on
Granger causality in Zanetti et al. (2019a); moreover, stronger
bidirectional interactions between brain and heart dynamics
were reported during emotional elicitation (Greco et al., 2019).
As regards the nature of brain–body interactions, we find that
those occurring more frequently are involving the variability
of the heart period and of the β EEG waves. This finding is in

accordance with what reported in Mather and Thayer (2018)
where it is stated that oscillations in heart rate modulate brain
oscillatory activities, especially in brain regions associated with
emotion regulation, which can lead to enhanced functional
connectivity. Other studies, mostly related to sleep analysis, also
suggest the existence of relations between EEG rhythms and
HRV arising from common effects driven by the ANS (Ako
et al., 2003; Faes et al., 2014; Kuo et al., 2016; Dzhebrailova
et al., 2017). In particular, the β waves seem to play a main
role in mediating brain–heart interactions, likely due to their
dependence on autonomic arousals and sympathetic activation
(Faes et al., 2014; Kuo et al., 2016). In addition, considering
that cardiorespiratory interactions are typically very strong, an
indirect effect (i.e., an effect mediated by RSA) of respiration on
the brain subnetwork seems also plausible. Such an effect is also
supported by evidences about the rhythmic modulation of the
neuronal activity of the neocortex exerted by respiration-locked
sensory inputs (Heck et al., 2017; Varga and Heck, 2017). On
the contrary, the interaction between π and the other variables
is quite limited (as demonstrated by the low MI values in
Figure 3A and the few connections in Figure 9). This is also
in agreement with recent results (Pernice et al., 2019d; Zanetti
et al., 2019a) obtained using information-theoretic measures,
suggesting a limited coupling between pulse wave velocity in the
cardiovascular system and brain dynamics.

Methodologically, the results of this work highlight the
usefulness of the proposed MI measure to investigate the
functional connection between different subnetworks in the
human body. The MI measure under certain assumptions is also
directly proportional to mutual information (see Appendix), and
this is useful to allow comparisons with other previous works
in the field, since information-theoretic-based measures have
already been used in the past for this aim (Barnum et al., 2010;
Faes et al., 2014, 2017a,b; Barrett, 2015). For example, in our
previous work (Zanetti et al., 2019a) we have investigated the
information generated, stored, and transferred among different
nodes in a physiological network taking into account only one
electrode, while in Pernice et al. (2019b), we have carried out
a multilevel stress assessment based on the concept of network
physiology using time-domain measures (mean and standard
deviation) and self-entropy. Also, in Antonacci et al. (2020),
we have applied a more sophisticated technique consisting of
a penalized regression performed through the Least Absolute
Shrinkage and Selection Operator (LASSO) before calculating
measures of information dynamics. All these approaches are
dynamic, meaning that they account for time-lagged interactions.
Compared to such approaches, the MI measures proposed
here can be defined “static,” since only instantaneous (zero-lag)
interactions are taken into account. Static analysis in some sense
subsumes dynamic analysis, since time lagged effect typically
determine zero-lag ones; moreover, the performed zero-lag
correlation analysis is easier to implement and computationally
efficient. While instantaneous or-single lag interactions are the
basis of the main studies in the field of network physiology
(Bashan et al., 2012; Lin et al., 2020), in this study, we have
extended their investigation to the multivariate case, allowing the
study of interactions between groups of sub-systems (through the
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MI measures involving blocks of variables) and the distinction
between direct and indirect/mediated connections (through
conditional MI measures). Our results document how this
approach leads to describe exhaustively not only the interactions
occurring between different subnetworks (brain–body), but also
those occurring internally in a subnetwork (brain or body).

The main limitation of the current study consists in the fact
that the analysis of EEG signals has been carried out on a scalp-
level, as previously stated in Section “Time Series Extraction.” We
are aware that recent studies have highlighted that particular care
should be assumed making inferences about brain regions since
EEG scalp level connectivity does not permit a perfectly reliable
interpretation of interacting brain areas as they can be corrupted
by volume conduction effects or by confounding factors (Lai
et al., 2018; Reid et al., 2019; Van de Steen et al., 2019). However,
neural time series obtained starting from the oscillations recorded
on the scalp—even if affected by confounding factors—can
still represent a starting point for estimating brain network
interactions (Reid et al., 2019). From this point of view, the
analysis carried out in this work represents a first step to be
confirmed in the future using source-reconstructed signals (Van
de Steen et al., 2019), or even exploiting frameworks for the
computation of source connectivity measures directly from scalp
recordings (Kotiuchyi et al., 2020). Other limitations of the
current study consist in the relatively small number of subjects
analyzed, in the possibility of a not so-clear distinction between
the elicited level stress evoked by GAME and MENTAL situations
which may affect the obtained results and in the fact that blood
pressure was not acquired on the subjects, which could give
additional useful physiological indications.

CONCLUSION

The aim of this work was to extend the analysis of functional
brain–body interactions based on simple correlation tools to
the multivariate case, allowing to dissect such interactions
into contributions originated within and between the two
physiological districts. Taken together, the proposed measures of
“MI” elicit transitions across different physiological states as well
as spatial features, and constitute a tool easy to implement and
with low computational cost. Practical and clinical applications
of this tool range from a better understanding of the links and
working principles of central and autonomic neural regulation
(Silvani et al., 2016), or of the physiological mechanisms
underlying stressful conditions (Dimsdale, 2008), to the real-time
and automatic classification in real-life scenarios using non-
invasive or wearable devices (Jovanov, 2019; Pernice et al., 2019c;
Vinciguerra et al., 2019).

Future developments consist in the implementation of a
more complete protocol able to elicit other different levels of
mental stress to better investigate on the changes in the strength
of the interactions between brain and peripheral subnetworks.
Such protocol should also include intermediate resting phases
between stressful situations to assess whether elicited stress still
produces effects during time in a consequent resting phase.
Future methodological work is also envisaged regarding: (a) a
thorough validation on simulations of the MI measures presented

here performed also through a direct comparison with more
sophisticated analysis techniques including the use of time-
delayed techniques employing tools of information dynamics to
retrieve directional information (Faes et al., 2014) and of non-
linear model free entropy estimators (Faes et al., 2015a); (b) the
frequency-specific decomposition of the proposed measures (e.g.,
following Faes et al., 2020) to investigate how MIs can reflect
oscillatory rhythms with specific physiological meaning; and (c)
the analysis on source-reconstructed signals to obtain better
anatomically-localized estimates of the strength and topology of
brain–body interactions (Lai et al., 2018; Van de Steen et al., 2019;
Kotiuchyi et al., 2020).
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APPENDIX

In this Appendix, we report the derivation of the alternative definitions of squared correlation for two scalar variables (Eqs 2 and 3)
and their generalization in the case of vector variables (Eq. 5), and we draw the connection between the interaction measures and
information measures.

In the case of scalar random variables x and y, the covariance of W = [xy] is the 2× 2 matrix

6W =

[
6x 6x;y
6y;x 6y

]
, (A.1)

and its determinant is
∣∣∣6[xy]

∣∣∣ = |6W | = 6x6y −62
x;y. Then, Eq. 2 follows easily inserting 62

x;y = 6x6y − |6W | in
Eq. 1. Moreover, relating x and y through the linear regression model x = ay+ b+ u, under the typical assumptions that u
has zero mean and is uncorrelated with y, the variance of x and the covariance between x and y can be written, respectively, as
6x = E

[
(x−mx)

2]
= a26y +6u, and 6x;y = E[(x−mx)(y−my)] = a6y, which combined together yield 62

x;y = 6x6y −

6u. This latter expression inserted into Eq. 1 yields Eq. 3.
Extending the above derivation to the multivariate case, the vector variables X and Y are related through the multivariate

linear regression X = YA+ B+ U from which, assuming mU = 0 and E
[
YTU

]
= 0, the covariance of X and the

cross-covariance between Y and X can be written, respectively, as 6X = E
[
(X −mX)T(X −mX)

]
= AT6YA+6U and

6Y;X = E
[
(Y −mY)T(X −mX)

]
= 6YA, which combined together yield 6U ≡ 6X − 6X;Y6−1

Y 6Y;X . Moreover, considering
that the covariance matrix of the overall variable Z = [XY] is a block matrix with form

6Z = 6[X,Y] =

[
6X 6X;Y

6Y;X 6Y

]
, (A.2)

its determinant can be obtained using the block determinant identity (Horn and Johnson, 2012) as∣∣6[X,Y]
∣∣ = |6Y |

∣∣6X −6X;Y6−1
Y (6X;Y)T

∣∣ = |6Y | |6U |. This last expression leads easily to recover Eq. 5 from the definition of
multivariate correlation of Eq. 4.

Finally, we note that both the classic squared correlation and its multivariate extension proposed here have a link with information-
theoretic measures when the observed variables have a joint Gaussian distribution. In fact, it is well known that, for scalar Gaussian
variables, the variance of x is related to the entropy by the equation H (x) = 0.5 ln (2πe6x), and the partial variance of x given y is
related to the conditional entropy of x given y by the equation H

(
x|y
)
= 0.5 ln

(
2πe6x|y

)
(Faes et al., 2017a); as a consequence, the

squared correlation between x and y is related to the mutual information by the equation

I
(
x; y

)
= H (x)−H

(
x|y
)
= 0.5 ln

6x

6x|y
= − 0.5 ln

(
1− ρ2 (x; y)). (A.3)

In the multivariate case when the jointly Gaussian vector variables X and Y are considered, the relations become
H (X) = 0.5 ln

(
(2πe)P|6X|

)
and H (X|Y) = 0.5 ln

(
(2πe)P|6X|Y |

)
, which similarly yield

I (X;Y) = H (X)−H (X|Y) = 0.5 ln
|6X|

|6X|Y |
= − 0.5 ln

(
1− ρ2 (X;Y)

)
. (A.4)

Therefore, under the hypothesis of joint Gaussianity of X and Y the MI measure of Eq. 6 is equivalent, up to a factor of two, to
the mutual information I (X;Y) between the two variables, i.e., R (X;Y) = 2I (X;Y), and the generalized variances appearing in
Eq. 7 are related to the entropy H (X) and to the conditional entropy of H (X|Y) via the equations V (X) = 2H (X)− Pln2πe and
V (X|Y) = 2H (X|Y)− Pln2πe (Faes et al., 2015c, 2017b). These relations extend to all measures defined in the following in the
main text (Eqs 8–11); for instance, in the Gaussian case, the measure of direct interaction between two scalar variables conditioned
on all other variables (Eq. 11) takes the form of a conditional mutual information, i.e., I (zi; zj|Z\{zi, zj}) = H

(
zj
∣∣Z\{zi, zj})−

H
(
zj
∣∣ Z\{zj}) = 0.5V

(
zj
∣∣Z\{zi, zj})− 0.5V

(
zj
∣∣ Z\{zj}) = 0.5R(zi; zj|Z\ {zi, zj}).
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