65 research outputs found

    Cover and Front Matter

    Get PDF
    Cover, table of contents, administrative information, Volume 10 (2017

    Cover and Front Matter

    Get PDF
    Cover, table of contents, administrative information, Volume 10 (2017

    The Application of Graphology and Enneagram Techniques in Determining Personality Type Based on Handwriting Features

    Get PDF
    This research was conducted with the aim of developing previous studies that have successfully applied the science of graphology to analyze digital handwriting and characteristics of his personality through shape based feature extraction, which in the present study will be applied one method of psychological tests commonly used by psychologists to recognize human\u27s personality that is Enneagram. The Enneagram method in principle will classify the personality traits of a person into nine types through a series of questions, which then calculated the amount of the overall weight of the answer. Thickness is what will provide direction personality type, which will then be matched with the personality type of the result of the graphology analysis of the handwriting. Personality type of handwritten analysis results is processed based on the personality traits that are the result of the identification of a combination of four dominant form of handwriting through the software output of previous studies, that Slant (tilt writing), Size (font size), Baseline, and Breaks (respite each word). From the results of this research can be found there is a correlation between personality analysis based on the psychology science to the graphology science, which results matching personality types by 81.6% of 49 respondents data who successfully tested

    Automatic Ontology Construction Using Text Corpora and Ontology Design Patterns (ODPs) in Alzheimer\u27s Disease

    Get PDF
    An ontology is defined as an explicit specification of a conceptualization, which is an important tool for modeling, sharing and reuse of domain knowledge. However, ontology construction by hand is a complex and a time consuming task. This research presents a fully automatic method to build bilingual domain ontology from text corpora and ontology design patterns (ODPs) in Alzheimer\u27s disease. This method combines two approaches: ontology learning from texts and matching with ODPs. It consists of six steps: (i) Term & relation extraction (ii) Matching with Alzheimer glossary (iii) Matching with ontology design patterns (iv) Score computation similarity term & relation with ODPs (v) Ontology building (vi) Ontology evaluation. The result of ontology composed of 381 terms and 184 relations with 200 new terms and 42 new relations were added. Fully automatic ontology construction has higher complexity, shorter time and reduces role of the expert knowledge to evaluate ontology than manual ontology construction. This proposed method is sufficiently flexible to be applied to other domains

    Random Adjustment - Based Chaotic Metaheuristic Algorithms for Image Contrast Enhancement

    Get PDF
    Metaheuristic algorithm is a powerful optimization method, in which it can solve problemsby exploring the ordinarily large solution search space of these instances, that are believed tobe hard in general. However, the performances of these algorithms signicantly depend onthe setting of their parameter, while is not easy to set them accurately as well as completelyrelying on the problem\u27s characteristic. To ne-tune the parameters automatically, manymethods have been proposed to address this challenge, including fuzzy logic, chaos, randomadjustment and others. All of these methods for many years have been developed indepen-dently for automatic setting of metaheuristic parameters, and integration of two or more ofthese methods has not yet much conducted. Thus, a method that provides advantage fromcombining chaos and random adjustment is proposed. Some popular metaheuristic algo-rithms are used to test the performance of the proposed method, i.e. simulated annealing,particle swarm optimization, dierential evolution, and harmony search. As a case study ofthis research is contrast enhancement for images of Cameraman, Lena, Boat and Rice. Ingeneral, the simulation results show that the proposed methods are better than the originalmetaheuristic, chaotic metaheuristic, and metaheuristic by random adjustment

    Psnr Based Optimization Applied to Algebraic Reconstruction Technique for Image Reconstruction on a Multi-core System

    Get PDF
    The present work attempts to reveal a parallel Algebraic Reconstruction Technique (pART) to reduce the computational speed of reconstructing artifact-free images from projections. ART is an iterative algorithm well known to reconstruct artifact-free images with limited number of projections. In this work, a novel idea has been focused on to optimize the number of iterations mandatory based on Peak to Signal Noise Ratio (PSNR) to reconstruct an image. However, it suffers of worst computation speed. Hence, an attempt is made to reduce the computation time by running iterative algorithm on a multi-core parallel environment. The execution times are computed for both serial and parallel implementations of ART using different projection data, and, tabulated for comparison. The experimental results demonstrate that the parallel computing environment provides a source of high computational power leading to obtain reconstructed image instantaneously

    Identifying Medicinal Plant Leaves Using Textures and Optimal Colour Spaces Channel

    Get PDF
    This paper presents an automated medicinal plant leaf identification system. The Colour Texture analysis of the leaves is done using the statistical, the Grey Tone Spatial Dependency Matrix(GTSDM) and the Local Binary Pattern(LBP) based features with 20 different colour spaces(RGB, XYZ, CMY, YIQ, YUV, YCbCrYC_{b}C_{r}, YES, U∗V∗W∗U^{*}V^{*}W^{*}, L∗a∗b∗L^{*}a^{*}b^{*}, L∗u∗v∗L^{*}u^{*}v^{*}, lms, lαβl\alpha\beta, I1I2I3I_{1} I_{2} I_{3}, HSV, HSI, IHLS, IHS, TSL, LSLM and KLT). Classification of the medicinal plant is carried out with 70\% of the dataset in training set and 30\% in the test set. The classification performance is analysed with Stochastic Gradient Descent(SGD), kNearest Neighbour(kNN), Support Vector Machines based on Radial basis function kernel(SVM-RBF), Linear Discriminant Analysis(LDA) and Quadratic Discriminant Analysis(QDA) classifiers. Results of classification on a dataset of 250 leaf images belonging to five different species of plants show the identification rate of 98.7 \%. The results certainly show better identification due to the use of YUV, L∗a∗b∗L^{*}a^{*}b^{*} and HSV colour spaces

    Supervised Machine Learning Model for Microrna Expression Data in Cancer

    Get PDF
    The cancer cell gene expression data in general has a very large feature and requires analysis to find out which genes are strongly influencing the specific disease for diagnosis and drug discovery. In this paper several methods of supervised learning (decisien tree, naïve bayes, neural network, and deep learning) are used to classify cancer cells based on the expression of the microRNA gene to obtain the best method that can be used for gene analysis. In this study there is no optimization and tuning of the algorithm to test the ability of general algorithms. There are 1881 features of microRNA gene epresi on 25 cancer classes based on tissue location. A simple feature selection method is used to test the comparison of the algorithm. Expreriments were conducted with various scenarios to test the accuracy of the classification
    • …
    corecore