
Jurnal Ilmu Komputer dan Informasi (Journal of a Science and Information). 10/2 (2017), 108-115 

DOI: http://dx.doi.org/10.21609/jiki.v10i2.481 
 

108 
 

SUPERVISED MACHINE LEARNING MODEL FOR MICRORNA EXPRESSION DATA IN 

CANCER 

 

Indra Waspada1, Adi Wibowo1,  and Noel Segura Meraz2  

 
1Department of Informatics, Faculty of Science and Mathematics, Diponegoro University, Tembalang, 

Semarang, 50275  Indonesia 
2Department of Micro-Nano Mechanichal Science and Engineering, Nagoya University, Nagoya, 464048, 

Japan 

 

E-mail: indrawaspada@undip.ac.id, bowo.adi@undip.ac.id , noel@robo.mein.nagoya-u.ac.jp  

 

 
Abstract 

 
The cancer cell gene expression data in general has a very large feature and requires analysis to find 

out which genes are strongly influencing the specific disease for diagnosis and drug discovery. In this 

paper several methods of supervised learning (decision tree, naïve bayes, neural network, and deep 

learning) are used to classify cancer cells based on the expression of the microRNA gene to obtain the 

best method that can be used for gene analysis. In this study there is no optimization and tuning of the 

algorithm to assess the fitness of algorithms. There are 1881 features of microRNA gene expresion, 

22 cancer classes based on tissue location. A simple feature selection method is used to test the 

comparison of the algorithm. Expreriments were conducted with various scenarios to asses the 

accuracy of the classification. 

 
Keywords: Cancer, MicroRNA, classification, Decision Tree, Naïve Bayes, Neural Network, Deep 

Learning 

 

 
Abstrak 

 
Data ekpresi gen sel kanker secara umum memiliki feature yang sangat banyak dan memerlukan 

analisa untuk mengetahui gen apa yang sangat berpengaruh terhadap spesifik penyakit untuk 

diagnosis dan juga penemuan obat. Pada tulisan ini beberapa metode supervised learning (decisien 

tree, naïve bayes, neural network, dan deep learning) digunakan untuk mengklasifikasi sel kanker 

berdasarkan ekpresi gen microRNA untuk mendapatkan metode terbaik yang dapat digunakan untuk 

analsisa gen. Dalam studi ini tidak ada optimasi dan tuning dari algoritma untuk menguji kemampuan 

algortima secara umum. Terdapat 1881 feature epresi gen microRNA pada 25 kelas kanker berdarkan 

lokasi tissue. Metode sederhana feature selection digunakan juga untuk menguji perbandingan 

algoritma tersebut. Exprerimen dilakukan dengan berbagai sekenario untuk menguji akurasi dari 

klasifikai. 

 

Kata Kunci: Kanker, MicroRNA, Klasifikasi, Decesion Tree, Naïve Bayes, Neural Network, Deep 

Learning  

 

 

1. Introduction 

 

Cancer is the second deadliest disease after heart 

disease whith about 8.8 million cancer deaths by 

2015. Moreover, one in six deaths is caused by 

cancer. The number of new cases are expected to 

increase by 70% over the next two decades [1]. It 

is generally recognized that cancer occurs due to 

gene abnormalities [2]. Gene's expression in the 

production rate of protein molecules are defined 

by genes [3]. Analyzing the gene expression 

profiles is the most fundamental approaches for 

understanding genetic abnormalities [4]. Micro 

Ribonucleic acid (microRNA) is known as one of 

the gene expressions that are very influential in 

cancer cells [5]. Gene's expression data, in gene-

ral, has a very large number of features and 

requires analysis for diagnosis and disease analy-

sis or to distinguish certain types of cancer and 

drug discovery [6]. 

 Classification techniques of cancer cells 

based on gene expression data using machine 

learning methods have been developed rapidly in 

the analysis and diagnosis of cancer [7]. Classi-

fication techniques are definitely used to distinct 

the gene expression profiles for patients from 

cancer patients by type or even healthy patients 

[8]. One of the complicated problems in classi-

fication is to distinguish between different types 

of tumors (multiclass approach) which have a 
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very large quantities features of gene expression 

data [9]. For gene expression data, its high 

dimensionality and a relative fewer quantity 

numbers require much more consideration and 

specific preprocessing to deal with. In this case, it 

is important to aid users by suggesting which 

instances to inspect, especially for large datasets. 

 In constructing conventional machine 

learning systems require technical and domain 

skills to convert data into appropriate internal 

representations to detect patterns. Conventional 

techniques derive from single-spaced transform-

ations that are often linear and limited in their 

ability to process natural data in their raw form 

[10]. Deep learning differs from traditional machi-

nes. In fact, in-depth learning allows a computa-

tional model consisting of several layers of pro-

cessing based on neural networks to study data 

representation with varying levels of abstraction 

[10]. 

 In this paper, the machine learning model 

has been implemented in studying features of 

genuine gene expression data and testing it in a 

classification model. We apply supervised learn-

ing in the form of a decision tree, naïve Bayes, 

and neural network compared with deep learning 

method in determining high-dimensional gene 

data pattern and achieving high accuracy. This 

comparison is intended to determine the reliability 

of the model tested in various cases, including 

feature selection. 

    The paper is structured as follows: Section 2 

provides information on data and methods used 

for classification; Section 3 describes the results 

of a couple of methods from several scenarios of 

experiment and discussion. Finally section 4 the 

conclusion of paper and future works. 

 

 

2. Method  
 

Data sets  

 

The datasets of MicroRNA expression in cancer 

and normal cell was occupied from National 

cancer institute GDC data Portal (https://portal 

.gdc.cancer.gov/). Table 1 shows the detail of 

datasets. 

 

 

Decision Tree 

 

Basically, the Decision Tree algorithm aims at 

obtaining a homogeneous subgroup of predefined 

class attributes by repeatedly repartitioning a 

heterogeneous sample group based on the value of 

the feature attribute [11], [12]. 

 

Next, divide the group into smaller and more 

homogeneous subgroups. Referring to the class 

attribute, the sample group partition is selected 

based on the feature attribute with the highest 

Information Gain value 

 

The formula for calculating the information gain 

is derived from the following derivation [13]: 

• Information expected to classify a tuple in D 

is expressed as: 

𝐼𝑛𝑓𝑜(𝐷) = − ∑ 𝑝𝑖 log2(𝑝𝑖) 

𝑚

𝑖=1

 (1) 

with pi being the non zero probability that 

any tuple in D is part of class 𝐶𝑖  and is 

estimated with |𝐶𝑖,𝐷| |𝐷|⁄ . The base log 2 

function is used because the information is 

encoded in bits. Info (D) is the average 

amount of information needed to identify the 

Duplication class label D. Info (D) is also 

known as the entropy of D. 

 

• The amount of information required on the 

classification is measured using the following 

formula: 

𝐼𝑛𝑓𝑜𝐴(𝐷) = ∑
|𝐷𝑗|

|𝐷|
×𝐼𝑛𝑓𝑜(𝐷𝑗)

𝑣

𝑗=1

 (2) 

 

The 
|𝐷𝑗|

|𝐷|
 role as partition weight to j. 

𝐼𝑛𝑓𝑜𝐴(𝐷)  is the information needed to 

classify the tuples of D based on A. The 

TABLE 1 

SAMPLE NUMBER OF CANCER AND NORMAL CELL   

Tissue Cancer Normal 

Adrenal gland 259 3 

Bile duct 36 9 

Bladder 417 19 

Brain 512 5 

Breast 1096 104 

Cervix 307 3 

Colarectal 454 8 

Esophagus 186 13 

Head and neck 523 44 

Kidney 544 71 

Liver 372 50 

Lung 519 46 

Ovarium 489 0 

Pancreas 178 4 

Pleura 87 0 

Prostate 497 52 

Skin 97 2 

Soft Tissue 259 0 

Stomach 446 45 

Thymus 124 2 

Thyroid 506 59 

Uterus 545 33 
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smaller the information, the greater the purity 

of the partition. 

 

• Information Gain is defined as the difference 

between the original information and the new 

information (obtained from the partition on 

A), so it can be formulated as follows: 

𝐺𝑎𝑖𝑛(𝐴) = 𝐼𝑛𝑓𝑜(𝐷) − 𝐼𝑛𝑓𝑜𝐴(𝐷) (3) 

 

The iteration of the decision tree algorithm begins 

by partitioning the example using feature attri-

butes with the largest Information Gain until it 

stops when the remaining value of the Information 

Gain attribute is below a certain threshold or the 

subgroup is homogeneous [11], [12]. In the end, it 

will produce a tree-like structure, with its branch-

es being feature attributes and its leaves being 

subgroups. If there is an example as an input, then 

using the decision tree model that has been 

compiled it can be traced through the attribute of 

the input instance feature to predict the desired 

target attribute. 

 

Naïve Bayes  

 

A Naïve Bayes classifier is a simple probabilistic 

classifier based on applying Bayes' theorem (from 

Bayesian statistics) with strong (naive) indepen-

dence assumptions. A more descriptive term for 

the underlying probability model would be in-

dependent feature model. In simple terms, a Naïve 

Bayes classifier assumes that the presence (or 

absence) of a particular feature of a class (i.e. 

attribute) is unrelated to the presence (or absence) 

of any other feature. For example, a fruit may be 

considered to be an apple if it is red, round, and 

about 4 inches in diameter. Even if these features 

depend on each other or upon the existence of the 

other features, a Naïve Bayes classifier considers 

all of these properties to independently contribute 

to the probability that this fruit is an apple. 

The advantage of the Naive Bayes classifier 

is that it only requires a small amount of training 

data to estimate the means and variances of the 

variables necessary for classification. Because 

independent variables are assumed, only the vari-

ances of the variables for each label need to be 

determined and not the entire covariance matrix. 

Bayes is a conditional probability model for 

an example problem to be classified by the vector 

X = (x_1 ... ..x_n) with n example. 

 

𝑃(𝐶 𝑘|𝑥 1 … 𝑥𝑛) (5) 

 

The problem with the above formula is that if the 

number of n is very large, it will need a very large 

range of values, so the probability becomes 

impossible. We have a tendency to do formula-

tions on the model to provide additional use of 

Bayes theorem, its conditional probability is cal-

culated as: 

 

𝑝(𝐶 𝑘|𝑋) = 𝑝(𝐶 𝑘)𝑝 (𝐶 𝑘|𝑋)/𝑝(𝑋)                                         (6) 

 

The Bayesian probability terminology in the 

equation(6) can be written as Posterior = Like-

lihood / Evidence.  

In practice, interest only exists in the 

numerator of the fraction, since the denominator 

is independent of C and the value of the given 

feature Fj, so the numerator is effectively con-

stant. The numerator is equivalent to a joint pro-

bability model 

 

𝑝(𝐶 𝑘 , 𝑥1, … , 𝑥𝑛)  (7) 

 

It can be rewritten as follows, by using chain 

rules for repeated applications on the definition of 

conditional probabilities as: 

 

𝑝(𝐶 𝑘 , 𝑥1, … , 𝑥𝑛) = 𝑝(𝐶 𝑘 )𝑝(𝑥1, … , 𝑥𝑛|𝐶 𝑘) (8) 

 
Recently the independent conditional Naive 

came into play: the assumption that each feature 

Fj is conditionally independent for every other Fi 

feature for j is not equal to I, given category C, 

this means that: 
 

𝑝(𝑥𝑖|𝐶 𝑘, 𝑥𝑗) =  𝑝(𝑥𝑖|𝐶 𝑘) 

𝑝(𝑥𝑖|𝐶 𝑘, 𝑥𝑗 , 𝑥𝑘) =  𝑝(𝑥𝑖|𝐶 𝑘) = 𝑝(𝑥𝑖|𝐶 𝑘) 

𝑝(𝑥𝑖|𝐶 𝑘, 𝑥𝑗 , 𝑥𝑘, 𝑥𝑖) =  𝑝(𝑥𝑖|𝐶 𝑘) 

(9) 

 

For i ≠ j, k, l then the combined model can be 

expressed as 

 
𝑝(𝐶 𝑘,𝑖|𝑥1, … , 𝑥𝑗) ∝ 𝑝(𝐶 𝑘 , 𝑥1, … , 𝑥𝑛) ∝ 

𝑝(𝐶 𝑘 )𝑝(𝑥𝑖|𝐶 𝑘)𝑝(𝑥2|𝐶 𝑘) 

𝑝(𝑥3|𝐶 𝑘) ∝ 𝑝(𝐶 𝑘 ) ∏ 𝑝
𝑛

𝑖=1
(𝑥𝑖|𝐶 𝑘) 

(10) 

 
This means that based on the above indepen-

dent assumption, the conditional distribution in 

the class C variable is: 

 

𝑝(𝐶 𝑘|𝑥𝑖 , … , 𝑥𝑗) = 1
𝑍⁄ 𝑝(𝐶 𝑘 ) ∏ 𝑝

𝑛

𝑖=1
(𝑥𝑖|𝐶 𝑘) (11) 

 
where the evidence Z = p (x) is a scaling factor 

that depends on x1, ..., xn. That is constant if the 

value of feature variable is known. 
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Neural Network 

 

Rapidminer provides neural network ope-

rator. The operator uses feedforward neural net-

work algorithm with backpropagation algorithm 

for the training. Neural networks are inspired by 

biological neural networks, which are then 

developed as mathematical models. The structure 

of artificial neural networks consists of connected 

neurons that can process and transmit information. 

One of the advantages of neural network is 

its adaptability that can change the structure of 

external and internal information obtained during 

the learning phase. The current use of neural 

networks is to find patterns from a set of data or to 

find complex models of relationships between 

inputs and outputs. 

In the feedforward neural network, the infor-

mation moves forward, one direction from the 

input to the output (via a hidden node) without the 

loop. 

While backpropagation neural network (BP-

NN) algorithm uses to do looping at two stages of 

propagation and repeated, until achieved accep-

table results (good). In this algorithm the error 

function (obtained from the output value com-

pared to the correct answer) is fed back to the 

network as a reference to reduce the previous 

error value. Because the process of reduction is 

small for each stage it is necessary to do many 

training cycles until it reaches a small error value 

until it can be declared that it has reached the 

target. 

Initially BPNN will look for an error bet-

ween the original output and the desired output. 

 

𝐸 𝑝 = ∑ (𝑒𝑖)
𝑗

𝑖=1
 (12) 

 
Where e is a nonlinear error signal. P shows pole 

to P; J is the number of units of output. The 

gradient descent method is shown in equation(13), 

 

𝑤 𝑘,𝑖 = 𝜇
𝜕𝐸 𝑝

𝜕𝑤 𝑘,𝑖
 (13) 

 
Back Propagation counts errors in the output 

layer σj, and hidden layer. Σj using equation(14) 

and equation(15): 

 

𝜕𝑙 = 𝜇(𝑑𝑖 − 𝑦𝑖)𝑓′(𝑦𝑖) (13) 

𝜕𝑙 = 𝜇 ∑ 𝜕1𝑤𝑙,

 

𝑖
𝑓′(𝑦𝑖) (14) 

 

Error in back propagation is used to update 

on weights and biases on output and hidden 

layers. Weight, Wij and bias, bj, then adjusted 

using the following equation: 

 

𝑤𝑖,𝑗(𝑘 + 1) = 𝑤𝑖,𝑗(𝑘) + 𝜇𝜕 𝑦  𝑖
 

𝑗
  (15) 

𝑤𝑙,𝑗(𝑘 + 1) = 𝑤𝑙,𝑗(𝑘) + 𝜇𝜕 𝑦  𝑙
 

𝑗
  (16) 

𝑏𝑗(𝑘 + 1) = 𝑏𝑖(𝑘) + 𝜇𝜕  𝑗
  (17) 

 
Where, k is the epoch number and μ is the learn-

ing rate 

Multi Layer Perceptron (MLP) was intro-

duced to enhance the feed-forward with the map-

ping data set input to output. The structure of the 

MLP Algorithm consists of multiple node layers 

with a directional graph that each layer is fully 

connected to the next layer. Each node (other than 

the input node) is a neuron equipped with a 

nonlinear activation function. Multi Layer Percep-

tron utilizes back-propagation method in its train-

ing phase. The arrangement of MLP consists of 

several layers of computing units that implement 

sigmoid activation functions, and are linked to 

each other by feed-forward. 

 

Deep Learning 

 

Deep Learning is based on a multi-layer feed-

forward artificial neural network that is trained 

with stochastic gradient descent using back-

propagation. The network can contain a large 

number of hidden layers consisting of neurons 

with tanh, rectifier and maxout activation func-

tions. Advanced features such as adaptive learning 

rate, rate annealing, momentum training, dropout 

and L1 or L2 regularization enable high predictive 

accuracy. Each compute node trains a copy of the 

global model parameters on its local data with 

multi-threading (asynchronously), and contributes 

periodically to the global model via model ave-

raging across the network. 

The operator starts a 1-node local H2O 

cluster and runs the algorithm on it. Although it 

uses one node, the execution is parallel. You can 

set the level of parallelism by changing the 

Settings/Preferences /General/Number of threads 

setting. By default, it uses the recommended num-

ber of threads for the system. Only one instance of 

the cluster is started and it remains running until 

you close RapidMiner Studio. 

The Boltzmann engine is modeled with an 

input layer and a hidden layer that usually consists 

of binary units for each unit. The hidden layer is 

processed as stochastic (deterministic), recurrent 

(feed-forward). A generative model that can esti-

mate distribution on observations for traditional 
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discriminative networks with labels. Energy on 

the network and Probability of a unit state (Scalar 

T expressed as temperature) is described as 

equation(18) 

 

E(s) = − ∑ aisi − ∑  sjwi
i<𝑗  i

,  j si (18) 

 
A bipartite graph: No later-feed connection, 

feed-forward. Restricted Boltzmann Machine (R-

BM) has no T factor, the rest is similar to BM. An 

important feature of RBM is the visible unit and 

hidden unit are independent, which saves on good 

results later: 

 
P (s j = 1) =

1

 1+e(−
∆E

T
)

= σ( ( s +

∑ w i, s ij
 m

i=1 )/T)  
(19) 

𝑃(𝑣|ℎ) = ∏ 𝑝

𝑚

𝑖=1

(𝑣 𝑖|ℎ) (20) 

𝑃(𝑣|ℎ) = ∏ 𝑝

𝑛

𝑗=1

(𝑣 𝑖|ℎ) (21) 

 
Two characters used to define a Restricted 

Boltzmann Machine: The state of all units: obtain-

ed through the distribution of possibilities; Net-

work weights: gained through training 

As previously noted, RBM aims to estimate 

the distribution of input data. This goal is fully 

determined by weight and input. Energy defined 

for RBM is shown in equation(22): 

 

E(v, h) = − ∑ a ivi ∑ b

 

j

 

i
 jhj

− ∑  ∑ h j

 

j

wi,  jvi 
(22) 

 

Distribution on the visible layer on RBM: 

 

P(v) =
1

z
∑ e −E(v,h)

 

h

      (23) 

 

Where, Z is a partition function defined as the 

sum of all possible configurations (v, h)  

Training for RBM: Maximum Likelihood 

learns probability against vector x with parameter 

W (weight) is: 

 

𝑃(𝑣) =
1

𝑧
∑ 𝑒 −𝐸(𝑣,ℎ) 

ℎ   (24) 

P(x; W) = 1/Z(W) e −E(x;W) 

Z(W) = ∑ e
x

 −E(x;W) 
(25) 

𝑃(𝑥; 𝑊) = 1/𝑍(𝑊) 𝑒 −𝐸(𝑥;𝑊)
 (26) 

Z(𝑊) = ∑ 𝑒𝑥  −𝐸(𝑥;𝑊) (27) 

 

3. Results and Analysis 

 

The experiment purpose is to compare the perfor-

mance of several supervised machine learning 

methods. In determining which method is best, the 

performance of the method is checked by eva-

luating the accuracy of the results. Classification 

accuracy is calculated by determining the per-

centage of tuples placed in the correct class. We 

compute the class precision, class recall and 

accuracy of the method defined as  

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
     (22) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 +𝑓𝑛
      (23) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
    (24) 

 

where tp (true positive) is a properly classified 

positive example, tn (true negative) is a correctly 

classified negative example, fn (false negative) is 

a incorrectly classified positive example and fp 

(false positive) is a incorrectly classified negative 

example 

In the first scenario, all classes of cancer 

were tried to classify according to 1881 features 

of microRNA. The normal class is a combination 

of all normal cell samples from different types of 

tissue. Based on figure 1 shown that deep learning 

method is very stable to classify multiclass for the 

precision value due to the ability of deep multi 

layer on deep learning are able to give optimal 

weight of each feature for multiclass case. Similar 

result shown on the class recall results as can be 

seen in Figure 2. Moreoover, deep learning met-

hod  is able to get the recall class value> 60%.  

The accuracy result of each algorithm ob-

tained for this first scenario are; Deep learning 

91.49%; Naive bayes 61.54%; Decision tree 

34.15%; Neural network 5.48%. Based on these 

results shows that deep learning has the highest 

accuracy, while the neural network is very small. 

Neural networks are implemented with a total of 

50 iterations to reduce computational time as 

result the weighting of neurons is unoptimal. 

In the second scenario, normal and cancer of 

breast cells were tested for classification with  

1881 microRNA features. Based on figure 3 

shows that class precision of deep learning has the 

highest True Positive value at 100%. Moreover, 

according to Figure 4, only deep learning method 

which has achievement balanced of recall class 

between cancer and normal. In addition, the 

accuracy value, deep learning is superior compare 
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to other methods with accuracy 99.12%; While 

other methods are as follows: naïve bayes 

90.35%; Decision tree 96.49%; Neural network 

91.23%.  
In the third scenario, a simple feature 

selection (expression value> 10,000) is tested on 

normal and cancer breast cells classification. 

Feature selection reduce the microRNA feature 

number to 3 (has-mir-10b, 21, 22). Based on 

figure 5 shows deep learning and neural network 

have the similar performance in precision, 

moreover other methods correspondingly have 

high precision value. The similar result is also 

perceived in the recall value as shown in figure 6. 

In the fourth scenario, normal and cancer of breast 

cells are tested for classification with selected 

microRNA features according to the diagnostic 

criteria (has-mir-10b, 125-b1,125b-2, 141, 145, 

155, 191, 200a, 200b , 200c, 203a, 203b, 21,210, 

30a, 92a-1, 92a-2). Bsaed on  figure 7 shows that 

deep learning, decision tree, and neural network 

have a high precision results. As same as the 

recall according to figure 8, deep learning and 

neural network have high recall achievement with 

100%. Moreover, the accuracy value of each 

method are; deep learning 100%; Naïve bayes 

93.86%; Decision tree 99.12%; neural network 

100%. 

In the fifth scenario, normal and cancers  of 

cervix cells are tested for classification with 1881 

microRNA features. Based on figure 9 shows that 

nearly all methods can have high precision results, 

except True Negative on neural networks. The 

identical results shows for recall according to 

figure 10.  

 In the sixth scenario, normal and cancer of 

 
 

Figure. 1.  Class Precision of multi classes cancer. 

 

 
 

Figure. 2.  Class Recall of multi classes cancer. 

 

 
 

Figure. 3.  Class Precision of breast tissue between 

normal and cancer cell all feature 

 

 
 

Figure. 4.  Class Recall of breast tissue between normal 

and cancer cell all feature 

 

 
 

Figure. 5.  Class Precision of breast tissue between 

normal and cancer cell with feature selection on criteria > 

10.000 

 

 
 
Figure. 6.  Class Recall of breast tissue between normal 

and cancer cell with feature selection on criteria > 10.000 



114 Jurnal Ilmu Komputer dan Informasi (Journal of a Science and Information), volume 10, issue 2, 

June 2017  
 

 

 
 
Figure. 7.  Class Precision of breast tissue between normal and 

cancer cell with feature selection on diagnostic criteria (mir-

21,) 

 

 
 

Figure. 8.  Class Recall of breast tissue between normal and 

cancer cell with feature selection on diagnostic criteria (mir-

21,) 

 

 
 
Figure. 9.  Class Precision of cervix tissue between normal and 

cancer cell all feature 

 

 
 

Figure. 10.  Class Recall of cervix tissue between 

normal and cancer cell all feature 

 
 

Figure. 11.  Class Precision of cervix tissue between normal 

and cancer cell with feature criteria > 10.000 

 

 
 
Figure. 12.  Class Recall of cervix tissue between normal and 

cancer cell with feature criteria > 10.000 

 

 
 

Figure. 13.  Class Precision of cervix tissue between normal 

and cancer cell with feature criteria diagnostic 

 

 
 

Figure. 14.  Class recall of cervix tissue between normal and 

cancer cell with feature criteria diagnostic 
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cervical cells are tested for classification by 

simple feature selection (expression value > 

10,000) and obtain the feature (has-mir-103a-

1,103a-2,10b, 143,21,22). Based on figure 11 

shows that all methods can have a perfect 

classification result. The equivalent results shown 

for recall according to figure 12. 
In the last scenario, normal and cancer 

cervix cells are tested for classification by 

choosing diagnostic features with features (has-

mir-146a, 155,196a-1,196a-2, 203a, 203b, 21, 

221, 271, 27a, 34a). Based on figure 13 shows 

that only deep learning have a faultless classi-

fication result. The similar results shows in figure 

14 for recall. 

 

4. Conclusion 

 

In this paper we have presented the performance 

of supervised machine learning method for 

classification of cancer cell expression gene data. 

Experimental results with various scenarios, all 

classes, breast classes, cervical classes, and some 

feature selection show that deep learning method 

is superior to decision tree, naïve bayes and neural 

network methods. 
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