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Abstract  

 
The present work attempts to reveal a parallel Algebraic Reconstruction Technique (pART) to reduce 

the computational speed of reconstructing artifact-free images from projections. ART is an iterative 

algorithm well known to reconstruct artifact-free images with limited number of projections. In this 

work, a novel idea has been focused on to optimize the number of iterations mandatory based on Peak 

to Signal Noise Ratio (PSNR) to reconstruct an image. However, it suffers of worst computation speed. 

Hence, an attempt is made to reduce the computation time by running iterative algorithm on a multi-

core parallel environment. The execution times are computed for both serial and parallel 

implementations of ART using different projection data, and, tabulated for comparison. The 

experimental results demonstrate that the parallel computing environment provides a source of high 

computational power leading to obtain reconstructed image instantaneously. 

 
Keywords: Image Processing, Image Reconstruction, Iterative Image Reconstruction, Algebraic 

Reconstruction Technique, Parallel Processing, OpenMP 

 

Abstrak  

 
Pekerjaan saat ini mencoba untuk mengungkapkan Teknik Rekonstruksi Algebraic paralel (pART) 

untuk mengurangi kecepatan komputasi untuk merekonstruksi gambar bebas artifak dari proyeksi. ART 

adalah algoritma iteratif yang dikenal untuk merekonstruksi gambar bebas artefak dengan jumlah 

proyeksi yang terbatas. Dalam karya ini, sebuah gagasan baru difokuskan untuk mengoptimalkan 

jumlah iterasi yang wajib berdasarkan Peak to Signal Noise Ratio (PSNR) untuk merekonstruksi 

gambar. Namun, ia menderita kecepatan perhitungan terburuk. Oleh karena itu, upaya dilakukan untuk 

mengurangi waktu komputasi dengan menjalankan algoritma iteratif pada lingkungan paralel multi-

core. Waktu eksekusi dihitung untuk penerapan ART secara serial dan paralel dengan menggunakan 

data proyeksi yang berbeda, dan, ditabulasikan sebagai perbandingan. Hasil percobaan menunjukkan 

bahwa lingkungan komputasi paralel menyediakan sumber daya komputasi tinggi yang menghasilkan 

gambar yang direkonstruksi seketika. 

 
Kata Kunci: Pemrosesan gambar, rekonstruksi gambar, rekonstruksi gambar iteratif, teknik 

rekonstruksi aljabar, pemrosesan paralel, OpenMP 

 

 

1. Introduction  

 

Image reconstruction methods are central to many 

of the new applications of medical imaging such as 

Positron Emission Tomography (PET), Computed 

Tomography (CT), Magnetic Resonan-ce Imaging 

(MRI) and Electron Magnetic Reso-nance Imaging 

(EMRI). They are most commonly used to 

visualize detailed internal structure and limited 

function of the object of interest. 

 Image reconstruction is a mathematical 

process that generates images from projection data 

acquired at many different angles around the object 

of interest. The projections are collected by 

sweeping the magnetic field at projection angles 

defined by the magnetic field gradient directions 

[1, 2]. To perform image reconstruction, the pro-

jections 𝑝𝜃(𝑟), collected along a set of field-

gradient orientations in polar coordinates, are used 

to obtain the image f(x, y) [3] as given in the 

equation(1). 

 

𝑓(𝑥, 𝑦)

= ∫ 𝑃𝜃
∗(𝑟)𝑑𝜃

𝜋

0

=  ∫ [∫ 𝑃𝜃(𝑘)|𝑘|𝑒−2𝜋𝑖𝑘𝑟 − 𝑑𝑘
∞

−∞

]𝑑𝜃
𝜋

0

 

(1) 

  

 Here r is taken on the x-y plane such that  𝑟 =
𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃, and  𝑝𝜃

∗ (𝑟) is the projection  𝑝𝜃(𝑟) 
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filter according to the expression inside the square 

brackets [3]. 

 Image reconstruction has been carried out 

using different types of reconstruction algorithms 

[4, 1]. Reconstruction methods utilize projection 

data as input and generate the estimate that 

resembles the internal structure as output [5, 6]. 

Data sets with 36 projections measured from 00 to 

1800 around the phantom object were considered in 

the present study. The same data set was used for 

testing the capability of the algorithms from 

restricted number of projections, by skipping 

projections at uniform angular distribution. 

 Reconstruction of images is usually done in 

two ways: Analytical and Iterative. Analytical 

method such as Back Projection (BP) or Filtered 

Back Projection (FBP) is used for different 

imaging modalities such as CT and PET in clinical 

settings because of its speed and easy 

implementation [3]. For noisy projection data as 

well as for limited number of projections, the FBP 

method of image reconstruction shows very poor 

performance. Hence currently there is consider-

able interest to evaluate the use of other recon-

struction methods for medical imaging techniques 

[6]. FBP algorithm produces high-quality images 

with excellent computational efficiency. However, 

FBP produces low Signal-to-Noise Ratio (SNR) 

images when limited number of projections is used 

[12]. 

 An Iterative method using a non-linear fit to 

the projection data has shown to give ripple free 

images [7]. Iterative Methods are based on opti-

mization strategies incorporating specific cons-

traints about the object and the reconstruction pro-

cess. The iterative reconstruction techniques per-

form better than the FBP method when recon-

struction is attempted with limited number of 

projection data [3]. Some of the accepted iterative 

algorithms are Additive Algebraic Reconstruction 

Technique (AART) and Multiplicative Algebraic 

Techniques (MART) [12]. 

However, the quality of the reconstructed 

images obtained from AART algorithm depends on 

number of iterations. Based on the number of 

available number of projections and the size of the 

phantom, the number of iterations differs. It is 

therefore necessary to find the best iteration in 

order to exploit correctly the promising iteration 

based on a better Peak to Signal Noise Ratio 

(PSNR) of the reconstructed images. Based on the 

equation(1) an optimization program has been 

developed for the given data set. The best PSNR 

value is obtained and verified whether the same 

PSNR value is achieved even after the selected 

iteration. 

Parallel computing is emerging as a principle 

theory in high performance computing [14]. In 

recent years, parallel computing with massive data 

has emerged as a key technology in imaging 

techniques also. Shared memory parallelization has 

been proved to be a best way to attain better 

runtime performance recently for image recon-

struction [15]. A shared-memory multiprocessor 

(SMP) consists of a number of processors access-

ing one or more shared memory modules. The 

penalty of using inter-processor communication is 

not up to the mark on SMP compared to distributed 

memory architectures [15]. For a relatively large 

data size, it is advantageous to use SMP 

architecture. It has also been shown that shared 

memory parallelization is more suitable than 

distributed memory parallelization for image 

processing tasks and leads to better throughput as 

most of the computers now have two or more 

processors which share the memory [16]. These 

features have motivated us to perform the parallel-

ization of Algebraic Reconstruction Technique 

(ART) on a SMP parallel architecture. 

 The present study focuses on reducing the 

computational complexity of ART using parallel 

programming techniques. Section 2 describes 

about ART briefly. The design and implemen-

tation ART algorithm in both parallel and sequen-

tial version are given in section 3 Section 4 dis-

cusses the results. 

 

2. Methods 

 

Radon Transformation 

 

The main application of image reconstruction from 

projection technique is mostly related to medical 

image processing. The Procedure to implement 

Image Reconstruction from Projection (IRP) 

technique in the practical applications are 

“scanning” or “data acquisition” is considered to be 

the first and the very important step [17]. Such data 

acquisition is done by means of PET, CT, MRI or 

EMRI in a procedure by passing rays in specific 

intervals of angles.  

The Radon Transformation is a fundamental 

tool that computes projections of an image matrix 

along specified directions [18]. The 2D Radon 

transformation is the projection of the image 

density along a radial line oriented at a specific 

angle. The value of a 2-D function at an arbitrary 

point is uniquely obtained by the integrals along 

the lines of all directions passing the point. The 

Radon transformation shows the relationship 

between the 2-D object and its projections. Figure 

1 shows a 2-D function 𝑓(𝑥, 𝑦). Integrating along 

the line, whose normal vector is in θ direction on s 

axis results in the 𝑔(𝑠, 𝜃) projection represented in 
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equation(2). The points on the line whose normal 

vector is in θ direction and passes the origin of 

(𝑥, 𝑦)-coordinate satisfy the equa-tion 𝑥𝑐𝑜𝑠𝜃 +
𝑦𝑠𝑖𝑛𝜃 = 0. The general equation of the radon 

transform is acquired as 

 

𝑔(𝑠, 𝜃) =  ∬ 𝑓(𝑥, 𝑦). 𝛿(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃

− 𝑠)𝑑𝑥𝑑𝑦 

(2) 

 

where 𝛿 is zero for every argument except to 0 and 

its integral is one [19]. 

The projection data obtained thus from Radon 

Transformation is utilized as input by the 

Reconstruction algorithm that produce estimates of 

the original internal structure as output [5, 20]. The 

size of data sets acquired by the different imaging 

modalities are usually huge because of the complex 

data type of the raw collection data, multiple 

gradients in the experiments, high dimen-sions of 

the resultant 3-D images, higher k-space 

requirement of whole body imaging and the 

number of points collected from the imager. The 

iterative methods, hence, suffers more recon-

struction time. 

 

Algebraic Reconstruction Technique (ART) 

 

Image reconstructions based on Iterative methods 

create two-dimensional images from scattered or 

incomplete projections such as the radiation 

readings acquired during a medical imaging study. 

Algebraic Reconstruction Technique (ART) falls 

under the category of Iterative methods. 

ART is one of the methods used for solving 

the linear system which appears in image 

reconstruction. ART can be broadly classified as 

either sequential or simultaneous or block itera-tive 

[21]. ART is a fully sequential method and has a 

long history and literature. Originally it was 

proposed by Kaczmarz [22], and independently, for 

use in image reconstruction by Gordan, Bender and 

Herman [23]. The vector of unknowns is updated 

at each equation of the system, after which the next 

equation is addressed. If system of equation is (0.1) 

consistent, ART converges to a solution of this 

system. If the system is incon-sistent, every sub-

sequence of cycles through the system converges, 

but not necessarily to a least square solution [24]. 

ART perform corrections during iterations, 

without increasing the computation time. The 

image 𝒇(𝒙, 𝒚) is a continuous two dimensional 

function and an infinite number of projections are 

mandatory for reconstruction [12]. In practice 

𝒇(𝒙, 𝒚) is calculated using a finite number of points 

𝑓𝑗 (𝑗 =  1, 2, 3, … , 𝑁) where N represents the total 

number of cells, from a finite number of 

projections as shown in figure. 2. 

In figure 2 a ray is a fat line running through 

the (𝑥, 𝑦)-plane where each ray is of width r. A line 

integral is called a ray-sum represented 

as  𝑝𝑖 measured with ith ray as shown in figure. 2. 

The relationship between the 𝑓𝑗
′𝑠 and   𝑝𝑖 ′𝑠  

may be expressed as 

 

∑ 𝑤𝑖𝑗𝑓𝑗 = 𝑝𝑖 ,        𝑖 = 1, 2, … , 𝑀

𝑁

𝑗=1

 (3) 

 

where M is the total number of rays (in all the 

projections) and wij is the weighting factor that 

represents the contribution of the jth cell to the ith 

ray integral and 𝑝𝑗 represents a set of matrix 

equation for the data point 𝑓𝑗. 

The expanded form for equation(3) for the jth 

sample is given by 

 
 

Figure. 1.  The Radon Transform computation 

 
 

Figure. 2.  Representation of an image projected on ith 

ray. 
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𝑤11𝑓1 +  𝑤12𝑓2 +  𝑤13𝑓3 +  … +  𝑤1𝑁𝑓𝑁

=  𝑝1 

𝑤21𝑓1 +  𝑤22𝑓2 +  𝑤23𝑓3 +  … + 𝑤2𝑁𝑓𝑁

=  𝑝2 

. 

. 

𝑤𝑀1𝑓1 +  𝑤𝑀2𝑓2 +  𝑤𝑀3𝑓3 +  …
+  𝑤𝑀𝑁𝑓𝑁 =  𝑝𝑀 

(4) 

 

Equation(4) can also be expressed in the form 

of algebraic equations as  

 

Pj =  W1jf1 + W2jf2

+ W3jf3+ .  .  . + Wnjfn 

 Pj =  ∑ Wijfj 

N

j=1

          i = 1, 2, … , M 

 

(5) 

 

Here, 𝑊𝑖𝑗 is the weighting factor that repre-

sents the contribution of the 𝑗𝑡ℎ  cell to the 𝑗𝑡ℎ 

sample sum and 𝑃𝑗 represents a set of matrix 

equations for the data point 𝑓𝑗.  Most of the 𝑤𝑖𝑗  in 

Eqn. 4 is zero since only a small number of cells 

contribute to any given ray-sum. The density 

values 𝑓𝑗 are iteratively adjusted until the calcu-

lated projections agree with the measured 

projections [12]. Each projected density is thrown 

back across the reconstruction space in which the 

densities are iteratively modified to bring each 

reconstructed projection into concur with the 

measured projection [25]. The projection data set is 

sustained in a vector and a weight sparse matrix 𝑤𝑖𝑗  

is constructed. Every row in 𝑤𝑖𝑗  sparse matrix may 

contain 𝑚 + 𝑛 − 1 (where 𝑚 x 𝑛 is the resolution). 

As every row stands for the length of the segments 

obtained by the intersection of ray with the grid, 

and all reconstruction algorithms use rows of 

sparse matrix, the best method to store this matrix 

is in compressed row storage [17]. 

For each sample, the correction coefficient is 

computed as:𝛼𝑖 =  ∑ 𝑊𝑖𝑗
2𝑁

𝑗=1 . The average value of 

the correction coefficient is calculated. Correction 

is applied for each cell j as given:𝑓𝑖
𝑙−1 +  λ∆𝑃𝑗

̅̅ ̅̅ , 

where λ is the relaxation parameter. This procedure 

is iteratively performed for all of the projection 

angles. As the size of the data set increases, the 

computation time increases. 

 

OpenMP Architecture and Directives 

 

Parallel computing is a form of computation in 

which many calculations are carried out simultan-

eously; large problems are divided into smaller 

ones, solved concurrently. The parallelism can be 

applied in image processing applications by three 

main ways: 1) Data Parallel 2) Task Parallel and 3) 

Pipeline Parallel. In Data Parallel approach, the 

data is divided and distributed among the com-

puting units. The data parallelism to image data can 

be applied using one of three basic ways: i) Pixel 

Parallel ii) Row or Column parallel and iii) Block 

Parallel [27]. This algorithm is parallelized in 

row/column parallel. In task parallel, image proc-

essing instructions/low level operations are group-

ed into tasks and each task is assigned to a different 

computational unit. If image processing appli-

cation requires multiple images to be processed, 

then pipeline processing of images can be done 

[28].  

pART is implemented using OpenMP parallel 

computing in C language. OpenMP is a program-

ing model for SMP computer systems. Data in 

memory can either be shared between all threads or 

private for one thread. Data transfer between 

threads is transparent to the programmer. OpenMP 

uses fork-and-join model of parallel execution. The 

program written with OpenMP begins execution as 

a single-process, called the master thread. The 

master thread executes the current program seq-

uentially until it bump into parallel directives such 

as #pragma omp. The master thread forks a number 

of worker threads when it enters a parallel region. 

A parallel region is a block of code that is executed 

by all threads concurrently.  

The “parallel for” or “for” is a wok sharing 

directive that distributes the workload of a “for” 

loop among all the threads. Data sharing of 

variables is mentioned at the beginning of the 

parallel region or work sharing construct using the 

SHARED or PRIVATE Clauses. 

 

Data Set 

 

The reconstruction system uses Shepp Logan 

phantom data of different sizes such as 64, 128 and 

256. The figure. 3(a), figure. 3(b), figure. 3(c) 

shows the Shepp Logan phantom image of 64x64, 

128x128 and 256x256 sizes respectively. 

The projection data of the phantom images 

 
 

Figure. 3.   The Shepp Logan Phantom Image of size  
(a)64x64 (b)128x128 (c) 256x256 
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are obtained using Radon function available in 

MATLAB. figure 4 shows the projection of the ray 

passed at a specific angle. The projection of a two 

dimensional function 𝑓(𝑥, 𝑦) is a set of line 

integrals Eqn. (1). The 𝑓(𝑥, 𝑦) is transferred to a 

row vector. The rays pi passed at a specified angle 

collects data by calculating the weight matrix. 

The projections of the Shepp Logan 

phantom in various angles are plotted in the figure 

5. This is obtained by using radon function in 

matlab passing at which specific angles the object 

should be rotated. This system uses five different 

angles, such as 60, 90, 120, 150, 180 obtaining 30, 

20, 15, 12, 10 numbers of projections respectively.  

Rows 1, 2 and 3 of figure. 5 refer to the projections 

taken from the images sizes 64x64, 128x128 and 

256x256 respectively. Columns A, B, C, D, E refer 

to the 10, 12, 15, 20 and 30 projections taken in 18, 

15, 12, 9 and 6 angles respectively. 

 

Pseudo Code 

 

The pseudo code for ART algorithm implemented 

 
 

Figure. 4.  Displays the projected data 

 

 
 

Figure. 5.   The projection of Shepp Logan Phanton 

Image. Rows 1, 2 and 3 refer to the 64x64, 128x128, 

256x256 data respectively. Columns A, B, C, D and E  
refer to the 10, 12, 15, 20 and 30 projection taken in 18, 

15, 12, 9 and 6 angles respectively. 

 

 
Figure. 6.   Art algorithm 

 

 art() 
{ 
   if ( not yet reached all the projections) 
   { 

for (all elements in the projection) 
{ 

   calculate the value by multiplying  
   the vector and the calculated data  
   in the corresponding      
   projection 

} 
calculate the error by subtracting  
the measured data from the calculated  
value 
for(all the rows) 
{ 
     correct the error by multiplying  

     the difference with the   
     calculated data. 
          apply the corrected value to the  
             vector. 

} 
   } 
   recursively call art function for  
   remaining projections 
} 

 
 

Figure. 7.  pArt algorithm 

 part() 
{ 
   if ( not yet reached all the  
                             projections) 
   { 

        
omp_set_num_threads(number_of_threa 
                               ds); 
#pragma omp parallel for    
   shared(elements) private(index)   
    schedule(dynamic, num_elements) 
 
for (all elements in the   
                        projection) 
{ 

            
    omp_set_num_threads(number_of_ 

         threads); 
    #pragma omp parallel for  
      shared(elements) private(index) 
      schedule(dynamic, num_elements)  

              reduction(+:calculated value) 
 

calculate the value by  
multiplying the vector and  
the calculated data in the  
corresponding projection 

} 
 

calculate the error by subtracting  
the measured data from the calculated  
value 

 
omp_set_num_threads(number_of_threads 

   ); 
 

#pragma omp parallel for  
  shared(elements) private(index)  
  schedule(dynamic,num_elements) 

 
for(all the rows) 
{ 
    correct the error by multiplying  
    the difference with the  

            calculated data. 
 

    apply the correction. 
} 

   } 
    
   recursively call part function for  
                         remaining projections 
} 
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in MEX function executed sequentially is given in 

figure 6. 

The pseudo code for pART algorithm 

implemented in MEX function executed parallel 

shows in figure 7. 

 

UML Diagram 

 

The operation of ART in sequential and parallel is 

symbolised in the figure 8(a) and figure 8(b) 

respectively. Parallel activity is pictured as Fork 

and Join. 

The data is read from the corresponding 

number of projections. This data is supplied into 

the MEX function to execute under single and 

multiple processors. For each projection the error 

value is calculated and the correction is applied 

Initially, the program starts with initialization 

at each core. Then the calculated and measured 

projection data is co-distributed between the 

workers. After that, each worker calculates the 

correction and applies the correction as per the 

algorithm till all the projections are completed. 

Then the processed data is collected in a vector 

 
(a) 

 

 
(b) 

 
Figure. 8.  UML Activity for reconstructing an image 

using ART. (a) Sequentially (b) Parallel 

 
 

Figure 9: Flow chart for reconstructing an image using 
ART. 

 

 
 

Figure. 10.   The Reconstructed Shepp Logan Phantom. 
Rows 1, 2 and 3 refer to the 64x64, 128x128, 256x256 

size of the Image respectively. Columns A, B, C, D and E 

refer to the reconstructed image from the 10, 12, 15, 20 
and 30 projections of an image taken in 18, 15, 12, 9 and 

6 angles in Sequential and parallel. 
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when the parallelism ends. 

 

3. Results and Analysis 

 

The results of constructing Shepp Logan 

Phantom image using ART in both sequential and 

parallel is given in figure 10. In this work, the time 

complexity of the phantom image of different size 

(64, 128 and 256) is compared in 2, 4 and 8 cores. 

Peak-signal-to-noise ratio (PSNR) is used as 

a metric to check perceptual similarity between the 

original and reconstructed images. The PSNR 

value measured in db is tabulated in table 1. 

According to Chen et al (1998), PSNR above 40 db 

indicates a good perceptual fidelity. It can be 

observed that PSNR for the different size of images 

using various angles is above 60 db which indicates 

the excellent perceptual fidelity. 

In figure 11 the PSNR value of the recon-

structed image using ART for various sizes in 

different number of projections is graphed. 

Reconstruction time taken by the Algebraic 

Reconstruction Technique for different size of 

phantom image in sequential and parallel using 2, 

4 and 8 cores in an AMD Processor under LINUX 

platform. The time complexity of the reconstructed 

image of various sizes under 2, 4 and 8 cores is 

given with respect to the number of projections. 

Reconstruction time taken by the Algebraic 

Reconstruction Technique for different size of 

phantom image in sequential and parallel using 2, 

4 and 8 cores in an AMD Processor under LINUX 

platform. The time complexity of the reconstructed 

image of various sizes under 2, 4 and 8 cores is 

given with respect to the number of projections. 

 
 

Figure. 11.  Plotted the PSNR value obtained while 

reconstructing Shepp Logan Phantom Images on 64x64, 
128x128 and 256x256 sizes using 30, 20, 15, 12 and 10 

number of projections. 
 

TABLE 1 
PSNR VALUE IN DB FOR THE RECONSTRUCTED SHEPP 

LOGAN PHANTOM IN SINGLE CORE AND MULTI-CORE 

ENVIRONEMNT 

Projections/  

Sizes 30 20 15 12 10 

64x64 
53.3 
756 

53.2 
965 

53.4 
115 

53.1 
949 

53.2 
312 

128x128 

62.1 

416 

61.7 

996 

62.0 

032 

61.4 

505 

61.4 

595 

256x256 

71.0 

605 

70.3 

131 

70.6 

760 

69.3 

787 

69.3 

787 

 

 
 

Figure. 12.   Optimized number of iteration mandatory to 

reconstruct Shepp Logan Phantom Images on 64x64, 

128x128 and 256x256 sizes using 30, 20, 15, 12 and 10 
number of projections. 
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TABLE 2 

NUMBER OF ITERATIONS MADATORY TO RECONSTRUCT 

SHEPP LOGAN PHANTOM  

Projections/ 

Sizes 30 20 15 12 10 

64x64 4 4 8 12 18 

128x128 10 15 56 58 80 

256x256 24 46 124 142 158 

 
TABLE 3 

TIME COMPLEXITY OF RECONSTRUCTED PHANTOM 

IMAGE OF SIZE 64 X 64 

 Projectio
ns/ 

 Cores 

30 20 15 12 10 

1 Core 1.6495 0.8426 1.3685 1.5327 3.017 

2 Core 
1.376 0.7431 1.1729 1.4561 

2.538
7 

4 Core 
0.9769 0.4959 0.9359 1.1558 

1.870

8 

8 Core 
0.7266 0.4828 0.6749 0.8876 

1.453

4 

 

 
 

Figure. 13.  A graph showing the Time Complexity of 

reconstructing Phantom image of size 64x 64 sequentially, 

parallel in 2, 4 and 8 core with respect to projections. 
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The optimized number of iteration to recon-

struct an image in the three represented sizes at 30, 

20, 15, 12 and 10 number of projections is 

tabulated in Table 2 and plotted in figure 12. 

In figure 13, 14 and 15 the time complexity of 

phantom image of size 64, 128 and 256 recon-

structed using 2, 4 and 8 cores with respect to 30, 

20, 15, 12 and 10 is plotted respectively. Table 3, 4 

and 5 tabulates the time complexity for 64, 128 and 

256 size images respectively. 

Table 3, 4 and 5 shows the reconstruction time 

taken by 1 Core (row1), 2 core (row2), 4 core (row 

3), and 8 core (row 4) when using 30, 20, 15, 12 

and 10 projections in the ART for image size 64, 

128 and 256 respectively. It is observed that the 

time gradually reduces as the number of cores 

increases, for a given sets of projections. A graph is 

plotted to show the performance of the parallel 

system. It elucidates the time complexity of the 

system for a given number of projections using 

different cores of the parallel processor. 

The time complexity of the system imple-

menting parallel processor has got a considerable 

reduction of time consumptions which is certainly 

a high degree of utility to the user. A minor change 

in the time consumption will have a revolutionary 

impact while it is employed. The specific value of 

this finding is that the maximum number of core 

reconstruct the image is fast even for minimum 

number of projections. 

 

4. Conclusion 

 

The number of iteration mandatory to reconstruct 

an image is optimized. The images are recon-

structed sequentially as well as in parallel envi-

ronment using different projection data sets. In this 

study, of Shepp Logan Phantom data is recon-

structed using ART and pART. The results have 

shown encouraging indication of the efficiency of 

the parallelization of ART algorithm. In general, 

the pART algorithm gives a paramount computa-

tional efficiency better than ART. The computa-

tional efficiency of both ART and pART is reported 

in this article. 
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