5 research outputs found

    Kunterbunte Schulinformatik: Ideen für einen kompetenzorientierten Unterricht in den Sekundarstufen I und II

    Get PDF
    Im Mittelpunkt der "Kunterbunten Schulinformatik" stehen Ideen für das Gestalten von Informatikunterricht. Das Buch richtet sich vorrangig an Personen, die Unterricht auf der Grundlage von Kompetenzbeschreibungen planen, durchführen und reflektieren wollen. Ziel ist letztlich das Entwickeln einer Kultur des sinnvollen Umgangs mit Bildungsstandards. Das Wort "kunterbunt" soll für vielfältig und abwechslungsreich stehen und durch mögliche Assoziationen auch daran erinnern, dass es bei allem, was an Schulen geschieht, um Kinder und Jugendliche geht

    A criteria-based approach to modelling the task requirements and student abilities in computer science education

    Get PDF
    Für das junge Schulfach Informatik existieren meist nicht empirisch sondern fachlich begründete Kompetenzmodelle, die einen Sollzustand beschreiben. Bislang fehlen Ansätze, die den Istzustand modellieren und einen Bezugsrahmen liefern, in dem informatikspezifische Anforderungen von Aufgaben und die korrespondierenden Fähigkeiten von Schülern darstellbar sind. In dieser Arbeit wird eine Methodik erprobt, ein solches Strukturmodell auf empirisch-analytischem Weg zu gewinnen. Das Modell soll sichtbar machen, welche Dimensionen das System kognitiver Anforderungen und Fähigkeiten aufspannen, die charakteristisch für die Informatik in der Sekundarstufe sind. Als umfangreiches Untersuchungsmaterial stehen die Aufgaben und Schülerantworten des Online-Wettbewerbs Informatik-Biber zur Verfügung, der jährlich mehrere Tausend Teilnehmer aller Schularten und Jahrgangsstufen der Sekundarstufe verzeichnet, Mädchen wie Jungen. Davon ausgehend, dass neben dem Fachinhalt kognitive Kriterien wie der Abstraktionsgrad oder die Lernzielstufe die Aufgabenschwierigkeit bestimmen, wird ein Katalog informatikspezifischer Merkmale erstellt. In einer Expertenbefragung werden die Wettbewerbsaufgaben nach den Merkmalen klassifiziert. Eine Clusteranalyse der Aufgaben arbeitet vier Typen heraus: Wiedergabe, Verständnis, Anwendung und Problemlösung, die als Anforderungsdimensionen interpretiert werden. Weiter führt die Idee, dass ein Schüler, der etwa abstrakte Aufgaben löst, die Fähigkeit besitzt, mit Abstraktion umzugehen. Die Aufgabenmerkmale werden mit den Antwortmustern der Teilnehmer zu Merkmalsmustern verknüpft. Faktorenanalysen dieser Muster berechnen Faktoren, die als Fähigkeitsdimensionen interpretiert werden. Hier tritt die Datenproblematik zutage, die darin besteht, dass die Merkmale bereits im Aufgabensatz nur in bestimmten Kombinationen vorkommen. Sie sind konfundiert. So ist das Ergebnis der Aufgabenanalyse ein fundierter Entwurf eines mehrdimensionalen Anforderungsmodells. Der Ertrag aus der Analyse der Schülerantworten und Merkmalsmuster ist zunächst ein Vorgehensbericht, der auch die Konfundierung thematisiert, die die Gültigkeit des Fähigkeitsmodells in Frage stellt. Um die Fähigkeitsdimensionen zu überprüfen, wird ein Leitfaden für weitere Iterationen der Modellentwicklung erstellt, der die gezielte Aufgabenkonstruktion empfiehlt.Most competence models for informatics in secondary education are determined according to the structure of the subject. Therefore they represent the target state. Up to now, models representing the actual state, derived from empirical results, are rarely described. There is a strong need for approaches to describing the actual state in terms of task requirements and student abilities. In this thesis an empirical statistical procedure of developing a structural model is proven. The aim is to visualize the dimensions spanning the system of characteristic cognitive requirements and corresponding abilities relevant in computer science in secondary education. The German Informatik-Biber is member of an international initiative for the promotion of informatics, addressing students of all types of secondary school, girls and boys. The yearly contest with thousands of participants provides extensive and rich data for the investigation. Assuming that the task difficulty, beneath contents, depends on cognitive characteristics, a catalogue of criteria is specified. Criteria are, for example, the level of abstraction, or Bloom’s taxonomic level of learning goals. The tasks of the Informatik-Biber are classified into criteria categories through expert rating. A cluster analysis of the classified tasks results in four types: reproduction, comprehension, application, and problem solving. The types are interpreted as four dimensions of task requirements. The idea that someone who is able to solve abstract tasks is capable to deal with abstraction, as an example, leads even further. The criteria and the students’ answer patterns are combined to students’ criteria patterns. Factor analyses result in factors that can be interpreted as dimensions of students’ abilities. At this point a problem of the task set emerges: some criteria cannot be separated from each other because they only occur in certain combinations. So there are two conclusions. Task analysis results in a multidimensional model of task requirements, while pattern analysis of student answers does not result in a valid model. In fact the outcome is a guideline for continuing iterations of model development, placing emphasis on the construction of tasks, eliminating the problem of confounded variables. The intention is to prove the dimensions of student abilities

    Kompetenzorientierter Informatikunterricht in der Sekundarstufe I unter Verwendung der visuellen Programmiersprache Puck

    Get PDF
    In dieser Arbeit wurde die aktuelle Diskussion um Bildungsstandards sowie die spezifische Situation in der Informatik dargestellt. Weiterhin wurde auf Kompetenzen, Kompetenzmodelle und zugehörige Aufgaben eingegangen. Ausgehend von diesen Analysen wurde auf Grundlage der von der GI empfohlenen „Grundsätze und Standards für Informatik in der Schule“ ein Kompetenzmodell für den Inhaltsbereich „Algorithmen“ der 8. bis 10. Jahrgangsstufe zusammen mit Aufgaben zum Verdeutlichen, Erwerben und Überprüfen der Kompetenzen entwickelt. Die gewonnenen Erfahrungen bei der Entwicklung des Kompetenzmodells und der Aufgaben wurden jeweils zusammengefasst. Das Erwerben von Kompetenzen zum Inhaltsbereich „Algorithmen“ ist häufig mit dem Einsatz einer konkreten Programmiersprache verbunden. Die vom Autor erstellte visuelle Programmiersprache Puck wurde im Rahmen dieser Arbeit weiterentwickelt und von verschiedenen anderen visuellen Werkzeugen abgegrenzt. Weiterhin wurden Gründe dargestellt, die für den Einsatz solcher visueller Werkzeuge bei der Einführung in die Programmierung sprechen. In einer Voruntersuchung an sechs Thüringer Schulen wurden erste Erfahrungen zu kompetenzorientiertem Informatikunterricht unter Verwendung der entwickelten Materialien und der visuellen Programmiersprache Puck zusammengetragen. Auf Grundlage dieser Ergebnisse wurden in der Hauptuntersuchung 84 Lehrerinnen und Lehrern im deutschsprachigen Raum das weiterentwickelte Kompetenzmodell, die zugehörigen Aufgaben und Puck zur Verfügung gestellt. Die Befragung von 40 Lehrpersonen, am Ende der Hauptuntersuchung ergab, dass es einem Großteil der Lehrkräfte möglich war, anhand der bereitgestellten Materialien kompetenzorientierten Informatikunterricht zu strukturieren, vorzubereiten, durchzuführen und auszuwerten. Es zeigte sich außerdem, dass die visuelle Programmiersprache Puck größtenteils als geeignet für eine Einführung in die Programmierung in den Jahrgangsstufen 8 bis 10 eingeschätzt wurde

    Fachdidaktische Diskussion von Informatiksystemen und der Kompetenzentwicklung im Informatikunterricht

    Get PDF
    In der vorliegenden Arbeit wird ein Unterrichtsmodell zur Kompetenzentwicklung mit Informatiksystemen für die Sekundarstufe II vorgestellt. Der Bedarf wird u. a. damit begründet, dass Informatiksysteme zu Beginn des 21. Jahrhunderts allgegenwärtig sind (Kapitel 1). Für Kompetenzentwicklung mit Informatiksystemen sind diese in ihrer Einheit aus Hardware, Software und Vernetzung anhand ihres nach außen sichtbaren Verhaltens, der inneren Struktur und Implementierungsaspekten zu analysieren. Ausgehend vom Kompetenzbegriff (Kapitel 2) und dem Informatiksystembegriff (Kapitel 3) erfolgt eine Analyse des fachdidaktischen Forschungsstandes zur Kompetenzentwicklung mit Informatiksystemen. Die Ergebnisse lassen sich in die Bereiche (1) Bildungsziele, (2) Unterrichtsinhalte, (3) Lehr-Lernmethodik und (4) Lehr-Lernmedien aufteilen (Kapitel 4). In Kapitel 5 wird die Unterrichtsmodellentwicklung beschrieben. Den Zugang zu Informatiksystemen bildet in der vorliegenden Dissertationsschrift das nach außen sichtbare Verhalten. Es erfolgt eine Fokussierung auf vernetzte fundamentale Ideen der Informatik und Strukturmodelle von Informatiksystemen als Unterrichtsinhalte. Es wird begründet, dass ausgewählte objektorientierte Entwurfsmuster vernetzte fundamentale Ideen repräsentieren. In Abschnitt 5.4 werden dementsprechend Entwurfsmuster als Wissensrepräsentation für vernetzte fundamentale Ideen klassifiziert. Das systematische Erkunden des Verhaltens von Informatiksystemen wird im Informatikunterricht bisher kaum thematisiert. Es werden Schülertätigkeiten in Anlehnung an Unterrichtsexperimente angegeben, die Schüler unterstützen, Informatiksysteme bewusst und gezielt anzuwenden (Abschnitt 5.5). Bei dieser Lehr-Lernmethodik werden das nach außen sichtbare Verhalten von Informatiksystemen, im Sinne einer Black-Box, und das Wechselspiel von Verhalten und Struktur bei vorliegender Implementierung des Systems als White-Box analysiert. Die Adressierung schrittweise höherer kognitiver Niveaustufen wird in die Entwicklung einbezogen. Unterstützend wird für das Unterrichtsmodell lernförderliche Software gestaltet, die vernetzte fundamentale Ideen in Entwurfsmustern und das Experimentieren aufgreift (Abschnitt 5.6). Schwerpunkte bilden im Unterrichtsmodell zwei Arten von lernförderlicher Software: (1) Die Lernsoftware Pattern Park wurde von einer studentischen Projektgruppe entwickelt. In ihr können in Entwurfsmustern enthaltene fundamentale Ideen der Informatik über ihren Lebensweltbezug im Szenario eines Freizeitparks analysiert werden. (2) Als weitere Art Lernsoftware werden kleine Programme eingesetzt, deren innere Struktur durch ausgewählte Entwurfsmuster gebildet und deren Verhalten direkt durch die darin enthaltenen fundamentalen Ideen bestimmt wird. Diese Programme können durch die Experimente im Unterricht systematisch untersucht werden. Mit dem Ziel, die normative Perspektive um Rückkopplung mit der Praxis zu ergänzen, werden zwei Erprobungen im Informatikunterricht vorgenommen. Diese liefern Erkenntnisse zur Machbarkeit des Unterrichtsmodells und dessen Akzeptanz durch die Schüler (Kapitel 6 und 8). Exemplarisch umgesetzt werden die Themen Zugriffskontrolle mit dem Proxymuster, Iteration mit dem Iteratormuster und Systemzustände mit dem Zustandsmuster. Der intensive Austausch mit Informatiklehrpersonen in der Kooperationsschule über Informatiksysteme und Kompetenzentwicklung sowie die Durchführung von zwei Lehrerfortbildungen ergänzen die Beobachtungen im unterrichtlichen Geschehen. Die erste Unterrichtserprobung resultiert in einer Weiterentwicklung des Unterrichtsmodells zu Informatiksystemen und Kompetenzentwicklung (Kapitel 7). Darin erfolgt eine Fokussierung auf das nach außen sichtbare Verhalten von Informatiksystemen und eine Verfeinerung der Perspektiven auf innere Struktur und ausgewählte Implementierungsaspekte. Anschließend wird die zweite Unterrichtserprobung durchgeführt und evaluiert (Kapitel 8). Am Schluss der Forschungsarbeit steht ein in empirischen Phasen erprobtes Unterrichtsmodell.In the 21st century, informatics systems are ubiquitous. Therefore, the author presents an educational model for competencies with respect to informatics systems (Chapter 1). To achieve such competencies at upper secondary level, observable behaviour, internal structure and implementation aspects of informatics systems have to be analysed by students. Based on a definition of the terms competency (Chapter 2) and informatics system (Chapter 3), the state of the art in Didactics of Informatics is investigated. In the national and international scientific work, (1) educational objectives, (2) themes and subject matters, (3) teaching and learning methods, as well as (4) educational means and media are identified (Chapter 4). In Chapter 5 the development of the educational model is described. The approach to competencies with respect to informatics systems concentrates on the observable behaviour of the systems. We focus on networked fundamental ideas of informatics as a quality factor and structural models of informatics systems. Selected object-oriented design patterns represent networked fundamental ideas. In Section 5.4 design patterns as knowledge representations of fundamental ideas are classified. Systematic exploration of informatics systems is uncommon in informatics education at upper secondary level. Therefore, students\u27 activities are developed according to educational experiments to enable students to use systems consciously (Section 5.5). Systematic exploration puts students in a position to analyse the observable behaviour as a black box. Given the source code and documentation of a system, experimenting with such a system relates behaviour to its internal structure. Succeeding cognitive processes are also considered in this approach. To support learning, software was developed, which emphasises fundamental ideas in design patterns and enables experimenting (Section 5.6). There are two kinds of learning software: (1) The learning software Pattern Park was developed by a student project group. In the software fundamental ideas within design patterns can be understood through a real-life analogy in the context of a theme park. (2) As a second kind of learning software we use small programs, whose internal structure is built by selected design patterns. Their observable behaviour depends on networked fundamental ideas of informatics. These programs can be analysed systematically by students. Aiming at complementing the normative perspective with concrete learning processes, two classroom practice projects were conducted. These offered results with respect to feasibility of the educational model and acceptance by the students (Chapter 6 and 8). Exemplarily, access control by Proxy design pattern, iteration by Iterator design pattern, and states of systems by State design pattern were chosen. Cooperation with teachers and conduction of teacher training workshops complement observations within the classroom projects. The first classroom project resulted in a refinement of theory to foster competencies with respect to informatics systems (Chapter 7). In particular, perspectives on informatics systems were elaborated. Afterwards, a second classroom project was conducted and evaluated (Chapter 8). In conclusion of the research project, there is an empirically tested educational model to foster competencies with respect to informatics systems
    corecore