427 research outputs found

    Determining ground-level composition and concentration of particulate matter across regional areas using the Himawari-8 satellite

    Get PDF
    Speciated ground-level aerosol concentrations are required to understand and mitigate health impacts from dust storms, wildfires and other aerosol emissions. Globally, surface monitoring is limited due to cost and infrastructure demands. While remote sensing can help estimate respirable (i.e. ground level) concentrations, current observations are restricted by inadequate spatiotemporal resolution, uncertainty in aerosol type, particle size, and vertical profile. One key issue with current remote sensing datasets is that they are derived from reflectances observed by polar orbiting imagers, which means that aerosol is only derived during the daytime, and only once or twice per day. Sub-hourly, infrared (IR), geostationary data, such as the ten-minute data from Himawari-8, are required to monitor these events to ensure that sporadic dust events can be continually observed and quantified. Newer quantification methods using geostationary data have focussed on detecting the presence, or absence, of a dust event. However, limited attention has been paid to the determination of composition, and particle size, using IR wavelengths exclusively. More appropriate IR methods are required to quantify and classify aerosol composition in order to improve the understanding of source impacts. The primary research objectives were investigated through a series of scientific papers centred on aspects deemed critical to successfully determining ground-level concentrations. A literature review of surface particulate monitoring of dust events using geostationary satellite remote sensing was undertaken to understand the theory and limitations in the current methodology. The review identified (amongst other findings) the reliance on visible wavelengths and the lack of temporal resolution in polar-orbiting satellite data. As a result of this, a duststorm was investigated to determine how rapidly the storm passed and what temporal data resolution is required to monitor these and other similar events. Various IR dust indices were investigated to determine which are optimum for determining spectral change. These indices were then used to qualify and quantitate dust events, and the methodology was validated against three severe air quality events of a dust storm; smoke from prescribed burns; and an ozone smog incident. The study identified that continuous geostationary temporal resolution is critical in the determination of concentration. The Himawari-8 spatial resolution of 2 km is slightly coarse and further spatial aggregation or cloud masking would be detrimental to determining concentrations. Five dual-band BTD combinations, using all IR wavelengths, maximises the identification of compositional differences, atmospheric stability, and cloud cover and this improves the estimated accuracy. Preliminary validation suggests that atmospheric stability, cloud height, relative humidity, PM2.5, PM10, NO, NO2, and O3 appear to produce plausible plumes but that aerosol speciation (soil, sea-spray, fires, vehicles, and secondary sulfates) and SO2 require further investigation. The research described in the thesis details the processes adopted for the development and implementation of an integrated approach to using geostationary remote sensing data to quantify population exposure (who), qualify the concentration and composition (what), assess the temporal (when) and spatial (where) concentration distributions, to determine the source (why) of aerosols contribution to resulting ground-level concentration

    Environmental Influences on Patterns of Atmospheric Particulate Matter: a QuantitativeStudy Using Ground- and Satellite-Based Observations

    Get PDF
    Luftverschmutzung, insbesondere hohe Konzentrationen von mikroskopischen Partikeln in der AtmosphĂ€re, sogenannte Feinstaubpartikel (PM), haben schwerwiegende Auswirkungen auf die menschliche Gesundheit. Partikel mit einem aerodynamischen Durchmesser von weniger als 10ÎŒ\mum (PM10) können in die Atemwege gelangen und bereits eine kurzzeitige Exposition gegenĂŒber hohen PM-Konzentrationen kann zu unmittelbaren negativen Auswirkungen wie AsthmaanfĂ€llen fĂŒhren. Sind Menschen ĂŒber einen lĂ€ngeren Zeitraum erhöhten PM-Konzentrationen ausgesetzt, kann die Lunge geschĂ€digt werden und das Risiko von Herz-Kreislauf-Erkrankungen und Diabetes steigt. Diese gesundheitlichen Auswirkungen können die Lebenserwartung senken. Obwohl in den letzten Jahrzehnten ein rĂŒcklĂ€ufiger Trend der PM-Konzentrationen in Europa zu verzeichnen ist, liegen die aktuellen PM-Konzentrationen in vielen Mitgliedsstaaten immer noch ĂŒber den WHO-Empfehlungen, was zur Folge hat, dass die derzeitigen PM-Konzentrationen in vielen Gebieten Europas mit hoher Wahrscheinlichkeit fĂŒr Menschen schĂ€dlich sind. Infolgedessen wurden bereits einige Maßnahmen gegen die Luftverschmutzung umgesetzt, darunter stĂ€dtische Umweltzonen und andere EinschrĂ€nkungen fĂŒr den privaten Autoverkehr. Es sind jedoch weitere Anstrengungen erforderlich, um gesundheitlich unbedenkliche PM-Konzentrationen zu ermöglichen. Um effizientere Strategien fĂŒr eine bessere LuftqualitĂ€t zu entwickeln, mĂŒssen den EntscheidungstrĂ€gern zusammenhĂ€ngende Informationen ĂŒber rĂ€umlich-zeitliche Muster der PM-Konzentrationen zur VerfĂŒgung stehen. Die sogenannte Aerosol Optische Dicke (AOD), die aus satellitengestĂŒtzten Messungen gewonnen wird, hat das Potenzial, diese Informationen zu liefern. Die AOD stellt das Integral der Partikelbelastung in einer AtmosphĂ€rensĂ€ule dar, die mit den bodennahen PM-Konzentrationen in Beziehung gesetzt werden kann. Dies ist notwendig, da bodennahe PM-Konzentrationen von besonderer Relevanz sind fĂŒr die Bestimmung schĂ€dlicher Auswirkungen auf den Menschen. Die Verwendung der AOD zur AnnĂ€herung der PM-Konzentrationen in BodennĂ€he bringt jedoch einige Herausforderungen mit sich, da die Beziehung zwischen AOD und PM durch eine Reihe von meteorologischen Parametern beeinflusst wird. Daher wird in dieser Arbeit das Potenzial satellitengestĂŒtzter AOD zur Bestimmung bodennaher PM-Konzentrationen analysiert und eine Grundlage fĂŒr die genaue Ableitung zusammenhĂ€ngender Informationen zur bodennahen Luftverschmutzung durch satellitengestĂŒtzte AOD geschaffen. DarĂŒber hinaus ist bekannt, dass verschiedene Umweltfaktoren PM-Konzentrationen beeinflussen und die Luftverschmutzung verstĂ€rken können. Um die Wirksamkeit von Strategien zur Verbesserung der LuftqualitĂ€t wissenschaftlich beurteilen zu können, mĂŒssen die Auswirkungen von UmwelteinflĂŒssen auf die PM-Konzentrationen von anthropogenen Emissionen getrennt werden. In dieser Arbeit wird das wissenschaftliche VerstĂ€ndnis der UmwelteinflĂŒsse auf die PM-Konzentrationen und die Entwicklung von Phasen starker Verschmutzung in Bezug auf die atmosphĂ€rischen Umgebungsbedingungen erweitert. In dieser Arbeit werden drei zusammenhĂ€ngende Studien vorgestellt, die sich jeweils mit einer Hauptforschungsfrage befassen. Diese Hauptforschungsfragen zusammen mit den Hauptergebnissen sind: Wie beeinflussen die meteorologischen Bedingungen die statistische Beziehung zwischen AOD und PM? Eine fĂŒr den Nordosten Deutschlands durchgefĂŒhrte Studie zeigt einen nichtlinearen Zusammenhang zwischen AOD und PM10 in BodennĂ€he auf, was auf den Einfluss der meteorologischen Parameter relative Luftfeuchtigkeit (RH), Grenzschichthöhe (BLH), Windrichtung und Windgeschwindigkeit zurĂŒckzufĂŒhren ist. Wenn eine relativ trockene AtmosphĂ€re (30%80%) erhöht sich die AOD durch die Feuchtigkeitsaufnahme der Partikel und dem dadurch verursachten hygroskopischen Partikelwachstum. Dies fĂŒhrt zu einer relativen ÜberschĂ€tzung der trockenen Partikelkonzentration in BodennĂ€he, wenn diese auf Basis der AD approximiert wird. Dieser Effekt kann jedoch durch höhere PM10-Messwerte bei niedrigen Grenzschichten (<600m) kompensiert werden, was schließlich zu AOD- und PM10-Satellitenmessungen in Ă€hnlicher GrĂ¶ĂŸenordnung fĂŒhrt. Die Windrichtung beeinflusst die Beziehung zwischen AOD und PM10 durch den Transport von Luftmassen mit unterschiedlichen Eigenschaften in das Untersuchungsgebiet. Unter Bedingungen, die von westlichen Luftmassen dominiert werden, ist die Wahrscheinlichkeit vergleichsweise hoch, dass die AOD bei Anwendung einer semiquantitativen Skala relativ höher ist als die PM10-Beobachtung. Dies deutet auf eine ÜberschĂ€tzung der PM10-Konzentrationen auf Basis der AOD hin. Westliche Luftmassen sind hĂ€ufig marinen Ursprungs und haben damit tendenziell eine höhere RH und enthalten einen hohen Gehalt an Meersalzen. Meersalze sind hydrophil und fördern das hygroskopische Wachstum von Partikeln, wodurch wiederum die AOD erhöht wird. Die Analyse des Zusammenhangs zwischen AOD und PM10 zeigt, dass die BerĂŒcksichtigung der Parameter RH, BLH und Wind notwendig ist, wenn SchĂ€tzungen von PM10 auf Basis von satellitengestĂŒtzter AOD angestrebt werden. Das in dieser Studie vorgestellte Konzept der Normalisierung der AOD / PM10-Datenpaare eignet sich fĂŒr die Anwendung in anderen Untersuchungsgebieten. Die Erkenntnisse dieser Studie haben das Potenzial, zukĂŒnftige AbschĂ€tzungen bodennaher PM-Konzentrationen auf Basis von Satelliten-AOD zu verbessern. Was sind die bestimmenden Einflussfaktoren auf PM10-Konzentrationen, wenn diese auf Basis der vorherrschenden Umweltbedingungen und AOD abgeschĂ€tzt werden? Ein statistisches Modell wird zur Vorhersage in Deutschland gemessener PM10-Konzentrationen auf Basis satellitengestĂŒtzter AOD und unter BerĂŒcksichtigung der Umweltbedingungen aufgesetzt. SensitivitĂ€tsanalysen an diesem Modell zeigen, dass die wichtigsten Einflussfaktoren auf die modellierten PM10-Konzentrationen die Ost-West-Windströmung, die BLH und die Temperatur sind. Einströmung von Luftmassen aus östlichen Richtungen ĂŒber mehrere Tage hinweg erhöht die modellierten PM10-Konzentrationen im Durchschnitt um ∌\sim10ÎŒ\mug/m3^3 im Vergleich zu Situationen, die von westlichem Einstrom dominiert werden. Dies ist auf grenzĂŒberschreitenden Partikeltransport aus LĂ€ndern östlich von Deutschland zurĂŒckzufĂŒhren. Modellierte PM10-Konzentrationen fĂŒr niedrige BLHs (<800m) erhöhen sich um durchschnittlich ∌\sim10ÎŒ\mug/m3^3 aufgrund der Akkumulation von Partikeln in BodennĂ€he. Dieser Mechanismus erweist sich im Winter und Herbst als besonders wichtig. Im Sommer zeigen die Modellergebnisse eine deutliche Erhöhung der PM10-Vorhersagen (bis zu ∌\sim12ÎŒ\mug/m3^3 bei um 15K erhöhten Temperaturen). Dies ist auf eine verstĂ€rkte biogenene AktivitĂ€t und erhöhte Staubaufwirbelung aufgrund ausgetrockneter Böden zurĂŒckzufĂŒhren. Im gleichen Modell-Setup zeigen SensitivitĂ€tsanalysen, dass die AOD positiv mit PM10 korreliert, aber BLH und die Ost-West-Windkomponente die Beziehung zwischen AOD und PM10 wesentlich beeinflussen. AOD und PM10 korrelieren im Sommer schwĂ€cher, da dann die Partikel innerhalb einer höheren Grenzschicht stĂ€rker verteilt sind und die AOD weitgehend von den höher in der AtmosphĂ€re befindlichen Partikeln bestimmt wird. Die Ergebnisse deuten darauf hin, dass die AOD zur Beurteilung der LuftqualitĂ€t am Boden verwendet werden kann, wenn sie durch eine statistische Modellierung mit meteorologischen Umgebungsbedingungen verknĂŒpft wird. DarĂŒber hinaus wird der starke Einfluss der meteorologischen Bedingungen auf die PM10-Konzentrationen aufgezeigt. Wie bestimmen atmosphĂ€rische Prozesse die Konzentration verschiedener chemischer Bestandteile von PM1 auf lokaler Ebene? AtmosphĂ€rische Einflussfaktoren auf Konzentrationen von Feinstaubpartikeln, die kleiner als 1ÎŒ\mum (PM1) sind, und deren chemischen Hauptbestandteile, werden analysiert. Der Fokus liegt dabei auf den Prozessen, die zu Phasen mit hoher Schadstoffbelastung fĂŒhren. Ein statistisches Modell wird aufgestellt, um die tĂ€glichen Schwankungen der PM1-Konzentrationen unter BerĂŒcksichtigung der meteorologischen Bedingungen zu reproduzieren. DafĂŒr werden Daten eines suburban-geprĂ€gten Standorts sĂŒdwestlich von Paris, Frankreich, verwendet. SensitivitĂ€tsanalysen des Modells deuten darauf hin, dass Spitzenkonzentrationen von PM1 im Winter durch die bodennahe Partikelakkumulation bei niedrigen BLHs in Kombination mit der Bildung neuer Partikel und erhöhten Heizungsemissionen bei niedrigen Temperaturen (<∌\sim5∘^{\circ}C) verursacht werden. Im Sommer sind die Spitzenkonzentrationen von PM1 im Allgemeinen niedriger als im Winter. Erhöhte PM1-Konzentrationen treten jedoch auf, wenn windstille Bedingungen mit hohen Temperaturen zusammentreffen, die zu photochemisch induzierten Partikelbildungsprozessen fĂŒhren. Der Transport verschmutzter Luft aus der Pariser Region fĂŒhrt in beiden Jahreszeiten zu einem deutlichen Anstieg der PM1-Konzentrationen. Hochaufgelöste Fallstudien zeigen eine große VariabilitĂ€t der Prozesse, die zu Phasen starker Verschmutzung fĂŒhren. Die Prozesse variieren nicht nur zwischen, sondern auch innerhalb der Jahreszeiten. Die Modellergebnisse zeigen beispielsweise fĂŒr eine Phase starker Luftverschmutzung im Januar 2016, dass diese durch einen Temperaturabfall verursacht wurde, was die modellierten PM1 Konzentrationen um bis zu 11ÎŒ\mug/m3^3 erhöht. Dies wird auf eine verstĂ€rkte Bildung von sekundĂ€ren anorganischen Aerosolen (SIA) und einen Anstieg der lokalen Heizungsemissionen zurĂŒckgefĂŒhrt. Im Gegensatz dazu werden im Dezember 2016 hohe PM1-Konzentrationen hauptsĂ€chlich durch eine niedrige BLH und Partikeladvektion aus dem Raum Paris verursacht. Ein beobachteter RĂŒckgang der Schadstoffkonzentrationen wĂ€hrend dieser Phase hĂ€ngt mit einer Änderung der Windrichtung zusammen, die weniger belastete, maritime Luftmassen herantransportiert, was zu einem RĂŒckgang der PM1-Konzentrationen von ∌\sim4ÎŒ\mug/m3^3 fĂŒhrt. Obwohl sich diese Ergebnisse auf lokale Ereignisse beziehen, sind die Ergebnisse verallgemeinerbar und auch fĂŒr andere Regionen relevant. Dies betrifft beispielsweise die Relevanz der Bildung neuer Partikel wĂ€hrend kalter Temperaturen oder die Akkumulation von Partikeln in bodennahen AtmosphĂ€renschichten durch eine niedrige BLH. Der Einfluss transportierter Partikel unterstreicht die Notwendigkeit großrĂ€umiger Maßnahmen zur Senkung des atmosphĂ€rischen Partikelgehalts. Diese Arbeit liefert ein quantitatives VerstĂ€ndnis der Beziehung zwischen AOD und PM10 und schafft damit eine Grundlage fĂŒr AbschĂ€tzungen von PM auf Basis von AOD. Diese PM-AbschĂ€tzungen sind von großem Nutzen fĂŒr die Identifizierung von stark verschmutzten Gebieten und zur langfristigen Beobachtung der LuftqualitĂ€t auf großen rĂ€umlichen Skalen. DarĂŒber hinaus ist das wissenschaftliche VerstĂ€ndnis der Umweltprozesse, die PM-Konzentrationen beeinflussen, wichtig, um atmosphĂ€rische Prozesse bei der Entwicklung von Strategien zur Schadstoffminderung berĂŒcksichtigen zu können

    Estimating PM2.5 in the Beijing-Tianjin-Hebei Region Using MODIS AOD Products from 2014 to 2015

    Get PDF
    Fine particulate matter with a diameter less than 2.5 ÎŒm (PM2.5) has harmful impacts on regional climate, economic development and public health. The high PM2.5 concentrations in China’s urban areas are mainly caused by combustion of coal and gasoline, industrial pollution and unknown/uncertain sources. The Beijing-Tianjin-Hebei (BTH) region with a land area of 218,000 km2, which contains 13 cities, is the biggest urbanized region in northern China. The huge population (110 million, 8% of the China’s population), local heavy industries and vehicle emissions have resulted in severe air pollution. To monitor ground-level PM2.5 concentration, the Chinese government spent significant expense in building more than 1500 in-situ stations (79 stations in the BTH region). However, most of these stations are situated in urban areas. Besides, each station can only represent a limited area around that station, which leaves the vast rural land out of monitoring. In this situation, geographic information system and remote sensing can be used as complementary tools. Traditional models have used 10 km MODIS Aerosol Optical Depth (AOD) product and proved the statistical relationship between AOD and PM2.5. In 2014, the 3 km MODIS AOD product was released which made PM2.5 estimation with a higher resolution became possible. This study presents an estimation on PM2.5 distribution in the BTH region from September 2014 to August 2015 by combining the MODIS satellite data, ground measurements of PM2.5, and meteorological documents. Firstly, the 3 km and 10 km MODIS AOD products were validated with AErosol RObotic NETwork (AERONET AOD. Then the MLR and GWR models were employed respectively to estimate PM2.5 concentrations using ground measurements and two MODIS AOD products, meteorological datasets and land use information. Seasonal and regional analyses were also followed to make a comparative study on strengths and weaknesses between the 3 km and 10 km AOD products. Finally, the number of non-accidental deaths attributed to the long-term exposure of PM2.5 in the BTH region was estimated spatially. The results demonstrated that the 10 km AOD product provided results with a higher accuracy and greater coverage, although the 3 km AOD product could provide more information about the spatial variations of PM2.5 estimation. Additionally, compared with the global regression, the geographically weighed regression model was able to improve the estimation results. Finally, it was estimated that more than 30,000 people died in the BTH region during the study period attributed to the excessive PM2.5 concentrations

    Blending model output with satellite-based and in-situ observations to produce high-resolution estimates of population exposure to wildfire smoke

    Get PDF
    2016 Fall.Includes bibliographical references.In the western US, emissions from wildfires and prescribed fire have been associated with degradation of regional air quality. Whereas atmospheric aerosol particles with aerodynamic diameters less than 2.5 ÎŒm (PM 2.5 ) have known impacts on human health, there is uncertainty in how particle composition, concentrations, and exposure duration impact the associated health response. Due to changes in climate and land-management, wildfires have increased in frequency and severity, and this trend is expected to continue. Consequently, wildfires are expected to become an increasingly important source of PM 2.5 in the western US. While composition and source of the aerosol is thought to be an important factor in the resulting human health-effects, this is currently not well-understood; therefore, there is a need to develop a quantitative understanding of wildfire-smoke-specific health effects. A necessary step in this process is to determine who was exposed to wildfire smoke, the concentration of the smoke during exposure, and the duration of the exposure. Three different tools are commonly used to assess exposure to wildfire smoke: in-situ measurements, satellite-based observations, and chemical-transport model (CTM) simulations, and each of these exposure-estimation tools have associated strengths and weakness. In this thesis, we investigate the utility of blending these tools together to produce highly accurate estimates of smoke exposure during the 2012 fire season in Washington for use in an epidemiological case study. For blending, we use a ridge regression model, as well as a geographically weighted ridge regression model. We evaluate the performance of the three individual exposure-estimate techniques and the two blended techniques using Leave-One-Out Cross-Validation. Due to the number of in-situ monitors present during this time period, we find that predictions based on in-situ monitors were more accurate for this particular fire season than the CTM simulations and satellite-based observations, so blending provided only marginal improvements above the in-situ observations. However, we show that in hypothetical cases with fewer surface monitors, the two blending techniques can produce substantial improvement over any of the individual tools

    Climate Change and Air Pollution Relationships. Lessons from a Subtropical Desert Region

    Get PDF
    The Atacama Desert is the dryest desert on Earth. Atmospheric, ocean, and topographic forcings preserve an exceptional hyper-arid environment. As a product of anthropogenic and natural emissions, PM10 and PM2.5 atmospheric concentrations have been observed to exceed international standards in urban areas where about 1.5 million people live. This research starts by describing the climate dynamics in northern Chile along with the primary anthropogenic emission sources of PM10, PM2.5, and gaseous precursor pollutants. Then, air quality levels across urban areas are evidenced. As a major source of natural PM, the unexplored mineral dust cycle of the Atacama desert is studied from satellite retrievals of aerosols properties. Two areas in the Antofagasta region are identified as predominant sources of dust, where links with reanalysed wind patterns are reported. This study is followed by the analysis of the relationship between PM10-PM2.5 levels and atmospheric ventilation from observational and modelled datasets. Because of the significant link found between both, especially in coastal areas, a wheater-driven model for PM events, with atmospheric ventilation as the most significant input variable, is pro- posed for the coastal city of Antofagasta. Finally, the future of the Atacama Desert, comprising atmospheric and oceanic regional forcings and future PM10-PM2.5 levels, is explored from the UKESM1 model. The South Pacific Anticyclone is already extending and intensifying during the austral summertime. The above leads to increasing upwelling-favourable winds and coastal upwelling intensity of the Humboldt system at the surface ocean, enhancing atmospheric stability. However, a decline is simulated at deeper ocean layers. PM10-PM2.5 are both projected to increase under the SSP370 and SSP585 climate change experiments during the 21st Century. This increasing trend is more abrupt under the SSP370 than the SSP585 experiment due to increased SO2 and dust emissions and the absence of mitigation measurements. Policy implications are dis- cussed, and future academic research is proposed, including implications beyond academia

    Spatial Information Technology Based Modeling Approach for Air Pollution Assessment

    Get PDF
    It is an accepted fact that our atmosphere bears an increasing load of pollutants: carbon dioxide, ozone, oxides of nitrogen and sulfur, volatile organic compounds (VOCs), particulates, and heavy metals. The adverse health and environment effects of air pollution have been a major concern in shaping our environmental quality. The World Health Organization (WHO) estimates that 1.5 billion people living in the urban areas throughout the world are exposed to dangerous levels of air pollution and 2 million premature deaths occur annually. A year shortening of life expectancy by an average is also the result of air pollution. Air pollution risk assessment, especially in urban areas, is currently one of the most important environmental issues for human health. Air quality model is a useful tool to simulate the complex dispersion of pollutants in the atmosphere and to predict the long-term effects on ground and spatial levels, and it plays an important role in air pollution risk assessment. Since there are inherent complexities and uncertainties associated with land use information, meteorological conditions, emission spatial allocation, as well as physical and chemical reactions in air quality modeling, it still needs to be further explored. The emergences of new spatial information technologies, such as satellite remote sensing technology and Geographic Information Systems (GIS) open a new era for air quality modeling and air pollution risk assessment, making it possible to predict the spatial concentration distributions of air pollutants on larger scales with finer details. The objectives of the work in this thesis include the development of GIS-based air quality modeling system to predict the spatial concentration distributions of ambient air pollutants (PM2.5, NO2, SO2, and CO), the development of satellite remote sensing approach to retrieve aerosol optical depth (AOD) and to derive ground-level pollutant concentrations (PM2.5 and NO2), and the development of fuzzy aggregation risk assessment approach to evaluate the health risks of multiple air pollutants. A GIS-based multi-source and multi-box (GMSMB) air quality modeling approach is developed to predict the spatial concentration distribution of four air pollutants (PM2.5, NO2, SO2, and CO) for the state of California. A satellite remote sensing approach is investigated to derive the ground-level NO2 concentrations from the satellite Ozone Monitoring Instrument (OMI) tropospheric NO2 column data for the same location and same period. The GMSMB modeling and satellite-derived results are cross-verified through comparing with each other and with the in-situ surface measurements. Furthermore, a fuzzy aggregation-ordered weighted averaging (OWA) risk assessment approach is developed to evaluate the integrated health risks of the four air pollutants. An improved aerosol optical depth (AOD) retrieval algorithm is proposed for the MODIS satellite instrument at 1-km resolution. In order to estimate surface reflectances over variable cover types, including bright and dark surfaces, a modified minimum reïŹ‚ectance technique (MRT) is used. A new lookup table (LUT) is created using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Code for the presumed aerosol types. The MODIS-retrieved AODs are used to derive the ground-level PM2.5 concentrations using the aerosol vertical proïŹles obtained from the GEOS-Chem simulation. The developed method has been examined to retrieve the AODs and evaluate the concentration distribution of PM2.5 over the city of Montreal, Canada in 2009. The satellite-derived PM2.5 concentrations are ranging from 1 to 14 ”g/m3 in Montreal, which are in good agreement with the in-situ surface measurements at all monitoring stations. This suggests that the method in this study can retrieve AODs at a higher spatial resolution than previously and can operate on an urban scale for PM2.5 assessment. Furthermore, the ground-level PM2.5 concentrations and corresponding health risks are investigated using the retrieved AOD from the satellite instruments of MODIS and MISR for the extended East Asia, including China, India, Japan, and South Korea. The results are validated with the monitoring values and literatures. Depending on the regression analysis, the GDP growth rates, population growth rates, and coal consumptions are the main reasons of the higher PM2.5 concentrations in Beijing. Some mitigating measurements are then proposed and the future trend is predicted. The developed method can be used to other regions for making cost-effective strategy to control and improve air pollution

    REMOTE SENSING OF AEROSOL AND THE PLANETARY BOUNDARY LAYER, AND EXPLORING THEIR INTERACTIONS

    Get PDF
    Aerosol-planetary boundary layer (PBL) interaction (API) is an important mechanism affecting the thermodynamics and convection in the lower atmosphere. API plays a critical role in the formation of severe pollution events and the development of convective clouds. Despite the progress made in understanding these processes, their magnitude and significance still have large uncertainties, varying significantly with aerosol distribution, aerosol optical property, and meteorological conditions. This study attempts to develop advanced remote sensing algorithms to retrieve information about the PBL and the aerosols contained within it. These remote sensing techniques are further used to elucidate the mechanisms governing API, enhancing our ability to predict air quality and model convective clouds, as well as understand the impact of aerosols on the climate system.In particular, we develop algorithms to improve the retrieval accuracy of aerosols and the PBL from satellite sensors and a ground-based lidar. For aerosol remote sensing, we use the deep neural network (DNN) to construct surface reflectance relationships (SRR) between different wavelengths. We then incorporate the DNN-constrained SRR into a traditional dark-target algorithm to retrieve the aerosol optical depth (AOD) using information from a current-generation geostationary satellite, i.e., Himawari-8, as input. As a result, the performance of AOD retrievals over East Asia is significantly improved. For PBL remote sensing, we explore different techniques for retrieving the PBL height (PBLH) from both a space-borne lidar (i.e., the Cloud-Aerosol Lidar with Orthogonal Polarization) and a ground-based lidar. We further develop a new method that combines lidar-measured aerosol backscatter with a stability-dependent model of PBLH diurnal variation. The new method circumvents or alleviates an inherent limitation of lidar-based PBLH detection when a residual layer of aerosols does not change in phase with the evolving thermodynamics. By separately considering surface-cloud coupling regimes, this method also offers high-quality retrievals of PBLH under cloudy conditions. Utilizing the enhanced retrievals of PBLH and synergistic measurements, we can also address some scientific questions concerning API, including the influencing factors of API and the role of aerosol vertical distributions. The correlation between the PBLH and the concentration of particulate matter with aerodynamic diameters less than 2.5 microns is generally negative. However, the magnitude, significance, and even the sign of their relationship vary greatly, depending on location and meteorological and aerosol conditions. In particular, API is considerably different under three aerosol vertical structure scenarios (i.e., well-mixed, decreasing and increasing with height). The vertical distribution of aerosol radiative forcing differs dramatically among the three types, with strong heating in the lower, middle, and upper PBL, respectively. Such a discrepancy in aerosol radiative forcing leads to different aerosol effects on atmospheric stability and entrainment processes. Absorbing aerosols are much less effective in stabilizing the lower atmosphere when aerosols decrease with height than in an inverted structure scenario
    • 

    corecore