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Resumo

Dados de Detecdo Remota (DR) tém sido utilizados frequentemente para estudos
epidemioldgicos, particularmente na avaliacdo da relacéo entre doencas infecciosas e
0 meio ambiente. No entanto, a sua aplicacdo é ainda limitada a variaveis pré-
determinadas/processadas, como por exemplo, indices de vegetacdo. O principal
objetivo deste projeto foi avaliar a aplicabilidade dos dados de DR (apropriadamente
calibrados e processados para condigbes locais em Quito, Equador) no estudo de
doencas respiratérias crénicas sensiveis ao ambiente (asma e bronquite como as
principais). Para isso, uma revisdo aprofundada da literatura para estudar quais 0s
dados de DR e os algoritmos usados para estimar varias variaveis ambientais
relacionadas com doencas prevalentes (por exemplo, Oz, PM) foi realizada. Com
recurso a bases de dados de saude (por exemplo, a alta hospitalar), diferentes modelos
foram implementados e testados. Além disso, véarios algoritmos de machine learning,
tais como multiple linear regression, partial least square, artificial neural network, logistic
regression, support vector regression e random forest, foram implementados com o
objetivo de encontrar os modelos mais adequados. O modelo final escolhido (suport
vector regression) permite obter o mapeamento espacial das doencas respiratorias
crénicas entre 2013 e 2017 em Quito, Equador. Este trabalho apresenta assim um novo
conceito no uso de dados de RS em aplicacdes ao ambiente e & medicina, e na proposta

de diferentes relag6es com variaveis ambientais.

Palavras Chave: Detecdo Remota por satélite, poluicdo do ar, machine learning, analise

espacial, doencas respiratéria
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Abstract

Remote Sensing (RS) data have been frequently used in epidemiological studies,
specifically in the assessment of the relationship between infectious disease and the
environment. However, their application is limited to pre-determined/processed
variables, as vegetation indexes. The main objective of this work was to evaluate the
applicability of RS data (appropriately calibrated and processed for local conditions in
Quito, Ecuador) in the study of environment-sensitive chronic respiratory diseases
(asthma and bronchitis). For this, a comprehensive review of the RS data and the
algorithms available used to retrieve several environment variables related to prevalent
diseases (O3, PM), were performed. Using a health database (hospital discharge),
different models were computed and tested. Several machine learning methods, as
multiple linear regression, partial least squares, artificial neural network, logistic
regression, support vector regression and random forest, were applied to find the most
adequate models. The final model (support vector regression) allowed to obtain a spatial
mapping of the chronic respiratory diseases between 2013 to 2017, in Quito, Ecuador.
This work presents a new concept in the use of RS data in different fields like
environment and health and in the proposal of different relationships considering

environmental variables.

Keywords: Satellite remote sensing, air pollution, machine learning, spatial analysis,

respiratory diseases
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1. Introduction

During the last years, the World Health Organization (WHO) has defined that more than
3 million of people have died every year from a chronic respiratory disease (CRD),
representing approximately 6% of global annual deceases [1]. A CRD is a disease of the
airways, where the most commons are the asthma, chronic obstructive pulmonary
disease (COPD), among others. One of the principal risk factors is the air pollution in the
cities, occupational chemicals, dust and the frequent respiratory infections during
childhood [2]. In recent years, several studies have analysed how asthma; a CRD; is
exacerbated by pollutants [3], such as ozone (Og), particulate matter (PM) with
aerodynamic diameters less than 10 mm or 2.5 mm (PM10 or PM2.5, respectively),
nitrogen dioxide (NO;), carbon monoxide (CO) and sulphur dioxide (SOz). Concerning
this, the study of environmental parameters is very important considering the direct and
indirect relationship between the climate, the environment and the respiratory health [4].
One of the most affective alternatives to obtain environmental and climate variables is
the use of satellite remote sensing (RS) data. RS data have the major advantage of
providing synoptic and frequent overviews of the Earth’s surface, whereas the
distribution of ground-based measurements is usually sparse and uneven. Additionally,
using these data avoids expensive and time-consuming monitoring campaigns. These
data can provide information related to vegetation, land use, temperature, air pollutants
and others [5,6].

National Aeronautics and Space Administration (NASA) within the Earth Observing
System (EOS) program have coordinated a series of satellite missions for global
observations including the land surface (e.g., surface temperature, soil moisture,
vegetation cover, and land use) observation [7]. EOS includes some important satellites
as Terra, Aqua, Landsat-7 and Landsat-8. Terra and Agua satellites were launched in
1999 and 2002, respectively. Their instruments include the Advanced Spaceborne
Thermal Emission and Reflection (ASTER) and the Moderate Resolution Imaging
Spectroradiometer (MODIS) [8]. MODIS is an instrument that acquires data in 36 spectral
bands with different spatial resolution (from 250 to 1000 meters). This low spatial
resolution can be considered a limitation in the analysis of medium scale cities. However,
this sensor is able to obtain information of the entire Earth’s surface every 1 to 2 days
[9]. Landsat-7 and Landsat-8 are the last satellites from the Landsat Program launched
in 1999 and 2013, respectively. Landsat-7 includes an Enhanced Thematic Mapper Plus
(ETM+) sensor, while Landsat-8 includes two sensors: the Operational Land Imager

(OLI) divided into 9 bands with 30 meters of spatial resolution (15m for panchromatic
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band) and the Thermal Infrared Sensor (TIRS) instrument divided into 2 bands with 100
meters in native spatial resolution and resampled to 30 meters. OLI sensor also includes
a Cirrus Band (B9) and a quality band (QA). B9 provides data of thin cloud contamination,
while QA band evaluates the quality of each image pixel [10].

In the case of use satellite RS data to environmental and health studies, the most
common satellites are from EOS program, with the main advantages related to the free
access and the easiness to download. Typically, the use of satellite RS data is related to
the retrieving of vegetation parameters, land use/cover and climate variables. Some of
these variables are related to the use of spectral indexes as normalized vegetation
difference index (NVDI), enhanced vegetation index (EVI), soil-adjusted vegetation
index (SAVI), land surface temperature (LST) and others [11-13]. On the other hand,
the air pollution has a big influence into the probability to get a CRD. The most common
air pollutants are measured/quantified in the cities by an automatic air quality network
(AQMN). These networks are implemented in order to establish a monitoring system in
the cities, considering that these air pollutants have a high influence in the incidence of
some CRDs and other diseases [14—-17]. One of the approaches to relate air pollutants
with RS is the Aerosol Optical Thickness (AOT) [18-20]. The AOT is a parameter that
can be obtained from MODIS Aerosol product or Aerosol Optical Deep (AOD) ground
stations (called AERONET), which allows to obtain measures of aerosols related with
the air pollutants. Thus, several studies use AOT in order to retrieve air pollutants using
RS data [21,22].

Regarding this, several studies show an increment in the use of RS data in health
studies, related to environmental parameters [23,24]. These studies involve infectious
disease epidemics and others CRDs, as asthma [25]. Ayres-Sampaio et al. [26],
developed a study to evaluate the relationship between asthma hospital discharge and
several environmental variables, in Portugal mainland, using RS data and spatial
modelling. A set of five environmental variables were considered: near-surface air
temperature (Ta) from the temperature profile of the MODIS sensor; relative humidity
(RH) from meteorological station data interpolated by kriging method; vegetation density
from MODIS NDVI product; and space-time estimates of nitrogen dioxide (NO;) and
particulate matter less than 10 mm (PM10), both from Land Use Regression (LUR)
models based on data from AQMN stations. Districts were aggregated into three groups
based on their percent urban cover, and the municipality was chosen as the sampling
unit to assess the relationship between asthma hospital admission rates and
environmental variables by season for the years 2003-2008. The results suggest that

asthmatic people living in highly urbanized and sparsely vegetated areas are at a greater

2
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risk of suffering severe asthma attacks that lead to hospital admissions. However, the
limitations of this study are related to the global calibration, low spatial resolution of the
RS data, atmospheric column effects, LUR statics models to derived air pollution and the
dependence between some variables.

Alcock et al. [27] uses negative binomial regression model in order to relate some
geographical variables with reductions in asthma hospitalisations, where one of the
variables is the area-level data on vegetation. The study results showed that green
spaces and gardens were associated with reductions in asthma hospitalisation when
pollutants were lower. Andrusaityte et al. [28] identify the associations between
neighbourhood greenness and asthma in preschool children, where the results show that
an increase in the NDVI values data was associated with a slightly increased in the risk
of asthma in children.

Fuertes et al. [29] identifies a non-consistent relationship between traffic-related air
pollution (TRAP) on childhood asthma and allergic diseases documented during early-
life persist into later childhood. One of the input variables to TRAP were the NO; and
PM2.5 LUR from based on Corine land Cover (CLC) [30]. Cillufo et al. [31] used the CLC
and NDVI as LUR inputs. The study showed that exposures related to greenness
(measured by NDVI), greyness (measured by CLC) and air pollution are associated with
respiratory general symptoms in schoolchildren.

The work presented in this thesis proposes an improvement and an update of different
methodologies already cited in the literature [26] [27], but applied to a different
geographical area (Quito, Ecuador), where the environmental conditions are extremely
different and low probability to have RS data cloud free (high density) during all the year
[32] is a reality. Moreover, this work aims to establish the most adequate spatial model
to retrieve the hospital discharge of CRDs between 2013 and 2017 with a fine spatial
resolution (30 meters). Thus, the study purpose: (i) to recover the more quantity of RS
data (high cloud density) for Quito city [33]; (ii) to evaluate the most adequate RS data
for the study area in order to retrieve air pollution variables [6]; (iii)) to evaluate different
techniques to select the most representative RS data and environmental variables
predictors according to air pollution and health data [34] and; (iv) to compare several
machine learning techniques (MLT) in order to model the CRDs in the urban area of
Quito. The model chosen will be used for spatial mapping of the CRDs. Thus, this model
will allow to identify the areas with more CRDs, getting some conclusions about the
applicability of the model in order to explain a possible trend. The main idea is to find
new alternatives in the use of RS data to have additional and useful answers about

respiratory health.

3



FCUP | 4

Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study
applied to Quito, Ecuador

1.1 Aim and objetives

The main objective of this work is to evaluate the applicability of RS data (processed for
local conditions in Quito, Ecuador) in the study of CRDs, by the computation of the most
adequate spatial models to retrieve hospital discharge of CRDs between 2013 and 2017.
To achieve this goal, the following main steps have been applied (in their corresponding
order):

1. Evaluating and improving the application of different methodologies to remove
the effects of high-density clouds in order to have more RS data available for the
computation of environmental indexes.

2. Investigate the most adequate RS data to use in the scope of this work, and their
respective calibration and validation in Quito conditions. Several satellite sensors
were investigated, e.g., MODIS, Landsat-7 ETM+, Landsat-8 OLI.

3. Developing different LUR algorithms to retrieve the environment variables from
RS data, selecting adequately the predictors in order to model the air pollutants
considering the sensor selected (previous step).

4. Studying the association between different CRDs and the environmental
parameters retrieved from RS data, establishing spatial CRDs models from
different MLT (Multiple linear Regression - MLR, Multilayer Perceptron - MLP,
Support Vector Regression — SVR and Random Forest Regression - RFR).

5. Analyzing the limitations of this approach, defining the boundary conditions of the

proposed model.

1.2 Thesis Outline

The core of this thesis is composed of six main chapters, as follows:

- The chapter 2 presents an overview of the theoretical subject about RS data and
their applications in environmental and health studies. A perspective of the use
of the different MLT in order to compute spatial models is also given.

- The chapter 3 presents an evaluation and an improvement of the Automatic
Cloud Removal Method (ACRM) algorithm [35] to remove thin clouds considering
Landsat-8, in order to recovery RS data and after to compute spectral indexes as
NDVI. Thus, an automatic removal cloud method based on the cirrus band from
Landsat-8 is proposed for the study area. This work was published in the “Remote

Sensing Applications: Society and Environment journal” by Elsevier [33].
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- The chapter 4 presents the evaluation of three different RS datasets in order to
retrieve PM10 variable, considering a LUR model using only RS data from
Landsat-8. This was published in “Environments” by MDPI [36].

- The chapter 5 presents a published paper in the “Environmental Monitoring and
Assessment” journal by Springer, which is focusing in the selection of predictors
in a LUR model, testing different MLT in order to retrieve Oz concentration [34].

- The chapter 6 shows a development of the final spatial model. This work was
submitted for the “International Journal of Environmental Research and Public
Health” by MDPI. Thus, the evaluation of different MLT to compute a LUR model
of the hospital discharge of CRDs in Quito, Ecuador is realized to achieve the
thesis goals.

- Finally, the chapter 7 includes the discussion, conclusions and future work,

identifying the achievable goals, the opportunities and the limitations of this study.

1.3 Study area

The study area is the urban area of Quito, the capital of Ecuador (Figure 1.1). The city
has some special characteristics related to geology, climatology and location. Quito is
crossed by the equatorial line in the North side. The study area latitude ranges between
0°30'S to 0°10'N and its longitude ranges between 78°10'W to 78°40'W. These
coordinates delimit most of the urban zone, which is divided into 45 urban parishes. In
the urban area is placed the downtown, and consequently higher air pollution

concentration and high population density.

78°45'W 78°30'W
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Figure 1.1. Study area. In the left image, the red polygons are the urban parishes in Quito.

According to the geology of northeastern of Ecuador, Quito is greatly influenced by the

tectonic mechanisms responsible for the development of the Andes Mountains (Figure
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1.2). Thus, some geological processes such as landslide, volcanism, erosion,

weathering are presented in the city [37].

Figure 1.2. Quito in the middle of the Andean Region (adapted from The University of Texas. 25 July 2019, //
utdirect.utexas.edu/apps/abroad/student/pgm_list/detail/nlogon/376/).

The high cloud density over Quito is very significant, all over the year. The specific reason
is the influence of a high Andes Mountains region, situated in a tropical zone. The city
elevation is approximately 2800 meters above sea level. Another of this area
characteristic is the nonexistence of the traditional four seasons. The city has only one
dry season and one wet season (February to May). The mean temperature during all the

year is between 14 to 16 degrees Celsius (Figure 1.2).
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Figure 1.2. Air temperature average in Quito, Ecuador (adapted from [38]).

Another important climatology parameter is the solar irradiance. It is higher during August
and September over 240 W/m? and the minimum solar irradiance is presented during the

wet season with values lower than 160 W/m? (Figure 1.3).
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Figure 1.3. Solar irradiance average in Quito, Ecuador (adapted from [38]).
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2. Theoretical Background

2.1 Sensor and platforms

RS can be defined as a technique to collect information about an object without making
physical contact with it [39]. Satellite RS has the major advantage of providing synoptic
and frequent overviews of the Earth’s surface, whereas the distribution of ground-based
measurements is usually too scarce and uneven to obtain enough information. The
principles of the satellite RS could be defined in six stages: (i) an energy source, which
produces the electromagnetic radiation to be captured by the sensor. The Sun is
generally the energy source of passive sensors; (ii) the Earth's surface, which receives
the incidence of the energy source; (iii) the platform and sensor ; (iv) the ground system,
which receive the data; (v) the processing and analysis of the RS data and; (vi) the end
users (Figure 2.1) [40].

'\‘
& Atmosphere
-
L At
' S ey
' 3
' ~
'
'
|

Remote sensing

platform ergy

<~/ Source of en

Figure 2.1. Main stages related to satellite RS (adapted from [40]).

The most significant advances in RS date back to the late of the 1960s, when NASA
began the EOS program. EOS launched the first Earth Resources Technology Satellite
(ERTS-1) in 1972 (renamed as Landsat-1). This date was a break point in the advance
of the satellite RS, being the beginning of more than forty continuous years of Earth
observation (EO) with the Landsat program. Landsat program is a series of EO satellite
missions developed and supported by NASA [41]. The current orbit mission platforms to
collect data are the Landsat-7 with the ETM+ sensor and Landsat-8 with the OLI and
TIRS sensors (Figure 2.2). The next generation (Landsat-9) is expected to be launched
in 2020.

9
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Figure 2.2. lllustration of Landsat-8 satellite (adapted from [10]).

applied to Quito, Ecuador

EOS program has others EO satellites, as Terra and Aqua, launched in 1999 and 2002,

respectively. These satellites are identical and both include the MODIS sensors on board

[8]. The difference between both satellites are that Terra passes across the equator in

the morning (North to South), while Aqua passes in the afternoon (South to North). One

of the main advantages of these EOS satellites is the availability of the data (public) and

they are free to download. The main characteristics of these EOS sensors and platforms

are described in Table 2.1.

Table 2.1. Main characteristics of satellites and sensors considered in this work.

Satellite
platform

Sensor

Bands (B)

Temporal
resolution

Spatial resolution

Landsat-7

ETM+

B1 - Blue
B2 - Green
B3 - Red
B4 - Near Infrared (NIR)
B5-SWIR 1
B6 - Thermal Infrared (TIR)
Low Gain / High Gain
B7 - SWIR 2
B8 — Panchromatic

16-days

30 m (B1-B5, B7)
100 m (B6)
15 m (B8)

Landsat-8

OLI
TIRS

B1 - Coastal aerosol
B2 - Blue
B3 - Green
B4 - Red
B5 - Near Infrared (NIR)
B6 - SWIR 1
B7 - SWIR 2
B8 - Panchromatic
B9 — Cirrus
B10 - Thermal Infrared (TIR)
1
B11 - Thermal Infrared (TIR)
2

16-days

30 m (B1-B7, B9)
15 m (B8)
100 m (B10-B11)

10
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Terra

Aqua MODIS

36 spectral bands with
different spatial resolution

lto?2
days

250 m (B1-B2)
500 m (B3-B7)
1000 m (B8-B36)

According to the different characteristics in the sensors and platforms, it is important to

evaluate the advantages and disadvantages of each RS data. For example, MODIS

sensor is adequate for regional or global studies, where the spatial resolution is not a

limitation. However, it is not so adequate in local scale studies, where the pixel size

directly affects the results. An alternative is the use of Landsat-7 or Landsat-8 products.

Nevertheless, it is important to emphasize that Landsat-7 sensor has a problem since

2003 in the Scan Line Corrector (SCL-Off) [42]. Moreover, one of the main advantages

of Landsat satellites is the continuous data since 1972 to present (Figure 2.3).

Satellite lSensor ‘

VNIR

[

SWIR

| TIR

TN i) T
ou
L8

TIRS w0om | 100m
tandsat7 | ETve e | o W on R on |___on
Landsat 485 MSS 82m 82m 82m 82m
nasa

TR o | o o W o e —
Landsat 1-2 RBV 8m @ sm BN 80m I
Landsat 3 RBV 40m
Landsat 1-3 MsS 79m 79m 79m 79m

Figure 2.3. Landsat Missions multispectral data (adapted from [10]).

2.2 Data pre-processing

In order to have ready to use RS data products, several pre-processing steps must be

applied. Thus, the geometric, topographic, radiometric and atmospheric corrections are

mandatory in the use of RS data, because RS raw data give the surface radiance in the

form of Digital Number (DN). The DNs must be converted to physical units, correcting all

the possible effects. The explanations and sequence of the corrections (Figure 2.4) are

explained below:

- The geometric and topographic corrections are necessary in order to repair the

geometric deformations. This distortion needs to be corrected finding the

geographical reality on the ground, associating to a coordinate reference system,

ground control poi

nts, altitude, etc. [43].

- The radiometric correction reduces the influence of inconsistencies in image

brightness values, which could limit the analysis of RS data [44]. In this

correction, DN is converted into radiance. Then, the radiance is converted into
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top of the atmosphere (TOA) reflectance data and in brightness temperature (BT)
in the thermal bands.

- The atmospheric correction allows to remove the atmospheric effects due to
absorption and scattering effects. Several algorithms can be used to estimate the
surface reflectance. One of the most popular and simplest method is the empirical
Dark-Object Subtraction (DOS) [45]. DOS assumes that the reflectance of dark
objects has a considerable component of atmospheric scattering, searching the
darkest pixel value to each band. More complete physical methods are Second
Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) and Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). 6SV can
simulate the solar radiation on the ground and in the atmosphere under a variety
of conditions of both ground surface and atmosphere [46]. However, it requires
several local data, as meteorological variables. FLAASH is an ENVI software
package based on MODerate resolution atmospheric TRANsmission
(MODTRAN) radiation transfer code [47]. FLAASH uses physics-based
derivation of atmospheric properties such as surface pressure, water vapor
column, aerosol and cloud overburdens in order to convert TOA reflectance into
surface reflectance values [47,48]. The selection of the atmospheric correction
method will depend on the availability of the data for the study area. Some studies

show that the physical methods are more accurate than empirical methods [49].

~
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_ | Distorsions and geographical and
verifications or corrections topographic
corrections
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DN to Radiance |—m Radlanr.:je;fl)— TOA Radiometric
an correction
Remote
sensing raw <
data
Y .
Athmospheric
DOS - FLAASH - ~ correction
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¢ <
Surface Ready to
Reflectance -~ use
Products products

Figure 2.4. Workflow of RS data pre-processing tasks.
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Landsat-7 and Landsat-8 can download in Level 1 LT1 product, available on United

States Geological Survey (USGS) website (http://earthexplorer.usgs.gov). This product

is already radiometrically calibrated and orthorectified, avoiding the geometric and
topographic calibration. Thus, only radiometric and atmospheric correction must be
applied. On the other hand, the USGS provides Landsat surface reflectance Level-2
products (L2T). L2T products are radiometric and atmospherically corrected, where the
products include surface reflectance and BT ready to use. In order to obtain L2T
products, Landsat-7 uses the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) [50], while, Landsat-8 uses the Landsat Surface Reflectance Code
(LaSRC) [51]. Moreover, L2T products are available to download from the Earth
Resources Observation and Science (EROS) Center Science Processing Architecture
(ESPA) at the demand interface (https://espa.cr.usgs.gov/). In the case of MODIS
sensor, the MODOQ9 (Terra) and MYDQ9 (Aqua) are the products used in this work. They

derived the surface reflectance [52]. These products provide images at ground level,

without atmospheric scattering or absorption.

2.3 Data processing

RS information about vegetation, temperature or land use are extremely related to useful
applications in the areas of environmental monitoring, climatology, biodiversity
conservation, agriculture, forestry, urban green infrastructures, air pollution and other
related fields [53]. In most of these applications, RS is used to acquire surface
information through spectral indexes. These indexes are the result of processing the
surface reflectance data and BT.

The NVDI is one of most popular vegetation spectral indexes. It provides information
about health vegetation [54], where high NDVI values correspond to dense or primary
vegetation (usually higher than 0.3), and low values can correspond to sick vegetation
or indicate the presence of bare soils. Negative values correspond to water or snow.
NDVI is computed using the surface reflectance data from the NIR and RED bands
(Equation 2.1):

NIR — RED
NDV] = ————— (2.1)
NIR + RED

Moreover, SAVI is an improvement of NDVI. It considers a soil correction factor — LS
(usually LS = 0.5) [55]. LS minimizes the soil brightness influences, especially, when

urban areas with low vegetation cover and bare soils exist in the scene (Equation 2.2):

NIR — RED
NIR + RED + LS

SAVI = (1+LS) (2.2)
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The EVI enhances the vegetation (Equation 2.3) in areas with high biomass, as forests.
Itimproves vegetation monitoring through a de-coupling of the canopy background signal

and a reduction in atmospheric influences [56].

NIR — RED

EVI=G*NIR+C1*RED—CZ*BLUE+L

(2.3)

where G is the gain factor (2.5), L is the canopy background adjustment (1), C1 (6) and
C2 (7.5) are coefficients for atmospheric resistance. The Red and NIR bands in this index
allowed to detect built-up areas and bare lands areas [57].

One important parameter related to surface energy and water balance is the LST [58].
The LST is the relative temperature of the land surface computed from RS data. It is
computed from the TOA BT (TIRS bands), in Kelvin. The Equation 2.4 allows to compute

the LST in degrees Celsius.

_ BT s

(1 + (’1 *pB T) lnE)

where A is the centre wavelength (10.8 um), E is the emissivity obtained from the
Equation 2.6; p is estimated using Equation 2.5, where h is the Planck constant (6.626e-
34 Js), c is the speed of light (2.998e8 m/s), and s is the Boltzmann constant (1.38e-23
J/K).

_h*c

p= (2.5)

N

The Equation 2.6 was used to compute the emissivity (E) [59], where E is the efficiency

that a surface emits heat as TIR radiation [60].

E,,  NDVI < NDVI,
E= iES + (E, — E;)P;,  NDVI; < NDVI < NDVI, (2.6)
E,,  NDVI > NDVI,

where Es and E, represent the E in the soil and vegetation, respectively. NDVI, and NDVIs
are the NDVI in vegetation and soil, respectively. Py is the proportion of vegetation in the
study area computed based in the Equation 2.7.

B (NDVI — NDVI, >2
) =

M\l } 2.7)
NDVI, — NDVI

The Landsat L2T products have available to download all the indexes presented in the
previous equations, except the LST. MODIS provides MOD13 and MYD13 products in
(NDVI and EVI data ready products, respectively). Moreover, MOD11 and MYD11

products provides LST ready to use.
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2.4 Remote sensing in environmental and health studies

For environmental scientists, the most important aspect of RS data is to provide relevant
information for monitoring Earth's resources. The benefits of environmental monitoring
of RS data in comparison with other methods, are the global view over of the Earth's
surface, the multiscale observations (regional to local studies), the possibility to repeat
observations (very useful in temporal studies), the immediate transmission (real-time
transmissions in some cases) and the facility to combine with other geographical
information [40]. Thus, several studies contain RS, environmental and health data
involving monitoring, spatial predictive modelling, surveillance, and risk assessment [23].
These studies are specifically associated with the retrieving of air pollutants (PM10,
PM2.5, O3, NO2, SO,) in combination with ground data and other geographical variables
as vegetation, knowing the possible correspondence with some vector-borne [61] and
respiratory diseases [62—-65]. Several works investigate this relationship. For instance,
Liang et al. [62] established AOD-PM2.5 models to study the spatial correlation with
allergic rhinitis in Taiwan. The study found a high correlation between these two factors
(AOD-PM2.5 and allergic rhinitis), particularly in spring and fall. Al-Hamdan et al. [63]
shows in their study the important relationship between PM retrieved from MODIS AOT
and the respiratory system cancer. Ai et al. [64] presents in this study, the relationship
between air pollution and asthma cases, where RS data were used to estimate the yearly
mean of air pollutants. Additional studies, as Andrusaityte et al. [28], use vegetation
multispectral indexes. They identified the associations between neighbourhood
greenness and asthma in preschool children, where the results showed that the increase
in the NDVI was associated with a slightly increased of the relative risk of asthma in
children. In opposition to these works, Li et al. [65] founded that NDVI does not have an
association with respiratory and allergic outcomes. They concluded that living closer to

green parks appeared to be a risk factor for asthma.

2.5 Ground and health data

2.5.1 Air pollutants and meteorological measurements ground data

In order to compute spatial models to retrieve environmental and health variables,
ground data are necessary to calibrate the models, specifically air pollutants and
meteorological variables. Thus, a valid alternative to collect daily ground measurement
data is through an air quality monitoring network (AQMN). An AQMN is a network with a
series of fixed stations equipped with sensors to measure some air pollutants, such as
PM10, PM2.5, Os;, NO;, CO and SO (Figure 2.5). The AQMN stations give an

15
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understating about air pollution and the impact over the human health. Some AQMN
have meteorological sensors (MD) that allow to obtain field measurements of pressure,
wind direction, relative humidity, precipitation, wind speed, air temperature and solar
irradiance.

A good planning of the location of the AQMN stations is mandatory. However, in most of
the cases a high maintenance cost by station [66], a low quantity of stations in large cities
or non-representative spatial distribution [67] are the main problems.

The AQMN available in the study area (Quito, Ecuador) is the “Red Metropolitana de
Monitoreo Atmosférico de Quito” (REMMAQ)[38]. It has worked since 2002 with nine

monitoring stations with air pollutant and meteorological sensors (Table 2.2).

i;:«:ﬂ

vk

MUNICIPIO DEL DISTRITO METROPOL

Figure 2.5. AQMN station in Quito, Ecuador (adapted from [38]).

Most of the data retrieved by REEMAQ have influence in the respiratory health. The data
is available to download in the Environmental Secretary of Quito web page
(http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos) for

free.

Table 2.2. Field sensors of the REEMAQ by station

Station Variables measured
Cotocollao PM2.5, SOz, CO, Oz, NO2, PM10, MD
Carcelen PM2.5, SOz, CO, Oz, NO2, PM10, MD
Belisario PM2.5, SO2, CO, O3, NO2, MD
Jipijapa PM2.5, SO, CO, O3, NO2, PM10, MS
Camal PM2.5, SO, CO, Oz, NO2, MD
Centro PM2.5, SO, CO, O3, NO2
Guamani SO,, CO, 03, NO2, PM10, MD
Tumbaco SO, O3, PM10, MD
Los Chillos PM2.5, SO, CO, Oz, NO2, MD

It is important to measure the air pollutants in the cities. In Quito, the PM2.5 is one of
the air pollutants over the WHO limits during each year (Figure 2.6). Like it, we have
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more air pollutants over the WHO limits, which should be monitored in order to obtain a

better air quality.

10 Guia OMS 10 pg/m?
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Figure 2.6. PM2.5 average measures during the years 2005 to 2017 in each AQMN station (adapted from [38]).

2.5.2 Respiratory health data

The respiratory health data are significant considering the hospital discharge by a CRD.
According to the WHO, a CRD is a disease of the airways and other structures of the
lung. The most common are asthma, chronic obstructive pulmonary disease (COPD),
occupational lung diseases and pulmonary hypertension [1]. A hospital discharge is
defined as the patient who has stayed at least one night in the hospital, including dead
people during the health care. As already referred, one of the principal risk factors to get
a CRD is the air pollution in the cities [2], considering the exacerbating by air pollutants
[3] and meteorological conditions.

In this work, the CRDs were filtered in the ICD-10 codes: J40 — J47. This classification
is based in the International Classification of Diseases 10 (ICD-10) from the WHO [68].
The codes J40-J47 includes diseases as asthma and bronchitis.

In the case of the study area, the National Institute of Statistics and Census (INEC) is
the official government institution in charge to provide the information about population
and other socioeconomic statistic variables in Ecuador. This information is public in a
parish (“parroquia”) scale. One of the variables provides by INEC is the hospital
discharge information. It is available to download from INEC web page

(http://www.ecuadorencifras.gob.ec/camas-y-eqresos-hospitalarios/).

2.6 Models
The base fundamentals of an empirical LUR model is considered in this research. In this
work, a LUR model is a regression which uses the air pollutant ground measurements

as dependent variable and other geographic variables as independent variables (traffic,
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roads, land use, topography, etc.) in a multivariate regression model [69]. In most of the
cases, the MLR is used to compute the LUR model [70]. However, one limitation is the
use of some static geographic variables, as the distance to roads, traffic count, land use,
etc., mainly when the geographical variables are not updated. The classical LUR model
computes spatial air pollutants and then are compared with health data. This study aims
to establish a spatial model-based on an empirical LUR model, considering the CRDs as
the dependent variable and other dynamic geographic variables (RS, air pollution,
meteorological parameters) as independent variables. In order to compute the LUR
models, some MLT can be applied and after compared in order to find the most effective

algorithm.

2.7 Machine learning techniques

Machine learning is a category of algorithms that receive input data and use statistical
analysis to predict an output while updating outputs as new data becomes available [71].
MLT uses statistical and computational methods to learn information from the dataset
without being based on a predetermined equation as a model. The algorithms adaptively
improve their performance as the number of samples available for learning increases
[72]. MLT algorithms range from the simplest linear regression models until the more
complex algorithms, as a neural network (Figure 2.7).

MLT has two kinds of learning: unsupervised and supervised learning. The aim of the
first is the regularization of the input data through clusters and not in the output data
(without supervision). The second one has a supervision process in both data (input and
output). In this work, MLTs with supervised learning were adopted. Thus, classification
and regression processes are a supervised learning problem where there is an input x
(independent variables) and an output y (dependent variable). The objective of the MLT

is to predict the output, considering a learning process (Equation 2.8).
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Figure 2.7. MLT (adapted from [72]).
y =9g(x|6) (2.8)

Where g(.) is the regression function (in regression) or the discriminant function (in
classification), 6 are the parameters or independent variables. Y is the dependent

variable (a number in regression and a class code in classification).

2.7.1. Multiple linear regression (MLR)

MLR also known as multiple regression, is a multivariate linear regression, and is
considered the simplest MLT. It uses several explanatory variables (independent
variables) to predict the outcome of a response variable (dependent variable), generating
a model with a linear relationship. The linear regression is a weighted sum of several
input variables [71] (Equation 2.9).

Yy = Bo + Bixin + Poxiz + -+ Bpxip + € (2.9)

Where y is the dependent variable, x; are the independent variables, g, is the intercept,

By are the slope coefficient for each explanatory variable and ¢ are the residuals.
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2.7.2. Stepwise regression

Stepwise regression is a MLR, which has an automatic process of the selection of
predictors (independent variables). It is a combination of the forward and backward
techniques [73]. The forward selection begins with no candidate predictors in the model.
Then, the variables are selected in function to the highest coefficient of determination
(R?), adding one by one variable. The backward selection is the opposite. It begins with
a model considering all the predictors included and then they are excluded to test the
highest R2. The problem with the backward selection is that it may include variables that

are not necessary (could present a high correlation) [74].

2.7.3. Partial Least Square (PLS)

PLS regression is a similar technique to principal components regression, which uses
latent variables or components as predictors [75]. PLS projects the predictors and
dependent variable into a new space in different hyperplanes or latent variables. The
advantage to project to new latent variables is to avoid multicollinearity. The PLS
regression is showed in Equation 2.9.

y = a1t1 + aztz + a3t3 + - antn (29)

Where t; are the latent variables or components. They are themselves linear
combinations of the independent variables (xi), as presented in Equations 2.10, 2.11 and
2.12.

ty = b11x1 + b12x2 + - blpxp (210)
tz = b21x1 + bszz + .- bszp (211)
ti = bl‘lxl + bizxz + - bipxp (212)

Additionally, PLS generate an orthogonal transformation to obtain components by finding
the most appropriate model to explain the variance, starting from the maximise

covariance matrixes [76].

2.7.4. Multilayer perceptron (MLP)

MLP is part of an artificial neural network (ANN). It is an MLT used to solve problems in
classification and regression. Moreover, MLP is based on the perceptron algorithm,
which takes an input dataset, then aggregates it with a weighted sum and finally, it
returns 1 only if the aggregated sum is more than some specific threshold or if not returns
0 (Figure 2.8). The Equation 2.13 shows the decision rule of the multilayer perceptron

algorithm.
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n
y=1ifZWi*x120 (2.13)
i=0
n

y=OifZWi*xi<0
i=0

Where, x; are the predictors and w; are the weights of each variable.

x1

xn

Figure 2.8. Perceptron algorithm schema.

The MLP uses a series of neuronal activities where the ideal is to have an interconnection
weights in a non-linear multilayer perceptron [77,78]. The simplest MLP has three-layers
(Figure 2.9). The first layer is the input layer and the last is the output layer; the middle
layer is the hidden layer. This architecture is used in regression problems. However, the
number of hidden layers in an MLP and the number of nodes in each layer can have
variations according to each problem. Thus, more nodes give more sensitivity, but a high
risk of overfitting [79].

Il 01
12 02
I3 03

Ok

Ii

Figure 2.9. The simplest MLP architecture (one input layer, one hidden layer, one output layer). Figure adapted from [78].

The MLP uses a backpropagation method in order to train the model. The

backpropagation methodology identifies if the MLP has an error in the prediction.
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2.7.5. Support Vector Regression (SVR)

SVM was developed to solve classification problems, extending to regression problems
(SVR). SVM transforms nonlinear regression into a linear regression with the
transformation between the original low dimensional input space into a high dimensional
feature space using kernel functions. These kernel functions carry a low dimensional
plane to a higher dimensional space to separate the variables using a hyperplane. Thus,
decision vectors were obtained (Figure 2.10) [80]. In the new higher dimensional space,
several linear models are constructed to obtain an optimal solution [81]. The SVM and
SVR work into a higher-dimensional space. The main difference is that the SRV uses a
continuous numerical variable as dependent variable [82].

Decision rule

N
y=sign(Xy;o;F(x,a)-b)
i=1

Weights y 1O s e ¥ Oy

Nonlinear transformation
based on support vectors
X1 ey Xy

Input vector x = ( x', ..., x»)

Figure 2.10. The two-layer SVM is a compact realization of an optimal hyperplane in the high-dimensional feature space
Z. We pass from a complex non-linear function to a simpler linear function (adapted from [80]).

2.7.6 Random Forest (RF)

RF is an effective ensemble learning algorithm in classification or regression. It uses the
training dataset to generate multiple decision trees (forest) being less sensitive to the
overfitting problem through the bootstrap aggregation commonly called bagging. The
bagging trains each decision tree on a different data sample, where the sampling is done
with replacement [83,84]. The decision trees make a simply combining according to their
weights in order to determine the final output (Figure 2.11). Moreover, RF is considered
one of the most effective non-parametric ensemble learning methods in image analysis

[85]. The Equation 2.14 shows the RF regression in a general form [86].

k
R 1
f00 =7 kz T (2.14)

22



FCUP | 23

Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study
applied to Quito, Ecuador

Where, x is an input vector from the values of the different features analysed for a given

training area. RF builds a number K of regression trees {T(x)}1K averaging the results.
In order to avoid the correlation between different trees, RF increases the trees with the

different data subset created (bagging).

TRAINNING DATA
n observations , m predictors

/\

[ Sample 1 ] [ Sample 2 ] [ Sample k ]

k Bootstrap

samples InBag 1 | |ooB 1| | 1nBag 2 | | 00B 2 InBag k | | o008 «
(2/3) (1/3) (2/3) (1/3) (2/3) (1/3)
l . l
[ l O o
TEST DATA

n-N samples | |
m predictors
\ 4

[Average of single trees predlcnons

Figure 2.11. Flowchart of RF for regression. The RF receive the input training data, then RF builds a number k of
regression trees with different training data subsets (Bagging). Adapted from [87].
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3.1 Abstract

The Andean region has a high cloud density throughout the year. The use of optical
remote sensing data in the computation of environmental indices of this region has been
hampered by the presence of clouds. To maximize accuracy in the computation of
several environmental indices including the normalized difference vegetation index
(NDVI), we compared the performance of two algorithms in removing clouds in Landsat-
8 Operational Land Imager (OLI) data of a high-elevation area. The study area was
Quito, Ecuador, which is a city located close to the equator and in a high-elevation area
crossed by the Andes Mountains. The first algorithm was the automatic cloud removal
method (ACRM), which employs a linear regression between the different spectral bands
and the cirrus band. The second algorithm was independent component analysis (ICA),
which considers the noise (clouds) as part of independent components applied over the
study area. These methods were evaluated based on several images from different years
with different cloud conditions. The results indicate that neither algorithm is effective over
this region for the removal of clouds or for NDVI computation. However, after improving
ACRM, the NDVI computed using ACRM showed a better correlation than ICA with the
MODIS NDVI product.

Keywords: cloud removal, optical remote sensing, Landsat-8 OLI, Quito, NDVI

3.2 Introduction

Optical remote sensing (ORS) data have the major advantage of providing synoptic and
frequent overviews of the Earth’s surface, but the distribution of ground-based
measurements is scarce in some parts of the world. ORS data include visible (VIS),
short-infrared (SWIR), and thermal infrared (TIR) regions of the electromagnetic
spectrum [88].

Regions with a high cloud density during most of the year, such as the Brazilian Amazon
[39,89,90] and the Andean region [91], are particularly challenging for ORS, especially
in terms of the computation of the environmental indices, such as normalized difference
vegetation index (NDVI) [92,93]. Several studies on cloud density have been conducted
based on Landsat data [39,89,90]. [94] takes the spectral/spatial characteristics of
Sentinel-2 as a template for instruments with similar properties as Sentinel-2 to
investigate the relevant cirrus effects. [95] proposed a method based on the classic
homomorphic filter executed in the frequency domain to thin cloud removal for visible
remote sensing images. [96] propose an empirical technique for the removal of thin cirrus

scattering effects in OLI visible near infrared and shortwave IR spectral regions. In the
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work of [97], the top-of-atmosphere reflectance of thin clouds is modeled using the
empirical relationships of the deep blue and blue bands of Landsat-8 OLI.

The Landsat program has provided calibrated and high-resolution spatial data of the
Earth’s surface for more than 45 years. Landsat-8, launched in February 2013, is the
latest satellite in a continuous series of land remote sensing satellites that began in 1972.
Landsat-8 has provided data to support several fields and research topics, such as
agriculture, forestry, geology, land use, air contamination [98], and the removal of clouds
in remote sensing images [35,99-104]. Landsat-8 includes two sensors: the Operational
Land Imager (OLI), which is divided into nine bands with a spatial resolution of 30 m, and
the Thermal Infrared Sensor (TIRS) instrument, which is divided into two bands with a
native spatial resolution of 100 m. The OLI bands include a cirrus band (B9). Cirrus
clouds are high-altitude clouds in the atmosphere and are mainly composed of miniscule
ice crystals [105]. They are strong reflectors of radiation at a wavelength of 1.38 um [10].
Cirrus clouds have a significant number of thin, non-spherical ice crystals that can absorb
sunlight and attenuate the pixel values of surface reflectance in remote sensing [106].
Additionally, cirrus clouds limit the accuracy in the computation of environmental indices.
Thus, it is crucial to remove them [93].

The purpose of this work is to develop an approach to remove clouds and noise in optical
remote sensing data without losing surface pixel accuracy in order to compute
environmental indices, such as NDVI. Several methods have been tested to remove
clouds considering Landsat-8 data in different places around the world with satisfactory
results. Some of these methods used a reference Landsat-8 image to patch the cloudy
area [99,100,107], or combine Landsat-8 with other sensors [108], or work with the
Landsat-8 cirrus band (B9) [35,102,109]. All these studies were conducted in low
elevation regions and in no tropical areas. Both parameters can have an effect over cirrus
clouds, considering that these clouds can form at any altitude between 5.0 km and 14 km
above sea level. In the tropical regions, cirrus clouds cover around 70% of the region's
surface area.

In this work, to remove cirrus clouds over an area in the Andean region (Quito, Ecuador)
considering the Landsat-8 cirrus band (B9), two methods were evaluated: the automatic
cloud removal method (ACRM) and independent component analysis (ICA). ACRM was
first tested on images of Sydney, Australia [35]. The algorithm applies a linear regression
between each multispectral band and the cirrus band (B9), evaluates the coefficient of
determination (R?) and slope in some areas, and generalizes them for the entire image
[35]. In order to remove clouds, the algorithm uses the area with the highest R? to

extrapolate values for the entire image. In ICA, independent components (ICs) are

27



FCUP | 28

Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study
applied to Quito, Ecuador

separated, and one of them is the component that storing the thin clouds [110]. This
algorithm was tested on Landsat-8 images of a low elevation region (North Carolina,
USA), and the results were satisfactory [102]. The performance of the two methods in
removing clouds and their efficiency in future computation of environmental indices such

as NDVI are evaluated based on the same image.

3.3 Materials and Methods

3.3.1. Study Area and Dataset

3.3.1.1. Study Area

The study area is Quito, the capital of Ecuador (Figure 3.1). The equator line crosses the
city in the north part. The Quito latitude ranges between 0°30’S to 0°10’N and its
longitude ranges between 78°10'W to 78°40°'W. Quito has a high elevation of
approximately 2800 m. The cloud density over the city is considerable, all over the year.
Quito has only one dry season and one wet season, considering that it is a tropical zone
and is influenced by the Andes Mountains. In 2015, the mean minimum and maximum
temperatures were approximately 9.0°C and 25.4°C, respectively, with a high
precipitation of approximately 1126 mm [111]. The geology of northeastern Ecuador and
present-day physical processes related to geology are greatly influenced by the tectonic
mechanisms responsible for the development of the Andes Mountains. Both geology and
active physical processes (landsliding, volcanism, erosion, weathering) are complex and
varied [37].

3.3.1.2 Dataset

In this study, ten Landsat-8 L1T images were processed to evaluate and improve the
two methods to remove clouds. Seven images of Quito, Ecuador (Path 10; Row 60) from
different years (Figure 3.2); one image of Pedernales, Ecuador (Path 11; Row 60), which
is a coastal region with characteristics similar to those of Sydney; and the image of

Sydney, Australia (Path 89; Row 83) used in [35] were considered.
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Figure 3.1. Quito Metropolitan Area

Images at the L1T processing level were considered because they take advantage of
geometric and radiometric corrections [10]. Moreover, the MODIS MOD13Q1 product
(tiles H10VO08 and H10V09) for the study area was also used in order to compare the

results obtained in the computation of NDVI (further details in Section 3.4) (Table 3.1).

Table 3.1. Characteristics of datasets used in this study

Sensor Product Spat|a}l Tempo_ral Bands/Products
Resolution | resolution
Coastal aerosol, blue, green, red, near
Landsat-8 | L1T 30m 16 days infrared, SWIR 1 and SWIR 2, Cirrus,
Thermal Infrared 1, Thermal Infrared 2
MODIS MOD130Q1 | 250 m 16 days NDVI/EVI Values

3.3.2.Methodology

Two methods to remove clouds, ACRM and ICA, were evaluated in this work for Landsat-
8 images and the corresponding cirrus band (B9). Most of the processing steps were
implemented in R programming language [112] and its associated packages: raster
version 2.5-8 [113], rgdal version 1.1 [114], and gdalutilities version 2.0.1.7 [115].
Furthermore, ENVI® and ERDAS® software were used to perform some image
processing tasks.

3.3.2.1. Automatic Cloud Removal Method (ACRM)

ACRM attempts to obtain clean pixel data from each digital number DN recorded at each
OLI multispectral band i = 1,2,3,4,5,6,7. DN contains clean pixel data plus contaminated
data at the location (u, v). Contaminated data are affected by clouds [35]. The model can

be expressed as follows:
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DN(u,v) = xif(u, v) +x{(u,v), i=1234567, (3.2)
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Figure 3.2. Landsat-8 Images from Quito Metropolitan Area (Path: 10; Row: 60): (a) Image from 2013/10/11; (b) Image
from 2013/07/07; (c) Image from 2014/07/26; (d) Image from 2015/07/13; (e) Image from 2015/08/30; (f) Image from
2016/02/06; (g) Image from 2016/10/19; (h) Image from 2013/06/21 (Reference image to ICA evaluation).

where xif (u, v) is the clean cloud-free pixel from each of bands 1-7 and x{ (u,v) is the
cirrus cloud pixel from each of bands 1-7 obtained with band 9. Equation 3.1 results from
the strong linear relationship between the bands found in [116], where x{(u, v) is linearly
related to the DN recorded in the cirrus band c(u, v) as follows:

x{ (u,v) =«; [c(u,v) — min{c(u, v)}]. (3.2

The aim is to obtain the slope «; for each band, considering a linear relationship between
each multispectral band and band 9 in a homogenous area. Two approaches can be
considered to determine this homogenous area. The first approach is a photo-
interpretation to find this area by taking, for example, water bodies that have a near-zero
pixel value over the near-infrared (NIR) band. However, this approach cannot be used
for images that do not contain water bodies. The second approach is to use random
areas of a constant size covering the entire region or zones with a specific land use. In
this study, we considered the second approach of finding random areas with a size of 10
x 10 km?, covering the entire study area (Figure 3.3). Smaller regions (250 m * 250 m)
were also tested, but the results were identical.

By combining Equation (1) with Equation (2), x{(u, v) can be estimated as follows:

xif(u, v) = DN(u,v) —«; [c(u,v) — min{c(u, v)}] (3.3)
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Figure 3.3. Input regions considered to test the ACRM algorithm

3.3.2.2. Independent Component Analysis (ICA)
ICA is a method for finding underlying factors or components from multivariate
(multidimensional) statistical data [117]. The relationship is represented as follows:

X =AS (3.4)
where S is a random vector containing the independent source signal or independent
components (IC) with elements sy, s,, ..., and s,,. A is the “mixing” square matrix having

elements q;;. X is the observed signal (mixed) having elements x, , x,, ..., and x,,.

In Equation 3.4, X represents surface reflectance data from each of bands 1-7 and pixel
cirrus data from band 9. The surface reflectance data were obtained by applying
atmospheric correction with the fast line-of-sight atmospheric analysis of hypercubes
(FLAASH) algorithm [48,118]. FLAASH works as a physical method to obtain surface
reflectance, and it allows us to describe the shape of the signatures [49] in ENVI
software. The column vector s represents ICs and matrix A represents the linear
transformation. Both s and A are unknown.

In some studies, ICA is used to separate some parts of satellite images by considering
their bands as ICs. The algorithm achieves cloud removal by considering that each IC is
a linear mixture of bands 1-7 and 9. Band 9 is used to delineate the cloud component in
the IC [102,103].
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ICA works with a non-Gaussian distribution, where ICs (surface reflectance and pixel
cloud data) are not normally distributed, because various surface types and cloud types
produce different reflectance values. The robust FastICA algorithm can be applied to
estimate an unmixing matrix W, which is the inverse of mixing matrix A [110]. The source
vector s can be obtained by inverting Equation 3.4 as follows:
s =A"1X. (3.5)
Band 9 (cirrus band, which is a part of X) is considered the sum of eight products (bands
1-7 and 9) for each IC: the product of each source vector with its coefficients in A.
Equation 3.6, derived from Equation 3.4, allows us to obtain the cloud pixel value x4 as
follows:
X1-7 = 41-7S¢, (3.6)
Where a,_5 is the coefficient of s, in matrix A corresponding to the reflectance data of
bands 1-7. The largest factor in the row corresponding to band 9 of A determines the s,

to be used to obtain the cloud reflectance data x.. The final reflectance-free data x; is

obtained by subtracting the original reflectance data from each band x, by the cloud
reflectance data from each band x,. (Equation 3.7).

Xf =X — Xc- (3.7)

3.3.2.3. Normalized Difference Vegetation Index (NDVI)

NDVI is an index that allows to obtain information about the greenest vegetation
considering red and NIR bands of a sensor [54]. In the case of Landsat-8 OLI, NDVI is
calculated using bands 4 (red band) and 5 (NIR band). The NDVI in a Landsat-8 OLI

image is computed as follows (Equation 3.8):

B5 — B4
=— 3.8
NDvI B5 + B4 38

NDVI is one of the most commonly used remote sensing vegetation indices [119,120],
and it is considered an environmental index owing to its strong relationship with the land
surface (e.g., surface temperature, vegetation cover, land use) and meteorological data
(e.g., temperature, humidity) [121]. Moreover, NDVI is used to validate and compare

results between sensors by considering future environmental applications [122].

3.3.2.4. Evaluation and Validation

In order to validate the efficiency of ACRM and ICA cloud removal methods in the
computation of environmental indices, the NDVI was computed in the original Landsat-8
images after applying both algorithms. Then, the images were compared with a MODIS

NDVI product resampled to a spatial resolution of 30 m, assuming a similar period of
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Landsat-8 data used. A MOD13Q1 product (NDVI 16-Day L3 Global 250 m version 6)
was used as reference data, considering that MODIS is a ready-to-use product [9,56]
and is evaluated in vegetation phenology. The validation was tested in a small area
where cirrus clouds are present, which allowed us to evaluate the performance of the
algorithms to remove clouds and to estimate environmental indices. The methodology

adopted in this work is presented in the flowchart shown in Figure 3.4.

3.4 Results
3.4.1. Cloud Removal Using ACRM

The ACRM algorithm was applied to ten images considered in this study. The code was
programmed in R Studio with the raster package. The main objective was to obtain the
best correlation (R?) between bands 1-7 and band 9 in selected areas of the images with
cirrus clouds.

The first step was to choose the zones to evaluate the algorithm in a geographic
information system (GIS) covering the entire study area in Quito. These areas, called
zones (Z), are 10 km x 10 km regular grids covering the study area (Figure 3.3).
Subsequently, the algorithm was applied, and the best-fit regions with the best R2
coefficients between each multispectral band (1-7) and band 9 (Table 3.2) were

evaluated.

Landsat 8 OLI images
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Figure 3.4. Flowchart of the methodology adopted to perform a comparison between ACRM and ICA algorithms.
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Table 3.2 lists the highest R? coefficients obtained in the application of the algorithm,
considering only values higher than 0.85. Slope values are lower than 0.18. These
results are shown in Figure 3.5 (see Section 3.3.4.3).

ACRM was also tested considering an image from Pedernales and an image from
Sydney (Table 3.3). In Pedernales, the R? coefficients had values lower than 0.68. Better
results were obtained over Sydney with higher R? coefficients (higher than 0.97). To
corroborate the results of R? coefficients (Figure 3.6), we confirmed that the image of

Pedernales is practically unchanged by the algorithm, while the algorithm removes all

the clouds in the image of Sydney.

T8H0W 78°30W 78°20W

00’
00’

0°10'S
0710

78°40W 78°30W

(b)
Figure 3.5. Landsat-8 Images from Quito Metropolitan Area (Path: 10 Row: 60): Image from 2014/07/26 (a) Original
Image; (b) Image applied ACRM

78°20W

Table 3.2. Linear regression results between bands 1-7 and 9 in the Quito study area for different dates.

Band Quito (11/10/2013) Quito (07/26/2014) Quito (07/13/2015) Quito (02/06/2016)
R? Slope (a) R? Slope (a) R? Slope (a) R? Slope (a)
B2 0.96 0.05 0.93 0.02 0.95 0.03 0.95 0.03
B3 0.96 0.05 0.93 0.02 0.95 0.03 0.95 0.03
B4 0.96 0.05 0.93 0.02 0.95 0.02 0.95 0.02
B5 0.88 0.02 0.85 0.01 0.91 0.02 0.85 0.01
B6 0.85 0.02 0.89 0.17 0.88 0.02 0.89 0.03
B7 0.86 0.02 0.88 0.02 0.87 0.02 0.88 0.02
Band Quito (07/07/2013) Quito (08/30/2015) Quito (10/19/2016) Quito (21/06/2013)
R? Slope (a) R? Slope (a) R? Slope () R? Slope (a)
B2 0.96 0.05 0.93 0.02 0.97 0.03 0.95 0.03
B3 0.96 0.06 0.93 0.02 0.97 0.03 0.95 0.03
B4 0.95 0.05 0.93 0.02 0.97 0.02 0.95 0.02
B5 0.85 0.03 0.85 0.01 0.95 0.02 0.85 0.01
B6 0.90 0.06 0.89 0.17 0.92 0.02 0.89 0.03
B7 0.89 0.06 0.88 0.02 0.89 0.03 0.88 0.02

Table 3.3 Linear regression results between bands 1-7 and 9 in the other evaluated zones.
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fang | Sydney (2013/10/04) Zg‘ig}ggfg)
R? Slope (a) R? Slope (a)
B2 0.97 1.70 0.67 0.69
B3 0.99 1.63 0.68 0.68
B4 0.98 1.68 0.67 0.62
B5 0.98 1.74 0.67 0.52
B6 0.99 1.11 0.63 0.44
B7 0.98 1.02 0.53 0.58

80°20W S0°10W

(@)

151°40°E 151°50°E

S [ — — w— 10 e 1215
b 0 5 10 20 30 40

151°40'E 151°50'E

(©)

79°50W

79°40W

80°30'W 80°20W 80°10W 79°50'W T4OW
3 s P

79°50W

80°30W 80°20W 80°10W 80°0'W

(b)

151°40°E

T79°40W

151°20E 151°30E 152°0E 152°10°E

151°50E

Kilometers

151°20E 151°30E 151°40E 151°50E 152°0E 152°10E

(d)

Figure 3.6. Landsat 8 OLI images (a) Original image from Pedernales; (b) Image after applied ACRM in Pedernales; (c)
Original image from Sidney; (d) Image after applied ACRM in Sidney

3.4.2. Cloud Removal Considering ICA
The ICA algorithm was applied only to the Quito image from 26/07/2014, which shows
clouds over the study area. Different software were used (R Studio, ENVI, ERDAS) to

obtain the different parameters showed in the Equation 3.4. The principal inputs to the

algorithm were the surface reflectance data of multispectral bands (calculated with
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FLAASH correction from ENVI) and the DN from band 9. Furthermore, the IC for the
selected image was obtained in ENVI software with the FastICA algorithm [110] (Figure
3.7). The matrix A from Equation 3.6 was obtained using the ICA algorithm in ERDAS
software (Table 3.4), and s, was selected as sg, which had the high absolute value of
4.011x10-2 in the row of band 9. Then, to obtain the input data for Equation 3.7, the
product of the coefficient in the column for each band at s, with each IC was used. The
results are shown in Figure 3.8. Again, as in ACRM, the result was not satisfactory in
comparison with the original image (see Section 3.3.4.3).

Moreover, to corroborate that the application of the ICA algorithm does not provide
satisfactory results for Quito, some scatterplots were computed with respect to a cloud-
free reference image (Figure 3.9). The scatterplots show a linear correlation between the
reference image (Figure 3.2h) and the images with and without ICA correction (Table

3.5), which indicates that the ICA algorithm does not work properly for Quito.
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Figure 3.7. (a—h) are first, second, ..., and eighth independent components, respectively.

Table 3.4. Coefficients (x10-2) of A

78°20'W

Band S1 S2 S3 S4 S5 S6 S7 S8
Bl 4.719 | 0.678 | 0.653 | 9.672 | 1.731 | 1.818 | 1.308 | 0.207
B2 4613 | 0.939 | 0.494 | 9.192 | 1.628 | 1.661 | 1.722 | 0.372
B3 4.537 | 0.802 | 1.153 | 8.826 | 1.645 | 1.644 | 2.201 | 1.149
B4 4.487 | 0.696 | 0.851 | 8.954 | 1.493 | 1.692 | 3.413 | 1.006
B5 2.824 | 0475 | 0.524 | 6.962 | 1.743 | 1.148 | -1.815 | 7.568
B6 0.236 | 0.764 | 1.266 | 7.093 | 1.508 | 1.632 | 3.497 | 3.671
B7 0.256 | 0.901 | 1.214 | 6.417 | -0.022 | 1.794 | 3.746 | 1.656
B9 -0.021 | -0.023 | 0.018 | -0.152 | 0.984 | 4.011 | 0.617 | 0.108
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Figure 3.8. Landsat-8 Images from Quito Metropolitan Area (Path: 10 Row: 60): Image from 2014/07/26 (a) Original
Image; (b) Image after applied ICA.
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Figure 3.9. Scatterplots of bands 2-5. (a, c, e, g) Left an image before ICA algorithm implementation vs. reference image.
(b, d, f, h) Right image considers ICA algorithm implementation vs. Reference image. Reference image is from June 21,
2013 to evaluate ICA (Figure 3.2h).

As indicated in Table 3.5, if ICA is applied, the algorithm changes the surface reflectance

values; in comparison with a cloud-free image, the correlation decreases.

Table 3.5. Linear Regression. R? coefficients before and after ICA computation

Band R? before R? after
B2 0.43 0.20
B3 0.49 0.26
B4 0.53 0.33
B5 0.49 0.47

3.4.3. Validation — NDVI Computation

As mentioned previously, one of the main objectives of the cloud removal in high-altitude
areas is to obtain a better accuracy in the computation of environmental indices, such as
NDVI. Therefore, in the process of validation of the proposed algorithms, the NDVI
values for a selected area (Quito airport) with a high density of cirrus clouds were
computed (Figure 3.10).

NDVI values were compared to the MODIS MOD13Q1 product and resampled to a
spatial resolution of 30 m to enable them to be related to Landsat data. The MODIS
product is of a nearer date (07/28/2014) to the Landsat-8 image (Figure 3.11a). The
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validation compares the reference NDVI product (MODIS MOD13Q1 resampled) and the
NDVI computed through the Landsat-8 image. NDVI values are computed considering
the original surface reflectance of the Landsat-8 image (Figure 3.11b) and the surface
reflectance of the images after applying the two algorithms for removing cirrus clouds: i)
ACRM (Figure 11c) and ii) ICA (Figure 11d).

78°20W 78°18'W
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Figure 3.10. Area evaluated in Quito airport to compute NDVI (Landsat-8 image from 07/26/2014).
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Figure 3.11. NDVI computed from (a) MODIS NDVI 30 m resampled image; (b) original Landsat-8 image; (c) Landsat-8
image after cloud correction using the ACRM algorithm; (d) Landsat-8 image after cloud correction using the ICA
algorithm.

In order to compare MODIS NDVI and the other NDVI computations, a linear regression
was established to obtain R? coefficients, and the results showed that the highest R?
(0.426) is obtained after applying ACRM. On the other hand, the lowest coefficient is
obtained after applying ICA with an R? value of 0.262 (Table 3.6).

Table 3.6. Linear Regression between MODIS NDVI and NDVI computed from each cloud removal method.

NDVI Computation with R?
Original Image with Surface Reflectance Data 0.396
After ACRM algorithm 0.428
After ICA algorithm 0.262

3.4.4. Improvement of ACRM

According to the preliminary results (Table 3.6), the ACRM algorithm yielded the highest
R? to calculate environmental indices; nevertheless, one improvement of the ACRM
method was developed to remove clouds in Landsat-8 OLI images of high-elevation
areas [35]. This development attempts to find the best-fit slope in the ACRM algorithm,
established in Equation 3.3, to remove clouds in order to compute environmental indices.
When ACRM was applied to an image of Quito, the slope parameter presented low
values, which led us to conclude that the correction to remove clouds does not work
properly when it takes values close to 0 (Table 3.2).

A previous work used a fixed slope value [32]. The main improvement in the ACRM

algorithm was to find the highest R? coefficients in the homogeneous zones and the best-
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fit slope to remove clouds. Several slope values from 0 to 100 (in increments of 0.1) were
tested. Therefore, the improvement was to find the highest R? with the fittest slope testing
several slopes values. This procedure was implemented in R Studio software.

To compare and validate the best-fit slope, NDVI was computed for the original image
(07/26/2014) after applying the ACRM algorithm and compared with the MODIS NDVI,
resulting in the highest R? (0.5077) with a slope value of 2.9 (Figure 3.12).

The slope value of 2.9 allowed to a visualization without clouds (Figure 3.13 and Figure
3.14). However, this value is not necessarily the same in each case. The slope value
must be investigated for each case, in order to find the best fit to the corresponding area
and image.

The results of comparing the R? between the different methods are shown in Figure 3.15.
The improved ACRM shows the highest R? value (0.5077), and visually, it removes
clouds to yield a clean image (Figure 13d). Thus, the improved ACRM works

satisfactorily over the study area.

. w

=
o

R2
02

01

T T T T T T T
0 1 2 3 4 5 6

Slope
Figure 3.12. Comparison between NDVI obtained using ACRM for each slope tested (dots) with the MODIS NDVI. The
red lines indicate the highest R2 and the corresponding slope.
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Figure 3.13. Images of Quito airport used to compute NDVI (based on Landsat-8 image from 07/26/2014) (a) original
image; (b) image obtained after applying the ACRM algorithm; (c) image obtained after applying the ICA algorithm; (d)
image obtained after applying the improved ACRM algorithm.
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Figure 3.14. Comparison of result applying the ACRM improvement (b),(d) in different regions vs. the surface reflectance

image (a),(c).

In order to validate the ACRM, a new image (11/10/2013) with similar properties was

used in the same area. The results show a higher R? (0.5283) with a slope value of 2.8

in the ACRM (Figure 3.16).
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Figure 3.15. Comparison between MODIS MOD13Q1 and the different NDVI values obtained from the application of the
different algorithms in the Landsat-8 image (07/26/2014) for removing clouds.
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Figure 3.16. Comparison between MODIS MOD13Q1 and the NDVI value obtained from Original Surface Reflectance
data (FLAASH Correction applied) and ACRM improved in the Landsat-8 image (11/10/2013) for removing cirrus clouds.

3.5 Discussion and Conclusion

Two algorithms, ACRM and ICA, were employed to remove cirrus clouds in Landsat-8
images with the cirrus band (B9) [10], in Quito city. The main advantage of these two
methods is that they do not use additional images to patch data, in contrast to other
methods [99,100,107,108]. These methods use the same image to remove thin cloud
without the insertion of pixel values from other images. In this work, because cirrus
clouds could have a great impact in the computation of environmental indices such as
NDVI, these two methods were tested and compared with the aim of evaluating their
applicability to accurately compute NDVI for an area located in the Andean region.
ACRM generated satisfactory results for images with conditions similar to Sydney [35].
The same original image of Sydney was used to reproduce the correct application of
ACRM, which yielded an R? coefficient higher than 0.95, with slopes higher than 1. These
satisfactory results were also evident from visual inspection, because clouds were
adequately removed (Figure 3.6d). When the ACRM algorithm was tested for images of
Quito from different dates, the results showed R? coefficients higher than 0.90 in most of
the cases but with low slope values (lower than 0.1 in most of the cases for all bands)
(Table 3.3). The low slope values indicate poor correction. Moreover, it is evident from
visual inspection that this algorithm does not remove the cirrus clouds over the images
(Figure 3.5). Another area, Pedernales, was chosen to test the algorithm because it has
similar characteristics to Sydney. The results for this area are also unsatisfactory for the
clouds removal (Figure 3.6b).

The other algorithm tested to remove cirrus clouds was ICA [102], which is a blind source
method that attempts to obtain the cloud component of images [110]. All ICs contain free
pixel data and cloud noise, and the noise should be removed, considering all image data
to have a non-Gaussian distribution [117]. ICA was tested for images of Quito, and the
results were compared with a cloud-free image (image with surface reflectance data).

The results are unsatisfactory because the correlation was worse than the case without
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applying ICA (Table 3.4). For example, in band 4, the R? value obtained in comparison
with the cloud-free image was 0.33; the value without applying ICA was 0.53.

In order to validate the results, NDVI was computed. In the first approximation, the results
were compared with a reference image product (MODIS MOD13Q1). The results showed
the highest R2 when the ACRM algorithm was applied; these values were higher than
those obtained with ICA or those of the surface reflectance data. Finally, an improvement
to ACRM was proposed. This algorithm had two main objectives: (i) visually remove
clouds and (ii) improve the pixel values to compute environmental indices. The ACRM
algorithm was improved, so that the homogeneous area has the highest R? coefficient
value and the slope should be significant to reduce the density of cirrus clouds. In the
case of the study area (Quito), the first condition was achieved with a high R? coefficient
between Landsat multispectral bands and band 9 in a homogeneous area (Table 3.1).
The challenge was to achieve cloud correction using ACRM. Therefore, we tested
different slope values [32] between 0 and 100, and the best-fit slope value of 2.9 was
obtained. This approach proved to be a good alternative to the previous algorithms tested
(Figure 3.13). In order to validate this new approach, the NDVI values were computed
and compared with the reference NDVI values (MODIS). This new approach yielded
higher R? values (Figure 3.15 and Figure 3.16). The ACRM Improved using the highest
R? value can approximate to other products ready to use like MODIS NDVI, finding a
better relationship than other algorithms or methods, and a considerable best
performance, since can be applied to Landsat 8 data, which have a spatial resolution of
30 m.

The preliminary results show that the algorithms to remove cirrus clouds (ACRM and
ICA) do not work properly in the geographical conditions considered in this study, leading
us to suppose that there are other factors such as altitude and closeness to the equator
that influence the results. Therefore, future research should focus on testing these
algorithms in different regions around the world to determine the best method for each
area or to identify better alternatives to improve the cloud removal algorithms. Moreover,
in some parts of the world such as Quito, Landsat images are affected by a high cloud
density throughout the year, limiting the time frame to obtain phenology data at a spatial
resolution of 30 m. Nevertheless, the ACRM improved can help in a more accurate

computation of environmental indexes when compared to other algorithms or methods.
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4.1 Abstract

The monitoring of air pollutant concentration within cities is crucial for environment
management and public health policies in order to promote sustainable cities. In this
study, we present an approach to estimate the concentration of particulate matter of less
than 10 ym diameter (PM10) using an empirical land use regression (LUR) model and
considering different remote sensing data as the input. The study area is Quito, the
capital of Ecuador, and the data were collected between 2013 and 2017. The model
predictors are the surface reflectance bands (visible and infrared) of Landsat-7 ETM+,
Landsat-8 OLI/TIRS and Aqua-Terra/MODIS sensors and some environmental indexes
(Normalized Difference Vegetation Index — NDVI; Normalized Difference Soil Index -
NDSI, Soil-Adjusted Vegetation Index — SAVI; Normalized Difference Water Index -
NDWI and Land Surface Temperature (LST). The dependent variable is PM10 ground
measurements. Furthermore, this study also aims to compare three different sources of
remote sensing data (Landsat-7 ETM+, Landsat-8 OLI and Aqua-Terra/MODIS) to
estimate the PM10 concentration, and three different predictive techniques (stepwise
regression, partial least square regression and artificial neuronal network (ANN)) to build
the model. The models obtained are able to estimate PM10 in regions where air data
acquisition is limited or even does not exist. The best model is the one built with an ANN,
where the coefficient of determination (R? = 0.68) is the highest and the root-mean-
square error (RMSE = 6.22) is the lowest among all the models. Thus, the selected model
allows the generation of PM10 concentration maps from public remote sensing data,
constituting an alternative over other technigues to estimate pollutants, especially when

few air quality ground stations are available.

Keywords: Remote Sensing, air quality modeling, air quality monitoring, PM10, LUR

4.2 Introduction

Due to some factors as air pollutants permanency over the time, the air quality has
decreased in recent years, all over the world. One of the direct indicators of air quality is
particulate matter with an aerodynamic diameter lower than 10 um, usually called PM10
[123]. It is well-known that PM10 has a negative environmental impact on outdoor air
quality and that it that is linked to public health problems such as cardiovascular and
respiratory diseases [124,125]. Many cities around the world are monitoring PM10 in
order to prevent environmental problems. However, this monitoring process needs to be

improved in order to establish reliable environmental policies [126]. Thus, understanding
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the spatial distribution of PM10 requires a scientific and accurate basis to locate the
possible sources of this pollutant in cities, in order to avoid environmental problems
linked to air quality.

The air quality monitoring network (AQMN) is a classical procedure to monitor PM10 in
cities. However, some difficulties are found, for instance, high maintenance cost by
station [66], a low quantity of stations in large cities or non-representative spatial
distribution [67]. An alternative could be high resolution air ground measures with the
implement of low-cost sensors [127,128], however, they are an investment of the local
governments, and most of the times is not possible to realize it. An example of where
there is insufficient information provided by AQMN stations and a lack of PM10 measures
is in Quito, Ecuador [6,129-131], where there is not enough information to establish
environmental strategies. Quito, the capital of Ecuador, is a special geographic zone,
considering its high elevation altitude (2800 m), in the middle of the Andean region.
Considering the difficulties of a city like Quito, one valid alternative to complement AQMN
monitoring is applying land use regression models (LUR) [132]. LUR models use different
geographical variables as predictors (remote sensing data, meteorological data, road
density, vehicular traffic, land use, emission inventory, etc.) [132-135]. However,
oftentimes this information cannot be easily accessed. Moreover, these geographical
variables are not frequently updated by government institutions. In the case of remote
sensing data, the predictors most commonly used in LUR models to retrieve PM10 are
aerosol optical depth (AOD) and normalized difference vegetation index (NDVI) from
Moderate-Resolution Imaging Spectroradiometer (MODIS) products [136-139]. MODIS
products have a low spatial resolution that limits their application in medium or small
cities [41,140,141], but they are an efficient alternative to retrieve pollutants in regional
(large cities/regions) or national (countries) areas. Consequently, a possible alternative
to MODIS products is Landsat data. Nowadays, the operational Landsat satellites are
Landsat-7 and Landsat-8 [142,143]. Landsat data have a higher spatial resolution
compared with MODIS (30 m instead of 250 m) [141]. Several strategies to retrieve AOD
from Landsat data have already been established [142]. Nevertheless, these strategies
require AOD ground station data in the study area to have aerosol information in a
medium spatial resolution [143,144]. Considering this limiting, other studies suggest that
the visible bands of Landsat sensors can be used to invert PM10 [50]. The strategy
proposed in this work is useful and effective when the AOD stations are limited.

In order to construct empirical LUR models, some studies have used multiple linear
regression (MLR) [144], considering a subset of variables through the stepwise

regression (STW) algorithm [26,145]. Nevertheless, the use of MLR cannot analyze the
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possible multicollinearity between variables, because we have a high correlation
between near bands in the spectrum [146]. Moreover, it is well-known that
multicollinearity exists between remote sensing variables [147], producing a source of
error in MLR empirical models. However, an alternative which allows the computing of
more accurate models, avoiding multicollinearity, is to use partial least square (PLS)
regression [34,148,149] or an artificial neuronal network (ANN) [150]. Generally, ANNs
give more accurate results in comparison with traditional linear methods, considering the
complexity of modeling air pollutants. Some atmospheric studies use a multilayer
perceptron (MLP) in the context of ANN in order to obtain a predictor model [144,151].

In Alvarez-Mendoza et al. [6], only remote sensing data were considered to compute the
LUR model based in a MLR without a method to select predictors. In this work, three
main objectives are proposed: (i) using only remote sensing data will be used to establish
LUR models without any AOD predictor; (i) making a comparison between three different
remote sensing satellite/sensors (MODIS, Landsat-7 and Landsat-8) to retrieve long-
term PM10 considering only a selection of predictors and; (iii) comparing the accuracy
of different techniques (STW, PLS and MLP) in the generation of the predictive models.

The two last items are the new contributions of this work.

4.3 Materials and Methods
4.3.1. Study Area

The study area is the urban zone of Quito, the capital of Ecuador. Quito comprises 45
urban parishes or parroquias, distributed between the latitudes 0°30’S and 0°10’N and
the longitudes 78°10°'W and 78°40’'W (Figure 4.1). The average elevation is around 2800
meters above sea level. The city is located in the middle of the Andean Region. The
mean minimum and maximum temperatures are approximately 9.0°C and 25.4°C,
respectively. On the other hand, Quito is a region without four seasons because it is in
the tropical area, near to the equatorial line. This area was chosen considering the

influence of nine AQMN stations.

4.3.2. PM10 data from AQMN stations

In order to monitor air quality in Quito, nine stations have been acquiring air pollutants
since 2002 (Figure 4.1). Together they form the “Red Metropolitana de Monitoreo
Atmosférico de Quito” (REMMAQ) [38]. REEMAQ is the AQMN of Quito, where one of
the air pollutants daily measured is PM10. These data are public and free to download

(http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos). The
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PM10 concentration is measured in micrograms per cubic meter (ug/m?2). In this study,
we use three-month-averages from 2013 to 2017, matching with the dates of the remote
sensing data (time when the satellite passes over the study area). The main reasons to
use three-month-averages are the few available remote sensing data and REMMAQ
stations (stations without data in some months or with negative data values). In this

study, PM10 three-month-averages is used as dependent variable.

78°45W 78°30W 78°15W
F 1
; Puellaro
””':' Calaca@ (\
b_:—v ECUADOR g ? ? =)
co Gu 'I""H'Ill' 7,4 \ ISAVNANIQ‘N.!QIP al °°
oq g ] pde’c
A)L\i;]\/&gayllaquba?”
\D Tababe‘l‘d‘v_
Piura 6
TUMBACO,.
2 “Pito "
24 0 S =
) ) )
7| e — <lometers
0 4 8
o T “j
Legend !
i H REMMAQ Stations WG [) Pinta
Study Area - Parroquias [ & v Rumipamba N
78°45W 78°30W 78°15W

Figure 4.1. Map of the study area (red dots for REEMAQ (Red Metropolitana de Monitoreo Atmosférico de Quito) stations
and green polygons for urban parishes).

4.3.3. Remote sensing data predictors

In this study, three different types of remote sensing data were used to retrieve PM10
between 2013 and 2017: Landsat-7 ETM+, Landsat-8 OLI/TIRS and MODIS/Terra and
Aqua (Table 4.1). The remote sensing data are free to download from the United States

Geological Survey (USGS) website (http://earthexplorer.usgs.gov). Moreover, only

images with less than 10% cloud cover were considered in the study, because one of
the main problems in these regions is the presence of a high cloud density [32,152].

According to this limitation, just 40% of remote sensing data was considered.
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Table 4.1. Characteristics of satellites and sensors used in the study

Overpass Spatial
Satellite Sensor time of patie
) resolution
satellite
Enhanced Thematic
Landsat-7 Mapper Plus (ETM+) 16-days 30 meters
Operational Land
5 Imager (OLI) i
Landsat-8 Thermal Infrared Sensor 16-days 30 meters
(TIRS)
Terra (EOS Moderate Resolution
AM-1) Imaging 1to2
Aqua (EOS Spectroradiometer days 500 meters
PM-1) (MODIS) MCD43A4

The predictors or independent variables (surface reflectance bands and environmental

indexes) are listed in Table 4.1. The selection of remote sensing predictors was related

to their possible correlation with the PM10 concentration [129,153-155]. In the case of

the environmental indexes, the most popular indexes in LUR studies to retrieve PM10
were used. They were computed as (4.1), (4.2), (4.3), (4.4) and (4.5) in Table 4.2,

respectively.

Table 4.2. Remote sensing predictors used to build the model for each sensor.

Predictors Landsat-7 Landsat-8 MODIS
Blue band (B)
Géiznbk;igd(g;) Landsat Landsat MODIS
Near Infrared surface surface MODO09A1
(NIR) data data Level- MYDO09A1
Short Wave Level-2 2 products
infrared (SWIR)
Normalized MODIS
Difference __ NIR-R MOD13Q1
Vegetation Index NDvI = NIR+R (4.1) MYD13Q1produ
(NDVI) cts
Normalized Difference _ SWIR-NIR
Soil Index (NDSI) NDSI = Sorsag 42
Soil-Adjusted SAVI = (14 L) (4.3)
Vegetation Index where L represents a minimal change in the soil brightness with
(SAVI) a value of 0.5 [5]
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Normalized C_NIR
Difference Water NDWI = TiNIR 4.4)
Index (NDWI)
- BT
LST (1+(’1*T?T)zns) 273.15 (4.5)
where BT is the brightness MODIS
I'_I'irr]r? zlrjz;];zur:s temperature, A is the center MOD11A1
(EST) wavelength (Landsat-7 = 11.45 MYD11A1
pum, Landsat-8 = 10.8 ym) [156], p products
is a constant and ¢ is the
emissivity [157,158].

4.3.4. LUR models

LUR models are an alternative to predict the spatialization of air pollutants, particularly
when the number of AQMN stations is limited. They use different geographical variables
such as roads, traffic information, meteorological and remote sensing data and other
environmental variables, in order to build a model to retrieve air pollutants. However,
often several geographical variables are not available. Thus, we should use simple
alternatives, such as free remote sensing data, as variables to approach a LUR model.

In most cases, LUR uses MLR to establish the model [159,160]. MLR allows an easy
and simple model construction. In our case, the dependent variable is the quarterly PM10
value and the independent variables or spatial predictors are the remote sensing data in
each coordinate of the AQMN station, considering the free cloud pixel value. Equation

4.6 shows the original LUR model, considering all the remote sensing predictors in MLR.

PM10 = I + aNDVI — bNDSI — cSAVI + ANDWI — eLST — fB — gG + hR + iNIR +
JSWIR+kY —1S  (4.6)

where | is the intercept, NDVI is Normalized Difference Vegetation Index, NDSI is the
Normalized Difference Soil Index, SAVI is the Soil-Adjusted Vegetation Index, NDWI is
the Normalized Difference Water Index, LST is the Land Surface Temperature, B is the
blue band, G is the green band, R is the red band, NIR is the near infrared band, SWIR
is the shortwave infrared band, Y is the year of image acquisition, S is the three-month-
averages of image acquisition (January—March - 1, April-June - 2, July—September - 3,
and October—November - 4), a, b, ..., |, are the coefficients in each predictor. The other
variables are described in Table 4.2.

Nevertheless, considering that multicollinearity exists between remote sensing variables
[147], different predictor techniques should be employed to compute the LUR model. We
compare three techniques, namely, MLR with STW, PLS and ANN, in order to find the
fittest model (Figure 4.2).
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In the first model, we use MLR considering an STW. It contemplates different parameters
in order to identify the most adequate/influencing variables as predictors. The
parameters used to subset the variables are: (i) the residual sum of squares for each
model (RSS); (ii) the adjusted regression coefficient R? (Adj. R2); (iii) Mallows' Cp (CP)
and; (iv) Bayesian information criterion (BIC).

The second model uses PLS with the STW criteria to select the predictors. The main
challenge when using PLS is to avoid multicollinearity, finding an alternative when we
have few data and a significant number of predictors [76]. PLS generates new latent
variables or components in a lineal way.

Finally, the last model uses an ANN in an MLP, with a hidden layer and six hidden nodes
to compute the predictive model. The nodes are computed according to [161]. In this
model we use all the predictors. This method is used when the model is complex, giving
a different weight to each predictor corresponding to its importance. Additionally, we use
a non-linear activation function with backpropagation. The training data to build the MLP
consider 75% of the dataset and the rest 25% for test. We use a backpropagation
approach to train the algorithm. The R studio software was used in this study to extract

the data and to compute all the models.

MODIS — a Surface ]
retlectance an
> Brightness y
temperature .
Building LUR
Remote Landsat-7 Quarterly mean models SWR, PLS
sensing data per AQMN and MLP
station
Compute
environmental  J ]
Landsat-8 — indexes
Ind dent variabl
ndependent varlables Model validations
* and comparisons
Subsetting the possible

predictor variables

4 PM10 maps from
LUR building only
ly mean .
( AQMN ( ) p-| PM10 ground . Quarterly - . by remote sensin,
stations da%a - perlALQMN #| Dependent variable ¥ data 8
station

Figure 4.2. Workflow of the methodology proposed to establish the land use regression (LUR) models.

Y

4.4 Results
PM10 ground measurements and remote sensing data are matched in a table with the
same date. Thus, the unique condition is to consider remote sensing data with less than

10% cloud density. So, the three-month-averages matching tables for each sensor
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contain 35 observations for Landsat-7, 93 observations for Landsat-8 and 108
observations for MODIS. The main reasons to have only these numbers of observations
are the high cloud density in the study area and the incomplete/not available air pollution
data. Furthermore, the criteria to select predict variables consider 5 dependent variables
for Landsat-7, 8 dependent variables for Landast-8 and 6 dependent variables for
MODIS, for each STW and PLS model, as shown in table 4.3. They were obtained
according to STW criteria (RSS, Adj. R2, CP and BIC). The variables common to all the
three cases considered are blue band, near infrared (NIR) band and Normalized

Difference Vegetation Index (NDVI).

Table 4.3. Number of observations and predictors per satellite to build the LUR models.

Variable Landsat-7 Landsat-8 MODIS
No. Observations 35 93 108
No. Predictors 5 8 6
NDVI
SAVI NDVI
NDVI LST B
B B G
Predictors R
NIR G R
S R NIR
NIR S
Y

The LUR models are computed considering STW and PLS regressions in a linear way
and MLP in a non-linear way. They are shown and compared in Table 4.4 (Equations
4.7 t0 4.12). In the case of Landsat-7, the STW shows a coefficient of determination (R?)
of 0.37, the PLS a R? of 0.36, and, for MLP, a R? of 0.46. The lowest root-mean-square
error (RMSE) was obtained for STW with a value of 9.47. For Landsat-8, in STW a R? of
0.42 was obtained, and a R? of 0.43 for PLS, and a R? of 0.68 for MLP (Figure 4.3). The
lowest RMSE obtained was for MLP. Finally, for MODIS, a R? of 0.15 for STW, a R? of
0.19 for PLS and a R? of 0.25 for MLP were obtained. The lowest RMSE was for STW.

Table 4.4. LUR models for each sensor with different regression techniques. In the case of MLP, the model is not linear.
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Sensor Model Coefficient of | Root-mean-
Equation/Method determination | square error
(R? (RMSE)
rgéergé\gisfn PM10 = —26.770 + 205.289NDVI — 0.073B + 0.37 0.47
(STW) 0.144R — 0.048NIR + 2.270S (4.7)
Partial least
Landsat-7 square PM10 = 24.786 — 54.369NDVI — 0.059B + 0.36 10.14
ETM+ regression 0.049R — 0.008NIR + 2.165S (4.8) ' '
(PLS)
Multilayer . . -
perceptron Non-linear. One hlcri]%((ajrééayer and six hidden 0.46 12.69
(MLP) '
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STW PM10 = —4125.506 + 350.130NDVI —
200.334SAVI— 0.936LST — 0.035B — 0.42 9.19
0.036G + 0.099R — 0.013NIR + 2.061Y (4.9)
Landsat-8 PLS PM10 = —4146.508 + 115.816NDVI —
OLI/TIRS 40.465SAVI— 1.020LST — 0.036B — 0.038G + 0.43 9.46
0.104R — 0.016NIR + 2.073Y (4.10)
MLP Non-linear. One hidden layer and six hidden 0.68 6.22
nodes.
STW PM10 = 1.248 + 93.411NDVI + 0.056B — 0.15 1291
0.070G + 0.056R — 0.017NIR + 3.190S (4.11) ) '
PLS PM10 = 5.661 + 79.106NDVI + 0.060B —
MODIS 0.072G + 0.050R — 0.014NIR + 3.308S (4.12) 0.19 12.93
MLP Non-linear. One hidden layer and six hidden 0.25 16.38
nodes.
— STWR2=042RMSE =919 R PLSR2=043 RMSE =946
(a) (b)
- —— MLP R2=0.68 RMSE = 6.22
- 2 » w % 5‘0 o
PM10 measured
(©)

Figure 4.3. Comparison between R and RMSE in the model results for Landsat-8 data: (a) STW; (b) PLS; (c) MLP.

The results in Table 4.3 show that Landsat-8 data with MLP are the fittest model. The

MLP employed (Figure 4.4) has one hidden layer with six hidden nodes.
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Figure 4.4. MLP diagram for Landsat-8 data.

Figure 4.5 shows the relative variable importance according to the assigned weights,
where the red band is the most significant in the model, while LST presented the lowest

significance.

1.0-

-05-

MNDVI BAMD_NIR  BAND_BLUE BAMD_GREEN SEASON SAMI BAND_SWIR LST NSI MDWI YEAR BAMND_RED

Figure 4.5. Relative variable importance in Landsat-8 MLP. The scale is between -0.5 and 1, where 0 is the lowest (null)
importance.

The Landsat-8 LUR-MLP model is chosen to predict PM10, considering the highest R?2
and the lowest RMSE. In Figure 4.6, the quarterly maps show the PM10 spatial
concentration during 2015, in a color scale in ug/m3. The white gaps showed in the maps

are clouds with a high density.
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Figure 4.6. PM10 concentrations during the season 4 (July to September) with Landsat-8 LUR-MLP model in: (a) 2013;

(b) 2014; (c) 2015; (d) 2016; (e) 2017. The white gaps represent areas with a high cloud density.

4.5 Discussion

As demonstrated in this study, LUR models are an interesting alternative to model air
quality, specifically PM10 concentrations, when the in-situ air quality measures are
insufficient. Usually, most of the predictors are geographical variables (such as roads),
traffic, meteorological data, and others [132]. LUR models are usually applied in small
cities or regions where AQMN stations are limited [162], and where spatial interpolation
techniques, such as ordinary kriging or inverse distance weighting, cannot be applied,
considering the low number of ground measurements available [163]. One of the main
problems with these geographic variables is the low accessibility to the data and the time
of acquisition. Sometimes, these variables are obsolete, and they are not enough to
establish a possible trend.

In this study, we propose an alternative, considering only free remote sensing variables.
We apply this approach to the city of Quito, Ecuador, during the period between 2013
and 2017, in order to compare three different satellite data. Quito is growing in new poles.
When REEMAQ was established in 2002, Quito did not have its current size and
configuration. Now, REEMAQ is an obsolete air quality network, especially in the
distribution of stations, which urgently needs improvement. Air pollutant spatial models
are techniques based on interpolation or geostatistics approaches, which can be useful

if a reasonable number of stations are available with a good spatial distribution [164]. In
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this study, only nine stations are available. Moreover, in some cases the data are
incomplete during some months. Additionally, according to some authors [127,128], it is
possible to have more air ground data with low-cost sensors, however they must be
implemented in the cities in order to monitor the air quality. The alternative to improve
the air quality model in Quito is to establish different spatiotemporal LUR models,
considering only remote sensing data as predictor variables. A preliminary study shows
the use of only remote sensing variables, but using a MLR in order to build the model.
The limitation is the use of all remote sensing predictors without considering the
collinearity [6]. In order to establish the models, three different remote sensing data were
tested (Landsat-7, Landsat-8 and MODIS) and three techniques for modeling (STW, PLS
and MLP) were employed. The selected variables to compute the model are the visible
NIR and SWIR bands of the three sensors, different environmental indices (NDVI, NDSI,
SAVI, NDWI) and LST, computed from the data retrieved from each sensor. Most of the
studies published use aerosol optical thickness (AOT) derived from MODIS (MODO04)
[165] as the input in LUR models, however, this product has a low spatial resolution (3 x
3 km)[166]. This resolution is not practicable when considering cities like Quito, where
the maximum width is near to 10 km. On the other hand, some MODIS products do not
have a suitable quality for local studies [167]. Other studies use Landsat-8 combined
with AOT ground stations to spatially model the AOT [142]. This could be a good
alternative, however, in our study area we do not have access to this information
between 2013 and 2017.

Comparing the LUR models established, we found that Landsat-8 is the most adequate
sensor to model PM10 concentration, considering the 93 records and according to a
previous study [6]. MLP is the fittest alternative to model PM10, with a R? of 0.68 and a
RMSE of 6.22. In this context, the non-linear model (MLP) has a fitter result when
compared to the linear models (STW and PLS) [144]. Therefore, the LUR-MLP model
was chosen to map the spatial concentration of PM10 in Quito, between 2013 to 2017.
MODIS presents the lowest R? with a value of 0.19, considering the PLS regression. This
could be related to the lowest spatial resolution. Thus, most of the LUR models use MLR
or STW. MLR is easy to implement. However, one of the main problems could be the
multicollinearity, because MLR not analyze the correlation between predictors [168]. On
the other hand, the linear PLS helps to avoid the multicollinearity creating new latent
variables with few observations [34]. In a future work, a possible combination between
STW (in order to select the predictor variables), non-linear PLS (in order to avoid the
multicollinearity between remote sensing data) and a machine learning technique (as
ANN) can improve the LUR models [169].
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In the case of the predictors, all the models present, in all the cases, the variables blue
band, NIR and NDVI. In the case of NDVI, a possible reason is the direct influence of
vegetation on the PM10 concentration and distribution [137]. On the other hand, the red
band has the most importance in MLP, because there could be a relationship between
the retrieval of PM10 with the blue and red bands [50]. In most of the LUR studies, the
authors use traffic, roads, meteorological, land use, population and other predictors,
reporting values of R? according to the reality of each local [144]. These models also
considered different time periods (monthly, quartly, yearly). The main difference of our
approach is the use of remote sensing data only as predictors, which can replace the
necessity to have all geographical variables. Another advantage is the data availability
and continuity in order to recompute the LUR models. One of the main limitations of our
model is the high cloud density presented in the images during all the year [32], making
complicated to use more data in order to improve the model. However, in a future work
will intend to have more satellite sensors or to find new alternatives to recover remote
sensing data contaminated with clouds [33].

Figure 6 shows variations year by year according to PM10 mean concentration based
on in-situ data (REEMAQ Stations). We choose the 3th season to show the variation
year by year (2013 - 2017), because we have more remote sensing data available
(without a high cloud density) during this time-window. According to the results presented
in Figure 6, an increasing of PM10 concentration between 2013 to 2017 is notorious in
the most of the urban parishes [170]. However, some areas showed a decreasing
tendency in some years. The lowest PM10 concentration was found in some peripheral
parishes during the 2014 year, because the air stations which influences these parishes
(Tumbaco and Los Chillos) had a variation in the concentrations. Thus, Tumbaco and
Los Chillos stations are in the east part of the study area and began to present the lower
values in 2014 followed by 2013, according to the in-situ measures. After 2014, the PM10
values for these stations began to increase. The main reason could be related to the
begin operation of the new airport of Quito (2013), and the construction of important road
infrastructures around it (end of 2014). Another possible explication is the traffic influence
during the last years, particularly in the peripheral areas were an increment was
registered since 2015 and also the increase of the population in these areas [171]. In the
northern parishes, the stations of San Antonio P. and Carapungo are influenced by the
presence of stone and sandy point quarries [172]. The stations Centro, Belisario and El
Camal are in the city downtown, and it is the main reason why an increase of PM10

concentration during the last years is verified in the centre parishes.
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According to our results, several areas presented concentrations higher than 50 pg/m3
(Figure 4.6), while the World Health Organization (WHQO) recommends, in its guidelines,
maximum values of 20 ug/m?® as an annual mean and 50 pug/m? as a 24-hour mean [123].
However, some areas do not show values, due to the high cloud density (white areas in
Figure 4.6). Thus, the PM10 concentration maps from the Landsat-8 LUR-MLP model
can help local government decision makers to manage air quality concentration and to
organize new policies, specifically in the places where the highest concentrations were
identified.

4.6 Conclusions

In this study, three different satellite datasets were compared to retrieve models of PM10
through LUR, in Quito, Ecuador between 2013 and 2017. Additionally, three techniques
were compared to compute the LUR models (SWR, PLS and MLP). From this work,
several conclusions could be taken: (i) it is possible to build empirical models established
only using remote sensing variables as predictors without any other geographic
variables, as traditional LUR models; (ii) in the case of Quito, the study results show that
Landsat-8 provides the most suitable satellite data to retrieve PM10, in comparison with
Landsat-7 and MODIS; (iii) MLP allows the obtainment of the most robust result in
comparison with the other modeling techniques. MLP is the fittest alternative to model
PM10, with a R? of 0.68 and a RMSE of 6.22, and; (iv) the MLP model established helps
in the spatial mapping of PM10, where in the time window of this study, were found areas
with PM10 values higher than the limit established by WHO. Thus, these models are
useful in the management of air quality in the city of Quito and can be applied to other

locations with similar characteristics.
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5.1 Abstract

Surface ozone is problematic to air pollution. It influences respiratory health. The air
guality monitoring stations measure pollutants as surface ozone, but they are sometimes
insufficient or do not have an adequate distribution for understanding the spatial
distribution of pollutants in an urban area. In recent years, some projects have found a
connection between remote sensing, air quality and health data. In this study, we apply
an empirical land use regression (LUR) model to retrieve surface ozone in Quito. The
model considers remote sensing data, air pollution measurements and meteorological
variables. The objective is to use all available Landsat-8 images from 2014 and the air
quality monitoring station data during the same dates of image acquisition. Nineteen
input variables were considered, selecting by a stepwise regression and modelling with
a partial least square (PLS) regression to avoid multicollinearity. The final surface ozone
model includes ten independent variables and presents a coefficient of determination
(R?) of 0.768. The model proposed help to understand the spatial concentration of
surface ozone in Quito with a better spatial resolution.

Keywords: Landsat-8, Quito, Ozone, PLS, Air modelling

5.2 Introduction

Surface ozone (O3) is one of the principal greenhouse gases [173]. It is produced in the
troposphere and is not emitted directly into the air. A chemical reaction between nitrogen
oxides (NOy), volatile organic compounds (VOC) and sunlight produces O3 [174]. Thus,
urban growth, vehicular traffic and industry are sources of NOx and VOC in cities,
deteriorating the vegetation conditions [175], the air quality and creating a health problem
[15,176].

Several cities around the world have an air quality monitoring network (AQMN) to
manage air pollution [62,177]. One of the cities with an AQMN is Quito, the capital of
Ecuador. The city has traffic and population problems that increase air pollution. Its
AQMN is the “Red Metropolitana de Monitoreo Atmosférico de Quito” (REMMAQ),
constituted by nine stations. It has managed the air quality in Quito in real time since
2002 [38]. The REMMAAQ stations measure air pollutants such as carbon monoxide (CO),
nitrogen dioxide (NOy) as part of NOy, sulphur dioxide (SO.), particulate matter less than
10 microns (PM10), fine particles less than 2.5 microns (PM2.5) and Oz, Nevertheless,
the number of stations is insufficient to measure the air quality in all urban zones in the

city.
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Some empirical models to retrieve the spatial concentration of air pollutants have been
developed using variables such as roads information and vegetation. The land use
regression (LUR) models are the basis of most of these approaches. The principle of
LUR focuses on the environmental characteristics of the place where the pollutant is
present [159]. Some models consider remote sensing data, meteorological data (MD),
aerosol optical depth (AOD) field measurements and AQMN data [19,178,179]. In most
of these studies, the limitations are related to the input variables, especially AOD field
measurements. This is because models require AOD parameters to obtain high-
resolution spatialization [142,179]. The most commonly used remote sensing data are
Landsat [20,180,181] and MODIS [133,182] sensors. The main advantage of Landsat
images in specific Landsat-8 [10], is the high spatial resolution to map middle cities. Their
limitation is the temporal resolution (16 days) [10]. The advantage of MODIS is its high
temporal resolution, but the major limitation is the low spatial resolution, which limits the
accurate retrieval of maps (Daac, Falls, & March 2012). Moreover, remote sensing data
are used to obtain environmental variables such as vegetation health [184,185] to input
variables in the air pollutant models. Furthermore, empirical models using remote
sensing data are focused on only some air pollutants, such as NO,, PM10 and PM2.5.
At present, the main challenge is to retrieve the remaining air pollutants, such as Os,
which is considered only in few studies [186].

In the case of Quito, a study found the spatial distribution of PM10 by applying remote
sensing data [129]. The main limitation of the study was the small quantity of data used
(3 images). On the other hand, a study making a comparison between remote sensing
to retrieve air pollutant in Quito is considered [6]. However, there are few studies about
air quality in the city, specifically considering O3 [187]. Thus, the possibility of obtaining
AQMN public data, and combining them with other environmental variables, can lead to
new models for retrieving air pollutants in places where AQMN are insufficient.

This study uses remote sensing data, air pollution measurements and meteorological
variables to retrieve Oz for one year (2014) in Quito. Moreover, this study combines two
regression techniques, stepwise regression (SWR) and partial least-square regression
(PLS), to compute the O3 model, finding the fittest model to spatialize the variable in all

the areas. The main objective is to find the spatial variables that influence O3 in Quito.

5.3 Materials and Methods
5.3.1. Study Area
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This study was developed in Quito, the capital of Ecuador. The city elevation is
approximately 2800m over sea level. During 2014, the mean minimum and maximum
temperatures were 9.0°C and 25.4°C [111]. Furthermore, Quito has a dry season and a
wet season. It does not have four seasons considering that the city is in the middle of
the tropic zone. The latitude and longitude of the study area are 0°30’S to 0°10’N and
78°10°'W to 78°40°'W. These coordinates delimit most of the urban zone, which is divided

into urban parishes (Figure 5.1).
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Figure 5.1. Quito’s urban parishes considered as the study area. The blue marks represent the REMMAQ stations.

5.3.2. Air pollutant ground data

The daily air pollutant concentration data from 2014 were obtained from the REMMAQ
stations. The REMMAQ has nine automatic stations that have been operated by the
“Secretaria del Ambiente de Quito” since 2002 (Figure 5.1). The stations measure
concentrations of air pollutants such as PM2.5, SO,, CO, Oz, NO2, PM10 and MD (Table
5.1). In this study, daily average measurements were considered to match with the
satellite overpass (Figure 5.2) (See section 5.3.4). Furthermore, only complete datasets
were used, which means that if a dataset was incomplete, it was not considered for the
model establishment. PM2.5, SO,, CO, and NO, were the complete datasets to estimate
Os. The pollutant concentration was measured in micrograms per cubic meter (ug/m?3)
according to the Environmental Protection Agency (EPA) methods. The Os; measuring
device was a Teledyne API/T400, and the collection method was EPA No. EQOA-0992-
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Figure 5.2. Mean levels from 10:00 to 11:00 (GMT-5) of O3 concentration (ug/m?) observed in each month during 2014.
The San Antonio P. station did not present measures during 2014.

5.3.3. Meteorological data
The MD were collected only by eight REMMAQ stations (Table 5.1). The data used were

the daily average temperature (TMP) in Celsius degrees (°C), relative humidity (HM) in

percentage (%) and solar radiation (SR) in Watt per square metres (W/m?). The

precipitation measurements were not used because most of the values were null in the

time range considered.

In both cases, (air pollutant ground data and meteorological data), the R software was

used to analyse the data and compute the statistics. The packages readx| and stringi

were used.

Table 5.1. Field sensors of the REEMAQ

Station Variables measured
Cotocollao PM2.5, SO, CO, O3, NO2, PM10, MD
Carcelen PM2.5, SO, CO, O3, NO2, PM10, MD
Belisario PM2.5, SO, CO, O3, NO2, MD
Jipijapa PM2.5, SO, CO, Os, NO2, PM10, MD
Camal PM2.5, SO,, CO, O3, NO2, MD
Centro PM2.5, SOz, CO, Oz, NO2
Guamani SOy, CO, O3, NOo, PM10, MD
Tumbaco SO, O3, PM10, MD
Los Chillos PM2.5, SO, CO, O3, NO2, MD
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5.3.4. Remote sensing data

Landsat-8 is a satellite launched on February 11, 2013. It is the last satellite of the
Landsat project launched. The satellite carries two push-brown instruments to collect
land remote sensing data on an image: The Operational Land Imager (OLI) with 9 bands
and the thermal infrared sensors (TIRS) with two bands. Additionally, the Landsat-8 data
file provides a quality assessment band (QA) to assess the different image products. The
Landsat-8 images are freely available on the United States Geological Survey (USGS)
website. The USGS develops research-quality and application-ready products such as
the Landsat-8 surface reflectance Level-2 products (L2T). These products are generated
from the Landsat Surface Reflectance Code (LaSRC) [50]. The LaSRC products are
radiometric and atmospherically corrected. The LaSRC products include surface
reflectance of the OLI bands (bands 1 to 9), top-of-atmosphere brightness temperature
(BT) (band 10 and band 11) and some environmental indexes such as the normalized
difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI) and enhanced
vegetation index (EVI).

In this study, Landsat-8 L2T images were downloaded from the Earth Resources
Observation and Science (EROS) Center Science Processing Architecture (ESPA) at

the demand interface (https://espa.cr.usgs.qgov/). The search criteria were images in

2014 with less than 20% cloud cover in the study area. One of the challenges was to
choose the subset of images without high cloud density in the study area [152].

According to the search criteria, ten images (path 11; row 60) were selected (Table 5.2).

Table 5.2. Landsat-8 L2T images selected

No. Image Date
LC08 L1TP 010060 20140115 20170426 01 T1 | 15/01/2014
LC08 L1TP 010060 20140131 20170426 01 T1 | 31/01/2014
LC08 L1TP 010060 20140216 20170425 01 T1 | 16/02/2014
LC08 L1TP 010060 20140304 20170425 01 T1 | 04/03/2014
LC08 L1TP 010060 20140405 20170424 01 T1 | 05/04/2014
LC08 L1TP 010060 20140608 20170422 01 T1 | 08/06/2014
LC08 L1TP 010060 20140710 20170421 01 T1 | 10/07/2014
LC08 L1TP 010060 20140726 20170420 01 T1 | 26/07/2014
LC08 L1TP 010060 20140811 20170420 01 T1 | 11/08/2014
LC08 L1TP 010060 20141030 20170418 01 T1 | 30/10/2014

Blo|o|~N|o|o|s|w|n|-

Considering the direct influence of the sunlight over O3 concentration [188] and knowing
the principle of passive remote sensing data to capture the radiation measured
reflectance sunlight [88,189], bands 1 to 7 (visible and infrared bands) [10] were used as
input variables. NDVI, SAVI and EVI were used to highlight the vegetation because there

is a high relation between Os; and vegetation [190]. The indexes were obtained from


https://espa.cr.usgs.gov/
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LaSRC and multiplied by 0.0001 [191] to retrieve the surface environmental indexes
(values between -1 and 1).
The NVDI provides information about health vegetation, using band 4 (B4) and band 5
(B5) in Landsat-8 images. It is computed using Equation 5.1;

B5 — B4

el 5.1
NDVI T (5.1)

The SAVI is an improvement of NDVI considering a soil correction factor (usually

LS=0.5). Considering Landsat 8, it uses B4 and B5 as input (Equation 5.2).

B5 — B4

SAVI = (1+LS) gepa s

(5.2)

The EVI enhances the vegetation in areas with high biomass. Thus, EVI helps to identify

stress vegetation using Equation 5.3.

B5 — B4

BVl = G e v Ba—C2+ B2+ L

(5.3)

where the gain factor (G) is 2.5, L is the canopy background adjustment (L=1), C1 and
C2 are coefficients for atmospheric resistance (C1=6, C2=7.5). The B4 and B5 have a
high contrast in the detection of built-up areas and bare lands areas [57].

Moreover, the land surface temperature (LST) retrieved from remote sensing has been
used in other studies to estimate the air quality [20]. It was computed as a function of

BT. Equation 5.4 represents the LST in degrees Celsius.

BT
LST = —273.15

(1 + (/1 *pBT) lnE) (5.4)

where A is the centre wavelength (A=10.8 um), p is a constant obtained in Equation 5.5,
E is the emissivity as Equation 5.6 and 273.15 is the value to transform degrees Kelvin
to degrees Celsius.

The constant p is estimated using Equation 5.5, where h is the Planck constant (6.626e-
34 Js), c is the speed of light (2.998e8 m/s), and s is the Boltzmann constant (1.38e-23
J/IK).

_h*c

p=— (5.5)

Equation 5.6 represents the emissivity E [59]. E is the efficiency that a surface emits heat

as thermal infrared (TIR) radiation [60].

E,  NDVI < NDVI,
E =1{E, + (E, — E,)P,,  NDVI, < NDVI < NDVI, (5.6)
E,,  NDVI > NDVI,
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where Es represents the emissivity for soil. A value of 0.973 is used in this study [157].
Ev is the vegetation emissivity with a value of 0.985 in this study [157]. NDVI, is the NDVI
in vegetation with a value of 0.2 [59], NDVIs is the NDVI in the soil with a value of 0.5
[59] and Py is the proportion of vegetation in the area using Equation 5.7.

(NDVI — NDVI, )2
V =

Rt ] (5.7)
NDVI, — NDVI,

The remote sensing variables were represented as raster data (GeoTIFF format). They
were computed in R studio software with the rgdal and raster packages. Through the
shapefile of REMMAQ stations, the raster values for each station were extracted. The

package dismo was used to perform this task.

5.3.5. Model building

The first step in building the model is the compilation of all possible variables (air
measurement data, meteorological data and remote sensing data) in a database. Each
row in the table has all the values of these variables in a REMMAQ station during the
date established (Table 5.3).

Table 5.3 Variables considered in the model

No. Variable Units
Air pollutants 3
ground data O3, PM2.5, SOz, CO, NO2 pg/m
Temperature (TMP) °C
Metezro'og'ca' Relative humidity (HUM) %
ata
Solar radiation (SR) Wim?
Band 1 (B1), Band 2 (B2), Band 3 (B3), Surface
Band 4 (B4), Band 5 (B5), Band 6 (B6), f
_ Band 7 (B7) reflectance
Remote sensing
data Environmental Indexes: NDVI, SAVI, EVI -
Land surface temperature (LST) °C

LUR models are a good alternative for finding the spatial location of pollutants [192]. LUR
are empirical regression models that consider the pollutant of interest as the dependent
variable and other geographical variables as independent variables (meteorological
data, traffic, topography, remote sensing data, etc.). In this study, we generate an LUR
model using the available data from each station on different dates during 2014 to

preserve the accuracy of the variables.
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Assuming that multicollinearity between variables is real, especially between remote
sensing variables [147], a preliminary correlation analysis was realized to provide an
overview of which variables are more adequate for integration into the model.

To select the fittest predictor variables and the best model to predict O3, a subset analysis
is performed with stepwise regression. The subset analysis used four analyses: the
residual sum of squares for each model (RSS), the adjusted regression coefficient R?
(Adj. R?), Mallows' Cp (CP) and the Bayesian information criterion (BIC). The R-package
used to compute this was leaps.

The original LUR model with all the possible predictor variables as input in the analysis

is shown in Equation 5.8.

05 = aPM2.5 + bSO, + cCO + dNO, + eTMP + fHUM + gSR + hB1 + iB2 + jB3 + kB4

+ IB5+ mB6 + nB7 + oNDVI + pSAVI + qEVI + rLST + 1 (5-8)

where a, b, ¢ ..., r are the coefficients of the regression model, and | is the intercept in
the equation. The subset analysis reduces the number of input variables with the
considered criteria (RSS, Adj. R?, CP, BIC).
Once the input variables are selected, a PLS regression is applied to avoid the
multicollinearity between the variable subsets. PLS is a technique applied in cases where
traditional regression models fail, and the predictors have a high correlation, as shown
in Equations 5.9 — 5.10.

X=TPT+E (5.9)

Y=UQT +F (5.10)
Where X is a h x m matrix of predictors, Y is a n x p matrix of responses; T and U are n
x | matrices that are, respectively, projections of X and projections of Y; P and Q are,
respectively m x | and p x | orthogonal loading matrices; and matrices E and F are the
error terms. The decompositions of X and Y are made in order to maximise the
covariance between T and U. Additionally, PLS generate an orthogonal transformation
to obtain components by finding the most appropriate model to explain the variance
starting from the maximise covariance matrixes [76]. In the case of remote sensing data,
some studies consider multicollinearity when the same sensor is used to obtain different
variables [147,193]. Finally, the validation is performed by cross-validation (Figure 5.3)
and the criterion to accept or reject models where R?, RMSE, predicated vs measured

graphic and residuals analysis. The R-packages used were pls and plsdepot.



FCUP

Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study

applied to Quito, Ecuador
Satellite REMAAQ
Data Stations

Y A4
Landsat-8 Level-2 products with less of
20% of cloud covering

Y

Air measurements Meteorological data

' r ' '

OLI Bands Env_lronrnental Land Surface Quality and statistical
indexes temperature Control

Y

Extract values with REMAAQ
stations location from Raster
data

Y

Compute daily average
measurements

_ | Match data and define variables
entering in the model

L]
Partial Least Square Regresion
(PLS) with Cross validation
y

Model for O3 forecasting during
2014

<

Figure 5.3. Methodology workflow

5.4 Results

5.4.1. Building the ozone LUR model

The LUR model tested 19 variables (18 independent variables or predictors and O3 as
the dependent variable), matching all variables (air measurement data, meteorological
data and remote sensing data). The result is a database with 36 observations, where
most of the remote sensing data variables show a high correlation (Figure 5.4). The high
correlation or multicollinearity (in some cases near 1) indicates that some variables are
highly related, such as NDVI, SAVI and EVI, or the visible bands (B1, B2, B3, B4). On
the other hand, the highest correlation between all predictors with O3 is PM2.5, showing
a value of -0.44. The highest correlation considering only the remote sensing data
variables is B6 with 0.22.

To find the model with the best fit, a stepwise regression subset is used. In the first
instance (Figure 5.5), the coefficient of determination (R?) is near 0.68, considering all
18 independent variables to build the model. The subset variables are analysed by the

less Akaike information criterion (AIC) and the maximum Adj. R?.

74



FCUP | 75

Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study

03

co @
0.72 |NO2 " ]

PM25
0.52 502
RS
HUM

TMP

-0.58

applied to Quito, Ecuador

4
0.8

0.6

-+ § 00000000
- 00000000 | | -
093 096 B3 ...... o
093 0.96 099 B4 @@ ... C X - 02

047 0.51 06106 | B5 ..
0.730.78 0.85 0.87 0.87 B6 . @ P

082 0.86 091 092|078 097 87 @) @

0.6
-0.83/-0.84 -0.79-0.82 -0.48|-0.62|NDVI ..

-0.74/-0.74 -0.69|-0.71 -0.47/0.98 SAVI .

0.8

-0.67|-0.67|-0.65|-0.67 0.95 0.99 EVI

LST

Figure 5.4. Correlation graph between input variables.
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Figure 5.5. Variable combinations with their corresponding R? values as part of the subset task to select the model with

the best fit.

The preliminary predictors are known (Figure 5.5), so to find a simple model with fewer

input variables, a new subset of variables, applying RSS, Adj. R?, CP and BIC criteria

are analysed (Figure 5.6). Analysing the four criteria, eleven independent variables are
used to build the simplest model (PM2.5, HUM, TMP, B2, B4, B5, B7, NDVI, SAVI, EVI).
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Figure 5.6. Subset analysis to select variables with different criteria: (a) RSS; (b) Adj. R%; (c) CP; (d) BIC. The red point
shows the optimal value of variables for each criterion.

The eleven variables chosen were then considered in the PLS analysis (Figure 5.7). The
number of components in PLS regression was nine. These components explain most of
the percentage of variance (Table 5.4), after cross validation (data not shown). The R?
obtained was 0.77, and the RMSE was 3.03 through the PLS regression.
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Figure 5.7. PLS analysis a) The number of components that explain the variance. b) The number of components to obtain
the highest R2. ¢) The histogram of the residuals. d) The number of components to obtain the lowest RMSE. e) Measured
vs. predicted values with PLS regression.

Table 5.4. Variables explained variance by PLS components (i1, t2, ..., t6). The red text shows the maximum variance
explained with nine components, considering O3 as the dependent variable.

Variable tl t2 t3 t4 tS t6 t7 t8 t9
PM2.5 | 0.148 | 0.655 | 0.660 | 0.787 | 0.897 | 0.999 | 1.000 | 1.000 | 1.000
HUM 0.212 | 0.433 | 0.442 | 0.593 | 0.775 | 1.000 | 1.000 | 1.000 | 1.000
T™MP 0.017 | 0.350 | 0.902 | 0.978 | 0.979 | 1.000 | 1.000 | 1.000 | 1.000
B2 0.611 | 0.918 | 0.918 | 0.947 | 0.955 | 0.966 | 0.998 | 1.000 | 1.000
B4 0.609 | 0.934 | 0.948 | 0.994 | 0.995 | 0.998 | 0.998 | 1.000 | 1.000
B5 0.123 | 0.158 | 0.362 | 0.994 | 0.997 | 0.999 | 1.000 | 1.000 | 1.000
B7 0.460 | 0.714 | 0.777 | 0.951 | 0.952 | 0.974 | 0.996 | 1.000 | 1.000
NDVI 0.515 | 0.873 | 0.904 | 0.987 | 0.987 | 0.993 | 0.994 | 1.000 | 1.000
SAVI 0.435 | 0.740 | 0.805 | 0.989 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000
EVI 0.387 | 0.677 | 0.729 | 0.957 | 0.958 | 0.991 | 0.999 | 1.000 | 1.000
R? 0.232 | 0.345 | 0.390 | 0.404 | 0.541 | 0.617 | 0.634 | 0.646 | 0.768

Avoiding the multicollinearity, the PLS regression is applied, presenting values different
from 1 in the correlation matrix between the variables and the components (Table 5.5).
Moreover, cross-validation is applied to the components. Equation 5.9 shows the

resulting model to retrieve Oz during 2014, considering the dataset.

0; = —0.47PM2.5 — 3.41TMP — 0.34HUM — 1371.47B2 + 9449.41B4 — 7852.43B5 — 436.68B7

—1028.50NDVI + 4961.145SAVI + 1178.61EVI + 66.06 (5:9)



Table 5.5 Correlation matrix between the variables and the PLS components.
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Variable tl t2 t3 t4 t5 t6 t7 t8 t9
PM2.5 -0.38514 | -0.71215 | -0.06697 | -0.35607 | 0.33247 | -0.31854 | 0.03311 | -0.01169 | 0.00006
HUM -0.46074 | -0.46963 | -0.09577 | 0.38916 | -0.42616 | 0.47404 | -0.01179 | 0.00889 | -0.00005
TMP 0.13159 | 0.57670 | -0.74288 | -0.27615 | -0.02596 | 0.14489 | 0.01716 | 0.00092 | -0.00003
B2 0.78187 | -0.55363 | 0.01333 | 0.17146 | -0.08946 | -0.10447 | 0.17864 | -0.04175 | -0.00072
B4 0.78063 | -0.56987 | -0.11695 | 0.21595 | -0.01183 | 0.05406 0.00119 | -0.04905 | 0.00434
B5 0.35068 | -0.18755 | -0.45108 | 0.79548 | 0.05186 | -0.04768 | 0.01853 | -0.01613 | -0.00254
B7 0.67796 | -0.50463 | -0.25075 | 0.41702 | 0.02133 | -0.14883 | -0.14855 | 0.06528 | -0.00017
NDVI -0.71749 | 0.59850 | -0.17601 | 0.28787 | -0.02397 | -0.07591 | -0.02313 | -0.07924 | -0.00011
SAVI -0.65920 | 0.55261 | -0.25518 | 0.42854 | 0.03350 | -0.09995 | 0.00418 | 0.00529 | 0.00143
EVI -0.62209 | 0.53862 | -0.22889 | 0.47707 | 0.02165 | -0.18231 | 0.08867 | 0.03466 | 0.00153
03 0.48204 | 0.33513 | 0.21357 | 0.11803 | 0.36972 | 0.27520 | 0.13251 | 0.10736 | 0.34908

Finally, Equation 5.9 allows mapping the O3z concentration during 2014 (Figure 8).
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Figure 5.8. Maps of O3 during 2014: (a); January; (b) July maps obtained from Equation 8. The left map is with an inverse
distance weighting (IDW) technique while the centre map is applying the O; model in all the study area. The right maps
are a zoom in an assessment area (red square).

5.5 Discussion

The main goal of this study was to establish a model to retrieve O3 from several input
variables, implementing a variant of the classical LUR model. In most cases, LUR models
are used to model air pollutants from road networks, land use, building density, MODIS
AOD, population density and other geographic variables [132,143,162,194-196]. In this
study, the variables selected are air pollution measurements, meteorological data (MD)
and remote sensing data. The air pollution measurements and MD were obtained from
REMMAQ stations. Moreover, considering the accuracy of LUR models in order to
retrieve air pollutants (R? values between 0.45 and 0.80) [132,143,162,194-196], ten
Landsat-8 images were selected to retrieve Oz in Quito-Ecuador. Most LUR models use
MODIS data. However, MODIS data probably do not have the accuracy and the quality
to model pollutants or other environmental variables in middle cities [167].

To select the predictor variables, a subset was applied considering 19 variables (18
independent variables and O3 as the dependent variable), obtained a preliminary best fit

model with the 18 variables (R?=0.68). However, to find the best fit and simplest (with
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the lowest number of predictors) model, four criteria (RSS, Adj.R?, CP, BIC) are
analysed, resulting in a model with ten independent variables (PM2.5, HUM, TMP, B2,
B4, B5, B7, NDVI, SAVI, EVI), showing an R? of 0.72 considering stepwise regression.
In most of the subsets, the remote sensing data variables B1, B2, B6 and B7 appear,
showing the relation between these bands with Os. Thus, B1 and B2 reflect the blues
and violets related to the aerosol presence [10]. Additionally, B6 and B7 reflect the short
infrared related to greenhouse gas absorption [197]. Some studies that use LUR models
employed stepwise regression to automatically find the predictors in a model [26,141].
However, the main problem with stepwise regression is not allowing a multicollinearity
analysis [74]. PLS regression is used in some studies to compute the LUR model
[163,195] to avoid multicollinearity. PLS builds a model with latent variables
(components) as independent variables [76]. Moreover, PLS regression is used when
we have a model with few observations [198]. If a high correlation is present between
variables, a PLS regression is used to build the model, where nine components explain
most of the variance and obtained an R? value of 0.768. This value is higher than R? in
the stepwise regression (R?= 0.72) and avoids the multicollinearity of remote sensing
variables.

The final model can be mapped, in comparison with other techniques, such as thematic
point maps, interpolation or geostatistical analysis (Figure 8), showing a robust
perception of spatial concentration of O3 in the city, and these maps can be used as input
to make a more accurate air pollution analysis.

The limitation is the few observations used to build the model because our model
requires some data from the REMMAQ stations and sometimes these data are
incomplete or unavailable. On the other hand, the remote sensing variables depend on
the number of clouds. Quito is known as a city with a high cloud density during the year
[152], and this factor limits the computation of LUR models. A possible alternative can
be to combine different sensors with high spatial and temporal resolution and use similar
techniques to PLS to compute the model.

Another limitation is the generation of a raster to each independent variable. In the case
of remote sensing, data are not a problem considering all images over the study area,
but the air pollutant measurements and MD raster can be limited. They were obtained
with a geostatistical technique as inverse distance weighting (IDW) [199]. Nevertheless,
this kind of technique works fine in a region with some stations, but in Quito, we only
have nine stations (Figure 5.8). Therefore, in future work, we will propose the use of only

remote sensing data to spatialize air pollutants in Quito.
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5.6 Conclusion

A spatial estimation was performed in Quito to obtain the O3 spatial concentration in
2014. The spatial estimation was computed by a variant of LUR models with PLS
regression. LUR models can explain the spatial concentration of an air pollutant, helping
in urban planning, environmental analysis and governmental decisions. Moreover, the
idea of having a variant of LUR models with variables from remote sensing sensors
different from MODIS will help to build more accurate models. The main limitation is
related to the small quantities of field data available. In future work, we will try to find new
alternatives only considering the use of remote sensing data as input without other field

data variables.

81



FCUP | 82

Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study
applied to Quito, Ecuador



FCUP

Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study
applied to Quito, Ecuador

6. Article 4: Spatial Modeling of Chronic
Respiratory Diseases Based on Machine
Learning Technigues—An Approach
Using Remote Sensing Data and

Environmental Variables.

Cesar I. Alvarez-Mendoza®?, Ana Teodoro'?, Alberto Freitas* and Joao Fonseca*

1 University of Porto, Department of Geosciences, Environment and Land Planning,
Faculty of Sciences, Rua Campo Alegre 687, Porto 4169-007, Portugal;
up201510599@fc.up.pt

2 Universidad Politécnica Salesiana, Grupo de Investigacion Ambiental en el Desarrollo
Sustentable GIADES, Carrera de Ingenieria Ambiental, Quito 170702, Ecuador;

calvarezm@ups.edu.ec

% Earth Sciences Institute (ICT), Pole of the FCUP, University of Porto, Porto 4169-007,
Portugal; amteodor@fc.up.pt

4 Department of Community Medicine, Information and Health Decision Sciences
(MEDCIDS), Faculty of Medicine, University of Porto, Rua Dr. Placido da Costa, 4200-
450 Porto, Portugal; alberto@med.up.pt, jfonseca@med.up.pt

SCINTESIS - Center for Health Technology and Services Research, Faculty of Medicine,
University of Porto, Rua Dr. Placido da Costa, 4200-450 Porto, Portugal

Received: 25 July 2019 (under review)

Journal: International Journal of Environmental Research and Public Health. MDPI.
Special Issue Innovations in Remote Sensing and GIS for Environmental, Urban
and Public Health Sciences

83



FCUP

Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study
applied to Quito, Ecuador

6.1 Abstract

Over the last few years, the use of remote sensing data to retrieve air pollution variables
through land use regression (LUR) models has become very popular. LUR models are
an effective alternative to predict air quality, and some studies have established a
possible relationship between environmental variables and respiratory health
parameters. This study proposes that there is a relationship between remote sensing
data (Landsat 8) and environmental variables (air pollution and meteorological data) that
can be used to determine the number of hospital discharges of patients with chronic
respiratory diseases in Quito, Ecuador, between 2013 and 2017. The main objective of
this study is to establish and evaluate an alternative LUR model that is capable of
calculating the prevalence of chronic respiratory diseases, in contrast with traditional
LUR models, which typically assess air pollutants. Moreover, this study also evaluates
different analytic techniques (multiple linear regression, multilayer perceptron, support
vector regression, and random forest regression) that often form the basis of spatial
models. The results show that machine learning techniques, such as support vector
machine, are the most effective in computing such models, presenting the lowest root-
mean-square error (RMSE). Additionally, in this study, we show that the most significant
remote sensing predictors are the blue and infrared bands. Our proposed model is a
spatial modeling approach that is capable of determining the prevalence of chronic
respiratory diseases in the city of Quito, which can serve as a useful tool for health

authorities in policy- and decision-making.

Keywords: remote sensing; machine learning; respiratory disease; spatial models;
Quito

6.2 Introduction

During the last few years, remote sensing data have increasing been used in monitoring,
spatial predictive modeling, surveillance, and risk assessment with respect to human
health [23]. These human health studies have also been associated with air pollution
spatial modeling, which is connected to some vector-borne [61] and respiratory diseases
[26]. In this context, spatial models relying on remote sensing data have been developed
to identify different air pollutants, the most common of which are particulate matter (PM)
[6,129], nitrogen dioxide (NO,) [200], tropospheric ozone (Os) [34], sulfur dioxide (SOy)
[201], and carbon dioxide (COy) [13]. The aforementioned air pollutants are greenhouse
gases and precursors of global warming [202]. Moreover, evidence of the adverse effects

of exposure to air pollutants (PM2.5, PM10, Os) on health has been collected in several
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countries around the world [203]. Specifically, air pollution is a threat to respiratory
health, and several chronic respiratory diseases (CRDs), such as asthma, chronic
obstructive pulmonary disease (COPD), and others, represent nearly 6% of global
annual deaths [1,2]. According to the World Health Organization (WHO), 92% of people
around the world live in places with poor outdoor air quality, where the main risk factors
of developing a CRD are related to the climate and the environment [1,4].

One of the most famous missions in satellite remote sensing is the Landsat program,
launched in 1972. The most recent program satellite is the Landsat 8, which has the
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) [204] on board. This
satellite provides a wide spatial-temporal perspective of the Earth, enabling a variety of
applications and retrieving several variables, such as vegetation, land use, aerosol
particles, and environmental and meteorological information, which can be retrieved and
analyzed [10]. Due to the potential of the variables collected by remote sensing of the
Earth’s environment [40], it is possible to develop models to analyze air pollutants. Such
models typically use air quality monitoring network (AQMN) data and remote sensing
variables to conduct spatial modeling of air pollutants, using remote sensing-derived
parameters in the form of environmental indexes, such as the normalized difference
vegetation index (NDVI) [205], and measures, such as aerosol optical thickness (AOT)
[19,190]. It is important to note that sensors, such as the MODIS instruments on Terra
and Aqua and Landsat 8’s OLI, allow us to obtain (directly or indirectly) this information.
The Terra/Aqua MODIS instruments have an AOT product with a low spatial resolution
(3 x 3 km), which is ideal for regional studies [166]. Landsat 8's OLI is capable of
retrieving AOT in fine spatial resolution (30 meters); however, AOT information from
ground stations is also needed [142]. AOT measurements are retrieved by the blue and
red bands of Landsat 8's OLI [50]; its infrared bands are also used to retrieve O3
measurements [181,206].

With respect to health studies based on remote sensing data, predictive models have
been used to analyze air pollutants by combining geographic variables (traffic, land use,
population, etc.) with remote sensing data, in the form of land use regression (LUR)
models [159,168]. Thus, a LUR model could potentially be used to investigate the
possible relationship between hospital discharge rates and certain environmental
variables [26,207]. A hospital discharge is defined as the release of a patient who has
stayed at least one night in the hospital, including people who die in hospital care [208].
However, most LUR models do not consider the dynamics of geographical variables,
because such variables are sometimes out of date or obsolete [209]. Some health

studies have related hospital discharge with exposure to different traffic-related pollution,

85



FCUP

Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study
applied to Quito, Ecuador

in which the NDVI and MODIS AOT are the most commonly used predictors. These
studies aim to find a possible relationship between air pollution exposure and hospital
discharge [210,211].

LUR models use analytic techniques, such as multiple linear regression (MLR), stepwise
regression (STW), and multiple logistic regression [212,213]. However, these techniques
do not analyze the correlation between predictors, and it is well known that remote
sensing variables have a high correlation or multi-collinearity [214]. An alternative to MLR
is the use of more complex models, such as machine learning techniques (MLTS) in
order to avoid multi-collinearity. Examples of non-linear MLTs are multilayer perceptron
(MLP), support vector regression (SVR), and random forest regression (RFR), among
others.

In this context, the aim of this study is to establish and compare spatial empirical models,
based on LUR models, that are capable of determining the number of hospital discharges
of patients with CRDs (HCRD) in Quito, Ecuador, between 2013 and 2017, using remote
sensing data, air pollution field measurements, and meteorological data as predictors
and considering three different complex machine learning techniques: MLP, SVR, and
RFR. The spatial model selected will allow us to map the prevalence of HCRD. This
approach will provide insight into and an understanding of the most significant spatial
predictors and the spatial distribution of HCRD in the city of Quito. Furthermore, the
present study is an innovative approach to the use of remote sensing data in human

health studies.

6.3 Materials and Methods
6.3.1. Study Area

The study area is the most populated zone of Quito, Ecuador. The area is divided into
45 administrative urban districts. Its latitude is 0°30’S to 0°10°’N, its longitude is 78°10°'W
to 78°40’'W, and the equatorial line crosses through it (Figure 6.1). Quito’s annual median
temperature is 17 °C, and its elevation is about 2800 meters above sea level. This
specific study area was chosen for the following reasons: (i) it is covered by nine AQMN
stations; (ii) its road traffic is relatively high; and (iii) the urban downtown is located in
this area. The influence zones of each AQMN station were established through Thyssen

polygons and their respective intersection with the urban districts.
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Figure 6.1. The study area (Quito, Ecuador). The green dots represent the air quality monitoring network (AQMN) stations
and their influence areas.

6.3.2. Data Collection

6.3.2.1 Remote Sensing Data

Between 2013 and 2017, 46 Landsat 8 level 2 images were acquired over the study area.
The on-demand images were obtained from the Land Satellite Data Systems (LSDS)

Science Research and Development (LSRD) website (https://espa.cr.usgs.gov/). The

main advantage of level 2 images is that they use the Landsat 8 Surface Reflectance
Code (LaSRC) to generate products with geometrical, radiometric, and atmospheric
corrections [51]. These products have a spatial resolution of 30 meters. The products
used in this study as predictors are the surface reflectance (SR) OLI bands, the top of
the atmosphere (TOA), brightness temperature (BT), and some pre-processed indexes,
such as the NDVI [54], the soil-adjusted vegetation index (SAVI) [55], and the enhanced
vegetation index (EVI) [56]. Moreover, considering the high cloud density in the Andean
Region [32], the images were filtered, and only images with a maximum of 10% cloud
density over the study area were considered.

BT was converted to land surface temperature (LST) using the emissivity equation

according to [157,215] and the inversion of Planck’s function, as shown in Equation (6.1):

LST = —te—— — 273.15 (6.1)

(1+( - )lne)
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where BT is obtained from Landsat 8 level 2 images in kelvin degree (K), A is the center
wavelength of the Landsat 8 TIR 1 band (10.8 uym) [156], p is expressed in Equation
(6.2), and ¢ is the emissivity derived from Equation (6.3), which has to be selected
according to the NDVI evaluation in the study area. The result is the LST in degrees

Celsius (°C).

hxc
s

p= (6.2)
where h represents Planck’s constant (6.63e-34 Js), ¢ is the speed of light (2.99e-8 ms
1), and s is the Boltzmann constant (1.38e-23 m?kgs2K™).

&5, NDVI < NDVI,
e = |e; + (&, — €)Py, NDVI; < NDVI < NDVI, (6.3)
&,, NDVI > NDVI,

where &5 is the emissivity for the soil (0.973) and ¢, is the emissivity for the vegetation
(0.985) [157]. NDVlIy is the NDVI for the vegetation (0.2), and NDVIs is the NDVI for the
soil (0.5) [59]. Pyrepresents the proportion of vegetation in the study area according to
Equation (6.4).

= (NDVI—NDVIS)Z (6.4)

NDVI,—NDVIy
Moreover, the cloud pixels are removed from each satellite image considering the
information available in the level 2 pixel quality band (Band QA). All the processes were

computed on RStudio with the raster v2.9-5 package.

6.3.2.2 Field Measurement Data

Most of the models that calculate air pollutants require airfield measurements. In this
work, field data were obtained from the Quito AQMN, known as “Red Metropolitana de
Monitoreo Atmosférico de Quito” (REMMAQ) [38]. This AQMN has been in operation
since 2002, providing hourly field measurements of air pollutants and meteorological
variables. REMMAQ has nine georeferenced stations (Figure 1), which collect the
following air pollution variables of interest to this study: carbon oxide (CO), PM less than
2.5 and 10 microns (PM2.5 and PM10, respectively), SO, Oz, and NO,. The following
meteorological variables were considered in this study: pressure, wind direction, relative
humidity, precipitation, wind speed, air temperature, and solar irradiance. The
Environmental Secretary of Quito manages the REMMAQ, and the data are available to
download for free on her website

(http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos).

Spatial air pollutant rasters for each trimester of every year were computed using the

88


http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos

FCUP

Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study
applied to Quito, Ecuador

inverse distance weight (IDW) algorithm [5]. All the information was processed with the

R packages rgal v1.4-4 and gstat v2.0-2.

6.3.2.3. Hospital Discharges of Patients with Chronic Respiratory Diseases

The National Institute of Statistics and Census (INEC) is the official government
institution in Ecuador in charge of collecting and disseminating information about
population and other socioeconomic statistics and variables. This information is public

and available on a district scale (http://www.ecuadorencifras.gob.ec/camas-y-eqresos-

hospitalarios/). One of the variables included in this information is the number of hospital
discharges (the number of released patients who stayed at least one night in the hospital,
including people who died in hospital care) organized by their home district. This variable
is classified according to the International Classification of Diseases 10" version (ICD-
10) from the WHO [68]. Considering the aim of this study, only hospital discharges of
patients with CRDs were considered—those with ICD-10 classification codes of J40—
J47. This filter includes the most significant CRDs, such as asthma and bronchitis. A
summary of hospital discharges in each AQMN area of influence was computed for each
trimester of each year. The main reason to group the dataset by trimester was the
availability of matched data. Furthermore, population data are necessary to compute
HCRD (the number of patients per 10,000 people who are admitted to the hospital with
a CRD) to compare the different urban districts. This variable is a continuous dependent

variable.

6.3.3. Input Dataset

In order to compile a unique dataset encompassing the remote sensing data,
environmental variables (air pollution and meteorological field data), and HCRD, all the
variables were correlated by trimester, year, and AQMN area of influence. Clipping the
Shapefile of the AQMN area of influence and the variables allowed us to obtain the
median trimestral variable for each AQMN area of influence. Table 6.1 shows the

variables used in this study and their respective statistics.

Table 6.1. Descriptive statistics of the input variables
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No. Variable Min. Max. Mean Median Units/scale

Hospital discharges per

respiratory disease

HCRD 0.334 | 23.433 | 4.463 3.689 10,000 people with chronic

Coastal aerosol band

(B1) 0.029 0.077 0.056 0.060 reflectance (0-1)
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2 Blue band (B2) 0.034 0.095 0.068 0.072 reflectance (0-1)
Green band (B3) 0.062 0.136 0.098 0.101 reflectance (0-1)
4 Red band (B4) 0.050 0.149 0.105 0.111 reflectance (0-1)
Near—infrared (NIR)
5 0.182 0.291 0.231 0.228 reflectance (0-1)
(B5)
Short-wave infrared 1
6 0.170 0.268 0.208 0.206 reflectance (0-1)
(SWIR 1) (B6)
Short-wave infrared 2
7 0.092 0.218 0.159 0.163 reflectance (0-1)
(SWIR 2) (B7)
Normalized Difference
8 Vegetation Index 0.171 0.721 0.359 0.312 0-1
(NDVI)
Soil-Adjusted
9 Vegetation Index 0.101 0.408 0.209 0.184 0-1
(SAVI)
Enhanced vegetation
10 ] 0.106 0.428 0.217 0.190 0-1
index (EVI)
Land Surface )
11 15.031 | 39.758 | 26.232 | 26.299 degrees Celsius
temperature (LST)
12 Pressure (P) 712.945 | 761.178 | 740.476 | 741.018 mb
13 Wind direction (WD) 58.155 | 273.426 | 142.357 | 146.345 degrees
14 | Relative humidity (RH) | 49.140 | 84.582 | 69.190 | 72.632 percentage (%)
15 Precipitation (PR) 0.000 4.443 0.406 0.000 mm
16 Wind speed (WS) 0.879 2.482 1.686 1.743 m/s
17 Air temperature (AT) 11.749 | 17.421 | 14.957 | 15.041 degrees Celsius
18 Solar irradiance (SR) 0.092 |278.691 | 166.728 | 215.724 W/m?
19 CO 0.435 0.852 0.622 0.598 pg/ms
20 NO:2 11.458 | 35.256 | 23.055 | 22.169 ug/md
21 O3 7.518 | 44.055 | 22.786 | 22.130 ug/ms
22 PM2.5 10.441 | 23.504 | 16.490 | 16.316 ug/md
23 PM10 0.030 | 87.590 | 35.770 | 38.364 pg/m3
24 SOz 0.839 7.829 3.459 3.273 pg/md

6.3.3. Model Establishment

An LUR model is an empirical model that considers some geographical predictors as
independent variables and a dependent variable. The first step in establishing such a
model is the selection of the input predictors. The simplest model with the least number

of independent variables should be found in order to avoid overfitting. Here, the Bayesian
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information criterion (BIC) was considered to conduct backward elimination, by which the
lowest BIC values were used to choose the predictors [216,217]. Then, the models were
computed, considering different MLTs in order to compare linear (MLR) and non-linear
regression models (MLP, SVR, and RFR). In each model, 80% of the dataset was used
as training data, and 20% of the dataset was used as test data.

MLR is probably the simplest and most common analytic technique used in building a
predictive model. It computes a linear relationship between the independent (predictors)
and the dependent variables [218]. However, MLR does not analyze the correlation
between predictors—a major limiting factor when considering remote sensing variables
[147], which are highly correlated. In contrast, MLP with a back-propagation learning
process is classified as an artificial neural network (ANN) model, and it can be used in
the classification of remote sensing data. MLP uses a series of neuronal activities where
the ideal is to have interconnection weights in a multilayer perceptron [77]. In this study,
a non-linear MLP with an architecture defined by a hidden layer and six hidden nodes
was computed according to [161] and evaluated. The R package neuralnet v1.44.2 was
used to compute the MLR. SVR is a non-linear transformation of an MLT, which works
as a support vector machine (SVM) classifier. SVM and SVR work in a higher
dimensional space. The main difference is that SRV uses a continuous number as a
dependent variable [82]. The R package used to compute SVR was 1071 v1.7-2.
Finally, the last MLT employed was RFR. It is based on ensemble learning, which uses
the training dataset to generate multiple decision trees, making it less sensitive to the
overfitting problem. The decision trees are simply combined according to their weights.
Moreover, RFS is considered to be one of the most effective hon-parametric ensemble
learning methods in image analysis [85]. The R package randomForest v4.6-14 was
used to implement RFS in this study.

In the model evaluation, the coefficient of determination (R?) between the observed
values and the predicted values and the root-mean-square error (RMSE) were
compared. Models (considering the test dataset) with a higher R? and lower RMSE were
selected to develop a spatial map of HCRD for each trimester for each year. The final
model developed a raster file with 30 meters of spatial resolution. Figure 6.2 shows the

workflow of the methodology used in this study.
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Figure 6.2. Workflow of the methodology applied in this work

6.4 Results

6.4.1. Selected Predictor Variables

The final dataset considered 162 observations, which included all the variables (the
remote sensing, environmental, and HCRD variables). The dataset consisted of 25
variables (one dependent variable and 24 predictors), including registers by trimester,
year, and the AQMN area of influence. The lowest BIC values were chosen in order to
consider only the most significant variables, avoiding multi-collinearity. A total of 10
predictors (B1, B2, B7, EVI, LST, RH, SR, AT, CO, and SO,) were considered as inputs
in all the MLTs (p-value < 0.050). Equation (6.5) shows the MLR established with the 10
predictors considered:

HCRD =1+ aB1 + bB2 + cB7 + dEVI + eLST + fRH + gSR + hAT + iCO + jSO2
(6.5)

where HCRD is the hospital discharges per 10,000 people with chronic respiratory
disease; | is the intercept; a, b, ¢, d, and e are the coefficients in each predictor; and the

other variables are described in Table 6.1.
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.2. Comparison and Evaluation of the Models

The results presented in Figure 6.3 allow us to analyze the relationship between the
observed data and the predicted data considering the value of R2.
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Figure 6.3. Scatter plots of the different methods employed the model. The blue line represents the training data
(a),(c),(e),(9), and the red line represents the test data (b),(d),(f),(h).

Figure 6.4 shows the comparison between R? and RMSE for all the models established.
The non-linear models RFR and SVR showed the best adjustment both in the training
data and in the test data.

According to the results presented in Table 6.2, the model with the lowest RMSE
(1.6923) and the highest R? (0.9144), considering the training data, was the RFR. On the
other hand, the model with the lowest RMSE (2.0439) and the highest R? (0.5066),

considering the test data, was the SVR. The SVR model, considering the test data, was

used to map HCRD. Figure 6.5 presents the SVR model by trimester (and year).
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Figure 6.4. Comparison between models considering the RMSE and R?: (a) RMSE training data; (b) R? training data; (c)

RMSE test data; (d) R? test data.

Table 6.2. RMSE and R? for all the models tested.

95

Model RMSE R? RMSE R?
Training Data Training Data Test Data Test Data
Multiple Linear
Regression (MLR) 3.0615 0.3358 2.3153 0.3709
Multilayer Perceptron 2 8154 0.4305 » 7904 0.3635
(MLP) : : . _
Support Vector
Regression (SVR) 25115 0.6254 2.0434 0.5066
Random Forest
Regression (RFR) 1.6923 0.9144 2.7499 0.1300
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Figure 6.5. HCRD maps considering the third trimester of the year (July—September) using the SVR model in (a) 2013,
(b) 2014, (c) 2015, (d) 2016, and (e) 2017. The white areas show cloud presence.
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6.5 Discussion

In most cases, LUR models are used to estimate air pollutants [34,36,136,219], and
geographical variables, such as roads, traffic, land use, etc., are used to establish MLR
models. However, these models include geographic variables that are not always
available or updated in a timely manner. Some studies have also compared the air
pollution calculated by LUR models with health data [16,26]. However, this comparison
is only performed considering categorical variables [220] and not with numerical
variables in order to quantify the value.

In this study, spatial models were developed to compute HCRD, considering remote
sensing and environmental variables (air pollution and meteorological ground data) as
predictors. The predictors were chosen considering their relationships with variables that
may potentially affect respiratory health, such as vegetation, land use, climate, and air
pollution. Air pollution is defined as the presence of one or more harmful substances in
the air [221]. Some studies have shown that air pollution is a serious issue, posing a
grave threat to respiratory health [14]. On the other hand, climate variables, specifically
meteorological variables, such as temperature or humidity, have a direct influence on the
potential to acquire CRDs [222,223]. Moreover, using RS data, it is possible to derive
some of these environmental variables. One such example is the high correlation
between the Landsat 8 blue and red bands with AOT [50]. As noted above, AOT
influences the retrieval of air pollutants [18,20,224]. In this context, in this work, 24
predictors were considered as inputs in the original model with a matched dataset of 162
observations. Considering BIC, 10 significant predictor variables were selected for use
in the final spatial HCRD models. The RS variable predictors included the coastal
aerosol, blue, and SWIR-2 bands (bands 1, 2, and 7, respectively). The blue band is
more correlated with PM [50] and the SWIR-2 band with Oz concentrations [181,206].
Additionally, EVI and LST were also selected. The environmental variable predictors
were CO and SO», and the meteorological variables were HR, SR, and AT. Several
studies have already reported a correlation between these variables and the presence
of CRDs [124].

Four MLTs were selected to compute the model: (i) linear MLR; (ii) non-linear MLP; (iii)
SVR and; (iv) RFR. During the computation, 80% of the dataset was used as training
data, and 20% of the dataset was used as test data. The main advantage of non-linear
MLTs is the avoidance of concerns regarding multicollinearity. Several studies have
found that the use of MLP and SVR with RS data improves the performance of regression
models using ground true data [225]. RFRs are often implemented in prediction

analyses, because they provide better accuracy [226]. The results show that the use of
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RFR and SVR created the most successful models. SVR had the highest R? (0.5066)
and the lowest RMSE (2.0434) with the test data. Thus, the SVR model helped to develop
a spatial map of HCRD in different trimesters between 2013 and 2017 (Figure 6.5). The
third trimester was selected because there were more available images during that
trimester during the five years of the study period. Additionally, there was more variation
in the rates of hospital discharges in September, according to the input data. It is also
worth noting that there was a significant increase in reported air pollutant concentrations
in some areas between 2013 and 2017 [170]. Indeed, in the north and east regions of
the city, there were higher values of HCRD, which was likely due to the fact that these
areas had higher rates of air pollutants, traffic, and population. Thus, these results allow
us to identify possible trends in the growth patterns of CRDs in the next few years.

The main limitations of this study were as follows: (i) There were a limited number of
satellite images available without high cloud density [32]. In future research, a possible
improvement could be the use of more sensors to combine data or to develop and apply
new techniques to remove cloud interference [152]; (i) The REEMAQ and INEC data
were incomplete for some months during all study years. In some cases, the stations
were unavailable or did not have complete quality data. On the other hand, some hospital
discharge data were lacking information regarding location, or such information suffered
from poor-quality codification or registration. We discarded these data in order to obtain
a more accurate dataset; however, in future work, we will extend this study for a longer
period of time in order to improve our models; (iii) The percentage of training and test
data may not have been ideal. Our future research could consider different cutoff values
in the dataset; (iv) Despite the fact that the spatial HCRD maps give us a general idea of
the presence of CRDs and possible future trends, these maps must be improved with
more input data.

In this context, the models presented in this work, despite having some limitations, were
shown to be valid tools in the prediction of HCRD, which will provide local health

authorities with valuable information to improve policy- and decision-making.

6.6 Conclusions

This study proposed an innovative, alternative use of LUR models to establish a spatial
modeling approach to calculating the number of hospital discharges of patients with
CRDs in Quito, Ecuador. The proposed model considered geographical predictors,
specifically RS data (Landsat 8) and environmental variables (air pollution and
meteorological information) from 2013 to 2017. The most significant predictors were the
red band, the SWIR 1 band, CO, PM2.5, and SO.. Different machine learning techniques
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were tested. RFR performed best considering the training dataset, and SVR performed
best considering the test dataset. These models allowed us to generate spatial maps
identifying areas with a high prevalence of chronic respiratory diseases, representing an
effective approach to using RS data in public health research. This work also provides
more information about the spatial distribution of respiratory diseases, which can help in
the identification and eradication of their possible causes.
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7. Overall conclusion and perspectives

The presented PhD project provides an alternative to the use of RS data/techniques in
different environmental applications in a region with different environmental and climate
conditions. Thus, RS data/techniques help to improve established approaches and can
be used to propose new methodologies to retrieve environmental variables and
investigate the relationship with health data.

The main objective of this project was to evaluate the applicability of RS data in the study
of CRDs, computing the most effective spatial models to estimate and to locate hospital
discharge of CRDs between 2013 and 2017 in Quito, Ecuador. The method proposed in
this work aimed to generate an empirical spatial LUR model to estimate hospital
discharge of CRDs considering dynamic geographic variables. The first step was to
evaluate the RS data available in the study area, where most of the images had a high
cloud density [32]. Considering this limitation, a new methodology was developed and
applied to remove the clouds in order to have more RS data available [152]. After, several
spectral indexes were computed.

The second step was to investigate the most adequate RS data to the study area and to
this specific problem. NASA EOS satellites were evaluated considering their free data
access and availability in the time window of the health data available (2013 to 2017).
Specifically, Terra/Aqua MODIS, Landsat-7 ETM+, Landsat-8 OLI were evaluated in
order to find the most adequate RS data to predict PM10, and Landsat-8 was selected
[6]. Additionally, were concluded that blue and NIR bands are very important as
predictors. Several MLTs were also tested (STW, PLS and MLP).

Most of the studies of air pollutants use AOT derived from MODIS products (MODO04-
MYDO04) [165] as the input in LUR models. This product has a low spatial resolution (3 x
3 km) [166] and in Quito, this resolution is not applicable because the maximum city
width is 10 km. Knowing this limitation, new alternatives were investigated using Landsat-
8. Some studies have already combined Landsat-8 data with AOT ground stations to
model the AOT [142]. However, in our study area this information is not available
between 2013 and 2017. Therefore, another alternative is established, considering the
visible bands; specifically the blue and red bands; to retrieve AOT [50].

The third step in this research project was to develop different LUR algorithms to retrieve
O3 concentration from RS data, selecting the predictors in order to model air pollutants,
also considering Landsat-8 data. A stepwise regression was chosen to select the
predictors, based on the comparison with different MLT. The result showed the presence

of the coastal aerosol band (B1) and blue band (B2) in the final models, contrasting that
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the blue and red bands are related to the AOT presence [10,50]. The SWIR-2 band (B7)
is also related to the O3 concentration in the final model [181,206]. Additionally, other
significative predictors are EVI (related to the vegetation) and LST (related to
temperature and climate).

In the fourth and final step, based on the previous knowledge, the association between
the different CRDs and the environmental parameters computed from RS data were
investigated. Spatial CRDs models were developed from different MLT (MLR, MLP, SVR
and RFR). The result allowed to map the CRDs presence with RS, air pollution and
meteorological variables as predictors. The predictors considered have a known
relationship with variables which affect the respiratory health as the vegetation, land use,
climate and air pollution [14]. The SVR and RFR were the most effective MLT. It is known
that in some classification and regression problems related to RS both techniques are
the most efficient [81]. Finally, a relationship between RS data and CRDs were
established.

There are some limitations associated with this project, mainly the quantity of satellite
images available due to the high cloud density; the quality of air pollutant and
meteorological ground data; and the incorrect hospital discharge data.

Considering the limitations of the project, future work still being done. One of the future
tasks is to collect more RS data. Another future work will be the improvement of the cloud
removal methodologies in order to recover more RS data and then combined different
RS data from different satellites. Moreover, in order to have more data available, more
years (2018 — 2019) will be used in the establishment of the new models. Another
objective will be to use more RS predictors and more multispectral indexes. Finally, the
advance of the MLT is real. In this sense, new evaluations to compute more efficient
models will be established.

One of the most grateful achievements of this study was the real and established
relationship between RS data and the CRDs. Thus, the spatial hospital discharge of CRD
maps give a possible answer of the presence of a CRDs. These spatial models can help
to local government decision makers to manage the public health and to organize new
policies, specifically in places where the highest presence of a CRDs is evident.

The published papers (original files) are presented in Annex | and the conference

proceedings (original files) are presented in Annex Il
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ARTICLE INFO ABSTRACT

The Andean region has a high cloud density throughout the year. The use of optical remote sensing data in the
computation of environmental indices of this region has been hampered by the presence of clouds. To maximize
accuracy in the computation of several environmental indices including the normalized difference vegetation
index (NDVI), we compared the performance of two algorithms in removing clouds in Landsat-8 Operational
Land Imager (OLI) data of a high-elevation area. The study area was Quito, Ecuador, which is a city located close
to the equator and in a high-elevation area crossed by the Andes Mountains. The first algorithm was the au-
tomatic cloud removal method (ACRM), which employs a linear regression between the different spectral bands
and the cirrus band. The second algorithm was independent component analysis (ICA), which considers the noise
(clouds) as part of independent components applied over the study area. These methods were evaluated based on
several images from different years with different cloud conditions. The results indicate that neither algorithm is
effective over this region for the removal of clouds or for NDVI computation. However, after improving ACRM,

Keywords:

Cloud removal

Optical remote sensing
Landsat-8 OLI

Quito

NDVI

the NDVI computed using ACRM showed a better correlation than ICA with the MODIS NDVI product.

1. Introduction

Optical remote sensing (ORS) data have the major advantage of
providing synoptic and frequent overviews of the Earth's surface, but
the distribution of ground-based measurements is scarce in some parts
of the world. ORS data include visible (VIS), short-infrared (SWIR), and
thermal infrared (TIR) regions of the electromagnetic spectrum
(Lillesand et al., 2015).

Regions with a high cloud density during most of the year, such as
the Brazilian Amazon (Rees, 2012; Ju and Roy, 2008; Asner, 2001) and
the Andean region (Ferndndez et al., 2015), are particularly challenging
for ORS, especially in terms of the computation of the environmental
indices, such as normalized difference vegetation index (NDVI) (Weier
and Herring, 2000; Rajitha et al., 2015). Several studies on cloud
density have been conducted based on Landsat data (Rees, 2012; Asner,
2001; Ju and Roy, 2008). Richter et al. (2011) takes the spectral/spatial
characteristics of Sentinel-2 as a template for instruments with similar

properties as Sentinel-2 to investigate the relevant cirrus effects. Shen
et al. (2014) proposed a method based on the classic homomorphic
filter executed in the frequency domain to thin cloud removal for visible
remote sensing images. Gao and Li (2017) propose an empirical tech-
nique for the removal of thin cirrus scattering effects in OLI visible near
infrared and shortwave IR spectral regions. In the work of Lv et al.
(2018), the top-of-atmosphere reflectance of thin clouds is modeled
using the empirical relationships of the deep blue and blue bands of
Landsat-8 OLIL

The Landsat program has provided calibrated and high-resolution
spatial data of the Earth's surface for more than 45 years. Landsat-8,
launched in February 2013, is the latest satellite in a continuous series
of land remote sensing satellites that began in 1972. Landsat-8 has
provided data to support several fields and research topics, such as
agriculture, forestry, geology, land use, air contamination (USGS,
2013), and the removal of clouds in remote sensing images (Hashim
et al., 2014; Pour and Hashim, 2017; Lv et al., 2016; Cheng et al., 2014;
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Fig. 1. Quito metropolitan area.

Gao and Li, 2012; Shen et al., 2015a, 2015b; Huadong et al., 2009; Zhu
and Woodcock, 2012; Xu et al., 2014). Landsat-8 includes two sensors:
the Operational Land Imager (OLI), which is divided into nine bands
with a spatial resolution of 30m, and the Thermal Infrared Sensor
(TIRS) instrument, which is divided into two bands with a native spatial
resolution of 100 m. The OLI bands include a cirrus band (B9). Cirrus
clouds are high-altitude clouds in the atmosphere and are mainly
composed of miniscule ice crystals (Stephens, 2005). They are strong
reflectors of radiation at a wavelength of 1.38 um (Department of the
Interior U.S. Geological Survey, 2016). Cirrus clouds have a significant
number of thin, non-spherical ice crystals that can absorb sunlight and
attenuate the pixel values of surface reflectance in remote sensing (Gao
et al.,, 1998). Additionally, cirrus clouds limit the accuracy in the
computation of environmental indices. Thus, it is crucial to remove
them (Rajitha et al., 2015).

The purpose of this work is to develop an approach to remove
clouds and noise in optical remote sensing data without losing surface
pixel accuracy in order to compute environmental indices, such as
NDVL. Several methods have been tested to remove clouds considering
Landsat-8 data in different places around the world with satisfactory
results. Some of these methods used a reference Landsat-8 image to
patch the cloudy area (Cheng et al., 2014; Lin et al., 2014; Lv et al.,
2016), or combine Landsat-8 with other sensors (Wu et al., 2016), or
work with the Landsat-8 cirrus band (B9) (Shen et al., 2015a, 2015b; Xu
et al., 2014). All these studies were conducted in low elevation regions
and in no tropical areas. Both parameters can have an effect over cirrus
clouds (He et al., 2013), considering that these clouds can form at any
altitude between 5.0 km and 14 km above sea level. In the tropical re-
gions, cirrus clouds cover around 70% of the region's surface area.

In this work, to remove cirrus clouds over an area in the Andean
region (Quito, Ecuador) considering the Landsat-8 cirrus band (B9), two
methods were evaluated: the automatic cloud removal method (ACRM)
and independent component analysis (ICA). ACRM was first tested on
images of Sydney, Australia (Xu et al., 2014). The algorithm applies a

linear regression between each multispectral band and the cirrus band
(B9), evaluates the coefficient of determination (R?) and slope in some
areas, and generalizes them for the entire image (Xu et al., 2014). In
order to remove clouds, the algorithm uses the area with the highest R*
to extrapolate values for the entire image. In ICA, independent com-
ponents (ICs) are separated, and one of them is the component that
storing the thin clouds (Hyvéarinen and Oja, 2000). This algorithm was
tested on Landsat-8 images of a low elevation region (North Carolina,
USA), and the results were satisfactory (Shen et al., 2015a, 2015b). The
performance of the two methods in removing clouds and their effi-
ciency in future computation of environmental indices such as NDVI are
evaluated based on the same image.

2. Materials and methods
2.1. Study area and dataset

2.1.1. Study Area

The study area is Quito, the capital of Ecuador (Fig. 1). The equator
line crosses the city in the north part. The Quito latitude ranges be-
tween 0°30’S to 0°10’N and its longitude ranges between 78°10'W to
78°40’W. Quito has a high elevation of approximately 2800 m. The
cloud density over the city is considerable, all over the year. Quito has
only one dry season and one wet season, considering that it is a tropical
zone and is influenced by the Andes Mountains. In 2015, the mean
minimum and maximum temperatures were approximately 9.0 °C and
25.4°C, respectively, with a high precipitation of approximately
1126 mm (Instituto Nacional de Meteorologia e Hidrologia, 2016). The
geology of northeastern Ecuador and present-day physical processes
related to geology are greatly influenced by the tectonic mechanisms
responsible for the development of the Andes Mountains. Both geology
and active physical processes (landsliding, volcanism, erosion, weath-

ering) are complex and varied (Baldock, 1982).




C.I. Alvarez-Mendoza et al. Remote Sensing Applications: Society and Environment 13 (2019) 257-274

78°45W 7830W

T8AS'W 7830'W 78°15W

0°15'N
0°15'N
0°15'N

00
0°0
0°0

0°15'S
0°15'S
0°15'S

0°30'S
0°30'S

78°45'W 78°15W

78°45'W

78°45'W

0°15'N
0°15'N

0°0'
00

0°15'S

0°30'S
0°30'S

78°30W 78°1I5W

78°45'W 78°30W 78°15'W

Fig. 2. Landsat-8 Images from Quito Metropolitan Area (Path: 10; Row: 60): (a) Image from 2013/10/11; (b) Image from 2013/07/07; (c) Image from 2014/07/26;
(d) Image from 2015/07/13; (e) Image from 2015/08/30; (f) Image from 2016,/02/06; (g) Image from 2016/10/19; (h) Image from 2013/06/21 (Reference image to
ICA evaluation).

2.1.2. Dataset characteristics similar to those of Sydney; and the image of Sydney,

In this study, ten Landsat-8 L1T images were processed to evaluate Australia (Path 89; Row 83) used in (Xu et al., 2014) were considered.
and improve the two methods to remove clouds. Seven images of Quito, Images at the L1T processing level were considered because they
Ecuador (Path 10; Row 60) from different years (Fig. 2); one image of take advantage of geometric and radiometric corrections (Department

Pedernales, Ecuador (Path 11; Row 60), which is a coastal region with of the Interior U.S. Geological Survey, 2016). Moreover, the MODIS
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Table 1
Characteristics of datasets used in this study.
Sensor Product Spatial Resolution Temporal resolution Bands/Products
Landsat-8 L1T 30m 16 days Coastal aerosol, blue, green, red, near infrared, SWIR 1 and SWIR 2, Cirrus, Thermal Infrared 1, Thermal
Infrared 2
MODIS MOD13Q1 250m 16 days NDVI/EVI Values
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MOD13Q1 product (tiles H10V08 and H10V09) for the study area was
also used in order to compare the results obtained in the computation of
NDVI (further details in Section 3.4) (Table 1).

2.2. Methodology

Two methods to remove clouds, ACRM and ICA, were evaluated in
this work for Landsat-8 images and the corresponding cirrus band (B9).
Most of the processing steps were implemented in R programming
language (R Core Team, 2016) and its associated packages: raster ver-
sion 2.5-8 (Hijmans, 2016), rgdal version 1.1 (Bivand et al., 2016), and
gdalutilities version 2.0.1.7 (Greenberg and Mattiuzzi, 2015). Further-
more, ENVI® and ERDAS® software were used to perform some image
processing tasks.

2.2.1. Automatic Cloud Removal Method (ACRM)

ACRM attempts to obtain clean pixel data from each digital number
DN recorded at each OLI multispectral band i = 1, 2, 3, 4, 5, 6, 7. DN
contains clean pixel data plus contaminated data at the location (u, v).
Contaminated data are affected by clouds (Xu et al., 2014). The model
can be expressed as follows:

DN (u,v) = x/ (u, v) + xfw,v), i=1,2,3,4,5,6,7, @

where x,-f (u, v) is the clean cloud-free pixel from each of bands 1-7
and x{(u, v) is the cirrus cloud pixel from each of bands 1-7 obtained
with band 9. Eq. (1) results from the strong linear relationship between
the bands found in (Ji, 2008), where x{(u, v) is linearly related to the
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Fig. 4. Flowchart of the methodology adopted to perform a comparison between ACRM and ICA algorithms.
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Table 2
Linear regression results between bands 1-7 and 9 in the Quito study area for
different dates.

Band R2 Slope R? Slope R? Slope R? Slope
() () () (o)
Quito (11/10/ Quito (07/26/ Quito (07/13/ Quito (02/06/
2013) 2014) 2015) 2016)
B2 0.96 0.05 0.93 0.02 0.95 0.03 0.95 0.03
B3 0.96 0.05  0.93 0.02  0.95 0.03 095  0.03
B4 0.96 0.05 0.93 0.02 0.95 0.02 0.95 0.02
B5 0.88 0.02 0.85 0.01 0.91 0.02 0.85 0.01
B6 0.85 0.02  0.89 0.17  0.88 0.02 0.89  0.03
B7 0.86 0.02 0.88 0.02 0.87 0.02 0.88 0.02
Quito (07/07/ Quito (08/30/ Quito (10/19/ Quito (21/06/
2013) 2015) 2016) 2013)
B2 0.96 0.05 0.93 0.02 0.97 0.03 0.95 0.03
B3 0.96 0.06 0.93 0.02 0.97 0.03 0.95 0.03
B4 0.95 0.05  0.93 0.02  0.97 0.02 095  0.02
B5 0.85 0.03  0.85 001  0.95 0.02 0.85  0.01
B6 0.90 0.06 0.89 0.17 0.92 0.02 0.89 0.03
B7 0.89 0.06 0.88 0.02 0.89 0.03 0.88 0.02
DN recorded in the cirrus band c(u, v) as follows:
x£(u, v) = x;[c(u, v) — min{c(u, v)}]. 2

The aim is to obtain the slope «; for each band, considering a linear
relationship between each multispectral band and band 9 in a homo-
genous area. Two approaches can be considered to determine this
homogenous area. The first approach is a photo-interpretation to find
this area by taking, for example, water bodies that have a near-zero
pixel value over the near-infrared (NIR) band. However, this approach
cannot be used for images that do not contain water bodies. The second
approach is to use random areas of a constant size covering the entire

Remote Sensing Applications: Society and Environment 13 (2019) 257-274

region or zones with a specific land use. In this study, we considered the
second approach of finding random areas with a size of 10 X 10km?,
covering the entire study area (Fig. 3). Smaller regions (250 m * 250 m)
were also tested, but the results were identical.

By combining Eq. (1) with Eq. (2), x{(u, v) can be estimated as
follows:

xl-f(u, v) = DN (u, v) — ;[c(u, v) — minf{c(u, v)}] 3)

2.2.2. Independent Component Analysis (ICA)

ICA is a method for finding underlying factors or components from
multivariate (multidimensional) statistical data (Hyvérinen et al.,
2001). The relationship is represented as follows:

X = AS ()]

where S is a random vector containing the independent source signal or
independent components (IC) with elements s, sy,..., and s,. A is the
“mixing” square matrix having elements a;. X is the observed signal
(mixed) having elements X, %, ..., and x;,.

In Eq. (4), X represents surface reflectance data from each of bands
1-7 and pixel cirrus data from band 9. The surface reflectance data
were obtained by applying atmospheric correction with the fast line-of-
sight atmospheric analysis of hypercubes (FLAASH) algorithm (ENVI,
2009; Allred et al., 1994). FLAASH works as a physical method to ob-
tain surface reflectance, and it allows us to describe the shape of the
signatures (Mandanici et al., 2015) in ENVI software. The column
vector s represents ICs and matrix A represents the linear transforma-
tion. Both s and A are unknown.

In some studies, ICA is used to separate some parts of satellite
images by considering their bands as ICs. The algorithm achieves cloud
removal by considering that each IC is a linear mixture of bands 1-7
and 9. Band 9 is used to delineate the cloud component in the IC
(Huadong et al., 2009; Shen et al., 2015a).
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Fig. 5. Landsat-8 Images from Quito Metropolitan Area (Path: 10 Row: 60): Image from 2014/07/26 (a) Original Image; (b) Image applied ACRM.
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Table 3
Linear regression results between bands 1-7 and 9 in the other evaluated zones.

Sydney (2013/10/04) Pedernales (2016/05/13)

Band R? Slope (a) R? Slope (o)
B2 0.97 1.70 0.67 0.69
B3 0.99 1.63 0.68 0.68
B4 0.98 1.68 0.67 0.62
B5 0.98 1.74 0.67 0.52
B6 0.99 1.11 0.63 0.44
B7 0.98 1.02 0.53 0.58

80°30W 80°20W 80°10W 80°0'W 79°50W 79°40'W

80°0'W 79°50W 79°40'W
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ICA works with a non-Gaussian distribution, where ICs (surface
reflectance and pixel cloud data) are not normally distributed, because
various surface types and cloud types produce different reflectance
values. The robust FastICA algorithm can be applied to estimate an
unmixing matrix W, which is the inverse of mixing matrix A
(Hyvérinen and Oja, 2000). The source vector s can be obtained by
inverting Eq. (4) as follows:

s =AX. 5)

Band 9 (cirrus band, which is a part of X) is considered the sum of
eight products (bands 1-7 and 9) for each IC: the product of each source
vector with its coefficients in A. Eq. (6), derived from Eq. (4), allows us
to obtain the cloud pixel value x;; as follows:

80°30'W 79°50'W 79°40W

151°20E 151°30E 151°40E 151°50°E 152°0°E 152°10E

(d)

Fig. 6. Landsat 8 OLI images (a) Original image from Pedernales; (b) Image after applied ACRM in Pedernales; (c) Original image from Sidney; (d) Image after

applied ACRM in Sidney.
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X1-7 = &-75c, (6) reflectance data from each band x, (Eq. (7)).

Where a;_; is the coefficient of s, in matrix A corresponding to the Xp = Xo = Xe. @
reflectance data of bands 1-7. The largest factor in the row corre-
sponding to band 9 of A determines the s, to be used to obtain the cloud
reflectance data x.. The final reflectance-free data x; is obtained by

subtracting the original reflectance data from each band x, by the cloud

2.2.3. Normalized Difference Vegetation Index (NDVI)
NDVI is an index that allows to obtain information about the
greenest vegetation considering red and NIR bands of a sensor (Tucker,

264
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Table 4

Coefficients (x 10-2) of A.
Band S1 S2 S3 S4 S5 S6 S7 S8
Bl 4.719 0.678 0.653 9.672 1.731 1.818 1.308 0.207
B2 4.613 0.939 0.494 9.192 1.628 1.661 1.722 0.372
B3 4.537 0.802 1.153 8.826 1.645 1.644 2.201 1.149
B4 4.487 0.696 0.851 8.954 1.493 1.692 3.413 1.006
B5 2.824 0.475 0.524 6.962 1.743 1.148 -1.815 7.568
B6 0.236 0.764 1.266 7.093 1.508 1.632 3.497 3.671
B7 0.256 0.901 1.214 6.417 —0.022 1.794 3.746 1.656
B9 —-0.021 -0.023 0.018 -0.152 0.984 4.011 0.617 0.108

1979). In the case of Landsat-8 OLI, NDVI is calculated using bands 4
(red band) and 5 (NIR band). The NDVI in a Landsat-8 OLI image is
computed as follows (Eq. (8)):

NDVI = (B5—B4)/(B5+B4) ®

NDVI is one of the most commonly used remote sensing vegetation
indices (Roy et al., 2016; Mishra and Mainali, 2017), and it is con-
sidered an environmental index owing to its strong relationship with
the land surface (e.g., surface temperature, vegetation cover, land use)
and meteorological data (e.g., temperature, humidity) (Kuenzer et al.,
2015). Moreover, NDVI is used to validate and compare results between
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Fig. 8. Landsat-8 Images from Quito Metropolitan Area (Path: 10 Row: 60): Image from 2014/07/26 (a) Original Image; (b) Image after applied ICA.

sensors by considering future environmental applications (Zambrano
et al., 2016).

2.2.4. Evaluation and Validation

In order to validate the efficiency of ACRM and ICA cloud removal
methods in the computation of environmental indices, the NDVI was
computed in the original Landsat-8 images after applying both algo-
rithms. Then, the images were compared with a MODIS NDVI product
resampled to a spatial resolution of 30 m, assuming a similar period of
Landsat-8 data used. A MOD13Q1 product (NDVI 16-Day L3 Global
250 m version 6) was used as reference data, considering that MODIS is
a ready-to-use product (Huete et al., 2002; Solano et al., 2010) and is
evaluated in vegetation phenology. The validation was tested in a small
area where cirrus clouds are present, which allowed us to evaluate the
performance of the algorithms to remove clouds and to estimate en-
vironmental indices. The methodology adopted in this work is pre-
sented in the flowchart shown in Fig. 4.

3. Results
3.1. Cloud removal using ACRM

The ACRM algorithm was applied to ten images considered in this
study. The code was programmed in R Studio with the raster package.
The main objective was to obtain the best correlation (R?) between
bands 1-7 and band 9 in selected areas of the images with cirrus clouds.

The first step was to choose the zones to evaluate the algorithm in a
geographic information system (GIS) covering the entire study area in
Quito. These areas, called zones (Z), are 10 km X 10 km regular grids
covering the study area (Fig. 3). Subsequently, the algorithm was ap-
plied, and the best-fit regions with the best R coefficients between each
multispectral band (1 —7) and band 9 (Table 2) were evaluated.

266

Table 1 lists the highest R? coefficients obtained in the application
of the algorithm, considering only values higher than 0.85. Slope values
are lower than 0.18. These results are shown in Fig. 5 (see Section 4.3).

ACRM was also tested considering an image from Pedernales and an
image from Sydney (Table 3). In Pedernales, the R* coefficients had
values lower than 0.68. Better results were obtained over Sydney with
higher R? coefficients (higher than 0.97). To corroborate the results of
R? coefficients (Fig. 6), we confirmed that the image of Pedernales is
practically unchanged by the algorithm, while the algorithm removes
all the clouds in the image of Sydney.

3.2. Cloud removal considering ICA

The ICA algorithm was applied only to the Quito image from 26,/07/
2014, which shows clouds over the study area. Different software were
used (R Studio, ENVI, ERDAS) to obtain the different parameters
showed in the Eq. (4). The principal inputs to the algorithm were the
surface reflectance data of multispectral bands (calculated with
FLAASH correction from ENVI) and the DN from band 9. Furthermore,
the IC for the selected image was obtained in ENVI software with the
FastICA algorithm (Hyvarinen and Oja, 2000) (Fig. 7). The matrix A
from Eq. (6) was obtained using the ICA algorithm in ERDAS software
(Table 4), and s, was selected as sg, which had the high absolute value
0of 4.011 x 10~ 2 in the row of band 9. Then, to obtain the input data for
Eq. (7), the product of the coefficient in the column for each band at s¢
with each IC was used. The results are shown in Fig. 8. Again, as in
ACRM, the result was not satisfactory in comparison with the original
image (see Section 4.3).

Moreover, to corroborate that the application of the ICA algorithm
does not provide satisfactory results for Quito, some scatterplots were
computed with respect to a cloud-free reference image (Fig. 9). The
scatterplots show a linear correlation between the reference image
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Fig. 9. Scatterplots of bands 2-5. (a, ¢, e, g) Left an image before ICA algorithm implementation vs. reference image. (b, d, f, h) Right image considers ICA algorithm
implementation vs. Reference image. Reference image is from June 21, 2013 to evaluate ICA (Fig. 2h).

(Fig. 2h) and the images with and without ICA correction (Table 5),
which indicates that the ICA algorithm does not work properly for
Quito.

As indicated in Table 4, if ICA is applied, the algorithm changes the
surface reflectance values; in comparison with a cloud-free image, the
correlation decreases.

3.3. Validation — NDVI computation

As mentioned previously, one of the main objectives of the cloud
removal in high-altitude areas is to obtain a better accuracy in the
computation of environmental indices, such as NDVI. Therefore, in the
process of validation of the proposed algorithms, the NDVI values for a
selected area (Quito airport) with a high density of cirrus clouds were
computed (Fig. 10).

NDVI values were compared to the MODIS MOD13Q1 product and
resampled to a spatial resolution of 30 m to enable them to be related to
Landsat data. The MODIS product is of a nearer date (07/28/2014) to
the Landsat-8 image (Fig. 11(a)). The validation compares the reference
NDVI product (MODIS MOD13Q1 resampled) and the NDVI computed
through the Landsat-8 image. NDVI values are computed considering
the original surface reflectance of the Landsat-8 image (Fig. 11(b)) and
the surface reflectance of the images after applying the two algorithms
for removing cirrus clouds: i) ACRM (Fig. 11(c)) and ii) ICA
(Fig. 11(d)).

In order to compare MODIS NDVI and the other NDVI computations,
a linear regression was established to obtain R? coefficients, and the
results showed that the highest R? (0.426) is obtained after applying
ACRM. On the other hand, the lowest coefficient is obtained after ap-
plying ICA with an R? value of 0.262 (Table 6).
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Table 5
Linear Regression. R? coefficients before and after ICA computation.
Band R? before R? after
B2 0.43 0.20
B3 0.49 0.26
B4 0.53 0.33
B5 0.49 0.47

3.4. Improvement of ACRM

According to the preliminary results (Table 6), the ACRM algorithm
yielded the highest R? to calculate environmental indices; nevertheless,
one improvement of the ACRM method was developed to remove
clouds in Landsat-8 OLI images of high-elevation areas (Xu et al., 2014).
This development attempts to find the best-fit slope in the ACRM al-
gorithm, established in Eq. (3), to remove clouds in order to compute
environmental indices. When ACRM was applied to an image of Quito,
the slope parameter presented low values, which led us to conclude that
the correction to remove clouds does not work properly when it takes
values close to 0 (Table 2).

A previous work used a fixed slope value (Alvarez et al., 2017). The
main improvement in the ACRM algorithm was to find the highest R?
coefficients in the homogeneous zones and the best-fit slope to remove
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Fig. 10. Area evaluated in Quito airport to compute NDVI (Landsat-8 image
from 07/26/2014).
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Table 6 clouds. Several slope values from O to 100 (in increments of 0.1) were
Linear Regression between MODIS NDVI and NDVI computed from each tested. Therefore, the improvement was to find the highest R? with the
cloud removal method. fittest slope testing several slopes values. This procedure was im-
NDVI Computation with R2 plemented in R Studio software.
To compare and validate the best-fit slope, NDVI was computed for
Original Image with Surface Reflectance Data 0.396 the original image (07/26,/2014) after applying the ACRM algorithm
After ACRM algorithm 0.428

and compared with the MODIS NDVI, resulting in the highest R>

After ICA algorithm 0.262 . .
(0.5077) with a slope value of 2.9 (Fig. 12).

269



C.I. Alvarez-Mendoza et al.

Remote Sensing Applications: Society and Environment 13 (2019) 257-274

g 7 ,.._H—"”'*.".H- 'H"'—t.\'\‘
._._.,,.fv’" . 'u‘\.
< | e
o
« .
o
o~
o
o~ ]
o
=
g _ secccose
T T T T T T T
0 1 2 3 4 5 6
Slope

Fig. 12. Comparison between NDVI obtained using ACRM for each slope tested (dots) with the MODIS NDVI. The red lines indicate the highest R? and the

corresponding slope.

The slope value of 2.9 allowed to a visualization without clouds
(Fig. 13 and 14). However, this value is not necessarily the same in each
case. The slope value must be investigated for each case, in order to find
the best fit to the corresponding area and image.

The results of comparing the R? between the different methods are
shown in Fig. 15. The improved ACRM shows the highest R? value
(0.5077), and visually, it removes clouds to yield a clean image
(Fig. 13(d)). Thus, the improved ACRM works satisfactorily over the
study area.

In order to validate the ACRM, a new image (11/10/2013) with
similar properties was used in the same area. The results show a higher
R? (0.5283) with a slope value of 2.8 in the ACRM (Fig. 16).

4. Discussion and conclusion

Two algorithms, ACRM and ICA, were employed to remove cirrus
clouds in Landsat-8 images with the cirrus band (B9) (Department of
the Interior U.S. Geological Survey, 2016), in Quito city. The main
advantage of these two methods is that they do not use additional
images to patch data, in contrast to other methods (Cheng et al., 2014;
Lin et al., 2014; Lv et al., 2016; Wu et al., 2016). These methods use the
same image to remove thin cloud without the insertion of pixel values
from other images. In this work, because cirrus clouds could have a
great impact in the computation of environmental indices such as NDVI,
these two methods were tested and compared with the aim of evalu-
ating their applicability to accurately compute NDVI for an area located
in the Andean region.

ACRM generated satisfactory results for images with conditions si-
milar to Sydney (Xu et al., 2014). The same original image of Sydney
was used to reproduce the correct application of ACRM, which yielded
an R? coefficient higher than 0.95, with slopes higher than 1. These
satisfactory results were also evident from visual inspection, because
clouds were adequately removed (Fig. 6(d)). When the ACRM algorithm
was tested for images of Quito from different dates, the results showed
R? coefficients higher than 0.90 in most of the cases but with low slope
values (lower than 0.1 in most of the cases for all bands) (Table 3). The
low slope values indicate poor correction. Moreover, it is evident from
visual inspection that this algorithm does not remove the cirrus clouds
over the images (Fig. 5). Another area, Pedernales, was chosen to test
the algorithm because it has similar characteristics to Sydney. The re-
sults for this area are also unsatisfactory for the clouds removal

(Fig. 6b).

The other algorithm tested to remove cirrus clouds was ICA (Shen
et al., 2015a, 2015b), which is a blind source method that attempts to
obtain the cloud component of images (Hyvarinen and Oja, 2000). All
ICs contain free pixel data and cloud noise, and the noise should be
removed, considering all image data to have a non-Gaussian distribu-
tion (Hyvérinen et al., 2001). ICA was tested for images of Quito, and
the results were compared with a cloud-free image (image with surface
reflectance data). The results are unsatisfactory because the correlation
was worse than the case without applying ICA (Table 4). For example,
in band 4, the R? value obtained in comparison with the cloud-free
image was 0.33; the value without applying ICA was 0.53.

In order to validate the results, NDVI was computed. In the first
approximation, the results were compared with a reference image
product (MODIS MOD13Q1). The results showed the highest R> when
the ACRM algorithm was applied; these values were higher than those
obtained with ICA or those of the surface reflectance data. Finally, an
improvement to ACRM was proposed. This algorithm had two main
objectives: (i) visually remove clouds and (ii) improve the pixel values
to compute environmental indices. The ACRM algorithm was improved,
so that the homogeneous area has the highest R? coefficient value and
the slope should be significant to reduce the density of cirrus clouds. In
the case of the study area (Quito), the first condition was achieved with
a high R? coefficient between Landsat multispectral bands and band 9
in a homogeneous area (Table 1). The challenge was to achieve cloud
correction using ACRM. Therefore, we tested different slope values
(Alvarez et al., 2017) between 0 and 100, and the best-fit slope value of
2.9 was obtained. This approach proved to be a good alternative to the
previous algorithms tested (Fig. 13). In order to validate this new ap-
proach, the NDVI values were computed and compared with the re-
ference NDVI values (MODIS). This new approach yielded higher R?
values (Figs. 15 and 16). The ACRM Improved using the highest R?
value can approximate to other products ready to use like MODIS NDVI,
finding a better relationship than other algorithms or methods, and a
considerable best performance, since can be applied to Landsat 8 data,
which have a spatial resolution of 30 m.

The preliminary results show that the algorithms to remove cirrus
clouds (ACRM and ICA) do not work properly in the geographical
conditions considered in this study, leading us to suppose that there are
other factors such as altitude and closeness to the equator that influence
the results. Therefore, future research should focus on testing these
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Fig. 14. Comparison of result applying the ACRM improvement (b),(d) in different regions vs. the surface reflectance image (a),(c).

algorithms in different regions around the world to determine the best resolution of 30 m. Nevertheless, the ACRM improved can help in a
method for each area or to identify better alternatives to improve the more accurate computation of environmental indexes when compared
cloud removal algorithms. Moreover, in some parts of the world such as to other algorithms or methods.

Quito, Landsat images are affected by a high cloud density throughout

the year, limiting the time frame to obtain phenology data at a spatial
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Abstract: The monitoring of air pollutant concentration within cities is crucial for environment
management and public health policies in order to promote sustainable cities. In this study, we
present an approach to estimate the concentration of particulate matter of less than 10 pm diameter
(PM10) using an empirical land use regression (LUR) model and considering different remote sensing
data as the input. The study area is Quito, the capital of Ecuador, and the data were collected between
2013 and 2017. The model predictors are the surface reflectance bands (visible and infrared) of
Landsat-7 ETM+, Landsat-8 OLI/TIRS, and Aqua-Terra/MODIS sensors and some environmental
indexes (normalized difference vegetation index—NDVI; normalized difference soil index—NDS]I,
soil-adjusted vegetation index—SAVI; normalized difference water index—NDWI; and land surface
temperature (LST)). The dependent variable is PM10 ground measurements. Furthermore, this study
also aims to compare three different sources of remote sensing data (Landsat-7 ETM+, Landsat-8 OLI,
and Aqua-Terra/MODIS) to estimate the PM10 concentration, and three different predictive techniques
(stepwise regression, partial least square regression, and artificial neuronal network (ANN)) to build
the model. The models obtained are able to estimate PM10 in regions where air data acquisition is
limited or even does not exist. The best model is the one built with an ANN, where the coefficient
of determination (R? = 0.68) is the highest and the root-mean-square error (RMSE = 6.22) is the
lowest among all the models. Thus, the selected model allows the generation of PM10 concentration
maps from public remote sensing data, constituting an alternative over other techniques to estimate
pollutants, especially when few air quality ground stations are available.

Keywords: remote sensing; air quality modeling; air quality monitoring; PM10; LUR

1. Introduction

Due to some factors such as air pollutants permanency over the time, the air quality has decreased
in recent years, all over the world. One of the direct indicators of air quality is particulate matter with
an aerodynamic diameter lower than 10 pm, usually called PM10 [1]. It is well-known that PM10
has a negative environmental impact on outdoor air quality and that it that is linked to public health
problems such as cardiovascular and respiratory diseases [2,3]. Many cities around the world are
monitoring PM10 in order to prevent environmental problems. However, this monitoring process
needs to be improved in order to establish reliable environmental policies [4]. Thus, understanding the
spatial distribution of PM10 requires a scientific and accurate basis to locate the possible sources of this
pollutant in cities, in order to avoid environmental problems linked to air quality.

Environments 2019, 6, 85; doi:10.3390/environments6070085 www.mdpi.com/journal/environments


http://www.mdpi.com/journal/environments
http://www.mdpi.com
https://orcid.org/0000-0001-5629-0893
https://orcid.org/0000-0002-8043-6431
http://www.mdpi.com/2076-3298/6/7/85?type=check_update&version=1
http://dx.doi.org/10.3390/environments6070085
http://www.mdpi.com/journal/environments

Environments 2019, 6, 85 2 of 15

The air quality monitoring network (AQMN) is a classical procedure to monitor PM10 in cities.
However, some difficulties are found, for instance, high maintenance cost by station [5], a low quantity
of stations in large cities, or non-representative spatial distribution [6]. An alternative could be
high resolution air ground measures with the implement of low-cost sensors [7,8], however, they
are an investment of the local governments, and most of the time is not possible to realize it. An
example of where there is insufficient information provided by AQMN stations and a lack of PM10
measures is in Quito, Ecuador [9-12], where there is not enough information to establish environmental
strategies. Quito, the capital of Ecuador, is a special geographic zone, considering its high elevation
altitude (2800 m) in the middle of the Andean region. Considering the difficulties of a city like Quito,
one valid alternative to complement AQMN monitoring is applying land-use regression models
(LUR) [13]. LUR models use different geographical variables as predictors (remote sensing data,
meteorological data, road density, vehicular traffic, land use, emission inventory, etc.) [13-16]. However,
oftentimes this information cannot be easily accessed. Moreover, these geographical variables are not
frequently updated by government institutions. In the case of remote sensing data, the predictors most
commonly used in LUR models to retrieve PM10 are aerosol optical depth (AOD) and normalized
difference vegetation index (NDVI) from moderate-resolution imaging spectroradiometer (MODIS)
products [17-20]. MODIS products have a low spatial resolution that limits their application in medium
or small cities [21-23], but they are an efficient alternative to retrieve pollutants in regional (large
cities/regions) or national (countries) areas. Consequently, a possible alternative to MODIS products
is Landsat data. Nowadays, the operational Landsat satellites are Landsat-7 and Landsat-8 [24,25].
Landsat data have a higher spatial resolution compared with MODIS (30 m instead of 250 m) [23].
Several strategies to retrieve AOD from Landsat data have already been established [24]. Nevertheless,
these strategies require AOD ground station data in the study area to have aerosol information in a
medium spatial resolution [25,26]. Considering this limitation, other studies suggest that the visible
bands of Landsat sensors can be used to invert PM10 [27]. The strategy proposed in this work is useful
and effective when the AOD stations are limited.

In order to construct empirical LUR models, some studies have used multiple linear regression
(MLR) [26], considering a subset of variables through the stepwise regression (STW) algorithm [28,29].
Nevertheless, the use of MLR cannot analyze the possible multicollinearity between variables, because
we have a high correlation between near bands in the spectrum [30]. Moreover, it is well-known
that multicollinearity exists between remote sensing variables [31], producing a source of error in
MLR empirical models. However, an alternative that allows the computing of more accurate models,
avoiding multicollinearity, is to use partial least square (PLS) regression [32-34] or an artificial neuronal
network (ANN) [35]. Generally, ANNs give more accurate results in comparison with traditional
linear methods, considering the complexity of modeling air pollutants. Some atmospheric studies use
a multilayer perceptron (MLP) in the context of ANN in order to obtain a predictor model [26,36].

In Alvarez-Mendoza et al. [12], only remote sensing data were considered to compute the LUR
model based in a MLR without a method to select predictors. In this work, three main objectives are
proposed: (i) Using only remote sensing data will be used to establish LUR models without any AOD
predictor; (ii) making a comparison between three different remote sensing satellite/sensors (MODIS,
Landsat-7, and Landsat-8) to retrieve long-term PM10 considering only a selection of predictors and;
(iii) comparing the accuracy of different techniques (STW, PLS, and MLP) in the generation of the
predictive models. The two last items are the new contributions of this work.

2. Materials and Methods

2.1. Study Area

The study area is the urban zone of Quito, the capital of Ecuador. Quito comprises 45 urban
parishes or parroquias, distributed between the latitudes 0°30” S and 0°10” N and the longitudes 78°10" W
and 78°40” W (Figure 1). The average elevation is around 2800 meters above sea level. The city is
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located in the middle of the Andean Region. The mean minimum and maximum temperatures are
approximately 9.0 °C and 25.4 °C, respectively. On the other hand, Quito is a region without four
seasons because it is in the tropical area, near to the equatorial line. This area was chosen considering
the influence of nine AQMN stations.
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Figure 1. Map of the study area (red dots for REEMAQ (Red Metropolitana de Monitoreo Atmosférico
de Quito) stations and green polygons for urban parishes).

2.2. PM10 Data from AQMN Stations

In order to monitor air quality in Quito, nine stations have been acquiring air pollutants since
2002 (Figure 1). Together they form the “Red Metropolitana de Monitoreo Atmosférico de Quito”
(REMMAQ) [37]. REEMAQ is the AQMN of Quito, where one of the air pollutants daily measured
is PM10. These data are public and free to download (http://www.quitoambiente.gob.ec/ambiente/
index.php/datos-horarios-historicos). The PM10 concentration is measured in micrograms per cubic
meter (ug/m?). In this study, we use three-month-averages from 2013 to 2017, matching with the dates
of the remote sensing data (time when the satellite passes over the study area). The main reasons to
use three-month-averages are the few available remote sensing data and REMMAQ stations (stations
without data in some months or with negative data values). In this study, PM10 three-month-averages
are used as the dependent variable.

2.3. Remote Sensing Data Predictors

In this study, three different types of remote sensing data were used to retrieve PM10 between
2013 and 2017: Landsat-7 ETM+, Landsat-8 OLI/TIRS and MODIS/Terra and Aqua (Table 1). The
remote sensing data are free to download from the United States Geological Survey (USGS) website
(http://earthexplorer.usgs.gov). Moreover, only images with less than 10% cloud cover were considered
in the study, because one of the main problems in these regions is the presence of a high cloud
density [38,39]. According to this limitation, just 40% of remote sensing data was considered.
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Table 1. Characteristics of satellites and sensors used in the study.

Overpass Time of

Satellite Sensor Spatial Resolution

Satellite
Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 16 days 30m
~ Operational Land Imager (OLI)
Landsat-8 Thermal Infrared Sensor (TIRS) 16 days 30m
Terra (EOS AM-1) Moderate Resolution Imaging 1t02 days 500 m

Aqua (EOS PM-1) Spectroradiometer (MODIS) MCD43A4

The predictors or independent variables (surface reflectance bands and environmental indexes)
are listed in Table 1. The selection of remote sensing predictors was related to their possible correlation
with the PM10 concentration [9,40-42]. In the case of the environmental indexes, the most popular
indexes in LUR studies to retrieve PM10 were used. They were computed as (1), (2), (3), (4), and (5) in
Table 2, respectively.

Table 2. Remote sensing predictors used to build the model for each sensor.

Predictors Landsat-7 Landsat-8 MODIS
Blue band (B)
Green band (G) Landsat surface data Landsat surface data MODIS MOD09A1
Red band (R) Level-2 Level-2 MYD09A1 product
Near Infrared (NIR) cve cve products
Short Wave infrared (SWIR)
Normalized Difference NDVI = NIE=R (7 MODIS MOD13Q1
Vegetation Index (NDVI) ~ NIR+R MYD13Qlproducts
Normalized Difference Soil SWIR-NIR
Index (NDSI) NDSI = gwreniE (2)
Soil-Adjusted Vegetation SAVI = (1+ L) gi55 )
naex where L represents a minimal change in the soil brightness with a value ot 0.
Index (SAVI) here L rep inimal change in the soil brigh ith lue of 0.5 [43]
Normalized Difference _ G-NIR
Water Index (NDWI) NDWI = &Nk 4)
— BT _
LST = (1+(%)ms) 273.15 (5)
Land Surface Temperature where BT is the brightness temperature, A is the MODIS MOD11A1
(LST) center wavelength (Landsat-7 = 11.45 um, MYD11A1 products

Landsat-8 = 10.8 um) [44], p is a constant and ¢ is the
emissivity [45,46].

2.4. LUR Models

LUR models are an alternative to predict the spatialization of air pollutants, particularly when
the number of AQMN stations is limited. They use different geographical variables such as roads,
traffic information, meteorological and remote sensing data, and other environmental variables, in
order to build a model to retrieve air pollutants. However, often several geographical variables are not
available. Thus, we should use simple alternatives, such as free remote sensing data, as variables to
approach a LUR model.

In most cases, LUR uses MLR to establish the model [47,48]. MLR allows an easy and simple model
construction. In our case, the dependent variable is the quarterly PM10 value and the independent
variables or spatial predictors are the remote sensing data in each coordinate of the AQMN station,
considering the free cloud pixel value. Equation (6) shows the original LUR model, considering all the
remote sensing predictors in MLR.

PM10 = I +aNDVI—-bNDSI - cSAVI+dNDWI —eLST — fB—gG +hR +iNIR + jSWIR + kY - IS (6)
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where I is the intercept, NDVI is normalized difference vegetation index, NDSI is the normalized
difference soil index, SAVI is the soil-adjusted vegetation index, NDWI is the normalized difference
water index, LST is the land surface temperature, B is the blue band, G is the green band, R is the
red band, NIR is the near infrared band, SWIR is the shortwave infrared band, Y is the year of image
acquisition, S is the three-month-averages of image acquisition (January—-March—1, April-June—2,
July—September—3, and October-November—4), a, b, ... , 1, are the coefficients in each predictor. The
other variables are described in Table 1.

Nevertheless, considering that multicollinearity exists between remote sensing variables [31],
different predictor techniques should be employed to compute the LUR model. We compare three
techniques, namely, MLR with STW, PLS, and ANN, in order to find the fittest model (Figure 2).

In the first model, we use MLR considering an STW. It contemplates different parameters in order
to identify the most adequate/influencing variables as predictors. The parameters used to subset
the variables are: (i) The residual sum of squares for each model (RSS); (ii) the adjusted regression
coefficient R? (Adj. R2); (iii) Mallows’ Cp (CP) and; (iv) Bayesian information criterion (BIC).

The second model uses PLS with the STW criteria to select the predictors. The main challenge
when using PLS is to avoid multicollinearity, finding an alternative when we have few data and a
significant number of predictors [49]. PLS generates new latent variables or components in a lineal way.

Finally, the last model uses an ANN in an MLP, with a hidden layer and six hidden nodes to
compute the predictive model. The nodes are computed according to [50]. In this model, we use all
the predictors. This method is used when the model is complex, giving a different weight to each
predictor corresponding to its importance. Additionally, we use a non-linear activation function with
backpropagation. The training data to build the MLP consider 75% of the dataset and the remaining
25% for test. We use a backpropagation approach to train the algorithm. The R studio software was
used in this study to extract the data and to compute all the models.

MODIS Surface
reflectance and 1
Brightness
lemperature B
Building LUR
Remote Landsat-7 Quarterly mean models SWR, PLS
sensing data per AQMN and MLP
station
Compute
environmental ¥
Landsat-8 indexes
Independent variables Model validations
* and comparisons
Subsetting the possible | |

predictor variables

Y

T PM10 maps from
LUR building only
ly mean
AQMN PM10 ground Quarterly . by remote sensin
stations da%a perl[-‘\lQMN Dependent variable ¥ data 8
: Z : station

Figure 2. Workflow of the methodology proposed to establish the land use regression (LUR) models.

Y
Y

3. Results

PM10 ground measurements and remote sensing data are matched in a table with the same
date. Thus, the unique condition is to consider remote sensing data with less than 10% cloud density.
So, the three-month-averages matching tables for each sensor contain 35 observations for Landsat-7,
93 observations for Landsat-8, and 108 observations for MODIS. The main reasons to have only these
numbers of observations are the high cloud density in the study area and the incomplete/not available
air pollution data. Furthermore, the criteria to select predict variables consider five dependent variables
for Landsat-7, eight dependent variables for Landast-8, and six dependent variables for MODIS, for
each STW and PLS model, as shown in Table 3. They were obtained according to STW criteria (RSS,
Adj. R2, CP, and BIC). The variables common to all the three cases considered are blue band, near
infrared (NIR) band, and normalized difference vegetation index (NDVI).
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Table 3. Number of observations and predictors per satellite to build the LUR models.

Variable Landsat-7 Landsat-8 MODIS
No. Observations 35 93 108
No. Predictors 5 8 6
NDVI
SAVI NDVI
NDVI LST B
B B G
Predictors R
NIR G R
g R NIR
NIR S
Y

The LUR models are computed considering STW and PLS regressions in a linear way and MLP
in a non-linear way. They are shown and compared in Table 4 (Equations (7)-(12)). In the case of
Landsat-7, the STW shows a coefficient of determination (Rz) of 0.37, the PLS a R? of 0.36, and, for
MLP, a R? of 0.46. The lowest root-mean-square error (RMSE) was obtained for STW with a value of
9.47. For Landsat-8, in STW a R? of 0.42 was obtained, and a R? of 0.43 for PLS, and a R? of 0.68 for
MLP (Figure 3). The lowest RMSE obtained was for MLP. Finally, for MODIS, a R2 of 0.15 for STW,
a R? of 0.19 for PLS and a R? of 0.25 for MLP were obtained. The lowest RMSE was for STW.

Table 4. LUR models for each sensor with different regression techniques. In the case of multilayer
perceptron (MLP), the model is not linear.

Coefficient of Root-Mean-Square
Sensor Model Equation/Method Deter(r;l{;r)latlon Error (RMSE)
Stepwi PM10 = -26.770 +
cpwise 205.280NDVI - 0.073B + 0.37 9.47
regression (STW)
Landsat-7 ETM+ 0.144R — 0.048NIR + 2.270S (7)
Partial least square PMIO = 24.786 ~
regression (lglLS) 54.369NDVI - 0.059B + 0.36 10.14
& 0.049R — 0.008NIR + 2.165S (8)
Multilayer Non-linear. One hidden layer 046 12.69
perceptron (MLP) and six hidden nodes. ’ ’
PM10 =
—4125.506 + 350.130NDVI -
Landsat-8 STW 200.3345AVI10.936LST — 0.42 9.19
oLl /;?Rs 0.035B — 0.036G + 0.099R —
0.013NIR + 2.061Y (9)
PM10 =
—4146.508 + 115.816NDVI —
PLS 40.465SAVI1.020LST — 0.43 9.46
0.036B - 0.038G + 0.104R —
0.016NIR + 2.073Y (10)
Non-linear. One hidden layer
MLP and six hidden nodes. 068 622
PM10 =
1.248 + 93.411NDVI +
MODIS STW 0.056B — 0.070G -+ 0.056R — 015 1291
0.017NIR + 3.190S (11)
PM10 =
5.661 + 79.106NDVI +
PLS 0.060B - 0.072G +- 0.050R — 0-19 1293
0.014NIR + 3.308S (12)
MLP Non-linear. One hidden layer 025 16.38

and six hidden nodes.
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Figure 3. Comparison between R? and root mean square error (RMSE) in the model results for Landsat-8
data: (a) stepwise regression (STW); (b) partial least square (PLS); (c) MLP.

The results in Table 4 show that Landsat-8 data with MLP are the fittest model. The MLP employed
(Figure 4) has one hidden layer with six hidden nodes.

NDVI

NSI

SAVI

NDWI

LST

BAND BLUE

BAND GREEN

BAND RED

BAND NIR

BAND SWIR

YEAR

SEASON

Figure 4. MLP diagram for Landsat-8 data.
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Figure 5 shows the relative variable importance according to the assigned weights, where the red
band is the most significant in the model, while LST presented the lowest significance.

10-

o

NDVI BAND_MNIR  BAMD_BLUE BAND_GREEN  SEASON SAVI BAND_SWIR LsT NSI NOWI YEAR BAND_RED

Figure 5. Relative variable importance in Landsat-8 MLP. The scale is between —0.5 and 1, where 0 is
the lowest (null) importance.

The Landsat-8 LUR-MLP model is chosen to predict PM10, considering the highest R? and the
lowest RMSE. In Figure 6, the quarterly maps show the PM10 spatial concentration during 2015, in a
color scale in ug/m3. The white gaps showed in the maps are clouds with a high density.
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Figure 6. PM10 concentrations during the season 4 (July to September) with Landsat-8 LUR-MLP
model in: (a) 2013; (b) 2014; (c) 2015; (d) 2016; (e) 2017. The white gaps represent areas with a high
cloud density.

4. Discussion

As demonstrated in this study, LUR models are an interesting alternative to model air quality,
specifically PM10 concentrations, when the in-situ air quality measures are insufficient. Usually, most
of the predictors are geographical variables (such as roads), traffic, meteorological data, and others [13].



Environments 2019, 6, 85 10 of 15

LUR models are usually applied in small cities or regions where AQMN stations are limited [51], and
where spatial interpolation techniques, such as ordinary kriging or inverse distance weighting, cannot
be applied, considering the low number of ground measurements available [52]. One of the main
problems with these geographic variables is the low accessibility to the data and the time of acquisition.
Sometimes, these variables are obsolete, and they are not enough to establish a possible trend.

In this study, we propose an alternative, considering only free remote sensing variables. We apply
this approach to the city of Quito, Ecuador, during the period between 2013 and 2017, in order to
compare three different satellite data. Quito is growing in new poles. When REEMAQ was established
in 2002, Quito did not have its current size and configuration. Now, REEMAQ is an obsolete air quality
network, especially in the distribution of stations, which urgently needs improvement. Air pollutant
spatial models are techniques based on interpolation or geostatistics approaches, which can be useful
if a reasonable number of stations are available with a good spatial distribution [53]. In this study, only
nine stations are available. Moreover, in some cases, the data are incomplete during some months.
Additionally, according to some authors [7,8], it is possible to have more air ground data with low-cost
sensors, however they must be implemented in the cities in order to monitor the air quality. The
alternative to improve the air quality model in Quito is to establish different spatiotemporal LUR
models, considering only remote sensing data as predictor variables. A preliminary study shows the
use of only remote sensing variables but using an MLR in order to build the model. The limitation is the
use of all remote sensing predictors without considering the collinearity [12]. In order to establish the
models, three different remote sensing data were tested (Landsat-7, Landsat-8, and MODIS) and three
techniques for modeling (STW, PLS, and MLP) were employed. The selected variables to compute
the model are the visible NIR and SWIR bands of the three sensors, different environmental indices
(NDVI, NDSI, SAVI, NDWI), and LST, computed from the data retrieved from each sensor. Most of the
studies published use aerosol optical thickness (AOT) derived from MODIS (MODO04) [54] as the input
in LUR models, however, this product has a low spatial resolution (3 X 3 km) [55]. This resolution is
not practicable when considering cities like Quito, where the maximum width is near to 10 km. On the
other hand, some MODIS products do not have a suitable quality for local studies [56]. Other studies
use Landsat-8 combined with AOT ground stations to spatially model the AOT [24]. This could be a
good alternative, however in our study area, we do not have access to this information between 2013
and 2017.

Comparing the LUR models established, we found that Landsat-8 is the most adequate sensor to
model PM10 concentration, considering the 93 records and according to a previous study [12]. MLP
is the fittest alternative to model PM10, with a R? of 0.68 and a RMSE of 6.22. In this context, the
non-linear model (MLP) has a fitter result when compared to the linear models (STW and PLS) [26].
Therefore, the LUR-MLP model was chosen to map the spatial concentration of PM10 in Quito, between
2013 to 2017. MODIS presents the lowest R? with a value of 0.19, considering the PLS regression. This
could be related to the lowest spatial resolution. Thus, most of the LUR models use MLR or STW.
MLR is easy to implement. However, one of the main problems could be the multicollinearity, because
MLR does not analyze the correlation between predictors [57]. On the other hand, the linear PLS helps
to avoid the multicollinearity creating new latent variables with few observations [34]. In a future
work, a possible combination between STW (in order to select the predictor variables), non-linear
PLS (in order to avoid the multicollinearity between remote sensing data), and a machine learning
technique (as ANN) can improve the LUR models [58].

In the case of the predictors, all the models present, in all the cases, the variables blue band, NIR,
and NDVLI. In the case of NDVI, a possible reason is the direct influence of vegetation on the PM10
concentration and distribution [18]. On the other hand, the red band has the most importance in MLP,
because there could be a relationship between the retrieval of PM10 with the blue and red bands [27].
In most of the LUR studies, the authors use traffic, roads, meteorological, land use, population, and
other predictors, reporting values of R? according to the reality of each local [26]. These models also
considered different time periods (monthly, quarterly, yearly). The main difference of our approach
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is the use of remote sensing data only as predictors, which can replace the necessity to have all
geographical variables. Another advantage is the data availability and continuity in order to recompute
the LUR models. One of the main limitations of our model is the high cloud density presented in the
images during all the year [38], making it complicated to use more data in order to improve the model.
However, a future work will intend to have more satellite sensors or to find new alternatives to recover
remote sensing data contaminated with clouds [39].

Figure 6 shows variations year by year according to PM10 mean concentration based on in-situ
data (REEMAQ Stations). We choose the third season to show the variation year by year (2013-2017),
because we have more remote sensing data available (without a high cloud density) during this
time-window. According to the results presented in Figure 6, an increasing of PM10 concentration
between 2013 to 2017 is notorious in the most of the urban parishes [59]. However, some areas showed
a decreasing tendency in some years. The lowest PM10 concentration was found in some peripheral
parishes during the 2014 year, because the air stations that influence these parishes (Tumbaco and
Los Chillos) had a variation in the concentrations. Thus, Tumbaco and Los Chillos stations are in the
east part of the study area and began to present the lower values in 2014 followed by 2013, according
to the in-situ measures. After 2014, the PM10 values for these stations began to increase. The main
reason could be related to the new operation of the new airport of Quito (2013), and the construction
of important road infrastructures around it (end of 2014). Another possible explication is the traffic
influence during the last years, particularly in the peripheral areas where an increase was registered
since 2015 and also the increase of the population in these areas [60]. In the northern parishes, the
stations of San Antonio P. and Carapungo are influenced by the presence of stone and sandy point
quarries [61]. The stations Centro, Belisario, and El Camal are in the city downtown, and it is the main
reason that an increase of PM10 concentration during the last years is verified in the center parishes.

According to our results, several areas presented concentrations higher than 50 pg/m? (Figure 6),
while the World Health Organization (WHO) recommends, in its guidelines, maximum values of
20 ug/rn3 as an annual mean and 50 ug/m3 as a 24-h mean [1]. However, some areas do not show
values, due to the high cloud density (white areas in Figure 6). Thus, the PM10 concentration maps
from the Landsat-8 LUR-MLP model can help local government decision makers to manage air quality
concentration and to organize new policies, specifically in the places where the highest concentrations
were identified.

5. Conclusions

In this study, three different satellite datasets were compared to retrieve models of PM10 through
LUR, in Quito, Ecuador between 2013 and 2017. Additionally, three techniques were compared to
compute the LUR models (SWR, PLS, and MLP). From this work, several conclusions could be taken:
(i) It is possible to build empirical models established using only remote sensing variables as predictors
without any other geographic variables, as traditional LUR models; (ii) in the case of Quito, the study
results show that Landsat-8 provides the most suitable satellite data to retrieve PM10, in comparison
with Landsat-7 and MODIS; (iii) MLP allows the obtainment of the most robust result in comparison
with the other modeling techniques. MLP is the fittest alternative to model PM10, with a R? of 0.68 and
a RMSE of 6.22, and; (iv) the MLP model established helps in the spatial mapping of PM10, where in
the time window of this study, were found areas with PM10 values higher than the limit established by
WHO. Thus, these models are useful in the management of air quality in the city of Quito and can be
applied to other locations with similar characteristics.
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Abstract Surface ozone is problematic to air pollution.
It influences respiratory health. The air quality monitor-
ing stations measure pollutants as surface ozone, but
they are sometimes insufficient or do not have an ade-
quate distribution for understanding the spatial distribu-
tion of pollutants in an urban area. In recent years, some
projects have found a connection between remote sens-
ing, air quality and health data. In this study, we apply an
empirical land use regression (LUR) model to retrieve
surface ozone in Quito. The model considers remote
sensing data, air pollution measurements and meteoro-
logical variables. The objective is to use all available
Landsat 8 images from 2014 and the air quality moni-
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toring station data during the same dates of image ac-
quisition. Nineteen input variables were considered,
selecting by a stepwise regression and modelling with
a partial least square (PLS) regression to avoid
multicollinearity. The final surface ozone model in-
cludes ten independent variables and presents a coeffi-
cient of determination (R®) of 0.768. The model pro-
posed help to understand the spatial concentration of
surface ozone in Quito with a better spatial resolution.

Keywords Landsat 8 - Quito - Ozone - PLS - Air
modelling

Introduction

Surface ozone (O3) is one of the principal greenhouse
gases (US Department of Commerce 2018). It is pro-
duced in the troposphere and is not emitted directly into
the air. A chemical reaction between nitrogen oxides
(NOy), volatile organic compounds (VOC) and sunlight
produce Oz (US EPA 2014). Thus, urban growth, ve-
hicular traffic and industry are sources of NO, and VOC
in cities, deteriorating the vegetation conditions (Monks
etal. 2015), the air quality and creating a health problem
(US EPA; WHO (World 2013)).

Several cities around the world have an air quality
monitoring network (AQMN) to manage air pollution
(Liang et al. 2016; Lee et al. 2018). One of the cities
with an AQMN is Quito, the capital of Ecuador. The city
has traffic and population problems that increase air
pollution. Its AQMN is the “Red Metropolitana de

@ Springer
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Monitoreo Atmosférico de Quito” (REMMAQ), consti-
tuted by nine stations. It has managed the air quality in
Quito in real time since 2002 (Secretaria del Ambiente
de Quito 2018). The REMMAQ stations measure air
pollutants such as carbon monoxide (CO), nitrogen
dioxide (NO») as part of NO,, sulphur dioxide (SO,),
particulate matter less than 10 um (PM10), fine particles
less than 2.5 um (PM2.5) and O Nevertheless, the
number of stations is insufficient to measure the air
quality in all urban zones in the city.

Some empirical models to retrieve the spatial con-
centration of air pollutants have been developed using
variables such as road information and vegetation. The
land use regression (LUR) models are the basis of most
of these approaches. The principle of LUR focuses on
the environmental characteristics of the place where the
pollutant is present (Habermann et al. 2015). Some
models consider remote sensing data, meteorological
data (MD), aerosol optical depth (AOD) field measure-
ments and AQMN data (Liu et al. 2007; Chen et al.
2010; Zhang et al. 2018). In most of these studies, the
limitations are related to the input variables, especially
AOD field measurements. This is because models re-
quire AOD parameters to obtain high-resolution
spatialization (Bilal et al. 2013; Zhang et al. 2018).
The most commonly used remote sensing data are
Landsat (Chen et al. 2014; Meng et al. 2015; Zheng
et al. 2017) and MODIS (Stafoggia et al. 2017; Braun
et al. 2018) sensors. The main advantage of Landsat
images in specific Landsat 8 (U.S. Geological Survey
2016) is the high spatial resolution to map middle cities.
Their limitation is the temporal resolution (16 days)
(U.S. Geological Survey 2016). The advantage of
MODIS is its high temporal resolution, but the major
limitation is the low spatial resolution, which limits the
accurate retrieval of maps (Daac et al. 2012). Moreover,
remote sensing data are used to obtain environmental
variables such as vegetation health (Jia et al. 2014;
Zhang et al. 2016) to input variables in the air pollutant
models. Furthermore, empirical models using remote
sensing data are focused on only some air pollutants,
such as NO,, PM10 and PM2.5. At present, the main
challenge is to retrieve the remaining air pollutants, such
as O3, which is considered only in few studies (e.g. Mok
et al. 2018).

In the case of Quito, a study found the spatial distri-
bution of PM10 by applying remote sensing data
(Alvarez and Padilla Almeida 2016). The main limita-
tion of the study was the small quantity of data used

@ Springer

(three images). On the other hand, a study making a
comparison between remote sensing to retrieve air pol-
lutant in Quito is considered (Alvarez-Mendoza et al.
2018b). However, there are few studies about air quality
in the city, specifically considering O3 (Cazorla 2016).
Thus, the possibility of obtaining AQMN public data,
and combining them with other environmental vari-
ables, can lead to new models for retrieving air pollut-
ants in places where AQMN are insufficient.

This study uses remote sensing data, air pollution
measurements and meteorological variables to retrieve
O3 for 1 year (2014) in Quito. Moreover, this study
combines two regression techniques, stepwise regres-
sion (SWR) and partial least-square (PLS) regression, to
compute the O3 model, finding the fittest model to
spatialize the variable in all the areas. The main objec-
tive is to find the spatial variables that influence O; in
Quito.

Materials and methods
Study area

This study was developed in Quito, the capital of Ecua-
dor. The city elevation is approximately 2800 m above
sea level. During 2014, the mean minimum and maxi-
mum temperatures were 9.0 °C and 25.4 °C (Instituto
Nacional de Meteorologia e Hidrologia 2016). Further-
more, Quito has a dry season and a wet season. It does
not have four seasons considering that the city is in the
middle of the tropic zone. The latitude and longitude of
the study area are 0° 30" S to 0° 10’ N and 78° 10" W to
78° 40" W. These coordinates delimit most of the urban
zone, which is divided into urban parishes (Fig. 1).

Air pollutant ground data

The daily air pollutant concentration data from 2014
were obtained from the REMMAQ stations. The
REMMAQ has nine automatic stations that have been
operated by the “Secretaria del Ambiente de Quito”
since 2002 (Fig. 1). The stations measure concentrations
of air pollutants such as PM2.5, SO,, CO, O3, NO,,
PM10 and MD (Table 1). In this study, daily average
measurements were considered to match with the satel-
lite overpass (Fig. 2) (See section 2.4). Furthermore,
only complete datasets were used, which means that if
a dataset was incomplete, it was not considered for the
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Fig. 1 Quito’s urban parishes were considered as the study area. The blue marks represent the REMMAQ stations

model establishment. PM2.5, SO,, CO, and NO, were
the complete datasets to estimate Oz. The pollutant
concentration was measured in micrograms per cubic
metre (ug/m®) according to the Environmental Protec-
tion Agency (EPA) methods. The O; measuring device
was a Teledyne API/T400, and the collection method
was EPA No. EQOA-0992-087 (Secretaria del
Ambiente de Quito 2018). The hourly pollutant concen-
tration data have public access (http://www.
quitoambiente.gob.ec/ambiente/index.php/datos-
horarios-historicos).

Meteorological data

The MD were collected only by eight REMMAQ sta-
tions (Table 1). The data used were the daily average
temperature (TMP) in degrees Celsius (°C), relative
humidity (HM) in percentage (%) and solar radiation
(SR) in watt per square metre (W/m?). The precipitation
measurements were not used because most of the values
were null in the time range considered.

In both cases (air pollutant ground data and meteo-
rological data), the R software was used to analyse the
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Table 1 Field sensors of the REEMAQ

Station Variables measured

Cotocollao PM2.5, SO,, CO, O3, NO,, PM10, MD
Carcelen PM2.5, SO,, CO, O3, NO,, PM10, MD
Belisario PM2.5, SO,, CO, O3, NO,, MD
Jipijapa PM2.5, SO,, CO, O3, NO,, PM10, MD
Camal PM2.5, SO,, CO, O3, NO,, MD
Centro PM2.5, SO,, CO, O3, NO,

Guamani SO,, CO, O3, NO,, PM10, MD
Tumbaco SO,, O3, PM10, MD

Los Chillos PM2.5, SO, CO, O3, NO,, MD

data and compute the statistics. The packages readx! and
stringi were used.

Remote sensing data

Landsat 8 is a satellite launched on February 11, 2013. It
is the last satellite of the Landsat project launched. The
satellite carries two push-brown instruments to collect
land remote sensing data on an image: the Operational
Land Imager (OLI) with nine bands and the thermal
infrared sensors (TIRS) with two bands. Additionally,
the Landsat 8 data file provides a quality assessment
(QA) band to assess the different image products. The
Landsat 8 images are freely available on the United
States Geological Survey (USGS) website. The USGS

develops research-quality and application-ready prod-
ucts such as the Landsat 8 Surface Reflectance Level-2
products (L2T). These products are generated from the
Landsat Surface Reflectance Code (LaSRC) (Vermote
et al. 2016). The LaSRC products are radiometric and
atmospherically corrected. The LaSRC products include
surface reflectance of the OLI bands (bands 1 to 9), top-
of-atmosphere brightness temperature (BT) (band 10
and band 11) and some environmental indexes such as
the normalised difference vegetation index (NDVI),
soil-adjusted vegetation index (SAVI) and enhanced
vegetation index (EVI).

In this study, Landsat 8 L2T images were
downloaded from the Earth Resources Observation
and Science (EROS) Center Science Processing Archi-
tecture (ESPA) at the demand interface (https://espa.cr.
usgs.gov/). The search criteria were images in 2014 with
less than 20% cloud cover in the study area. One of the
challenges was to choose the subset of images without
high cloud density in the study area (Alvarez-Mendoza
et al. 2018a). According to the search criteria, ten im-
ages (path 11; row 60) were selected (Table 2).

Considering the direct influence of the sunlight over
O3 concentration (US EPA 2014) and knowing the
principle of passive remote sensing data to capture the
radiation-measured reflectance sunlight (Liew 2001;
NASA EOSDIS 2018), bands 1 to 7 (visible and infra-
red bands) (U.S. Geological Survey 2016) were used as
input variables. NDVI, SAVI and EVI were used to
highlight the vegetation because there is a high relation

Fig.2 Mean levels from 10:00 to
11:00 (GMT-5) of O3
concentration (ug/m3) observed
in each month during 2014. The
San Antonio P. station did not
present measures during 2014
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Table 2 Landsat 8 L2T images selected

No. Image Date

1 LCO8 LITP 010060 20140115 20170426 01 T1 15/01/2014
2 LCO08 LITP 010060 20140131 20170426 01 T1 31/01/2014
3 LCO8 _LITP 010060 20140216 20170425 01 Tl 16/02/2014
4 LCO08 LI1TP_010060 20140304 20170425 01 T1 04/03/2014
5 LCOS_LITP 010060 20140405 20170424 01 TI 05/04/2014
6 LCO8 LITP 010060 20140608 20170422 01 TI1 08/06/2014
7 LCO8 LITP 010060 20140710 20170421 01 Tl 10/07/2014
8 LCO8_LITP 010060 20140726 20170420 01 Tl 26/07/2014
9 LCO8 LI1TP 010060 20140811 20170420 01 T1 11/08/2014
10 LCO08 LI1TP 010060 20141030 20170418 01 T1 30/10/2014
between O; and vegetation (Sicard et al. 2017). The BT

indexes were obtained from LaSRC and multiplied by LST = —273.15 4)

0.0001 (USGS 2017) to retrieve the surface environ-
mental indexes (values between — 1 and 1).

The NVDI provides information about health vege-
tation, using band 4 (B4) and band 5 (B5) in Landsat 8
images. It is computed using Eq. 1.

NDVI = BSB4 (1)
B5 + B4

The SAVI is an improvement of NDVI considering a
soil correction factor (usually LS =0.5). Considering
Landsat 8, it uses B4 and B5 as input (Eq. 2).

B5-B4

SAVI=(1+L8) 5o 5t is

(2)
The EVI enhances the vegetation in areas with high
biomass. Thus, EVI helps to identify stress vegetation
using Eq. 3.
B5-B4

BVl = X g T eI xBa-Co x B2 1 L (3)

Where the gain factor (G) is 2.5, L is the canopy
background adjustment (L=1) and C1 and C2 are
coefficients for atmospheric resistance (C1 =6, C2 =
7.5). The B4 and B5 have a high contrast in the
detection of built-up areas and bare lands areas (As-
syakur et al. 2012).

Moreover, the land surface temperature (LST) re-
trieved from remote sensing has been used in other
studies to estimate the air quality (Chen et al. 2014). It
was computed as a function of BT. Equation 4 repre-
sents the LST in degrees Celsius.

(e (457 )

Where ) is the centre wavelength (A =10.8 um), p is
a constant obtained in Eq. 5, E is the emissivity as Eq. 6
and 273.15 is the value to transform degrees Kelvin to
degrees Celsius.

The constant p is estimated using Eq. 5, where / is
the Planck constant (6.626e-34 Js), c is the speed of light
(2.998e8 m/s), and s is the Boltzmann constant (1.38e-
23 J/K).

hxc

(5)

p =
s
Equation 6 represents the emissivity £ (Vieira et al.

2016). E is the efficiency of a surface that emits heat as
thermal infrared (TIR) radiation (Gillespie 2014).

E5,NDVI < NDVI,
E ={ E+ (Ey—E;) Py, NDVI,;<NDVI<NDVI,
E,, NDVI > NDVI,

(6)

Where E; represents the emissivity for soil. A value
0f 0.973 is used in this study (Sobrino et al. 2008). £, is
the vegetation emissivity with a value of 0.985 in this
study (Sobrino et al. 2008). NDVI, is the NDVI in
vegetation with a value of 0.2 (Vieira et al. 2016),
NDVIy is the NDVI in the soil with a value of 0.5
(Vieira et al. 2016) and Pv is the proportion of vegeta-
tion in the area using Eq. 7.
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NDVI-NDVI; \ *
Py = (7)

NDVI,—-NDVI;

The remote sensing variables were represented as
raster data (GeoTIFF format). They were computed in
R studio software with the rgdal and raster packages.
Through the shapefile of REMMAQ stations, the raster
values for each station were extracted. The package
dismo was used to perform this task.

Model building

The first step in building the model is the compilation of
all possible variables (air measurement data, meteoro-
logical data and remote sensing data) in a database. Each
row in the table has all the values of these variables in a
REMMAQ station during the date established (Table 3).

LUR models are a good alternative for finding the
spatial location of pollutants (Larkin et al. 2017).
LUR models are empirical regression models that
consider the pollutant of interest as the dependent
variable and other geographical variables as indepen-
dent variables (meteorological data, traffic, topogra-
phy, remote sensing data, etc.). In this study, we
generate an LUR model using the available data from
each station on different dates during 2014 to pre-
serve the accuracy of the variables.

Assuming that multicollinearity between variables
is real, especially between remote sensing variables
(Chen and Meentemeyer 2016), a preliminary corre-
lation analysis was realised to provide an overview of
which variables are more adequate for integration
into the model.

To select the fittest predictor variables and the best
model to predict O3, a subset analysis is performed
with stepwise regression. The subset analysis used

four analyses: the residual sum of squares for each
model (RSS), the adjusted regression coefficient R?
(Adj. R*), Mallows’ Cp (CP) and the Bayesian infor-
mation criterion (BIC). The R-package used to com-
pute this was leaps.

The original LUR model with all the possible predic-
tor variables as input in the analysis is shown in Eq. 8.

O3 = aPM2.5 + bSO, + cCO + dNO, + eTMP
+ fHUM + gSR + hB1 + iB2 + jB3
+ kB4 + IB5 4+ mB6 + nB7 + oNDVI
+ pSAVI + gEVI + rLST + 1 (8)

Where a, b, c ... r are the coefficients of the regres-
sion model, and 7 is the intercept in the equation. The
subset analysis reduces the number of input variables
with the considered criteria (RSS, Adj. R?, CP, BIC).

Once the input variables are selected, a PLS regres-
sion is applied to avoid the multicollinearity between the
variable subsets. PLS is a technique applied in cases
where traditional regression models fail, and the predic-
tors have a high correlation, as shown in Egs. 9 and 10.

X=TP" +E (9)

Y=UQ" +F (10)

Where X is a n x m matrix of predictors, Yisan x p
matrix of responses; 7'and U are n x [ matrices that are,
respectively, projections of X and projections of ¥; P and
O are, respectively m x [ and p x [ orthogonal loading
matrices; and matrices E and F are the error terms. The
decompositions of X and Y are made in order to

Table 3 Variables considered in

the model No. Variable Units
Air pollutants ground 03, PM2.5, SO,, CO, NO, ug/m3
data
Meteorological data Temperature (TMP) °C
Relative humidity (HUM) %
Solar radiation (SR) W/m?

Remote sensing data

Band 1 (B1), Band 2 (B2), Band 3 (B3), Band 4
(B4), Band 5 (B5), Band 6 (B6), Band 7 (B7)

Surface reflectance

Environmental indexes: NDVI, SAVI, EVI —
Land surface temperature (LST) °C

@ Springer
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maximise the covariance between 7 and U. Additional-
ly, PLS generates an orthogonal transformation to obtain
components by finding the most appropriate model to
explain the variance starting from the maximised co-
variance matrixes (Williams et al. 2013). In the case of
remote sensing data, some studies consider
multicollinearity when the same sensor is used to obtain
different variables (Chen and Meentemeyer 2016;
Gholizadeh and Robeson 2016). Finally, the validation
is performed by cross-validation (Fig. 3) and the criteri-
on to accept or reject models where RZ, RMSE, predi-
cated vs measured graphic and residuals analysis. The
R-packages used were pls and plsdepot.

Results and discussion
Building the ozone LUR model

The LUR model tested 19 variables (18 independent
variables or predictors and O3 as the dependent

Satellite
Data

A

variable), matching all variables (air measurement data,
meteorological data and remote sensing data). The result
is a database with 36 observations, where most of the
remote sensing data variables show a high correlation
(Fig. 4). The high correlation or multicollinearity (in
some cases near 1) indicates that some variables are
highly related, such as NDVI, SAVI and EVI, or the
visible bands (B1, B2, B3, B4). On the other hand, the
highest correlation between all predictors with Oj is
PM2.5, showing a value of — 0.44. The highest correla-
tion considering only the remote sensing data variables
is B6 with 0.22.

To find the model with the best fit, a stepwise regres-
sion subset is used. In the first instance (Fig. 5), the
coefficient of determination (R?) is near 0.68, consider-
ing all 18 independent variables to build the model. The
subset variables are analysed by the less Akaike infor-
mation criterion (AIC) and the maximum Adj. R

The preliminary predictors are known (Fig. 5); so to
find a simple model with fewer input variables, a new
subset of variables, applying RSS, Adj. R*, CP and BIC
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Fig. 4 Correlation graph between input variables

criteria, are analysed (Fig. 6). Analysing the four
criteria, 11 independent variables are used to build the
simplest model (PM2.5, HUM, TMP, B2, B4, B5, B7,
NDVI, SAVI, EVI).

The 11 variables chosen were then considered in the
PLS analysis (Fig. 7). The number of components in
PLS regression was nine. These components explain
most of the percentage of variance (Table 4), after
cross-validation (data not shown). The R* obtained
was 0.77, and the RMSE was 3.03 through the PLS
regression.

Avoiding the multicollinearity, the PLS regres-
sion is applied, presenting values different from 1

@ Springer

-1

in the correlation matrix between the variables and
the components (Table 5). Moreover, cross-
validation is applied to the components. Equation 9
shows the resulting model to retrieve O during
2014, considering the dataset.

O3 = —0.47PM2.5-3.41 TMP-0.34HUM—-1371.47B2 (9)
+ 9449.41B4-7852.43B5-436.68B7—-1028.50NDVI

+4961.14SAVI + 1178.61EVI 4 66.06

Finally, Eq. 8 allows mapping the O3 concentration
during 2014 (Fig. 8).
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Discussion

The main goal of this study was to establish a model to
retrieve O3 from several input variables, implementing a
variant of the classical LUR model. In most cases, LUR
models are used to model air pollutants from road net-
works, land use, building density, MODIS AOD,

1200

o g |
& ©
o
3
o
o
3
~
o
2 4
o~
T T T
5 10 15
Number of Variables
()
=3
[+s]
o |
2
o
©
o |
w0
o
S o |
~
o
@
o
o~
o |
T T T
5 10 15

Number of Variables

(©

population density and other geographic variables
(Ann Becerra et al. 2013; Adam-Poupart et al. 2014;
Meng et al. 2016; Wolf et al. 2017; Cattani et al. 2017,
Yang et al. 2017). In this study, the variables selected are
air pollution measurements, meteorological data (MD)
and remote sensing data. The air pollution measure-
ments and MD were obtained from REMMAQ stations.
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Moreover, considering the accuracy of LUR models in
order to retrieve air pollutants (R* values between 0.45
and 0.80) (Ann Becerra et al. 2013; Adam-Poupart et al.
2014; Meng et al. 2016; Wolf et al. 2017; Cattani et al.
2017; Yang et al. 2017), ten Landsat 8 images were
selected to retrieve O3 in Quito, Ecuador. Most LUR
models use MODIS data. However, MODIS data prob-
ably do not have the accuracy and the quality to model
pollutants or other environmental variables in middle
cities (Teodoro 2015).

To select the predictor variables, a subset was applied
considering 19 variables (18 independent variables and

@ Springer

Oj; as the dependent variable), obtained a preliminary
best fit model with the 18 variables (R = 0.68). How-
ever, to find the best fit and simplest (with the lowest
number of predictors) model, four criteria (RSS, Adj.
R?, CP, BIC) are analysed, resulting in a model with ten
independent variables (PM2.5, HUM, TMP, B2, B4,
BS5, B7, NDVI, SAVI, EVI), showing an R? of 0.72
considering stepwise regression. In most of the subsets,
the remote sensing data variables B1, B2, B6 and B7
appear, showing the relation between these bands with
Oj3. Thus, B1 and B2 reflect the blues and violets related
to the aerosol presence (Department of the Interior U.S.
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Table 4 Variables explained variance by PLS components (t1, t2, ..

components, considering O3 as the dependent variable

., t6). The red text shows the maximum variance explained with nine

Variable tl 2 t3 4 t5 t6 t7 t8 t9

PM2.5 0.148 0.655 0.660 0.787 0.897 0.999 1.000 1.000 1.000
HUM 0.212 0.433 0.442 0.593 0.775 1.000 1.000 1.000 1.000
T™MP 0.017 0.350 0.902 0.978 0.979 1.000 1.000 1.000 1.000
B2 0.611 0.918 0.918 0.947 0.955 0.966 0.998 1.000 1.000
B4 0.609 0.934 0.948 0.994 0.995 0.998 0.998 1.000 1.000
BS 0.123 0.158 0.362 0.994 0.997 0.999 1.000 1.000 1.000
B7 0.460 0.714 0.777 0.951 0.952 0.974 0.996 1.000 1.000
NDVI 0.515 0.873 0.904 0.987 0.987 0.993 0.994 1.000 1.000
SAVI 0.435 0.740 0.805 0.989 0.990 1.000 1.000 1.000 1.000
EVI 0.387 0.677 0.729 0.957 0.958 0.991 0.999 1.000 1.000
R? 0.232 0.345 0.390 0.404 0.541 0.617 0.634 0.646 0.768

Geological Survey 2016). Additionally, B6 and B7 re-
flect the short infrared related to greenhouse gas absorp-
tion (North 2015). Some studies that use LUR models
employed stepwise regression to automatically find the
predictors in a model (Ayres-Sampaio et al. 2014;
Olmanson et al. 2016). However, the main problem with
stepwise regression is not allowing a multicollinearity
analysis (NCSS and LLC). PLS regression is used in
some studies to compute the LUR model (Adam-
Poupart et al. 2014; Wang et al. 2016) to avoid
multicollinearity. PLS builds a model with latent vari-
ables (components) as independent variables (Williams
et al. 2013). Moreover, PLS regression is used when we
have a model with few observations (Chi et al. 2018). If
a high correlation is present between variables, a PLS

regression is used to build the model, where nine com-
ponents explain most of the variance and obtained an R>
value of 0.768. This value is higher than R* in the
stepwise regression (R®=0.72) and avoids the
multicollinearity of remote sensing variables.

The final model can be mapped, in comparison with
other techniques, such as thematic point maps, interpo-
lation or geostatistical analysis (Fig. 8), showing a ro-
bust perception of spatial concentration of O3 in the city,
and these maps can be used as input to make a more
accurate air pollution analysis.

The limitation is the few observations used to
build the model because our model requires some
data from the REMMAQ stations, and sometimes,
these data are incomplete or unavailable. On the other

Table 5 Correlation matrix between the variables and the PLS components

Variable  tl 2 3 t4 t5 t6 t7 t8 t9

PM2.5 -038514 —-0.71215 —0.06697  —0.35607 033247  —0.31854 0.03311  —0.01169 0.00006
HUM —0.46074  —0.46963 —0.09577 038916  —0.42616 0.47404  —-0.01179 0.00889  —0.00005
TMP 0.13159 0.57670  —0.74288  —0.27615  —0.02596 0.14489 0.01716 0.00092  —0.00003
B2 0.78187  —0.55363 0.01333 0.17146  —0.08946  —0.10447 0.17864  —0.04175  —0.00072
B4 0.78063  —0.56987 —0.11695 021595  —0.01183 0.05406 0.00119  —0.04905 0.00434
B5 0.35068  —0.18755 —0.45108 0.79548 0.05186  —0.04768 0.01853  —-0.01613  —0.00254
B7 0.67796  —0.50463 —0.25075 0.41702 0.02133  —0.14883  —0.14855 0.06528  —0.00017
NDVI —0.71749 0.59850  —0.17601 028787  —0.02397  —0.07591  —0.02313  —-0.07924  —0.00011
SAVI —0.65920 0.55261 —0.25518 0.42854 0.03350  —0.09995 0.00418 0.00529 0.00143
EVI —0.62209 0.53862 —0.22889 0.47707 0.02165  —0.18231 0.08867 0.03466 0.00153
0O; 0.48204 0.33513 0.21357 0.11803 0.36972 0.27520 0.13251 0.10736 0.34908
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Fig. 8 Maps of O; during 2014. a January and b July maps obtained from Eq. 8. The left map is with an inverse distance weighting (IDW)
technique while the centre map is applying the O; model in all the study area. The right maps are a zoom in an assessment area (red square)
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hand, the remote sensing variables depend on the
number of clouds. Quito is known as a city with a
high cloud density during the year (Alvarez-Mendoza
et al. 2018a), and this factor limits the computation of
LUR models. A possible alternative can be to com-
bine different sensors with high spatial and temporal
resolution and use similar techniques to PLS to com-
pute the model.

Another limitation is the generation of a raster to each
independent variable. In the case of remote sensing, data
are not a problem considering all images over the study
area, but the air pollutant measurements and MD raster
can be limited. They were obtained with a geostatistical
technique as inverse distance weighting (IDW) (de
Mesnard 2013). Nevertheless, this kind of technique
works fine in a region with some stations, but in Quito,
we only have nine stations (Fig. 8). Therefore, in future
work, we will propose the use of only remote sensing
data to spatialize air pollutants in Quito.

Conclusion

A spatial estimation was performed in Quito to obtain
the O; spatial concentration in 2014. The spatial
estimation was computed by a variant of LUR
models with PLS regression. LUR models can ex-
plain the spatial concentration of an air pollutant,
helping in urban planning, environmental analysis
and governmental decisions. Moreover, the idea of
having a variant of LUR models with variables from
remote sensing sensors different from MODIS will
help to build more accurate models. The main limi-
tation is related to the small quantities of field data
available. In future work, we will try to find new
alternatives only considering the use of remote sens-
ing data as input without other field data variables.
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ABSTRACT

Thin clouds in the optical remote sensing data are frequent and in most of the cases don’t allow to have a pure surface
data in order to calculate some indexes as Normalized Difference Vegetation Index (NDVI). This paper aims to evaluate
the Automatic Cloud Removal Method (ACRM) algorithm over a high elevation city like Quito (Ecuador), with an
altitude of 2800 meters above sea level, where the clouds are presented all the year. The ACRM is an algorithm that
considers a linear regression between each Landsat 8 OLI band and the Cirrus band using the slope obtained with the
linear regression established. This algorithm was employed without any reference image or mask to try to remove the
clouds. The results of the application of the ACRM algorithm over Quito didn’t show a good performance. Therefore,
was considered improving this algorithm using a different slope value data (ACMR Improved). After, the NDVI
computation was compared with a reference NDVI MODIS data (MOD13Q1). The ACMR Improved algorithm had a
successful result when compared with the original ACRM algorithm. In the future, this Improved ACRM algorithm
needs to be tested in different regions of the world with different conditions to evaluate if the algorithm works
successfully for all conditions.

Keywords: Remove Cloud, Landsat, NDVI, Cirrus Band, Quito

1. INTRODUCTION

One of the principal problems that are considered in optical remote sensing is the cloud density over some areas of the
world', understanding that in some areas like South America and places with high mountains like Andean Region’ the
presence of high cloud density is real during most of the year, discussing if the remote sensing data is real useful to
calculate some environmental parameters as Normalized Difference Vegetation Index (NDVI)*. In the studies previous
referred”’, Landsat images are considered. Landsat is a land optical remote sensing program that for four decades
provides images that could be used in different areas, as agriculture, geology, forestry, environment and mapping’. The
last satellite of this program is Landsat 8, which include two sensors: (1) Operational Land Imager (OLI) and; (2)
Thermal Infrared Sensor (TIR). Moreover, Landsat 8 OLI provides detection of high-altitude cloud contamination that
may not be detectable in other spectral bands®.

Some algorithms had been developed with the challenge to try to remove thin clouds in different regions considering
Landsat 8 OLI imagery. Nevertheless, these algorithms use a Landsat reference image from other dates to patch the
cloud area”. Other algorithms combine Landsat with other sensors'® and others use the same image considering the
Cirrus band (B9) in Landsat 8 in order to remove thin clouds'' ™.

The main idea in this work was to evaluate and improve for the Andean Region (Quito, Ecuador) one of the algorithms
developed to remove thin clouds called Automatic Cloud Removal Method (ACRM)". This algorithm was originally
evaluated in Sidney, Australia, which have conditions very different from Quito. The ACRM algorithm established a
linear regression between each band in the OLI sensor with B9, considering some selected areas in the image'. The
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concept is to find the best fit area with the highest coefficient of determination (R?) to generalize for the entire image the
application of the algorithm to remove thin clouds. The algorithm in the original study was applied with success',
nevertheless, in different areas, as Quito, the results obtained are not satisfactory, let us to consider that the algorithm
should be improved. The idea is to find the best fit considering a good R? and the correct slope (o) for the study area.

2. STUDY AREA AND DATA

Quito is the capital of Ecuador with an elevation area with approximately 2800 meters above sea level. Also, the city is
in the center of Andean Region and it is influenced by the equatorial line with latitudes nearest to 0° and being in a
Tropical Region (Figure 1). Moreover, Quito doesn’t present clearly seasons. The mean temperature during the year has
a mean in minimum about 9.0°C and a maximum 25.4 °C, also presented a high precipitation near to 1126 mm on 2015
that let to have a high-density cloud every year'.
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Figure 1. Study area location (Quito, Ecuador).

The images considered to this study were six Landsat 8 OLI L1T scenes in different dates. Four images (Figure 2) from
study area (Quito Path:10 Row:60) and two images to compare and to evaluate the original algorithm: one from
Pedernales, Ecuador (Path:11; Row:60) and other from Sidney, Australia (Path:89; Row:83). Sidney was the area
considered in the original algorithm'. Additionally to these images were also considered the MODIS MOD13Q1
product (tiles HIOV08 and H10V09) for the study area in order to compare with NDVI calculated with ACRM algorithm
(more details in Section 3.3).

3. METHODOLOGY

Landsat 8 is the last satellite in orbit from Landsat Data Continuity Mission (LDCM). It was launched in February, 2013
and it has two push-broom instruments: the Operational Land Image (OLI) with 30 meters of spatial resolution and the
Thermal Infrared Sensor (TIRS) with 100 meters of spatial resolution resampled to 30 meters’. The two sensors over
Landsat 8 have 11 spectral bands where the principal attention considering this work is the Band 9 - the Cirrus band’. In
this work, we used Landsat 8 images to try to remove thin clouds using Cirrus Band (B9) and considering the Automatic
Cloud Remove Method (ACRM)". All the processing steps were implemented in R programming language' and
association packages raster version 2.5-8'¢ to work with raster images, rgdal version 1.1'” and gdalutilities version
2.0.1.7"® to work with geospatial data.
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Figure 2. Quito Landsat 8 OLI: (a) Image from 2013/07/07; (b) Image from 2014/07/26; (c) Image from 2015/08/30; (d) Image
from 2016/10/19.
3.1 Automatic Cloud Removal Method (ACRM)

The Cirrus band provides a way to remove thin clouds in an image considering that the noise and clouds are part of the
original image, in each band. Considering this, the Equation (1) explains how the algorithm is computed.

DN@uyv) = x; (u,v) + x¢ (u,v) i=1234567. 0
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Where DN(u,v) represents the Digital Number in each band, xl.f (u,Vv) represents the pure surface pixel data from each
Landsat OLI band, and x,.” (u,Vv) represents the pixel with noise (clouds). Consequently, the challenge is to obtain

xl-c (u, V) represented as a linear relation to pixel data in the Cirrus band ¢(u, V) , as showed in Equation (2).

xE(u,v) = a,le(u,v) - min{c(u,v)}] )
Replacing the Equation (2), in Equation (1) is obtained the Equation (3).
x/ (u,v) = DN(u,v)-a, [c(u,v) - min{c(u,v}}] 3)

In Equation (3) is showed the final pure surface pixel dataxl.f (u,Vv). The objective is to obtain the slope Q, in a

homogenous area and established a linear regression between each OLI Band (B1-B7) and B9. Accordingly, the
challenge is to obtain this homogeneous area considering that it is a part of the entire image. For this, two possibilities
should to be analyzed. Firstly, the homogeneous area can be determined manually considering aspects as the water areas
have strong absorption in the NIR and MIR bands nearest to zero and the contaminated pixel in these water areas can
show the clouds presence, in this case can be considered. The method is effective, but it doesn’t have a good accuracy
considering other physics aspects in water zones like waves dynamics. On the other hand, the automatic homogenous
area identification can be used considering some aspects like different soil cover areas or vegetation areas. In this work,
the second approach (automatic) was chosen in order to obtain the slope value because the study area doesn’t present
water bodies to be considered, generating regular zones of 10x10 km which cover all the study area (Figure 3). A total of
90 zones were tested, divided around the entire image.
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Figure 3. Example of some areas evaluated to test the algorithm over Quito. Each area has 10x10 km.

3.2 Normalized Difference Vegetation Index (NDVI)

The NDVI is one of the most used remote sensing indices'**’. It allows to obtain information about the greenest
vegetation considering Red and NIR bands®', as shown in Equation (4).
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NIR — RED
NDV[= —————— “4)
NIR + RED

NDVI also could be considered an environmental index®’, besides that it has a great relation with Land Surface™ due to
their relationship to other variables like temperature, vegetation, humidity, etc.

NDVI was calculated considering Landsat 8 image from Quito (Figure 4) and applying the ACRM algorithm (Figure 5),
considering Red Band B4 (0.636 - 0.673 um) and NIR Band B5 (0.851 - 0.879 pum), as given in Equation (4).
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Figure 4. NDVI computed in Landsat 8 for the study area.
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Figure 5. NDVI computation considering the Landsat 8 image after the application of ACRM algorithm for the study area.

3.3 Validating Data

In order to validate the ACRM algorithm, a MOD13Q]1 product (NDVI 16-Day L3 Global 250 m version 6) was used as
a reference data, resampled to a spatial resolution of 30 m (Figure 6), considering a similar period of the Landsat data
used.
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Figure 6. NDVI obtained from MOD13Q1 data for the study area (2014/07/28).
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The idea to use MOD13Q1 is to compare the NDVI values with those values calculated with Landsat 8 original image
(Figure 4) and Landsat 8 after applied ACRM algorithm (Figure 7). The validation was done over a small area that can
be recognized (Quito Airport image of 2014/07/26) in an image with only a part of thin clouds to check the preliminary
results considering the application of ACRM algorithm.
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MODIS MOD13Q1

L >

Figure 7. Workflow to evaluate ACRM (and Improved) algorithm in high elevation areas.
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The ACRM algorithm tries to find the best slope fittest to the study area. Consequently, ACRM was validated in
comparison with the product MODIS MOD13Q1 as a reference image because it had evaluated vegetation phenology in
some studies™>* and it has been corrected® in comparison with NDVI calculated with original Landsat 8 imagery*® and
ACRM algorithm; moreover, MODIS product was resampled to 30 meters in spatial resolution to make the comparison®’
and validation. NDVT is used to validate because it is one of the most commonly used remote sensing indices'**’ and can
be considered an environmental index because it has relation with land surface dynamics®.

4. RESULTS AND DISCUSSION
4.1 Applying ACRM algorithm

Applying the ACRM algorithm over the 4 images in Quito the results shows (Table 1) a R close to 1 (Figure 8), appears
that algorithm works properly in this kind of regions. The special situation can be observed in the case of slope, where
the values are closer to 0, considering that if the algorithm applies a value close to 0, this can be have a little correction
and in comparison with original slopes obtained in Sidney, here the slopes are lower. In most of the cases, the slope
between OLI Bands and Cirrus bands are close to 0. However, when we check visually the result, the algorithm does not
work properly on the removal of thin cloud region, as can be observed in Figure 9.

Table 1. Coefficient of Determination (R?) and Slope (o) obtained applying the ACRM algorithm in Quito.

AREA QUITO QUITO QUITO QUITO
(PATH:10 ROW:60) (PATH:10 ROW:60) (PATH:10 ROW:60) (PATH:10 ROW:60)

DATE 2013/07/07 2014/07/26 2015/08/30 2016/10/19

BAND R? Slope () R? Slope (a) R Slope () R? Slope (a)
B2 0.96 0.05 0.93 0.02 0.97 0.03 0.95 0.03
B3 0.96 0.06 0.93 0.02 0.97 0.03 0.95 0.03
B4 0.95 0.05 0.93 0.02 0.97 0.02 0.96 0.03
B5 0.85 0.03 0.85 0.01 0.95 0.02 0.83 0.08
B6 0.90 0.06 0.89 0.17 0.92 0.02 0.91 0.04
B7 0.89 0.06 0.88 0.02 0.89 0.03 0.93 0.04

@ ()

Figure 8. Scatterplots considering the highest R? in the image: a) Linear Regression B9 vs. B4; b) Linear Regression B9 vs. B5.

Considering the lower slope values in Quito (Table 1), the ACRM algorithm was computed consider two differentes
regions (Table 2). Different results in the evaluation were founded: Pedernales dind’t have a R value close to 1; and
Sidney (consider the same image used in the original algorithm) obtained a higher R* with a value close to 1 and a
higher slope value when compared with all Quito images. Visually, it also can be checked that in Sidney image the
ACRM algorithm works properlly, (Figure 10), but in Pedernales image the same is not true (Figure 11).
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(@) (b)
Figure 9. Evaluation of ACRM algorithm in the Quito: a) Before apply ACRM; b) After apply ACRM.

Table 2. Coefficient of Determination (R?) and Slope (o) obtained applying ACRM in other places.

AREA PEDERNALES SIDNEY
(PATH:11 ROW:60) (PATH:89 ROW:83)
DATE 2016/05/13 2013/10/04
BAND R? Slope (o) R? Slope (o)
B2 0.67 0.69 0.97 1.70
B3 0.68 0.68 0.99 1.63
B4 0.67 0.62 0.98 1.68
B5 0.67 0.52 0.98 1.74
B6 0.63 0.44 0.99 1.11
B7 0.53 0.58 0.98 1.02

(a) (b)

Figure 10. Evaluation of ACRM algorithm in the original Sidney image: a) Before apply ACRM; b) After apply ACRM.
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Figure 11. Evaluation of ACRM algorithm in Pedernales: a) Before apply ACRM; b) After apply ACRM.

4.2 Validating ACRM to calculate Environmental Indices

In order to validate the application of ACRM algorithm over Quito, we compared the NDVI from a reference image
(MODIS MOD13Q1), the original Landsat image with the NDVI computation and the same Landsat image, but
considering the application of the ACRM algorithm. With the application of ACMR algorithm the results can be
satisfactory in order to recover pixel data, considering that other algorithms use masks and can lose the pixel value under
thin clouds. The validation was realized in a small area in Quito where is located the airport and can be detected visually
with remote sensing images. The R” between MODIS and the original Landsat 8 was 0.435, while the R* between
MODIS and Landsat 8 consider the ACRM algorithm was 0.436. Therefore, this result shows an insignificant difference
of R in the retrieving of the environmental indices (NDVT).

4.3 Improving ACRM algorithm

Recognizing the contribution in the ACRM algorithm of the slope value, different slope values were tested in order to
choose the best fitted in the region, considering only few changes considering the original algorithm values (1.988)
obtained". In this final consideration the Equation (5) shows how was applied the algorithm considering the slope
change in order to improve and to know if this new conditions in slope value affects directly the quality of the results
obtained.

x/ (u,v) = DN(u,v)-1 .988[c(u,v) — min{c(u,v)}] %)

Visually, the result shows a substantial improvement in the removal on thin clouds (Figure 12).

e o W T % i ¥ o, e e ; 3 7
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Figure 12. a) Original Image; b) After apply ACRM algorithm; c) After ACRM algorithm Improved.
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Also, the same method described in section 4.2 was considered here in order to validate the computation on NDVI in the
new image after applied the ACRM algorithm (NDVI MODIS). The R? value is higher, with a value around 0.504
(Figure 13).
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Figure 13. Lineal regression between MODIS NDVI and NDVI computed in Landsat 8 image, ACRM and ACRM Improved.

Improve the slope value in the ACMR algorithm allows to obtain better results and removal most of the thin clouds
presented in the Landsat images. Also, was tested other images with the same slope values, but the results were the
identical to those obtained in the original application of ACRM algorithm'?.

Accordingly, a simple modification in the slope of this algorithm improves in the data set to have a little bit better result
in the final calculation of environmental indexes, having the challenge to try to find a way to improve the slope
calculation in future studies.

5. CONCLUSIONS

The evaluation of ACRM algorithm in high elevation regions revealed that the ACRM algorithm cannot remove thin
clouds in this kind of areas like Quito, Ecuador, considering that some factors like altitude and meteorological conditions
can determine clouds presence during all the year. Accordingly, the application of the algorithm tries to remove thin
clouds with the idea to don’t lose the data under clouds to consider sensors like Landsat 8 to obtain environmental
indices as NDVI. Landsat was considered because it has a higher spatial resolution when compared to other sensors, but
a lower temporal resolution (16 days) trying to take advantage of the data obtained in each visit of this sensor. The
results show a performance in the application when is calculated NDVI in comparison with a reference data like MODIS
NDVI, obtaining a R” nearer to 1, but a low slope (nearer to 0). This final situation was to improve the algorithm finding
the fittest slope to apply in this region, testing some slope values, considering that environmental indices can approach a
reference. The point of view in future work is the question of what is the best way to obtain a fittest slope to improve this
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algorithm and what is the fittest slope to each region around the world, considering that Cirrus band has a lot of
possibilities to explain where the thin clouds are present.
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ABSTRACT

Most of the large cities have an air quality network to measure air pollution including PM10. However, air quality
monitoring network has a high cost and it is spatially limited. Quito, capital of Ecuador, is a city with an automatic air
quality network (REMMAQ) composed by 9 stations. The REMMAQ works since 2002, measuring PM 10 only in 4 regular
stations located at different points along the city. This scarce quantity of PM10 measures led us to propose a new strategy
to obtain PM10 data in all the city. Several studies have already considered the retrieving of PM10 from remote sensing
data in cities with an air quality network. In order to find an optimal model to retrieve PM10 in Quito, this study compare
the use of 3 different satellite sensors (Landsat-7 ETM+, Landsat-8 OLI and TERRA/MODIS) between 2013 to 2017.
Additional to remote sensing data, we also use field data considering the REMMAQ. In each sensor, we used different
variables and environmental indexes to model the best fit equation to quantify PM10 in all the city, finding the significant
variables for each type of data and year. The variables considered were the Normalized Difference Vegetation Index
(NDVI), Land Surface Temperature (LST), Soil-adjusted Vegetation Index (SAVI), Normalized Difference Water Index
(NDWI), Normalized Stability Index (NSI), surface reflectance Blue Band (B1), surface reflectance Green Band (B2) and
surface reflectance Red Band (B3). These variables were considered because most of them are used in different studies
combined with meteorological data. All the procedures were implemented in R Studio. The empirical models using remote
sensing data/derived products and air quality data can help in retrieving air pollutants in large cities. This work is a valuable
contribution for the study of the spatialization of PM10 in order to find new alternatives in the use of remote sensing data
to support government decisions.

Keywords: PM 10, Landsat, MODIS, Air Quality, Quito

1. INTRODUCTION

One of the changes that Earth had suffered on its dynamic is the air quality, where human activities as car traffic, industries
and other activities generate air pollution!. Air pollution includes gaseous and particulate contaminants considering the
last as a problem in the respiratory human health?. The World Health Organization (WHO) claims that most people around
the world are breathing air polluted, specifically particulate contaminants®. Within particulate contaminants, one of the
most common is particulate matter of less than 10 microns (PM10). PM10 is a pollutant that can be measure by air quality
station in the cities*. Most of the largest capital cities have an air quality monitoring network (AQMN) to measure air
pollution including PM10. However, acquiring an air quality station can cost a lot of money and it results limiting to
municipal governments®. Quito, the capital of Ecuador, is a city with an AQMN. Its name is Red Metropolitana de
Monitoreo Atmosférico de Quito (REMMAQ) who is composed by 9 stations®. The REMMAQ works since 2002, where
PM10 is measured only in some years by nine automatic stations. The low quantity of PM 10 measures requires a different
strategy to obtain data with more accuracy in all the city, especially in the urban part’. Several studies consider the
retrieving of PM 10 from remote sensing data in cities with an air quality network®'!. In the case of Quito, a previous study
shows good results with Landsat-7 images®. Other studies around the world used Landsat-8 and Moderate Resolution
Imaging Spectroradiometer (MODIS) data using empirical models °!!. In the case of empirical models to retrieve air
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quality data from remote sensing data, some of the environmental indexes are computed in order to retrieve PM10. The
multiple linear regression (MLR) considering the visible bands is one of the most frequently method applied to estimate
air quality with remote sensing data'>. Nevertheless, due to this methodology cannot treat intercorrelated variables and
missing data'?, a Partial Least Square (PLS) methodology can be used in order to analyze the collinearity between spatial
data'®,

In order to find an optimal and accuracy model to retrieve PM 10 in Quito, this study compare three different remote sensing
data (Landsat 7 ETM+, Landsat 8 OLI and TERRA/MODIS) between 2013 to 2017. Where, additional to remote sensing
data, the use of field measurements is important considering the REMMAQ. The model proposed is built considering a

PLS Regression'’.

2. STUDY AREA AND DATA
2.1 Study area

Quito is the capital of Ecuador. It is a city with some air pollutions problems, as many cities around the world. One of this
air pollution problems is the car traffic'S. Quito is located above equatorial line, in the middle of Andean regions in South
America!’, where, the meteorological conditions can strongly influence the air quality. For this project, the study area is
centered in the urban region in Quito, where the REMMAQ stations are presented (Figure 1).
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Figure 1. Study area location (Quito, Ecuador). The black points are the REMMAQ Stations. The red polygons are the districts or
“parroquias”. Most of the stations are located in the urban area.

2.2 Data collection

About the remote sensing data, three satellite sensor data were used (Landsat-7 ETM+, Landsat-8 OLI and
TERRA/MODIS) between 2013 to 2017 (Figure 2). The images were obtained from Earth Explorer website'®. These
images are open access and freely download. In the case of Landsat data, it was chosen considering the spatial
resolution'®? (30 m) and also because most of the similar studies around the world use this type of data. On the other
hand, MODIS was selected considering the temporal resolution and the availability of ready products to use?'. Only images
with less than 10% clouds in the study area were considered. A total of approximately 30 images for each sensor was
considered. In all the data the surface reflectance ready products were used.
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In order to compute a mathematical empirical model, the air quality data was obtained by REEMAQ stations considering
the same period of remote sensing data (2013 — 2017). The data were downloaded from Secretaria del Ambiente Website??.
Unfortunately, just three stations have PM 10 measures during all the studied period. These data are public.

T84 78°30'W 78°30"W 787 15"W

TB45'W ﬂ"J‘O‘“; TBU1S'W

(b)

©

Figure 2. Example of images used to compute the PM10 model in the study area (Red color polygons): (a) Landsat-7 ETM+; (b)
Landsat-8 OLI; (¢c) MODIS
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3. METHODOLOGY

In order to generate a model to retrieve PM10, remote sensing data and field air data were considered. Firstly, database
containing the most adequate satellite bands (visible, NIR, SWIR bands), some environmental indexes and PM10
measurements was built. With this database, PLS regression was applied in order to compute the empirical models to each
sensor. Finally, the models were applied in the images and the PM 10 was retrieving and mapped (Figure 3).
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Figure 3. Methodology workflow.

The surface reflectance data from Blue, Green, Red, Near Infrared (NIR) and Short-wave infrared (SWIR) bands were
extracted from each image. Besides, some of the most common environmental indexes as Normalized Difference
Vegetation Index (NDVI), Normalized Difference Soil Index (NDSI), Soil-Adjusted Vegetation Index (SAVI),
Normalized Difference Water Index (NDWI) and Land Surface Temperature (LST) were used in this study as independent
variables. A point shapefile with the location of REMMAQ stations was used to extract the raster values. The ArcGIS 10.5
with Extract Multi values to points tool was used to extract the data in each station?.

3.1 Surface reflectance data

The Blue, Green, Red, NIR and SWIR Bands were extracted from each sensor. These variables are used because most of
the studies in similar regions prove to be a relation between visible and infrared data with PM10%2+26, Moreover, the
aerosol optical thickness (AOT) or aerosol optical depth (AOD) is a measurement of the aerosols, where PM10 can be
contained?’. The AOT shows how the atmosphere reflects and absorbs visible and infrared light?s.

Landsat program has acquired land surface data since 1972. Nowadays, Landsat-7 and Landsat-8 are operational, obtaining
visible, infrared and thermal data in a middle spatial and temporal resolution?. In order to use surface data and computing
environmental indexes, the Landsat surface data Level-2 were download to each image. The advantage of Level-2 is to
have data ready to use with all the corrections applied (Geometric, radiometric and atmospheric corrections)®3!,
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MODIS sensor is presented in Terra and Aqua satellites. Its uses are in the land surface observation, aerosol detecting, etc.
An advantage of this satellite is to have ready products (Geometric, radiometric and atmospheric corrections) as surface
bands (MOD09)*>* and some environmental indexes. MODIS has 36 bands and a high temporal resolution.

3.2 Normalized Difference Vegetation Index (NDVI)

The NDVI is an environment index that allowed to obtain information about the greenest vegetation, using Red and NIR
bands**. In order to consider the influence of vegetation over PM10 in the urban areas®, the NDVI was computed to
Landsat-7 and Landsat-8 data, as shown in Equation (1).

NIR—-RED
NIR+RED (l)

On the other hand, MOD13Q13¢ product was used to get NDVI data from MODIS. This product has a 250 m of spatial
resolution. The pixel data were multiplied by 0.000136.

3.3 Normalized Difference Soil Index (NDSI)

NDVI =

The NDSI index was computed considering surface reflectance data. It identifies zones where built areas are presented®’.
NDSI is computed by Equation (2).
SWIR-NIR

NDSI = ——— (2)

SWIR+NIR
3.4 Soil-Adjusted Vegetation Index (SAVI)

The SAVI is an improvement of NDVI, where a soil correction factor is introduce to prevent the reduction of difference
in Red and NIR of the canopy by background soil*3, as shown in Equation (3).

NIR—-RED
NIR+RED+L

SAVI=(1+1L) (3)

Where, L value is 0.5, considering that the change in soil brightness is minimal.
3.5 Normalized Difference Water Index (NDWI)
The NDWI maximizes the reflectance of water by using Green and NIR bands (surface reflectance). The aim is to build a

model with water consideration®. It is expressed as shown in Equation (4).

NDWI = GREEN-NIR (4)

GREEN+NIR
3.6 Land Surface Temperature (LST)

In order to compare PM10 with meteorological data, the LST was obtained from thermal bands by Inversion of Planck’s
function*’ in order to become a variable in the model. The LST is in Kelvin degrees. Converting to Celsius degrees requires
to subtract 273.15 value. LST computation is described by equation (5).

BT
(1+(A*%)lne)

Where, BT is the brightness temperature obtained from Landsat Level 2 products. A is the center wavelength (Landsat-7 =
11.45 pm, Landsat-8 = 10.8 um)*!, p is the a constant obtained as Equation (6) and ¢ is the emissivity as Equation (7).

LST = )

_ hxc
p_s

(6)

Where, h is the Planck’s constant (6.626e-34 Js), c is the velocity of light (2.998e8 m/s) and s is the Boltzmann constant
(1.38¢-23 J/K).

Furthermore, the emissivity is a variable required to compute LST. It is defined as the efficiency with a surface emits heat
as Thermal Infrared (TIR) radiation*’. The algorithm showed by Equation 7 considered a semi-empirical method where
the variations of NDVI in the vegetation (NDVI,) and soil (NDVI;) are important*. In order to choose the item in the
Equation 7, the NDVI should be analyzed in the study area.
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&5, NDVI < NDVI,
e =&, + (&, — £)Py, NDVI, < NDVI < NDVI, (7)
¢, NDVI > NDVI,

Where, &, represents the emissivity for soil considering in this study a value of 0.973. &, is the emissivity for vegetation
considering a value of 0.985* and P, is the proportion of vegetation in the area, which is computed by Equation 8, using
the NDVL

NDVI-NDVIg

Py = (m)z ®)

NDVI, and NDVI, were 0.2 and 0.5 values, respectively, used in Equation 8%,

MOD11A2 is the product used to retrieve LST in MODIS sensor. Its pixel size is 1000 meters. The scale factor used to get
LST was 0.02%.

3.7 Air Quality Measurements

PM10 measurements were obtained from REEMAQ Stations. The REEMAQ works since 2002 with automatic stations.
The stations measure some air pollutants as CO, SO2, NOx, O3, PM2.5 and PM10 in an hourly basis. One of the major
challenges was to retrieve the PM10 data from stations because we found them only in some years and in ten stations
(Table 1).

Table 1. PM10 Semmianual median by each REEMAQ Station founded between 2013 — 2017

REEMAQ Station Years data PM10 Se"(l:lgi;::;;al median

Belisario 2013 - 2016 319
Carapungo 2013 -2017 84.1
Cotocollao 2013 - 2014 33.8
El Camal 2013 60.9
Guaman{ 2013 -2017 40.1
Jipijapa 2014 - 2016 58.8
Los Chillos 2013 - 2016 27.3
San Antonio 2017 54.6
Tababela 2013 - 2016 35.8
Tumbaco 2013 - 2017 429

Due to the few quantities of PM10 field data, the semiannual median was used to build the variable database. In this
database was considered remote sensing data, PM10 field measurements, and additional data as Season (Season 1 January
to June or Season 2 July to December) and Year. Moreover, the PM 10 semiannual medians data were obtained with hourly
data measurements. The hourly data collected were between 10:00 to 11:00 (GMT-5) in each station according to the time
when Landsat-8 acquires data.

A PLS regression was employed in order to predict the dependent value (PM10) from a set of predictors. This technique
is used to handle a possible multicollinearity. Likewise, PLS regression can be used when standard regression methods
fail, and we have multiple data collected on the same observations'®. R studio was the software used to compute PLS
regression, considering the package pls and plsdepot.

4. RESULTS AND DISCUSSION

The final semiannual tables generated to each sensor contains 29 observations for Landsat-7, 53 observations for Landsat-
8 and 59 observations for MODIS. Applying the PLS technique in each semiannual data table, the first part was to analyze
the number of components in the model. The aim of PLS is to explain the variance model with the less quantity of
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components (Figure 4). In the case of Landsat-7 and Landsat-8 was considered 10 components to explain the model
variance. On the other hand, MODIS considered 12 components in the PL.S model.

_o—o
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Explained Variance (%)

Component

(b)
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Component

©

Figure 4. Explained Variance Vs. Number of components in PLS Regression (a) Landsat-7; (b) Landsat-8; (c) MODIS

In order to choose the fittest model, the R?> was analyzed, for each sensor (Figure 5). For Landsat-7 was founded a value
of 0.41, for Landsat-8 a value of 0.72 and for MODIS a value of 0.28. Considering the R? values obtained to retrieve PM 10,
the fittest model is considering Landsat-8 (Figure 5).
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Figure 5. Coefficient of Determination with components (R?) (a) Landsat-7; (b) Landsat-8; (c) MODIS

The model validation was done with a comparison between predicted vs. measured PM10 (Figure 6) and a histogram of
residuals (Figure 7), where the model considered in the linear equation fittest is the Landsat-8 model. Additionally, in the
Landsat-8 model the residual shows a trend of a normal distribution with residual values until 20 pg/m?>.
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©
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Figure 6. Predicted values Vs. Measured values (a) Landsat-7; (b) Landsat-8; (c) MODIS
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In the models is evident the multicollinearity (vectors that follow the same direction and magnitude). Therefore,
plotting individual factor scores, allows to identify the most relevant variables in projection of the information over
the new latent variables. These new variables (all Comps), however, contains information for variance in dependent
variable that will be used later to model its behavior taking the information from the components considering a
regression equation (Figure 8).
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Figure 7. Histogram of residuals (a) Landsat-7; (b) Landsat-8; (c) MODIS
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Figure 8. Biplot of data used in PLS regression (a) Landsat-7; (b) Landsat-8; (c) MODIS

PLS regression, in fact, used correlated variables information to create new ‘“‘variables” called components that are
uncorrelated, increasing the reliability of the model. In the three sensors, we can see that the first component gives the
most percentage of variance explication (Figure 9).

The Equation 9 shows the final model, where the remotes parameters were taken as independent variables.

PM10 =1+ aNDVI — bNSI — cSAVI + dNDWI — eLST — fB — gG + hR + iN + jSW + kYEAR — IS )

Where, I is the intercept, B is the blue band, G is the green band, R is the red band, N is the NIR band, SW is the SWIR
band, s is the season, a, b..., | are the coefficients to each independent variable.

The values of intercept and coefficients were computed with PLS (Table 2) to each sensor. The fittest equation was
obtained for Landsat-8 with the highest R? value (0.74).
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Figure 9. Components loadings on variables (X matrix) (a) Landsat-7; (b) Landsat-8; (c) MODIS

Table 2. Model coefficients (considering Equation 9)

Coefficient Landsat-7 Landsat-8 MODIS
Intercept (I) -6385.47 -3327.619 -97.9388
NDVI - a -137.7962 255.9988 8.4164
NSI-b 55.7566 -13.3961 174.1538
SAVI-c 31.0459 -236.1787 44.3324
NDWI - d -62.9931 13.3961 57.7680
LST-e 0.6050 -1.6362 0.5463
BAND_BLUE - f -0.0680 -0.0477 0.0936
BAND_GREEN - g 0.1531 -0.0408 -0.0746
BAND_RED - h -0.0908 0.0735 0.0000089
BAND_NIR - i 0.0378 0.0082 0.0000005
BAND_SWIR -j -0.0176 0.0048 0.0000004
YEAR -k 3.1807 1.6918 0.0632
SEASON -1 -6.9296 -3.8854 -8.6446
R? 0.41 0.74 0.28

Applying the model presented in Equation 9 to the Landsat-8 images (Figure 10), the resulting raster shows the PM10
concentration in all the study area for the image date.

The limitation of the PM 10 algorithm is directly related to the images quality (clouds), images availability and PM10 field
measurements. In the case of Quito, most of the images have more than 20% of clouds and the REEMAQ stations are not
constant during the study time. This was the main reason why we choose semiannual medians to input variables in the
model. One of the main innovations of this work is the consideration of Landsat-8 images (30 images). It is the higher
difference with other similar studies around the world where the R? obtained in these models is lower and uses less quantity
of data'®*®, In some studies, meteorological ground data*’ are also used to retrieve PM10 , but these variables are too
difficult to obtain. Other studies uses only MODIS products to retrieve PM10*4°, but this sensor has a low spatial
resolution, which can be a limitation. In addition, in this work, the PLS regression was chosen to avoid a possible
correlation between the independent variables.

In order to retrieve PM10 in Quito between 2013 — 2017, the Landsat-8 model can be used to obtain better results than
other sensors as Landsat-7 or MODIS. The reasons can be: (1) the image quality in comparison with Landsat 7 SLC-off>%;
(2) the higher spatial resolution. This model can be applied to all the images between 2013 to 2017, generating new PM10
concentration maps that could be used for the governmental authorities to take decisions.
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Figure 10. Landsat-8 PM10 retrieved (20/09/2018).

S. CONCLUSIONS

In this study, three satellite sensors were considered in order to retrieve PM 10 from remote sensing data, in Quito, Ecuador.
The evaluation showed than Landsat-8 images give the fittest model (R? = 0.74) in comparison with Landsat-7 (R?> = 0.41)
and MODIS (R? = 0.28). PLS regression was used to compute the models to retrieve PM10. This is a robust technique that
discompose the original predictors values in components. Its results are useful when just a few PMI10 field
measurements/observations are available in different periods. The model was applied in all the Landsat-8 images between
2013 to 2017 available in the dataset, showing the behavior of PM10 during this period. Also, using the model proposed
in this study is possible to find a possible relation with respiratory diseases cases in some places in Quito. As a future work,
the work will use more regression techniques to improve the results.
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ABSTRACT

Several studies have demonstrated that air quality and weather changes have influence in the prevalence of chronic
respiratory diseases. Considering this context, the spatial risk modeling along the cities can help public health programs in
finding solutions to reduce the frequency of respiratory diseases. With the aim to have a regional coverage and not only
data in specific (point) locations, an effective alternative is the use of remote sensing data combined with field air quality
data and meteorological data. During the last years, the use of remote sensing data allowed the construction of models to
determine air quality data with satisfactory results. Some models using remote sensing based air quality data presented
good levels of correlation (R? > 0.5), proving that it is possible to establish a relationship between remote sensing data and
air quality data.

In order to establish a spatial health respiratory risk model for Quito, Ecuador, an empirical model was computed
considering data between 2013 and 2017, using the median data values in each parish of the city. The variables are: i) 46
Landsat-8 satellite images with less than 10% of cloud cover and some indexes (normalized difference vegetation index
NDVI, Soil-adjusted Vegetation Index SAVI, etc.); ii) air quality data (nitrogen dioxide - NO2, Ozone - Os, particulate
matter less than 2.5um - PM2.5 and sulfur dioxide - SO;) obtained from local air quality network stations and; iii) the
hospital discharge rates from chronic respiratory diseases (CRD). In order to establish a probability model to get a CRD,
a logistic regression was used. The empirical model is expressed as the probability of occurrence during the studied time.
All the procedures were implemented in R Studio. The methodology proposed in this work can be used by health and
governmental entities to access the risk of getting a respiratory disease, considering an application of remote sensing in
the environmental and health management programs.

Keywords: Landsat-8, Quito, Air quality, health respiratory risk, logistic regression model

1. INTRODUCTION

According to the World Health Organization (WHO), more than 3 million of people have died every year by a chronic
respiratory disease (CRD). The CRDs deaths represent approximately 6% of global annual deceases!. The CRDs are
diseases of the airways where the most common are asthma, chronic obstructive pulmonary disease (COPD), among others.
The principal risk factors are the tobacco smoke, air pollution in the cities, occupational chemicals and dust, and frequent
lower respiratory infections during childhood? Regarding this, the study of environmental parameters is important
considering the direct and indirect relationship between the climate, the environment and the respiratory health®. Thus, one
of the alternatives to obtain environmental and climate variables is considering remote sensing (RS) data. These data can
provide information related to vegetation, urban land use, temperature, retrieve air pollutants and others*®. Regarding this,
several studies show an increment in the use of RS in health studies”®. These studies involve infectious disease epidemics
and others CRDs, as asthma®?0,

In the case of use RS data, the most common satellite are from Landsat program and Terra/Aqua Moderate Resolution
Imaging Spectroradiometer (MODIS), considering that they are free and easy to download. Typically, the use of RS is
related to parameters of vegetation, soil use and climate. Some of the most used indexes are: normalized vegetation
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difference index (NVDI), enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), land surface
temperature (LST) and others**-'4. On the other hand, the air pollution has a big influence into the probability to get a
CRD. The most common air pollutants are measured in the cities by an automatic air quality network (AQMN). The
AQMN measures particulate matter (PM), tropospheric ozone (Ogz), sulfur dioxide (SO-), nitrogen dioxide (NO,) and
others. They are implemented in order to establish a monitoring system in the cities, considering that these air pollutants
have a high influence in the incidence in some CRDs and other diseases *>-8. In order to establish a model to relate health
data and other variables, a logistic regression is implemented, considering environmental variables are part of the predictor
variables'®?°. The aim is to find what are the most common independent variables that have the highest probability to be

related to CRDs.

In this preliminary study, we compute a model to estimate CRDs in Quito, Ecuador. In order to build the model, we use
RS, environmental data and hospital discharge rates (HDR) from CRDs as entry with a logistic regression. The result
shows us probability maps from the logistic regression model, where people can see if their zones have or not have a big
probability in base to the built model. The idea is to find new alternatives to use RS data in different regions in order to

have additional possible health related answers.

2. METHODOLOGY

2.1 Study area

The study area of this work is the city of Quito, Ecuador. The project area is focused on the urban zone, under the influence
of AQMN stations and where most of the people live. In the study area, the considered zones are the parishes or
“parroquias” as the unit, because of the availability of hospital discharge rates only at this level of information (Figure 1).
Quito is located in the middle of Andean region with a middle latitude, having a constant temperature during all the year.

The mean Quito altitude is about 2800m amsl.
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Figure 1. Study location (Quito, Ecuador). The green polygons are the parishes or “parroquias” and the yellow points are the AQMN

stations. The base image is a Landsat-8 OLI from 20/09/2017.
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2.2 Methodology

The challenge of the study is to compute a risk for CRDs (predictive model), considering the RS and environmental data
(air pollution) as input in the model (independent variables) between 2013 to 2017. Thus, a final table where are matched
the RS, the air pollution parameters and the hospital discharge rates data (Table 1) is established, with the objective to

build a final model and show the spatial distribution. The general methodology is showed in the Figure 3.

Remote sensing data AQMN Daily Air H
(Landsat-8 Level 2) Quality Data

ospital discharge
rates

Y

\J

Monthly matched table

Y

Choose the health binomial variable
(Oorl)

Y

Logistic regression

Y

Comparison between models

Maps of CDRs risk considering the variables income in the
simplest model
Figure 3. Summary methodology workflow.
Table 1. Input model variables
Data type Variable Units

Remote Sensing

Band 1 — Coastal aerosol (B1)
Band 2 - Blue (B2)
Band 3 — Green (B3)
Band 4 — Red (B4)

Band 5 — Near Infrared NIR (B5)
Band 6 — Short-wave infrared SWIR 1 (B6)
Band 7 — Short-wave infrared SWIR 2 (B7)

NDVI
SAVI
EVI
LST

Surface reflectance
(Landsat 8 — Level 2)

Environmental data - Air

pollution

PM2.5
SOz
Os
NO:

pg/m?

Hospital discharge rates

CRDs admission rate (per 10,000) (NS)

Hospital discharge rates divided per
population
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2.3 Extracting remote sensing variables

Three classes of variables are chosen in this study (RS, AQMN data and HDR) between 2013 to 2017. Considering the RS
data, forty six Landsat-8 Level-22* images are used in the study. These images are geometric, radiometric and atmospheric
corrected??. They were downloaded from Land Satellites Data Systems Science Research and Development (LSRD)
(https://espa.cr.usgs.gov/). The available download products are: (i) land surface reflectance bands from the Operational
Land Imager (OLI) sensor; (ii) some environmental indexes already computed (NDVI, SAVI, EVI) and; (iii) the brightness
temperature (BT). Moreover, we contemplate only images with less than ten percentage of cloud cover in the study area,
considering that Quito is a city with a high cloud density during all the year, and so some methods to remove clouds have
been applied in order to recover some image data®3%3,

The RS variables used as predictor are the surface reflectance and some environmental indexes. In the case of the surface
reflectance, the variables are B1, B2, B3, B4, B5, B6 and B7. The reason to consider them is the high relationship between
the OLI bands and air pollution>2427, On the other hand, we use some environmental indexes as NDVI, SAVI and EVI.
They are used because they have a high relationship with the vegetation type and coverage and the land use. Moreover, in
order to have a climate variable, the LST is computed. It is computed from the BT by Inversion of Planck’s function?® as
presented in the Equation 1.

BT

Where, A is the center wavelength (Landsat-8 = 10.8 um)?°, p is the a constant (Equation 2) and ¢ is the emissivity (Equation
3).
h*
p=— )

N

Where, h is the Planck’s constant (6.626e-14 Js), ¢ is the velocity of light (2.998e-8 m/s) and s is the Boltzmann constant
(6.626 e-34 J/K).

The emissivity () is the efficiency with a surface emits heat as Thermal Infrared (TIR) radiation®’. The Equation 3 is a
semi-empirical algorithm where the variations of NDV1 in the vegetation (NDVI,) and soil (NDVIs) are considered®".

&5, NDVI < NDVI,
e =&, + (&, — &)Py, NDVI; < NDVI < NDVI, ©)
&,, NDVI > NDVI,

Where, & is the emissivity for soil (0.973). &, is the emissivity for vegetation (0.985)%. P, is the proportion of vegetation
in the study area (Equation 4), where NDVI,and NDVIsare 0.2 and 0.5%.

NDVI-NDVIs \ 2

Py = (NDVI,,—NDVIS) “)
With the forty-six Landsat-8 Level 2 images, we extract a median pixel value in each parish every month from the RS
variables. The extraction considers a previous analysis, where the pixels with clouds are not considered in order to obtain
the median value. This is done considering the Landsat-8 thin cloud band (B9). All the extraction and computation process
were performed with R software. The final output is a medium RS data monthly table.

2.4 Air Quality Measurements

On the other hand, the collected data from AQMN are air daily measures. The AQMN in Quito is the “Red Metropolitana
de Monitoreo Atmosférico de Quito” (REMMAQ)®,. It is working since 2002 and it is composed by nine monitoring
stations in some city zones (Figure 1). REMMAAQ stations get meteorological and air pollution variables. In our case, we
consider the main air pollutions related to respiratory health. They are particulate matter less than 2.5 microns (PM2.5),
SOy, Os and NO;. The data is available in “Secretaria del Ambiente” page
(http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos). All the process to normalize the data
was realized on R software, where we choose a median value between each month and parish in order to match with RS
and HDR data in a unique input data table. The inverse distance weighted (IDW) method was applied to build the raster
data to extract each variable by parish.

Proc. of SPIE Vol. 11157 1115705-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2.5 Hospital discharge rates (HDR)

Finally, the CRDs admission rates are obtained from “Instituto Nacional de Estadisticas y Censos” (INEC). INEC provides
this data from 2012 to 2017 in each parish, based in the International Classification of Diseases 10 (ICD-10) from the
WHO?*. The HDR data can be downloaded from INEC web page (http://www.ecuadorencifras.gob.ec/camas-y-egresos-
hospitalarios/). In order to have only the CRDs admission rates, we filter the INEC tables selecting the cases of chronic
lower respiratory diseases (ICD-10 codes: J40 — J47) per month and parish. Furthermore, we also collect the population
data from INEC in order to obtain the HDR per 10000 people. With this new computed variable, we generate the binomial
dependent variable to be modeled. This was done considering a cutoff in a main break value in the analysis of the histogram.
The final HDR data is showed in a binomial variable (0 or 1) per month, year and parish.

2.6 CRDs risk modeling

In order to compute the model, the technique employed was the multiple logistic regression. This method needs a binomial
variable as dependent variable. Several health studies use the logistic regression to established probability models®®,
considering some predictors to analyze if they have or not relationship with the binomial dependent variable (0 or 1), which
is a classification variable.

The Equation 5 shows the model considering all variables.

1
T 14e—(+a*B1 + b*B2 + c*B3 + d+B4 + e+B5 + f+B6 + g+B7 + h«NDVI + i*SAVI + j«EVI + k+LST + 1xNO2 + m+03 + n+PM2.5 + 0+5S02) (5)

PS

Where, a,b,...,0 are coefficients computed from the multiple logistic regression from the independent variables, I is the
intercept and PS is the probability to have or not a CDRs.

Nevertheless, the objective is to build the simplest model with few predictors, thus, the backward stepwise selection method
was applied to obtain the model with less variables through the lowest Akaike information criterion (AIC). Moreover, the
final process is to analyse if the model with the lowest AIC has correlation variables, specifically the RS variables. If they
have correlation, only a variable is selected between them in order to establish the final model and to elaborate the risk
maps.

3. RESULTS AND DISCUSSION

The final monthly parish data table is the result of combining 892 observations from RS, air pollution and HDR data
between 2013 to 2017. Considering the requirement to have a binomial dependent variable, the HDR histogram was
analyzed (Figure 4) in order to define a cutoff value. A cutoff value of 0.35 HDR per 10000 people was them selected. It
means if the HDR per 10000 people have a value less than 0.35, it takes the value 0 and, if the value is more than 0.35, it
takes a value 1 (Table 2). In this aspect, we consider a parish with less than 0.35 HDR per 10000 people without sick
people.

Thus, the model is built considering a multiple linear regression, where the backward stepwise selection gives a new model
with the lowest AIC value. The Equation 6 shows the new model with 8 independent variables as predictors, where most
of them are RS variables related to vegetation and soil use.

1
1+4e¢—(+a*B1 + b*B2+d+B4+f+B6+ h*xNDVI + i*SAVI + j*EVI+ 0xS02) (6)

P(Yy=1) =

On the other hand, considering the evaluation of multicollinearity in Equation 6, where some of the predictors have a high
correlation value (near to 1), they are discarded in the final model®®. For example, the B1, B2 and B4 are the same variables
according to the correlation graphic. In this case, we used only a variable (B2) considering the relationship of blue band
with humidity and it possible relationship with CRDs®". The rest of them were discarded in the final model. Another group
of variables to discard is between NDVI, SAVI and EVI, where NDVI was selected according to the importance of this
variable in most of the studies.
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Figure 4. Histogram of CRDs admission rate per 10000 people. The red line is the cutoff value to define the binomial variable
(0.35).

Table 2. Definition of new binomial variable considering a cutoff value

Category — Binomial value | Number of observations | % of observations
0 (NS <0.35) 589 66
1 (NS >0.35) 303 44
Total 892 100
s02
PM25
03

2 IHH R o2 [0 oe o]

PS
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Figure 5. Correlation graphic. Most of the RS variables have a high correlation value.
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The Equation 7 presents the final model considering the correlation analysis (Figure 5). The final predictors are B2, B6,
NDVI and SO2, meaning that only three RS variables and one air pollution variable entry in the final model.

: 7
14e—(1+b*B2 + fxB6 + hxNDVI + 0%S02) ( )

P(Y=1)=

In the evaluation of parameters (Table 3), we see that the more significative variables are SO, and B6, meaning that the
probability to get a CRDs with this data are in areas with a high response of the short-wave infrared. Some authors relate
the infrared with the presence of 03> and O3 with the presence of CRDs°, On the other hand, the SO; is related with
asthma in some recent studies as a risk factor®°4°,

Table 3. Final model parameters

Coefficients -

Variable Estimate Significance Odds ratio (OR)
Intercept (1) 2.53030 0.006 12.557
B2 b =-6.04123 0.601 0.0024
B6 f=-7.62867 0.061 0.0004
NDVI h=-1.42922 0.219 0.2395
S0O2 0=-0.21053 0.000 0.8101

The final model is evaluated in a relative operating characteristic (ROC) curve with an area under the curve (AUC) of
0.609. This suggests a probability of 61% of correctly classifying between the two classes (having CRDs or not having a

CRDs) 4142,
o |
w |
o
w
Z o 7
2
B AUC: 0.609 (0.569-0.64p)
@ <
o
™ -
o
o -
° T T T
1.0 05 00
Specificity

Figure 6. AUC of the final model

Finally, the logistic model is represented over monthly maps in order to compare what can be the risk to get CRDs according
to color levels (Figure 7), where red is a high risk and blue low risk. In this case, the final maps are created with a spatial
resolution of 30 meters, considering the Landsat-8 bands and environmental indexes computed by IDW. Thus, we have
maps with a medium resolution in order to know the probability to get a CRD with more accuracy if it is combined with
other spatial information as roads, hospital locations, etc. For example, on Figure 7 maps, we have more probability to get
CRDs in regions with more road density and less probability in regions with more green area.
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Figure 7. Probability maps to get CRDs in base to the final model computed. On the left the map in September 2013. On the right,
the map in September 2015.

4. CONCLUSIONS

This preliminary study investigates a possible relationship between remote sensing, environmental variables and hospital
discharge rates by chronic respiratory diseases in Quito, Ecuador. The model established uses a multiple logistic regression
considering parishes where it is possible the presence of a sick people by a chronic respiratory disease. The results show a
model with four variables; where three of them were obtained by remote sensing and one by air quality measures. The
most significant variables are the short-wave infrared or band 6 in Landsat-8 and sulfur dioxide (SO2). Moreover, the AUC
of the model was 0.609. Considering this model evaluation, we generated risk maps. This kind of models can be an
interesting alternative tool to health authorities in order to evaluate the public health with remote sensing variables.
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