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Resumo 

Dados de Deteção Remota (DR) têm sido utilizados frequentemente para estudos 

epidemiológicos, particularmente na avaliação da relação entre doenças infecciosas e 

o meio ambiente. No entanto, a sua aplicação é ainda limitada a variáveis pré-

determinadas/processadas, como por exemplo, índices de vegetação. O principal 

objetivo deste projeto foi avaliar a aplicabilidade dos dados de DR (apropriadamente 

calibrados e processados para condições locais em Quito, Equador) no estudo de 

doenças respiratórias crónicas sensíveis ao ambiente (asma e bronquite como as 

principais). Para isso, uma revisão aprofundada da literatura para estudar quais os 

dados de DR e os algoritmos usados para estimar várias variáveis ambientais 

relacionadas com doenças prevalentes (por exemplo, O3, PM) foi realizada. Com 

recurso a bases de dados de saúde (por exemplo, a alta hospitalar), diferentes modelos 

foram implementados e testados. Além disso, vários algoritmos de machine learning, 

tais como multiple linear regression, partial least square, artificial neural network, logistic 

regression, support vector regression e random forest, foram implementados com o 

objetivo de  encontrar os modelos mais adequados. O modelo final escolhido (suport 

vector regression) permite obter o mapeamento espacial das doenças respiratórias 

crónicas entre 2013 e 2017 em Quito, Equador. Este trabalho apresenta assim um novo 

conceito no uso de dados de RS em aplicações ao ambiente e à medicina, e na proposta 

de diferentes relações com variáveis ambientais. 

 

Palavras Chave: Deteção Remota por satélite, poluição do ar, machine learning, análise 

espacial, doenças respiratória
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Abstract 

Remote Sensing (RS) data have been frequently used in epidemiological studies, 

specifically in the assessment of the relationship between infectious disease and the 

environment. However, their application is limited to pre-determined/processed 

variables, as vegetation indexes. The main objective of this work was to evaluate the 

applicability of RS data (appropriately calibrated and processed for local conditions in 

Quito, Ecuador) in the study of environment-sensitive chronic respiratory diseases 

(asthma and bronchitis). For this, a comprehensive review of the RS data and the 

algorithms available used to retrieve several environment variables related to prevalent 

diseases (O3, PM), were performed. Using a health database (hospital discharge), 

different models were computed and tested. Several machine learning methods, as 

multiple linear regression, partial least squares, artificial neural network, logistic 

regression, support vector regression and random forest, were applied to find the most 

adequate models. The final model (support vector regression) allowed to obtain a spatial 

mapping of the chronic respiratory diseases between 2013 to 2017, in Quito, Ecuador. 

This work presents a new concept in the use of RS data in different fields like 

environment and health and in the proposal of different relationships considering 

environmental variables.  

 

Keywords: Satellite remote sensing, air pollution, machine learning, spatial analysis, 

respiratory diseases 
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1.  Introduction 

During the last years, the World Health Organization (WHO) has defined that more than 

3 million of people have died every year from a chronic respiratory disease (CRD), 

representing approximately 6% of global annual deceases [1]. A CRD is a disease of the 

airways, where the most commons are the asthma, chronic obstructive pulmonary 

disease (COPD), among others. One of the principal risk factors is the air pollution in the 

cities, occupational chemicals, dust and the frequent respiratory infections during 

childhood [2]. In recent years, several studies have analysed how asthma; a CRD; is 

exacerbated by pollutants [3], such as ozone (O3), particulate matter (PM) with 

aerodynamic diameters less than 10 mm or 2.5 mm (PM10 or PM2.5, respectively), 

nitrogen dioxide (NO2), carbon monoxide (CO) and sulphur dioxide (SO2). Concerning 

this, the study of environmental parameters is very important considering the direct and 

indirect relationship between the climate, the environment and the respiratory health [4].  

One of the most affective alternatives to obtain environmental and climate variables is 

the use of satellite remote sensing (RS) data. RS data have the major advantage of 

providing synoptic and frequent overviews of the Earth’s surface, whereas the 

distribution of ground-based measurements is usually sparse and uneven. Additionally, 

using these data avoids expensive and time-consuming monitoring campaigns. These 

data can provide information related to vegetation, land use, temperature, air pollutants 

and others [5,6].  

National Aeronautics and Space Administration (NASA) within the Earth Observing 

System (EOS) program have coordinated a series of satellite missions for global 

observations including the land surface (e.g., surface temperature, soil moisture, 

vegetation cover, and land use) observation [7]. EOS includes some important satellites 

as Terra, Aqua, Landsat-7 and Landsat-8. Terra and Aqua satellites were launched in 

1999 and 2002, respectively. Their instruments include the Advanced Spaceborne 

Thermal Emission and Reflection (ASTER) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) [8]. MODIS is an instrument that acquires data in 36 spectral 

bands with different spatial resolution (from 250 to 1000 meters). This low spatial 

resolution can be considered a limitation in the analysis of medium scale cities. However, 

this sensor is able to obtain information of the entire Earth’s surface every 1 to 2 days 

[9]. Landsat-7 and Landsat-8 are the last satellites from the Landsat Program launched 

in 1999 and 2013, respectively. Landsat-7 includes an Enhanced Thematic Mapper Plus 

(ETM+) sensor, while Landsat-8 includes two sensors: the Operational Land Imager 

(OLI) divided into 9 bands with 30 meters of spatial resolution (15m for panchromatic 
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band) and the Thermal Infrared Sensor (TIRS) instrument divided into 2 bands with 100 

meters in native spatial resolution and resampled to 30 meters. OLI sensor also includes 

a Cirrus Band (B9) and a quality band (QA). B9 provides data of thin cloud contamination, 

while QA band evaluates the quality of each image pixel [10].  

In the case of use satellite RS data to environmental and health studies, the most 

common satellites are from EOS program, with the main advantages related to the free 

access and the easiness to download. Typically, the use of satellite RS data is related to 

the retrieving of vegetation parameters, land use/cover and climate variables. Some of 

these variables are related to the use of spectral indexes as normalized vegetation 

difference index (NVDI), enhanced vegetation index (EVI), soil-adjusted vegetation 

index (SAVI), land surface temperature (LST) and others [11–13]. On the other hand, 

the air pollution has a big influence into the probability to get a CRD. The most common 

air pollutants are measured/quantified in the cities by an automatic air quality network 

(AQMN). These networks are implemented in order to establish a monitoring system in 

the cities, considering that these air pollutants have a high influence in the incidence of 

some CRDs and other diseases [14–17]. One of the approaches to relate air pollutants 

with RS is the Aerosol Optical Thickness (AOT) [18–20]. The AOT is a parameter that 

can be obtained from MODIS Aerosol product or Aerosol Optical Deep (AOD) ground 

stations (called AERONET), which allows to obtain measures of aerosols related with 

the air pollutants. Thus, several studies use AOT in order to retrieve air pollutants using 

RS data [21,22].     

Regarding this, several studies show an increment in the use of RS data in health 

studies, related to environmental parameters [23,24]. These studies involve infectious 

disease epidemics and others CRDs, as asthma [25]. Ayres-Sampaio et al. [26], 

developed a study to evaluate the relationship between asthma hospital discharge and 

several environmental variables, in Portugal mainland, using RS data and spatial 

modelling. A set of five environmental variables were considered: near-surface air 

temperature (Ta) from the temperature profile of the MODIS sensor; relative humidity 

(RH) from meteorological station data interpolated by kriging method; vegetation density 

from MODIS NDVI product; and space-time estimates of nitrogen dioxide (NO2) and 

particulate matter less than 10 mm (PM10), both from Land Use Regression (LUR) 

models based on data from AQMN stations. Districts were aggregated into three groups 

based on their percent urban cover, and the municipality was chosen as the sampling 

unit to assess the relationship between asthma hospital admission rates and 

environmental variables by season for the years 2003-2008. The results suggest that 

asthmatic people living in highly urbanized and sparsely vegetated areas are at a greater 
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risk of suffering severe asthma attacks that lead to hospital admissions. However, the 

limitations of this study are related to the global calibration, low spatial resolution of the 

RS data, atmospheric column effects, LUR statics models to derived air pollution and the 

dependence between some variables.  

Alcock et al. [27] uses negative binomial regression model in order to relate some 

geographical variables with reductions in asthma hospitalisations, where one of the 

variables is the area-level data on vegetation. The study results showed that green 

spaces and gardens were associated with reductions in asthma hospitalisation when 

pollutants were lower. Andrusaityte et al. [28] identify the associations between 

neighbourhood greenness and asthma in preschool children, where the results show that 

an increase in the NDVI values data was associated with a slightly increased in the risk 

of asthma in children. 

Fuertes et al. [29] identifies a non-consistent relationship between traffic-related air 

pollution (TRAP) on childhood asthma and allergic diseases documented during early-

life persist into later childhood. One of the input variables to TRAP were the NO2 and 

PM2.5 LUR from based on Corine land Cover (CLC) [30]. Cillufo et al. [31] used the CLC 

and NDVI as LUR inputs. The study showed that exposures related to greenness 

(measured by NDVI), greyness (measured by CLC) and air pollution are associated with 

respiratory general symptoms in schoolchildren.   

The work presented in this thesis proposes an improvement and an update of different 

methodologies already cited in the literature [26] [27], but applied to a different 

geographical area (Quito, Ecuador), where the environmental conditions are extremely 

different and low probability to have RS data cloud free (high density) during all the year 

[32] is a reality. Moreover, this work aims to establish the most adequate spatial model 

to retrieve the hospital discharge of CRDs between 2013 and 2017 with a fine spatial 

resolution (30 meters). Thus, the study purpose: (i) to recover the more quantity of RS 

data (high cloud density) for Quito city [33]; (ii) to evaluate the most adequate RS data 

for the study area in order to retrieve air pollution variables [6]; (iii) to evaluate different 

techniques to select the most representative RS data and environmental variables 

predictors according to air pollution and health data [34] and; (iv) to compare several 

machine learning techniques (MLT) in order to model the CRDs in the urban area of 

Quito. The model chosen will be used for spatial mapping of the CRDs. Thus, this model 

will allow to identify the areas with more CRDs, getting some conclusions about the 

applicability of the model in order to explain a possible trend. The main idea is to find 

new alternatives in the use of RS data to have additional and useful answers about 

respiratory health. 
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1.1 Aim and objetives 

The main objective of this work is to evaluate the applicability of RS data (processed for 

local conditions in Quito, Ecuador) in the study of CRDs, by the computation of the most 

adequate spatial models to retrieve hospital discharge of CRDs between 2013 and 2017. 

To achieve this goal, the following main steps have been applied (in their corresponding 

order): 

1. Evaluating and improving the application of different methodologies to remove 

the effects of high-density clouds in order to have more RS data available for the 

computation of environmental indexes. 

2. Investigate the most adequate RS data to use in the scope of this work, and their 

respective calibration and validation in Quito conditions. Several satellite sensors 

were investigated, e.g., MODIS, Landsat-7 ETM+, Landsat-8 OLI. 

3. Developing different LUR algorithms to retrieve the environment variables from 

RS data, selecting adequately the predictors in order to model the air pollutants 

considering the sensor selected (previous step).  

4. Studying the association between different CRDs and the environmental 

parameters retrieved from RS data, establishing spatial CRDs models from 

different MLT (Multiple linear Regression - MLR, Multilayer Perceptron - MLP, 

Support Vector Regression – SVR and Random Forest Regression - RFR).  

5. Analyzing the limitations of this approach, defining the boundary conditions of the 

proposed model. 

 

1.2 Thesis Outline 

The core of this thesis is composed of six main chapters, as follows:  

- The chapter 2 presents an overview of the theoretical subject about RS data and 

their applications in environmental and health studies. A perspective of the use 

of the different MLT in order to compute spatial models is also given.   

- The chapter 3 presents an evaluation and an improvement of the Automatic 

Cloud Removal Method (ACRM) algorithm [35] to remove thin clouds considering 

Landsat-8, in order to recovery RS data and after to compute spectral indexes as 

NDVI. Thus, an automatic removal cloud method based on the cirrus band from 

Landsat-8 is proposed for the study area. This work was published in the “Remote 

Sensing Applications: Society and Environment journal” by Elsevier  [33]. 



FCUP 
Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study 

applied to Quito, Ecuador 

5 
 

 
- The chapter 4 presents the evaluation of three different RS datasets in order to 

retrieve PM10 variable, considering a LUR model using only RS data from 

Landsat-8. This was published in “Environments” by MDPI [36].  

- The chapter 5 presents a published paper in the “Environmental Monitoring and 

Assessment” journal by Springer, which is focusing in the selection of predictors 

in a LUR model, testing different MLT in order to retrieve O3 concentration [34].    

- The chapter 6 shows a development of the final spatial model. This work was 

submitted for the “International Journal of Environmental Research and Public 

Health” by MDPI. Thus, the evaluation of different MLT to compute a LUR model 

of the hospital discharge of CRDs in Quito, Ecuador is realized to achieve the 

thesis goals. 

- Finally, the chapter 7 includes the discussion, conclusions and future work, 

identifying the achievable goals, the opportunities and the limitations of this study.  

 

1.3 Study area 

The study area is the urban area of Quito, the capital of Ecuador (Figure 1.1). The city 

has some special characteristics related to geology, climatology and location. Quito is 

crossed by the equatorial line in the North side.  The study area latitude ranges between 

0º30’S to 0º10’N and its longitude ranges between 78º10’W to 78º40’W. These 

coordinates delimit most of the urban zone, which is divided into 45 urban parishes. In 

the urban area is placed the downtown, and consequently higher air pollution 

concentration and high population density. 

 

Figure 1.1. Study area. In the left image, the red polygons are the urban parishes in Quito. 

 

According to the geology of northeastern of Ecuador, Quito is greatly influenced by the 

tectonic mechanisms responsible for the development of the Andes Mountains (Figure 
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1.2). Thus, some geological processes such as landslide, volcanism, erosion, 

weathering are presented in the city [37].  

 

Figure 1.2. Quito in the middle of the Andean Region (adapted from The University of Texas. 25 July 2019, // 
utdirect.utexas.edu/apps/abroad/student/pgm_list/detail/nlogon/376/).  

 

The high cloud density over Quito is very significant, all over the year. The specific reason 

is the influence of a high Andes Mountains region, situated in a tropical zone. The city 

elevation is approximately 2800 meters above sea level. Another of this area 

characteristic is the nonexistence of the traditional four seasons. The city has only one 

dry season and one wet season (February to May). The mean temperature during all the 

year is between 14 to 16 degrees Celsius (Figure 1.2). 

 

Figure 1.2. Air temperature average in Quito, Ecuador (adapted from [38]).  

 

Another important climatology parameter is the solar irradiance. It is higher during August 

and September over 240 W/m2 and the minimum solar irradiance is presented during the 

wet season with values lower than 160 W/m2 (Figure 1.3). 
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Figure 1.3. Solar irradiance average in Quito, Ecuador (adapted from [38]). 
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2.  Theoretical Background 

2.1 Sensor and platforms 

RS can be defined as a technique to collect information about an object without making 

physical contact with it [39]. Satellite RS has the major advantage of providing synoptic 

and frequent overviews of the Earth’s surface, whereas the distribution of ground-based 

measurements is usually too scarce and uneven to obtain enough information. The 

principles of the satellite RS could be defined in six stages: (i) an energy source, which 

produces the electromagnetic radiation to be captured by the sensor. The Sun is 

generally the energy source of passive sensors; (ii) the Earth's surface, which receives 

the incidence of the energy source; (iii) the platform and sensor ; (iv) the ground system, 

which receive the data; (v) the processing and analysis of the RS data and; (vi) the end 

users (Figure 2.1) [40]. 

 

Figure 2.1. Main stages related to satellite RS (adapted from [40]).  

 

The most significant advances in RS date back to the late of the 1960s, when NASA 

began the EOS program. EOS launched the first Earth Resources Technology Satellite 

(ERTS-1) in 1972 (renamed as Landsat-1). This date was a break point in the advance 

of the satellite RS, being the beginning of more than forty continuous years of Earth 

observation (EO) with the Landsat program. Landsat program is a series of EO satellite 

missions developed and supported by NASA [41]. The current orbit mission platforms to 

collect data are the Landsat-7 with the ETM+ sensor and Landsat-8 with the OLI and 

TIRS sensors (Figure 2.2). The next generation (Landsat-9) is expected to be launched 

in 2020.  
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Figure 2.2. Illustration of Landsat-8 satellite (adapted from [10]).  

 

EOS program has others EO satellites, as Terra and Aqua, launched in 1999 and 2002, 

respectively. These satellites are identical and both include the MODIS sensors on board 

[8]. The difference between both satellites are that Terra passes across the equator in 

the morning (North to South), while Aqua passes in the afternoon (South to North). One 

of the main advantages of these EOS satellites is the availability of the data (public) and 

they are free to download. The main characteristics of these EOS sensors and platforms 

are described in Table 2.1. 

 
Table 2.1. Main characteristics of satellites and sensors considered in this work. 

 
Satellite 
platform 

Sensor Bands (B) 
Temporal 
resolution 

Spatial resolution 

Landsat-7 ETM+ 

B1 - Blue 
B2 - Green 
B3 - Red 

B4 - Near Infrared (NIR) 
B5 – SWIR 1 

B6 - Thermal Infrared (TIR) 
Low Gain / High Gain 

B7 – SWIR 2 
B8 – Panchromatic 

16-days 

30 m (B1-B5, B7) 
100 m (B6) 
15 m (B8) 

 

Landsat-8 
OLI 

TIRS 

B1 - Coastal aerosol 
B2 - Blue 

B3 - Green 
B4 - Red 

B5 - Near Infrared (NIR) 
B6 - SWIR 1 
B7 - SWIR 2 

B8 - Panchromatic 
B9 – Cirrus 

B10 - Thermal Infrared (TIR) 
1 

B11 - Thermal Infrared (TIR) 
2 

16-days 

30 m (B1-B7, B9) 
15 m (B8) 

100 m (B10-B11) 
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Terra  
Aqua  

MODIS 
36 spectral bands with 

different spatial resolution 
1 to 2 
days 

250 m (B1–B2)  
500 m (B3–B7)  

1000 m (B8–B36) 

 

According to the different characteristics in the sensors and platforms, it is important to 

evaluate the advantages and disadvantages of each RS data. For example, MODIS 

sensor is adequate for regional or global studies, where the spatial resolution is not a 

limitation. However, it is not so adequate in local scale studies, where the pixel size 

directly affects the results. An alternative is the use of Landsat-7 or Landsat-8 products. 

Nevertheless, it is important to emphasize that Landsat-7 sensor has a problem since 

2003 in the Scan Line Corrector (SCL-Off) [42]. Moreover, one of the main advantages 

of Landsat satellites is the continuous data since 1972 to present (Figure 2.3).  

 

Figure 2.3. Landsat Missions multispectral data (adapted from [10]).  

 

2.2 Data pre-processing 

In order to have ready to use RS data products, several pre-processing steps must be 

applied. Thus, the geometric, topographic, radiometric and atmospheric corrections are 

mandatory in the use of RS data, because RS raw data give the surface radiance in the 

form of Digital Number (DN). The DNs must be converted to physical units, correcting all 

the possible effects. The explanations and sequence of the corrections (Figure 2.4) are 

explained below: 

- The geometric and topographic corrections are necessary in order to repair the 

geometric deformations. This distortion needs to be corrected finding the 

geographical reality on the ground, associating to a coordinate reference system, 

ground control points, altitude, etc. [43].  

- The radiometric correction reduces the influence of inconsistencies in image 

brightness values, which could limit the analysis of RS data [44]. In this 

correction, DN is converted into radiance. Then, the radiance is converted into 
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top of the atmosphere (TOA) reflectance data and in brightness temperature (BT) 

in the thermal bands.  

- The atmospheric correction allows to remove the atmospheric effects due to 

absorption and scattering effects. Several algorithms can be used to estimate the 

surface reflectance. One of the most popular and simplest method is the empirical 

Dark-Object Subtraction (DOS) [45]. DOS assumes that the reflectance of dark 

objects has a considerable component of atmospheric scattering, searching the 

darkest pixel value to each band. More complete physical methods are Second 

Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) and Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). 6SV can 

simulate the solar radiation on the ground and in the atmosphere under a variety 

of conditions of both ground surface and atmosphere [46]. However, it requires 

several local data, as meteorological variables. FLAASH is an ENVI software 

package based on MODerate resolution atmospheric TRANsmission 

(MODTRAN) radiation transfer code [47]. FLAASH uses physics-based 

derivation of atmospheric properties such as surface pressure, water vapor 

column, aerosol and cloud overburdens in order to convert TOA reflectance into 

surface reflectance values [47,48]. The selection of the atmospheric correction 

method will depend on the availability of the data for the study area. Some studies 

show that the physical methods are more accurate than empirical methods [49].  

 

Figure 2.4. Workflow of RS data pre-processing tasks. 
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Landsat-7 and Landsat-8 can download in Level 1 LT1 product, available on United 

States Geological Survey (USGS) website (http://earthexplorer.usgs.gov). This product 

is already radiometrically calibrated and orthorectified, avoiding the geometric and 

topographic calibration. Thus, only radiometric and atmospheric correction must be 

applied. On the other hand, the USGS provides Landsat surface reflectance Level-2 

products (L2T). L2T products are radiometric and atmospherically corrected, where the 

products include surface reflectance and BT ready to use. In order to obtain L2T 

products, Landsat-7 uses the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) [50], while, Landsat-8 uses the Landsat Surface Reflectance Code 

(LaSRC) [51]. Moreover, L2T products are available to download from the Earth 

Resources Observation and Science (EROS) Center Science Processing Architecture 

(ESPA) at the demand interface (https://espa.cr.usgs.gov/). In the case of MODIS 

sensor, the MOD09 (Terra) and MYD09 (Aqua) are the products used in this work. They 

derived the surface reflectance [52]. These products provide images at ground level, 

without atmospheric scattering or absorption.  

2.3 Data processing 

RS information about vegetation, temperature or land use are extremely related to useful 

applications in the areas of environmental monitoring, climatology, biodiversity 

conservation, agriculture, forestry, urban green infrastructures, air pollution and other 

related fields [53]. In most of these applications, RS is used to acquire surface 

information through spectral indexes. These indexes are the result of processing the 

surface reflectance data and BT.  

The NVDI is one of most popular vegetation spectral indexes. It provides information 

about health vegetation [54], where high NDVI values correspond to dense or primary 

vegetation (usually higher than 0.3), and low values can correspond to sick vegetation 

or indicate the presence of bare soils. Negative values correspond to water or snow. 

NDVI is computed using the surface reflectance data from the NIR and RED bands 

(Equation 2.1): 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (2.1) 

 
Moreover, SAVI is an improvement of NDVI. It considers a soil correction factor – LS 

(usually LS = 0.5) [55]. LS minimizes the soil brightness influences, especially, when 

urban areas with low vegetation cover and bare soils exist in the scene (Equation 2.2): 

𝑆𝐴𝑉𝐼 = (1 + 𝐿𝑆)
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿𝑆
 (2.2) 

 

http://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/
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The EVI enhances the vegetation (Equation 2.3) in areas with high biomass, as forests. 

It improves vegetation monitoring through a de-coupling of the canopy background signal 

and a reduction in atmospheric influences [56].  

 

𝐸𝑉𝐼 = 𝐺 ∗
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅𝐸𝐷 − 𝐶2 ∗ 𝐵𝐿𝑈𝐸 + 𝐿
 (2.3) 

 
where G is the gain factor (2.5), L is the canopy background adjustment (1), C1 (6) and 

C2 (7.5) are coefficients for atmospheric resistance. The Red and NIR bands in this index 

allowed to detect built-up areas and bare lands areas [57]. 

One important parameter related to surface energy and water balance is the LST [58]. 

The LST is the relative temperature of the land surface computed from RS data. It is 

computed from the TOA BT (TIRS bands), in Kelvin. The Equation 2.4 allows to compute 

the LST in degrees Celsius. 

𝐿𝑆𝑇 =
𝐵𝑇

(1 + (
𝜆 ∗ 𝐵𝑇

𝑝 ) 𝑙𝑛E)
− 273.15 

(2.4) 

 

where λ is the centre wavelength (10.8 μm), E is the emissivity obtained from the 

Equation 2.6; p is estimated using Equation 2.5, where h is the Planck constant (6.626e-

34 Js), c is the speed of light (2.998e8 m/s), and s is the Boltzmann constant (1.38e-23 

J/K). 

𝑝 =
ℎ ∗ 𝑐

𝑠
 (2.5) 

 

The Equation 2.6 was used to compute the emissivity (E) [59], where E is the efficiency 

that a surface emits heat as TIR radiation [60]. 

𝐸 = {

𝐸𝑠 , 𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑠

𝐸𝑠 + (𝐸𝑣 − 𝐸𝑠)𝑃𝑉 , 𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣

𝐸𝑣 , 𝑁𝐷𝑉𝐼 > 𝑁𝐷𝑉𝐼𝑣

 (2.6) 

 
where Es and Ev represent the E in the soil and vegetation, respectively. NDVIv and NDVIs 

are the NDVI in vegetation and soil, respectively. PV is the proportion of vegetation in the 

study area computed based in the Equation 2.7. 

𝑃𝑉 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠
)

2

 (2.7) 

 

The Landsat L2T products have available to download all the indexes presented in the 

previous equations, except the LST. MODIS provides MOD13 and MYD13 products in 

(NDVI and EVI data ready products, respectively). Moreover, MOD11 and MYD11 

products provides LST ready to use. 
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2.4 Remote sensing in environmental and health studies 

For environmental scientists, the most important aspect of RS data is to provide relevant 

information for monitoring Earth's resources. The benefits of environmental monitoring 

of RS data in comparison with other methods, are the global view over of the Earth's 

surface, the multiscale observations (regional to local studies), the possibility to repeat 

observations (very useful in temporal studies), the immediate transmission (real-time 

transmissions in some cases) and the facility to combine with other geographical 

information [40]. Thus, several studies contain RS, environmental and health data 

involving monitoring, spatial predictive modelling, surveillance, and risk assessment [23]. 

These studies are specifically associated with the retrieving of air pollutants (PM10, 

PM2.5, O3, NO2, SO2) in combination with ground data and other geographical variables 

as vegetation, knowing the possible correspondence with some vector-borne [61] and 

respiratory diseases [62–65]. Several works investigate this relationship. For instance, 

Liang et al. [62] established AOD-PM2.5 models to study the spatial correlation with 

allergic rhinitis in Taiwan. The study found a high correlation between these two factors 

(AOD-PM2.5 and allergic rhinitis), particularly in spring and fall. Al-Hamdan et al. [63] 

shows in their study the important relationship between PM retrieved from MODIS AOT 

and the respiratory system cancer. Ai et al. [64] presents in this study, the relationship 

between air pollution and asthma cases, where RS data were used to estimate the yearly 

mean of air pollutants. Additional studies, as Andrusaityte et al. [28], use vegetation 

multispectral indexes. They identified the associations between neighbourhood 

greenness and asthma in preschool children, where the results showed that the increase 

in the NDVI was associated with a slightly increased of the relative risk of asthma in 

children. In opposition to these works, Li et al. [65] founded that NDVI does not have an 

association with respiratory and allergic outcomes. They concluded that living closer to 

green parks appeared to be a risk factor for asthma. 

 

2.5 Ground and health data 

2.5.1 Air pollutants and meteorological measurements ground data 

In order to compute spatial models to retrieve environmental and health variables, 

ground data are necessary to calibrate the models, specifically air pollutants and 

meteorological variables. Thus, a valid alternative to collect daily ground measurement 

data is through an air quality monitoring network (AQMN). An AQMN is a network with a 

series of fixed stations equipped with sensors to measure some air pollutants, such as 

PM10, PM2.5, O3, NO2, CO and SO2 (Figure 2.5). The AQMN stations give an 
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understating about air pollution and the impact over the human health. Some AQMN 

have meteorological sensors (MD) that allow to obtain field measurements of pressure, 

wind direction, relative humidity, precipitation, wind speed, air temperature and solar 

irradiance. 

A good planning of the location of the AQMN stations is mandatory. However, in most of 

the cases a high maintenance cost by station [66], a low quantity of stations in large cities 

or non-representative spatial distribution [67] are the main problems. 

The AQMN available in the study area (Quito, Ecuador) is the “Red Metropolitana de 

Monitoreo Atmosférico de Quito” (REMMAQ)[38]. It has worked since 2002 with nine 

monitoring stations with air pollutant and meteorological sensors (Table 2.2).  

 

 

Figure 2.5. AQMN station in Quito, Ecuador (adapted from [38]).  

 

Most of the data retrieved by REEMAQ have influence in the respiratory health. The data 

is available to download in the Environmental Secretary of Quito web page 

(http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos) for 

free.  

 
Table 2.2. Field sensors of the REEMAQ by station 

Station Variables measured 

Cotocollao PM2.5, SO2, CO, O3, NO2, PM10, MD 

Carcelen PM2.5, SO2, CO, O3, NO2, PM10, MD 

Belisario PM2.5, SO2, CO, O3, NO2, MD 

Jipijapa PM2.5, SO2, CO, O3, NO2, PM10, MS 

Camal PM2.5, SO2, CO, O3, NO2, MD 

Centro PM2.5, SO2, CO, O3, NO2 

Guamani SO2, CO, O3, NO2, PM10, MD 

Tumbaco SO2, O3, PM10, MD 

Los Chillos PM2.5, SO2, CO, O3, NO2, MD 

 

It is important to measure the air pollutants in the cities. In Quito, the PM2.5 is one of 

the air pollutants over the WHO limits during each year (Figure 2.6). Like it, we have 

http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos
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more air pollutants over the WHO limits, which should be monitored in order to obtain a 

better air quality. 

 

Figure 2.6. PM2.5 average measures during the years 2005 to 2017 in each AQMN station (adapted from [38]).  

 

2.5.2 Respiratory health data 

The respiratory health data are significant considering the hospital discharge by a CRD. 

According to the WHO, a CRD is a disease of the airways and other structures of the 

lung. The most common are asthma, chronic obstructive pulmonary disease (COPD), 

occupational lung diseases and pulmonary hypertension [1]. A hospital discharge is 

defined as the patient who has stayed at least one night in the hospital, including dead 

people during the health care. As already referred, one of the principal risk factors to get 

a CRD is the air pollution in the cities [2], considering the exacerbating by air pollutants 

[3] and meteorological conditions.  

In this work, the CRDs were filtered in the ICD-10 codes: J40 – J47. This classification 

is based in the International Classification of Diseases 10 (ICD-10) from the WHO [68]. 

The codes J40-J47 includes diseases as asthma and bronchitis.  

In the case of the study area, the National Institute of Statistics and Census (INEC) is 

the official government institution in charge to provide the information about population 

and other socioeconomic statistic variables in Ecuador. This information is public in a 

parish (“parroquia”) scale. One of the variables provides by INEC is the hospital 

discharge information. It is available to download from INEC web page  

(http://www.ecuadorencifras.gob.ec/camas-y-egresos-hospitalarios/). 

 

2.6 Models 

The base fundamentals of an empirical LUR model is considered in this research. In this 

work, a LUR model is a regression which uses the air pollutant ground measurements 

as dependent variable and other geographic variables as independent variables (traffic, 

http://www.ecuadorencifras.gob.ec/camas-y-egresos-hospitalarios/
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roads, land use, topography, etc.) in a multivariate regression model [69]. In most of the 

cases, the MLR is used to compute the LUR model [70]. However, one limitation is the 

use of some static geographic variables, as the distance to roads, traffic count, land use, 

etc., mainly when the geographical variables are not updated. The classical LUR model 

computes spatial air pollutants and then are compared with health data. This study aims 

to establish a spatial model-based on an empirical LUR model, considering the CRDs as 

the dependent variable and other dynamic geographic variables (RS, air pollution, 

meteorological parameters) as independent variables. In order to compute the LUR 

models, some MLT can be applied and after compared in order to find the most effective 

algorithm. 

2.7 Machine learning techniques 

Machine learning is a category of algorithms that receive input data and use statistical 

analysis to predict an output while updating outputs as new data becomes available [71]. 

MLT uses statistical and computational methods to learn information from the dataset 

without being based on a predetermined equation as a model. The algorithms adaptively 

improve their performance as the number of samples available for learning increases 

[72]. MLT algorithms range from the simplest linear regression models until the more 

complex algorithms, as a neural network (Figure 2.7). 

MLT has two kinds of learning: unsupervised and supervised learning. The aim of the 

first is the regularization of the input data through clusters and not in the output data 

(without supervision). The second one has a supervision process in both data (input and 

output). In this work, MLTs with supervised learning were adopted. Thus, classification 

and regression processes are a supervised learning problem where there is an input x 

(independent variables) and an output y (dependent variable). The objective of the MLT 

is to predict the output, considering a learning process (Equation 2.8). 
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Figure 2.7. MLT (adapted from [72]).  

 

𝑦 = 𝑔(𝑥|𝜃) (2.8) 

 

Where 𝑔(. ) is the regression function (in regression) or the discriminant function (in 

classification), 𝜃 are the parameters or independent variables. Y is the dependent 

variable (a number in regression and a class code in classification).  

 

2.7.1. Multiple linear regression (MLR) 

MLR also known as multiple regression, is a multivariate linear regression, and is 

considered the simplest MLT. It uses several explanatory variables (independent 

variables) to predict the outcome of a response variable (dependent variable), generating 

a model with a linear relationship. The linear regression is a weighted sum of several 

input variables [71] (Equation 2.9). 

𝑦 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀 (2.9) 

 

Where y is the dependent variable, xi are the independent variables, 𝛽0 is the intercept, 

𝛽𝑝 are the slope coefficient for each explanatory variable and 𝜀 are the residuals. 
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2.7.2. Stepwise regression 

Stepwise regression is a MLR, which has an automatic process of the selection of 

predictors (independent variables). It is a combination of the forward and backward 

techniques [73]. The forward selection begins with no candidate predictors in the model. 

Then, the variables are selected in function to the highest coefficient of determination 

(R2), adding one by one variable. The backward selection is the opposite. It begins with 

a model considering all the predictors included and then they are excluded to test the 

highest R2. The problem with the backward selection is that it may include variables that 

are not necessary (could present a high correlation) [74]. 

 

2.7.3. Partial Least Square (PLS) 

PLS regression is a similar technique to principal components regression, which uses 

latent variables or components as predictors [75]. PLS projects the predictors and 

dependent variable into a new space in different hyperplanes or latent variables. The 

advantage to project to new latent variables is to avoid multicollinearity. The PLS 

regression is showed in Equation 2.9. 

𝑦 = 𝑎1𝑡1 + 𝑎2𝑡2 + 𝑎3𝑡3 + ⋯ 𝑎𝑛𝑡𝑛 (2.9) 
 

Where ti are the latent variables or components. They are themselves linear 

combinations of the independent variables (xi), as presented in Equations 2.10, 2.11 and 

2.12. 

𝑡1 = 𝑏11𝑥1 + 𝑏12𝑥2 + ⋯ 𝑏1𝑝𝑥𝑝 (2.10) 

𝑡2 = 𝑏21𝑥1 + 𝑏22𝑥2 + ⋯ 𝑏2𝑝𝑥𝑝  (2.11) 

𝑡𝑖 = 𝑏𝑖1𝑥1 + 𝑏𝑖2𝑥2 + ⋯ 𝑏𝑖𝑝𝑥𝑝 (2.12) 

 
Additionally, PLS generate an orthogonal transformation to obtain components by finding 

the most appropriate model to explain the variance, starting from the maximise 

covariance matrixes [76]. 

 

2.7.4. Multilayer perceptron (MLP) 

MLP is part of an artificial neural network (ANN). It is an MLT used to solve problems in 

classification and regression. Moreover, MLP is based on the perceptron algorithm, 

which takes an input dataset, then aggregates it with a weighted sum and finally, it 

returns 1 only if the aggregated sum is more than some specific threshold or if not returns 

0 (Figure 2.8).  The Equation 2.13 shows the decision rule of the multilayer perceptron 

algorithm.  
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𝑦 = 1 if ∑ 𝑤i ∗ 𝑥i

𝑛

𝑖=0

≥ 0 
 

(2.13) 

𝑦 = 0 if ∑ 𝑤i ∗ 𝑥i

𝑛

𝑖=0

< 0 

Where, xi are the predictors and wi are the weights of each variable. 

 

Figure 2.8. Perceptron algorithm schema.  

 

The MLP uses a series of neuronal activities where the ideal is to have an interconnection 

weights in a non-linear multilayer perceptron [77,78]. The simplest MLP has three-layers 

(Figure 2.9). The first layer is the input layer and the last is the output layer; the middle 

layer is the hidden layer. This architecture is used in regression problems. However, the 

number of hidden layers in an MLP and the number of nodes in each layer can have 

variations according to each problem. Thus, more nodes give more sensitivity, but a high 

risk of overfitting [79]. 

 

Figure 2.9. The simplest MLP architecture (one input layer, one hidden layer, one output layer). Figure adapted from [78].  

 

The MLP uses a backpropagation method in order to train the model. The 

backpropagation methodology identifies if the MLP has an error in the prediction.  
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2.7.5. Support Vector Regression (SVR) 

SVM was developed to solve classification problems, extending to regression problems 

(SVR). SVM transforms nonlinear regression into a linear regression with the 

transformation between the original low dimensional input space into a high dimensional 

feature space using kernel functions. These kernel functions carry a low dimensional 

plane to a higher dimensional space to separate the variables using a hyperplane. Thus, 

decision vectors were obtained (Figure 2.10) [80]. In the new higher dimensional space, 

several linear models are constructed to obtain an optimal solution [81]. The SVM and 

SVR work into a higher-dimensional space. The main difference is that the SRV uses a 

continuous numerical variable as dependent variable [82].  

 

Figure 2.10. The two-layer SVM is a compact realization of an optimal hyperplane in the high-dimensional feature space 
Z. We pass from a complex non-linear function to a simpler linear function (adapted from [80]).  

 

2.7.6 Random Forest (RF) 

RF is an effective ensemble learning algorithm in classification or regression. It uses the 

training dataset to generate multiple decision trees (forest) being less sensitive to the 

overfitting problem through the bootstrap aggregation commonly called bagging. The 

bagging trains each decision tree on a different data sample, where the sampling is done 

with replacement [83,84]. The decision trees make a simply combining according to their 

weights in order to determine the final output (Figure 2.11). Moreover, RF is considered 

one of the most effective non-parametric ensemble learning methods in image analysis 

[85]. The Equation 2.14 shows the RF regression in a general form [86]. 

𝑓𝑟𝑓
𝐾 (x) =

1

𝑘
 ∑ T(x)

𝑘

𝑘=1

 

 
(2.14) 
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Where, x is an input vector from the values of the different features analysed for a given 

training area. RF builds a number K of regression trees {T(x)}1
𝐾

 averaging the results. 

In order to avoid the correlation between different trees, RF increases the trees with the 

different data subset created (bagging). 

 

  

Figure 2.11. Flowchart of RF for regression. The RF receive the input training data, then RF builds a number k of 
regression trees with different training data subsets (Bagging). Adapted from [87].  
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3.1 Abstract 

The Andean region has a high cloud density throughout the year. The use of optical 

remote sensing data in the computation of environmental indices of this region has been 

hampered by the presence of clouds. To maximize accuracy in the computation of 

several environmental indices including the normalized difference vegetation index 

(NDVI), we compared the performance of two algorithms in removing clouds in Landsat-

8 Operational Land Imager (OLI) data of a high-elevation area. The study area was 

Quito, Ecuador, which is a city located close to the equator and in a high-elevation area 

crossed by the Andes Mountains. The first algorithm was the automatic cloud removal 

method (ACRM), which employs a linear regression between the different spectral bands 

and the cirrus band. The second algorithm was independent component analysis (ICA), 

which considers the noise (clouds) as part of independent components applied over the 

study area. These methods were evaluated based on several images from different years 

with different cloud conditions. The results indicate that neither algorithm is effective over 

this region for the removal of clouds or for NDVI computation. However, after improving 

ACRM, the NDVI computed using ACRM showed a better correlation than ICA with the 

MODIS NDVI product. 

Keywords: cloud removal, optical remote sensing, Landsat-8 OLI, Quito, NDVI 

 

3.2 Introduction 

Optical remote sensing (ORS) data have the major advantage of providing synoptic and 

frequent overviews of the Earth’s surface, but the distribution of ground-based 

measurements is scarce in some parts of the world. ORS data include visible (VIS), 

short-infrared (SWIR), and thermal infrared (TIR) regions of the electromagnetic 

spectrum [88]. 

Regions with a high cloud density during most of the year, such as the Brazilian Amazon 

[39,89,90] and the Andean region [91], are particularly challenging for ORS, especially 

in terms of the computation of the environmental indices, such as normalized difference 

vegetation index (NDVI) [92,93].  Several studies on cloud density have been conducted 

based on Landsat data [39,89,90]. [94] takes the spectral/spatial characteristics of 

Sentinel-2 as a template for instruments with similar properties as Sentinel-2 to 

investigate the relevant cirrus effects.  [95] proposed a method based on the classic 

homomorphic filter executed in the frequency domain to thin cloud removal for visible 

remote sensing images. [96] propose an empirical technique for the removal of thin cirrus 

scattering effects in OLI visible near infrared and shortwave IR spectral regions. In the 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing
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work of [97],  the top-of-atmosphere reflectance of thin clouds is modeled using the 

empirical relationships of the deep blue and blue bands of Landsat-8 OLI.   

The Landsat program has provided calibrated and high-resolution spatial data of the 

Earth’s surface for more than 45 years. Landsat-8, launched in February 2013, is the 

latest satellite in a continuous series of land remote sensing satellites that began in 1972. 

Landsat-8 has provided data to support several fields and research topics, such as 

agriculture, forestry, geology, land use, air contamination [98], and the removal of clouds 

in remote sensing images [35,99–104]. Landsat-8 includes two sensors: the Operational 

Land Imager (OLI), which is divided into nine bands with a spatial resolution of 30 m, and 

the Thermal Infrared Sensor (TIRS) instrument, which is divided into two bands with a 

native spatial resolution of 100 m. The OLI bands include a cirrus band (B9). Cirrus 

clouds are high-altitude clouds in the atmosphere and are mainly composed of miniscule 

ice crystals [105]. They are strong reflectors of radiation at a wavelength of 1.38 µm [10]. 

Cirrus clouds have a significant number of thin, non-spherical ice crystals that can absorb 

sunlight and attenuate the pixel values of surface reflectance in remote sensing [106]. 

Additionally, cirrus clouds limit the accuracy in the computation of environmental indices. 

Thus, it is crucial to remove them [93]. 

The purpose of this work is to develop an approach to remove clouds and noise in optical 

remote sensing data without losing surface pixel accuracy in order to compute 

environmental indices, such as NDVI. Several methods have been tested to remove 

clouds considering Landsat-8 data in different places around the world with satisfactory 

results. Some of these methods used a reference Landsat-8 image to patch the cloudy 

area [99,100,107], or combine Landsat-8 with other sensors [108], or work with the 

Landsat-8 cirrus band (B9) [35,102,109]. All these studies were conducted in low 

elevation regions and in no tropical areas. Both parameters can have an effect over cirrus 

clouds, considering that these clouds can form at any altitude between 5.0 km and 14 km 

above sea level. In the tropical regions, cirrus clouds cover around 70% of the region's 

surface area. 

In this work, to remove cirrus clouds over an area in the Andean region (Quito, Ecuador) 

considering the Landsat-8 cirrus band (B9), two methods were evaluated: the automatic 

cloud removal method (ACRM) and independent component analysis (ICA). ACRM was 

first tested on images of Sydney, Australia [35]. The algorithm applies a linear regression 

between each multispectral band and the cirrus band (B9), evaluates the coefficient of 

determination (R2) and slope in some areas, and generalizes them for the entire image 

[35]. In order to remove clouds, the algorithm uses the area with the highest R2 to 

extrapolate values for the entire image. In ICA, independent components (ICs) are 
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separated, and one of them is the component that storing the thin clouds [110]. This 

algorithm was tested on Landsat-8 images of a low elevation region (North Carolina, 

USA), and the results were satisfactory [102]. The performance of the two methods in 

removing clouds and their efficiency in future computation of environmental indices such 

as NDVI are evaluated based on the same image. 

 

3.3 Materials and Methods 

3.3.1. Study Area and Dataset 

3.3.1.1. Study Area 

The study area is Quito, the capital of Ecuador (Figure 3.1). The equator line crosses the 

city in the north part. The Quito latitude ranges between 0º30’S to 0º10’N and its 

longitude ranges between 78º10’W to 78º40’W. Quito has a high elevation of 

approximately 2800 m. The cloud density over the city is considerable, all over the year. 

Quito has only one dry season and one wet season, considering that it is a tropical zone 

and is influenced by the Andes Mountains. In 2015, the mean minimum and maximum 

temperatures were approximately 9.0°C and 25.4°C, respectively, with a high 

precipitation of approximately 1126 mm [111]. The geology of northeastern Ecuador and 

present-day physical processes related to geology are greatly influenced by the tectonic 

mechanisms responsible for the development of the Andes Mountains. Both geology and 

active physical processes (landsliding, volcanism, erosion, weathering) are complex and 

varied [37].  

 

3.3.1.2 Dataset 

In this study, ten Landsat-8 L1T images were processed to evaluate and improve the 

two methods to remove clouds. Seven images of Quito, Ecuador (Path 10; Row 60) from 

different years (Figure 3.2); one image of Pedernales, Ecuador (Path 11; Row 60), which 

is a coastal region with characteristics similar to those of Sydney; and the image of 

Sydney, Australia (Path 89; Row 83) used in [35] were considered. 
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Figure 3.1. Quito Metropolitan Area  

 

Images at the L1T processing level were considered because they take advantage of 

geometric and radiometric corrections [10]. Moreover, the MODIS MOD13Q1 product 

(tiles H10V08 and H10V09) for the study area was also used in order to compare the 

results obtained in the computation of NDVI (further details in Section 3.4) (Table 3.1). 

 

Table 3.1. Characteristics of datasets used in this study 

Sensor Product 
Spatial 

Resolution 
Temporal 
resolution 

Bands/Products 

Landsat-8 L1T 30 m 16 days 
Coastal aerosol, blue, green, red, near 
infrared, SWIR 1 and SWIR 2, Cirrus, 
Thermal Infrared 1, Thermal Infrared 2  

MODIS MOD13Q1 250 m 16 days NDVI/EVI Values 

 
 

3.3.2.Methodology 

Two methods to remove clouds, ACRM and ICA, were evaluated in this work for Landsat-

8 images and the corresponding cirrus band (B9). Most of the processing steps were 

implemented in R programming language [112] and its associated packages: raster 

version 2.5-8 [113], rgdal version 1.1 [114], and gdalutilities version 2.0.1.7 [115]. 

Furthermore, ENVI® and ERDAS® software were used to perform some image 

processing tasks. 

3.3.2.1. Automatic Cloud Removal Method (ACRM) 

ACRM attempts to obtain clean pixel data from each digital number 𝐷𝑁 recorded at each 

OLI multispectral band 𝑖 = 1,2,3,4,5,6,7. 𝐷𝑁 contains clean pixel data plus contaminated 

data at the location (𝑢, 𝑣). Contaminated data are affected by clouds [35]. The model can 

be expressed as follows: 
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𝐷𝑁(𝑢, 𝑣) = 𝑥𝑖
𝑓(𝑢, 𝑣) + 𝑥𝑖

𝑐(𝑢, 𝑣),   𝑖 = 1,2,3,4,5,6,7, (3.1) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

 
(h) 

 
Figure 3.2. Landsat-8 Images from Quito Metropolitan Area (Path: 10; Row: 60): (a) Image from 2013/10/11; (b) Image 
from 2013/07/07; (c) Image from 2014/07/26; (d) Image from 2015/07/13; (e) Image from 2015/08/30; (f) Image from 
2016/02/06; (g) Image from 2016/10/19; (h) Image from 2013/06/21 (Reference image to ICA evaluation). 

 

where 𝑥𝑖
𝑓(𝑢, 𝑣) is the clean cloud-free pixel from each of bands 1–7 and 𝑥𝑖

𝑐(𝑢, 𝑣) is the 

cirrus cloud pixel from each of bands 1–7 obtained with band 9. Equation 3.1 results from 

the strong linear relationship between the bands found in [116], where xi
c(u, v) is linearly 

related to the DN recorded in the cirrus band 𝑐(𝑢, 𝑣) as follows:  

𝑥𝑖
𝑐(𝑢, 𝑣) =∝𝑖 [𝑐(𝑢, 𝑣) − 𝑚𝑖𝑛{𝑐(𝑢, 𝑣)}]. (3.2) 

 

The aim is to obtain the slope ∝i for each band, considering a linear relationship between 

each multispectral band and band 9 in a homogenous area. Two approaches can be 

considered to determine this homogenous area. The first approach is a photo-

interpretation to find this area by taking, for example, water bodies that have a near-zero 

pixel value over the near-infrared (NIR) band. However, this approach cannot be used 

for images that do not contain water bodies. The second approach is to use random 

areas of a constant size covering the entire region or zones with a specific land use. In 

this study, we considered the second approach of finding random areas with a size of 10 

× 10 km2, covering the entire study area (Figure 3.3). Smaller regions (250 m * 250 m) 

were also tested, but the results were identical.  

By combining Equation (1) with Equation (2), xi
f(u, v) can be estimated as follows: 

𝑥𝑖
𝑓(𝑢, 𝑣) = 𝐷𝑁(𝑢, 𝑣) −∝𝑖 [𝑐(𝑢, 𝑣) − 𝑚𝑖𝑛{𝑐(𝑢, 𝑣)}] (3.3) 
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Figure 3.3. Input regions considered to test the ACRM algorithm 

 

3.3.2.2. Independent Component Analysis (ICA) 

ICA is a method for finding underlying factors or components from multivariate 

(multidimensional) statistical data [117]. The relationship is represented as follows:  

𝐗 = 𝐀𝐒 (3.4) 

where 𝐒 is a random vector containing the independent source signal or independent 

components (IC) with elements 𝑠1, 𝑠2, …, and 𝑠𝑛. A is the “mixing” square matrix having 

elements 𝑎𝑖𝑗. 𝐗 is the observed signal (mixed) having elements 𝑥1,, 𝑥2, …, and 𝑥𝑛. 

In Equation 3.4, 𝐗 represents surface reflectance data from each of bands 1-7 and pixel 

cirrus data from band 9. The surface reflectance data were obtained by applying 

atmospheric correction with the fast line-of-sight atmospheric analysis of hypercubes 

(FLAASH) algorithm [48,118]. FLAASH works as a physical method to obtain surface 

reflectance, and it allows us to describe the shape of the signatures [49] in ENVI 

software. The column vector 𝒔 represents ICs and matrix 𝐀 represents the linear 

transformation. Both 𝒔 and 𝐀 are unknown. 

In some studies, ICA is used to separate some parts of satellite images by considering 

their bands as ICs. The algorithm achieves cloud removal by considering that each IC is 

a linear mixture of bands 1–7 and 9. Band 9 is used to delineate the cloud component in 

the IC [102,103]. 
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ICA works with a non-Gaussian distribution, where ICs (surface reflectance and pixel 

cloud data) are not normally distributed, because various surface types and cloud types 

produce different reflectance values. The robust FastICA algorithm can be applied to 

estimate an unmixing matrix 𝐖, which is the inverse of mixing matrix 𝐀 [110]. The source 

vector 𝒔 can be obtained by inverting Equation 3.4 as follows: 

𝒔 = 𝐀−𝟏𝐗. (3.5) 

Band 9 (cirrus band, which is a part of 𝐗) is considered the sum of eight products (bands 

1–7 and 9) for each IC: the product of each source vector with its coefficients in 𝐀. 

Equation 3.6, derived from Equation 3.4, allows us to obtain the cloud pixel value 𝐱𝟏𝟕 as 

follows: 

𝐱𝟏−𝟕 = a1−7𝒔𝒄, (3.6) 

Where a1−7 is the coefficient of 𝒔𝒄 in matrix 𝐀 corresponding to the reflectance data of 

bands 1-7. The largest factor in the row corresponding to band 9 of 𝐀 determines the 𝒔𝒄 

to be used to obtain the cloud reflectance data 𝒙𝒄. The final reflectance-free data 𝑥𝑓 is 

obtained by subtracting the original reflectance data from each band 𝒙𝒐 by the cloud 

reflectance data from each band 𝒙𝒄 (Equation 3.7).  

𝑥𝑓 = 𝑥𝑜 − 𝑥𝑐 .   (3.7) 

 

3.3.2.3. Normalized Difference Vegetation Index (NDVI) 

NDVI is an index that allows to obtain information about the greenest vegetation 

considering red and NIR bands of a sensor [54]. In the case of Landsat-8 OLI, NDVI is 

calculated using bands 4 (red band) and 5 (NIR band). The NDVI in a Landsat-8 OLI 

image is computed as follows (Equation 3.8): 

𝑁𝐷𝑉𝐼 =
𝐵5 − 𝐵4

𝐵5 + 𝐵4
 (3.8) 

NDVI is one of the most commonly used remote sensing vegetation indices [119,120], 

and it is considered an environmental index owing to its strong relationship with the land 

surface (e.g., surface temperature, vegetation cover, land use) and meteorological data 

(e.g., temperature, humidity) [121]. Moreover, NDVI is used to validate and compare 

results between sensors by considering future environmental applications [122]. 

 

3.3.2.4. Evaluation and Validation  

In order to validate the efficiency of ACRM and ICA cloud removal methods in the 

computation of environmental indices, the NDVI was computed in the original Landsat-8 

images after applying both algorithms. Then, the images were compared with a MODIS 

NDVI product resampled to a spatial resolution of 30 m, assuming a similar period of 
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Landsat-8 data used. A MOD13Q1 product (NDVI 16-Day L3 Global 250 m version 6) 

was used as reference data, considering that MODIS is a ready-to-use product [9,56] 

and is evaluated in vegetation phenology. The validation was tested in a small area 

where cirrus clouds are present, which allowed us to evaluate the performance of the 

algorithms to remove clouds and to estimate environmental indices. The methodology 

adopted in this work is presented in the flowchart shown in Figure 3.4. 

 

3.4 Results 

3.4.1. Cloud Removal Using ACRM 

The ACRM algorithm was applied to ten images considered in this study. The code was 

programmed in R Studio with the raster package. The main objective was to obtain the 

best correlation (R2) between bands 1–7 and band 9 in selected areas of the images with 

cirrus clouds.   

The first step was to choose the zones to evaluate the algorithm in a geographic 

information system (GIS) covering the entire study area in Quito. These areas, called 

zones (Z), are 10 km × 10 km regular grids covering the study area (Figure 3.3). 

Subsequently, the algorithm was applied, and the best-fit regions with the best R2 

coefficients between each multispectral band (1-7) and band 9 (Table 3.2) were 

evaluated. 

Final Results

Comparison by linear 

regression

Landsat 8 OLI images 
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(FLAASH)

Independen 

Component 

Analysis (ICA)

Automatic Cloud 

Removal Method 

(ACRM)

Independents 

Components S

Matrix W with FastICA 

Algorithm

Identification of 

cloud component, 

Sc

Matrix A = Inverse 

Matrix W

Evaluation in 10 x 10 

km homogeneuos areas

Highest R2

Landsat 8 Imagery 

using ACRM

MODIS 

MOD13Q1 NDVI 

250 m

Resampling 30 

m
Computing NDVI

Landsat 8 Imagery 

using ICA

 

Figure 3.4. Flowchart of the methodology adopted to perform a comparison between ACRM and ICA algorithms. 
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Table 3.2 lists the highest R2 coefficients obtained in the application of the algorithm, 

considering only values higher than 0.85. Slope values are lower than 0.18. These 

results are shown in Figure 3.5 (see Section 3.3.4.3). 

ACRM was also tested considering an image from Pedernales and an image from 

Sydney (Table 3.3). In Pedernales, the R2 coefficients had values lower than 0.68. Better 

results were obtained over Sydney with higher R2 coefficients (higher than 0.97). To 

corroborate the results of R2 coefficients (Figure 3.6), we confirmed that the image of 

Pedernales is practically unchanged by the algorithm, while the algorithm removes all 

the clouds in the image of Sydney. 

 
(a) 

 
(b) 

Figure 3.5. Landsat-8 Images from Quito Metropolitan Area (Path: 10 Row: 60): Image from 2014/07/26 (a) Original 
Image; (b) Image applied ACRM 

 
Table 3.2. Linear regression results between bands 1–7 and 9 in the Quito study area for different dates. 

 

Band 
Quito (11/10/2013) Quito (07/26/2014) Quito (07/13/2015) Quito (02/06/2016) 

R2 Slope (α) R2 Slope (α) R2 Slope (α) R2 Slope (α) 

B2 0.96 0.05 0.93 0.02 0.95 0.03 0.95 0.03 

B3 0.96 0.05 0.93 0.02 0.95 0.03 0.95 0.03 

B4 0.96 0.05 0.93 0.02 0.95 0.02 0.95 0.02 

B5 0.88 0.02 0.85 0.01 0.91 0.02 0.85 0.01 

B6 0.85 0.02 0.89 0.17 0.88 0.02 0.89 0.03 

B7 0.86 0.02 0.88 0.02 0.87 0.02 0.88 0.02 

Band 
Quito (07/07/2013) Quito (08/30/2015) Quito (10/19/2016) Quito (21/06/2013) 

R2 Slope (α) R2 Slope (α) R2 Slope (α) R2 Slope (α) 

B2 0.96 0.05 0.93 0.02 0.97 0.03 0.95 0.03 

B3 0.96 0.06 0.93 0.02 0.97 0.03 0.95 0.03 

B4 0.95 0.05 0.93 0.02 0.97 0.02 0.95 0.02 

B5 0.85 0.03 0.85 0.01 0.95 0.02 0.85 0.01 

B6 0.90 0.06 0.89 0.17 0.92 0.02 0.89 0.03 

B7 0.89 0.06 0.88 0.02 0.89 0.03 0.88 0.02 

 
 
 
Table 3.3 Linear regression results between bands 1–7 and 9 in the other evaluated zones. 
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Band 
Sydney (2013/10/04) 

Pedernales 
(2016/05/13) 

R2 Slope (α) R2 Slope (α) 

B2 0.97 1.70 0.67 0.69 

B3 0.99 1.63 0.68 0.68 

B4 0.98 1.68 0.67 0.62 

B5 0.98 1.74 0.67 0.52 

B6 0.99 1.11 0.63 0.44 

B7 0.98 1.02 0.53 0.58 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3.6. Landsat 8 OLI images (a) Original image from Pedernales; (b) Image after applied ACRM in Pedernales; (c) 
Original image from Sidney; (d) Image after applied ACRM in Sidney 

 

3.4.2. Cloud Removal Considering ICA 

The ICA algorithm was applied only to the Quito image from 26/07/2014, which shows 

clouds over the study area. Different software were used (R Studio, ENVI, ERDAS) to 

obtain the different parameters showed in the Equation 3.4. The principal inputs to the 

algorithm were the surface reflectance data of multispectral bands (calculated with 
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FLAASH correction from ENVI) and the DN from band 9. Furthermore, the IC for the 

selected image was obtained in ENVI software with the FastICA algorithm [110] (Figure 

3.7). The matrix A from Equation 3.6 was obtained using the ICA algorithm in ERDAS 

software (Table 3.4), and 𝑠𝑐 was selected as 𝑠6, which had the high absolute value of 

4.011×10-2 in the row of band 9. Then, to obtain the input data for Equation 3.7, the 

product of the coefficient in the column for each band at 𝑠6 with each IC was used. The 

results are shown in Figure 3.8. Again, as in ACRM, the result was not satisfactory in 

comparison with the original image (see Section 3.3.4.3).  

Moreover, to corroborate that the application of the ICA algorithm does not provide 

satisfactory results for Quito, some scatterplots were computed with respect to a cloud-

free reference image (Figure 3.9). The scatterplots show a linear correlation between the 

reference image (Figure 3.2h) and the images with and without ICA correction (Table 

3.5), which indicates that the ICA algorithm does not work properly for Quito.  

 

 
(a) 

 
(b) 
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(c) (d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 3.7. (a–h) are first, second, …, and eighth independent components, respectively. 

 
 
Table 3.4. Coefficients (×10−2) of A 

 
Band S1 S2 S3 S4 S5 S6 S7 S8 

B1 4.719 0.678 0.653 9.672 1.731 1.818 1.308 0.207 

B2 4.613 0.939 0.494 9.192 1.628 1.661 1.722 0.372 

B3 4.537 0.802 1.153 8.826 1.645 1.644 2.201 1.149 

B4 4.487 0.696 0.851 8.954 1.493 1.692 3.413 1.006 

B5 2.824 0.475 0.524 6.962 1.743 1.148 -1.815 7.568 

B6 0.236 0.764 1.266 7.093 1.508 1.632 3.497 3.671 

B7 0.256 0.901 1.214 6.417 -0.022 1.794 3.746 1.656 

B9 -0.021 -0.023 0.018 -0.152 0.984 4.011 0.617 0.108 
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(a) 

 
(b) 

 
Figure 3.8. Landsat-8 Images from Quito Metropolitan Area (Path: 10 Row: 60): Image from 2014/07/26 (a) Original 
Image; (b) Image after applied ICA. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

 
Figure 3.9. Scatterplots of bands 2-5. (a, c, e, g) Left an image before ICA algorithm implementation vs. reference image. 
(b, d, f, h) Right image considers ICA algorithm implementation vs. Reference image. Reference image is from June 21, 
2013 to evaluate ICA (Figure 3.2h). 

 
As indicated in Table 3.5, if ICA is applied, the algorithm changes the surface reflectance 

values; in comparison with a cloud-free image, the correlation decreases. 

 
Table 3.5. Linear Regression. R2 coefficients before and after ICA computation  

Band R2 before R2 after 

B2 0.43 0.20 

B3 0.49 0.26 

B4 0.53 0.33 

B5 0.49 0.47 

3.4.3. Validation – NDVI Computation 

As mentioned previously, one of the main objectives of the cloud removal in high-altitude 

areas is to obtain a better accuracy in the computation of environmental indices, such as 

NDVI. Therefore, in the process of validation of the proposed algorithms, the NDVI 

values for a selected area (Quito airport) with a high density of cirrus clouds were 

computed (Figure 3.10). 

NDVI values were compared to the MODIS MOD13Q1 product and resampled to a 

spatial resolution of 30 m to enable them to be related to Landsat data. The MODIS 

product is of a nearer date (07/28/2014) to the Landsat-8 image (Figure 3.11a). The 
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validation compares the reference NDVI product (MODIS MOD13Q1 resampled) and the 

NDVI computed through the Landsat-8 image. NDVI values are computed considering 

the original surface reflectance of the Landsat-8 image (Figure 3.11b) and the surface 

reflectance of the images after applying the two algorithms for removing cirrus clouds: i) 

ACRM (Figure 11c) and ii) ICA (Figure 11d). 

 

 
Figure 3.10. Area evaluated in Quito airport to compute NDVI (Landsat-8 image from 07/26/2014). 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3.11. NDVI computed from (a) MODIS NDVI 30 m resampled image; (b) original Landsat-8 image; (c) Landsat-8 
image after cloud correction using the ACRM algorithm; (d) Landsat-8 image after cloud correction using the ICA 
algorithm. 

 

In order to compare MODIS NDVI and the other NDVI computations, a linear regression 

was established to obtain R2 coefficients, and the results showed that the highest R2 

(0.426) is obtained after applying ACRM. On the other hand, the lowest coefficient is 

obtained after applying ICA with an R2 value of 0.262 (Table 3.6). 

 
Table 3.6. Linear Regression between MODIS NDVI and NDVI computed from each cloud removal method. 

NDVI Computation with R2 

Original Image with Surface Reflectance Data 0.396 

After ACRM algorithm 0.428 

After ICA algorithm 0.262 

 
 
 
 
 

 

3.4.4. Improvement of ACRM 

According to the preliminary results (Table 3.6), the ACRM algorithm yielded the highest 

R2 to calculate environmental indices; nevertheless, one improvement of the ACRM 

method was developed to remove clouds in Landsat-8 OLI images of high-elevation 

areas [35]. This development attempts to find the best-fit slope in the ACRM algorithm, 

established in Equation 3.3, to remove clouds in order to compute environmental indices. 

When ACRM was applied to an image of Quito, the slope parameter presented low 

values, which led us to conclude that the correction to remove clouds does not work 

properly when it takes values close to 0 (Table 3.2). 

A previous work used a fixed slope value [32]. The main improvement in the ACRM 

algorithm was to find the highest R2 coefficients in the homogeneous zones and the best-
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fit slope to remove clouds. Several slope values from 0 to 100 (in increments of 0.1) were 

tested. Therefore, the improvement was to find the highest R2 with the fittest slope testing 

several slopes values. This procedure was implemented in R Studio software. 

To compare and validate the best-fit slope, NDVI was computed for the original image 

(07/26/2014) after applying the ACRM algorithm and compared with the MODIS NDVI, 

resulting in the highest R2 (0.5077) with a slope value of 2.9 (Figure 3.12). 

The slope value of 2.9 allowed to a visualization without clouds (Figure 3.13 and Figure 

3.14). However, this value is not necessarily the same in each case. The slope value 

must be investigated for each case, in order to find the best fit to the corresponding area 

and image.  

The results of comparing the R2 between the different methods are shown in Figure 3.15. 

The improved ACRM shows the highest R2 value (0.5077), and visually, it removes 

clouds to yield a clean image (Figure 13d). Thus, the improved ACRM works 

satisfactorily over the study area. 

 
Figure 3.12. Comparison between NDVI obtained using ACRM for each slope tested (dots) with the MODIS NDVI. The 
red lines indicate the highest R2 and the corresponding slope. 

 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3.13. Images of Quito airport used to compute NDVI (based on Landsat-8 image from 07/26/2014) (a) original 
image; (b) image obtained after applying the ACRM algorithm; (c) image obtained after applying the ICA algorithm; (d) 
image obtained after applying the improved ACRM algorithm. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3.14. Comparison of result applying the ACRM improvement (b),(d) in different regions vs. the surface reflectance 
image (a),(c). 

 

In order to validate the ACRM, a new image (11/10/2013) with similar properties was 

used in the same area. The results show a higher R2 (0.5283) with a slope value of 2.8 

in the ACRM (Figure 3.16). 

 
Figure 3.15. Comparison between MODIS MOD13Q1 and the different NDVI values obtained from the application of the 
different algorithms in the Landsat-8 image (07/26/2014) for removing clouds. 
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Figure 3.16. Comparison between MODIS MOD13Q1 and the NDVI value obtained from Original Surface Reflectance 
data (FLAASH Correction applied) and ACRM improved in the Landsat-8 image (11/10/2013) for removing cirrus clouds. 

 

3.5 Discussion and Conclusion 

Two algorithms, ACRM and ICA, were employed to remove cirrus clouds in Landsat-8 

images with the cirrus band (B9) [10], in Quito city. The main advantage of these two 

methods is that they do not use additional images to patch data, in contrast to other 

methods [99,100,107,108]. These methods use the same image to remove thin cloud 

without the insertion of pixel values from other images. In this work, because cirrus 

clouds could have a great impact in the computation of environmental indices such as 

NDVI, these two methods were tested and compared with the aim of evaluating their 

applicability to accurately compute NDVI for an area located in the Andean region. 

ACRM generated satisfactory results for images with conditions similar to Sydney [35]. 

The same original image of Sydney was used to reproduce the correct application of 

ACRM, which yielded an R2 coefficient higher than 0.95, with slopes higher than 1. These 

satisfactory results were also evident from visual inspection, because clouds were 

adequately removed (Figure 3.6d). When the ACRM algorithm was tested for images of 

Quito from different dates, the results showed R2 coefficients higher than 0.90 in most of 

the cases but with low slope values (lower than 0.1 in most of the cases for all bands) 

(Table 3.3). The low slope values indicate poor correction. Moreover, it is evident from 

visual inspection that this algorithm does not remove the cirrus clouds over the images 

(Figure 3.5). Another area, Pedernales, was chosen to test the algorithm because it has 

similar characteristics to Sydney. The results for this area are also unsatisfactory for the 

clouds removal (Figure 3.6b).  

The other algorithm tested to remove cirrus clouds was ICA [102], which is a blind source 

method that attempts to obtain the cloud component of images [110]. All ICs contain free 

pixel data and cloud noise, and the noise should be removed, considering all image data 

to have a non-Gaussian distribution [117]. ICA was tested for images of Quito, and the 

results were compared with a cloud-free image (image with surface reflectance data). 

The results are unsatisfactory because the correlation was worse than the case without 
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applying ICA (Table 3.4). For example, in band 4, the R2 value obtained in comparison 

with the cloud-free image was 0.33; the value without applying ICA was 0.53.  

In order to validate the results, NDVI was computed. In the first approximation, the results 

were compared with a reference image product (MODIS MOD13Q1). The results showed 

the highest R2 when the ACRM algorithm was applied; these values were higher than 

those obtained with ICA or those of the surface reflectance data. Finally, an improvement 

to ACRM was proposed. This algorithm had two main objectives: (i) visually remove 

clouds and (ii) improve the pixel values to compute environmental indices. The ACRM 

algorithm was improved, so that the homogeneous area has the highest R2 coefficient 

value and the slope should be significant to reduce the density of cirrus clouds. In the 

case of the study area (Quito), the first condition was achieved with a high R2 coefficient 

between Landsat multispectral bands and band 9 in a homogeneous area (Table 3.1). 

The challenge was to achieve cloud correction using ACRM. Therefore, we tested 

different slope values [32] between 0 and 100, and the best-fit slope value of 2.9 was 

obtained. This approach proved to be a good alternative to the previous algorithms tested 

(Figure 3.13). In order to validate this new approach, the NDVI values were computed 

and compared with the reference NDVI values (MODIS). This new approach yielded 

higher R2 values (Figure 3.15 and Figure 3.16). The ACRM Improved using the highest 

R2 value can approximate to other products ready to use like MODIS NDVI, finding a 

better relationship than other algorithms or methods, and a considerable best 

performance, since can be applied to Landsat 8 data, which have a spatial resolution of 

30 m. 

The preliminary results show that the algorithms to remove cirrus clouds (ACRM and 

ICA) do not work properly in the geographical conditions considered in this study, leading 

us to suppose that there are other factors such as altitude and closeness to the equator 

that influence the results. Therefore, future research should focus on testing these 

algorithms in different regions around the world to determine the best method for each 

area or to identify better alternatives to improve the cloud removal algorithms. Moreover, 

in some parts of the world such as Quito, Landsat images are affected by a high cloud 

density throughout the year, limiting the time frame to obtain phenology data at a spatial 

resolution of 30 m. Nevertheless, the ACRM improved can help in a more accurate 

computation of environmental indexes when compared to other algorithms or methods. 
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4.1 Abstract 

The monitoring of air pollutant concentration within cities is crucial for environment 

management and public health policies in order to promote sustainable cities. In this 

study, we present an approach to estimate the concentration of particulate matter of less 

than 10 μm diameter (PM10) using an empirical land use regression (LUR) model and 

considering different remote sensing data as the input. The study area is Quito, the 

capital of Ecuador, and the data were collected between 2013 and 2017. The model 

predictors are the surface reflectance bands (visible and infrared) of Landsat-7 ETM+, 

Landsat-8 OLI/TIRS and Aqua-Terra/MODIS sensors and some environmental indexes 

(Normalized Difference Vegetation Index – NDVI;  Normalized Difference Soil Index -

NDSI, Soil-Adjusted Vegetation Index – SAVI; Normalized Difference Water Index - 

NDWI  and Land Surface Temperature (LST). The dependent variable is PM10 ground 

measurements. Furthermore, this study also aims to compare three different sources of 

remote sensing data (Landsat-7 ETM+, Landsat-8 OLI and Aqua-Terra/MODIS) to 

estimate the PM10 concentration, and three different predictive techniques (stepwise 

regression, partial least square regression and artificial neuronal network (ANN)) to build 

the model. The models obtained are able to estimate PM10 in regions where air data 

acquisition is limited or even does not exist. The best model is the one built with an ANN, 

where the coefficient of determination (R2 = 0.68) is the highest and the root-mean-

square error (RMSE = 6.22) is the lowest among all the models. Thus, the selected model 

allows the generation of PM10 concentration maps from public remote sensing data, 

constituting an alternative over other techniques to estimate pollutants, especially when 

few air quality ground stations are available.  

Keywords: Remote Sensing, air quality modeling, air quality monitoring, PM10, LUR 

 

4.2 Introduction 

Due to some factors as air pollutants permanency over the time, the air quality has 

decreased in recent years, all over the world. One of the direct indicators of air quality is 

particulate matter with an aerodynamic diameter lower than 10 µm, usually called PM10 

[123]. It is well-known that PM10 has a negative environmental impact on outdoor air 

quality and that it that is linked to public health problems such as cardiovascular and 

respiratory diseases [124,125]. Many cities around the world are monitoring PM10 in 

order to prevent environmental problems. However, this monitoring process needs to be 

improved in order to establish reliable environmental policies [126]. Thus, understanding 
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the spatial distribution of PM10 requires a scientific and accurate basis to locate the 

possible sources of this pollutant in cities, in order to avoid environmental problems 

linked to air quality.  

The air quality monitoring network (AQMN) is a classical procedure to monitor PM10 in 

cities. However, some difficulties are found, for instance, high maintenance cost by 

station [66], a low quantity of stations in large cities or non-representative spatial 

distribution [67]. An alternative could be high resolution air ground measures with the 

implement of low-cost sensors [127,128], however, they are an investment of the local 

governments, and most of the times is not possible to realize it. An example of where 

there is insufficient information provided by AQMN stations and a lack of PM10 measures 

is in Quito, Ecuador [6,129–131], where there is not enough information to establish 

environmental strategies. Quito, the capital of Ecuador, is a special geographic zone, 

considering its high elevation altitude (2800 m), in the middle of the Andean region. 

Considering the difficulties of a city like Quito, one valid alternative to complement AQMN 

monitoring is applying land use regression models (LUR) [132]. LUR models use different 

geographical variables as predictors (remote sensing data, meteorological data, road 

density, vehicular traffic, land use, emission inventory, etc.) [132–135]. However, 

oftentimes this information cannot be easily accessed. Moreover, these geographical 

variables are not frequently updated by government institutions. In the case of remote 

sensing data, the predictors most commonly used in LUR models to retrieve PM10 are 

aerosol optical depth (AOD) and normalized difference vegetation index (NDVI) from 

Moderate-Resolution Imaging Spectroradiometer (MODIS) products [136–139]. MODIS 

products have a low spatial resolution that limits their application in medium or small 

cities [41,140,141], but they are an efficient alternative to retrieve pollutants in regional 

(large cities/regions) or national (countries) areas. Consequently, a possible alternative 

to MODIS products is Landsat data. Nowadays, the operational Landsat satellites are 

Landsat-7 and Landsat-8 [142,143]. Landsat data have a higher spatial resolution 

compared with MODIS (30 m instead of 250 m) [141]. Several strategies to retrieve AOD 

from Landsat data have already been established [142]. Nevertheless, these strategies 

require AOD ground station data in the study area to have aerosol information in a 

medium spatial resolution [143,144]. Considering this limiting, other studies suggest that 

the visible bands of Landsat sensors can be used to invert PM10 [50]. The strategy 

proposed in this work is useful and effective when the AOD stations are limited.     

In order to construct empirical LUR models, some studies have used multiple linear 

regression (MLR) [144], considering a subset of variables through the stepwise 

regression (STW) algorithm [26,145]. Nevertheless, the use of MLR cannot analyze the 
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possible multicollinearity between variables, because we have a high correlation 

between near bands in the spectrum [146]. Moreover, it is well-known that 

multicollinearity exists between remote sensing variables [147], producing a source of 

error in MLR empirical models. However, an alternative which allows the computing of 

more accurate models, avoiding multicollinearity, is to use partial least square (PLS) 

regression [34,148,149] or an artificial neuronal network (ANN) [150]. Generally, ANNs 

give more accurate results in comparison with traditional linear methods, considering the 

complexity of modeling air pollutants. Some atmospheric studies use a multilayer 

perceptron (MLP) in the context of ANN in order to obtain a predictor model [144,151]. 

In Alvarez-Mendoza et al. [6], only remote sensing data were considered to compute the 

LUR model based in a MLR without a method to select predictors. In this work, three 

main objectives are proposed: (i) using only remote sensing data will be used to establish 

LUR models without any AOD predictor; (ii) making a comparison between three different 

remote sensing satellite/sensors (MODIS, Landsat-7 and Landsat-8) to retrieve long-

term PM10 considering only a selection of predictors and; (iii) comparing the accuracy 

of different techniques (STW, PLS and MLP) in the generation of the predictive models. 

The two last items are the new contributions of this work. 

 

4.3 Materials and Methods 

4.3.1. Study Area 

The study area is the urban zone of Quito, the capital of Ecuador. Quito comprises 45 

urban parishes or parroquias, distributed between the latitudes 0º30’S and 0º10’N and 

the longitudes 78º10’W and 78º40’W (Figure 4.1). The average elevation is around 2800 

meters above sea level. The city is located in the middle of the Andean Region. The 

mean minimum and maximum temperatures are approximately 9.0°C and 25.4°C, 

respectively. On the other hand, Quito is a region without four seasons because it is in 

the tropical area, near to the equatorial line. This area was chosen considering the 

influence of nine AQMN stations.  

 

4.3.2. PM10 data from AQMN stations 

In order to monitor air quality in Quito, nine stations have been acquiring air pollutants 

since 2002 (Figure 4.1). Together they form the “Red Metropolitana de Monitoreo 

Atmosférico de Quito” (REMMAQ) [38]. REEMAQ is the AQMN of Quito, where one of 

the air pollutants daily measured is PM10. These data are public and free to download 

(http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos). The 

http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos
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PM10 concentration is measured in micrograms per cubic meter (µg/m3). In this study, 

we use three-month-averages from 2013 to 2017, matching with the dates of the remote 

sensing data (time when the satellite passes over the study area). The main reasons to 

use three-month-averages are the few available remote sensing data and REMMAQ 

stations (stations without data in some months or with negative data values). In this 

study, PM10 three-month-averages is used as dependent variable. 

 

Figure 4.1. Map of the study area (red dots for REEMAQ (Red Metropolitana de Monitoreo Atmosférico de Quito) stations 
and green polygons for urban parishes).  

 

4.3.3. Remote sensing data predictors 

In this study, three different types of remote sensing data were used to retrieve PM10 

between 2013 and 2017: Landsat-7 ETM+, Landsat-8 OLI/TIRS and MODIS/Terra and 

Aqua (Table 4.1). The remote sensing data are free to download from the United States 

Geological Survey (USGS) website (http://earthexplorer.usgs.gov). Moreover, only 

images with less than 10% cloud cover were considered in the study, because one of 

the main problems in these regions is the presence of a high cloud density [32,152]. 

According to this limitation, just 40% of remote sensing data was considered.  

 

 

http://earthexplorer.usgs.gov/
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Table 4.1. Characteristics of satellites and sensors used in the study  

 

Satellite Sensor 
Overpass 

time of 
satellite 

Spatial 
resolution 

Landsat-7 
Enhanced Thematic 
Mapper Plus (ETM+) 

16-days 30 meters 

Landsat-8 

Operational Land 
Imager (OLI) 

Thermal Infrared Sensor 
(TIRS) 

16-days 30 meters 

Terra (EOS 
AM-1) 

Aqua (EOS 
PM-1) 

Moderate Resolution 
Imaging 

Spectroradiometer 
(MODIS) MCD43A4 

1 to 2 
days 

500 meters 

 
The predictors or independent variables (surface reflectance bands and environmental 

indexes) are listed in Table 4.1. The selection of remote sensing predictors was related 

to their possible correlation with the PM10 concentration [129,153–155]. In the case of 

the environmental indexes, the most popular indexes in LUR studies to retrieve PM10 

were used. They were computed as (4.1), (4.2), (4.3), (4.4) and (4.5) in Table 4.2, 

respectively. 

 
Table 4.2. Remote sensing predictors used to build the model for each sensor. 

 
Predictors Landsat-7 Landsat-8 MODIS 

 
Blue band (B) 

Green band (G) 
Red band (R) 
Near Infrared 

(NIR) 
Short Wave 

infrared (SWIR) 
 

Landsat 
surface 

data 
Level-2 

Landsat 
surface 

data Level-
2 

MODIS 
MOD09A1 
MYD09A1 
products 

Normalized 
Difference 

Vegetation Index 
(NDVI) 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
 (4.1) 

MODIS 
MOD13Q1 

MYD13Q1produ
cts 

Normalized Difference 
Soil Index (NDSI) 

𝑁𝐷𝑆𝐼 =
𝑆𝑊𝐼𝑅−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅+𝑁𝐼𝑅
 (4.2) 

Soil-Adjusted 
Vegetation Index 

(SAVI) 

𝑆𝐴𝑉𝐼 = (1 + 𝐿)
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅+𝐿
 (4.3) 

where L represents a minimal change in the soil brightness with 
a value of 0.5 [5] 
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Normalized 
Difference Water 

Index (NDWI) 

 

𝑁𝐷𝑊𝐼 =
𝐺−𝑁𝐼𝑅

𝐺+𝑁𝐼𝑅
 (4.4) 

 

Land Surface 
Temperature 

(LST) 

𝐿𝑆𝑇 =
𝐵𝑇

(1+(
𝜆∗𝐵𝑇

𝜌
)𝑙𝑛𝜀)

− 273.15 (4.5) 

where BT is the brightness 
temperature, λ is the center 

wavelength (Landsat-7 = 11.45 
μm, Landsat-8 = 10.8 μm) [156], 𝜌 

is a constant and ε is the 
emissivity [157,158]. 

MODIS 
MOD11A1 
MYD11A1 
products 

  
4.3.4. LUR models 

LUR models are an alternative to predict the spatialization of air pollutants, particularly 

when the number of AQMN stations is limited. They use different geographical variables 

such as roads, traffic information, meteorological and remote sensing data and other 

environmental variables, in order to build a model to retrieve air pollutants. However, 

often several geographical variables are not available. Thus, we should use simple 

alternatives, such as free remote sensing data, as variables to approach a LUR model.  

In most cases, LUR uses MLR to establish the model [159,160]. MLR allows an easy 

and simple model construction. In our case, the dependent variable is the quarterly PM10 

value and the independent variables or spatial predictors are the remote sensing data in 

each coordinate of the AQMN station, considering the free cloud pixel value. Equation 

4.6 shows the original LUR model, considering all the remote sensing predictors in MLR.  

 

𝑃𝑀10 = 𝐼 + 𝑎𝑁𝐷𝑉𝐼 − 𝑏𝑁𝐷𝑆𝐼 − 𝑐𝑆𝐴𝑉𝐼 + 𝑑𝑁𝐷𝑊𝐼 − 𝑒𝐿𝑆𝑇 − 𝑓𝐵 − 𝑔𝐺 + ℎ𝑅 + 𝑖𝑁𝐼𝑅 +

𝑗𝑆𝑊𝐼𝑅 + 𝑘𝑌 − 𝑙𝑆 (4.6) 

 

where I is the intercept, NDVI is Normalized Difference Vegetation Index, NDSI is the 

Normalized Difference Soil Index, SAVI is the Soil-Adjusted Vegetation Index, NDWI is 

the Normalized Difference Water Index, LST is the Land Surface Temperature, B is the 

blue band, G is the green band, R is the red band, NIR is the near infrared band, SWIR 

is the shortwave infrared band, Y is the year of image acquisition, S is the three-month-

averages of image acquisition (January–March - 1, April–June - 2, July–September - 3, 

and October–November - 4), a, b, …, l, are the coefficients in each predictor. The other 

variables are described in Table 4.2. 

Nevertheless, considering that multicollinearity exists between remote sensing variables 

[147], different predictor techniques should be employed to compute the LUR model. We 

compare three techniques, namely, MLR with STW, PLS and ANN, in order to find the 

fittest model (Figure 4.2). 
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In the first model, we use MLR considering an STW. It contemplates different parameters 

in order to identify the most adequate/influencing variables as predictors. The 

parameters used to subset the variables are: (i) the residual sum of squares for each 

model (RSS); (ii) the adjusted regression coefficient R2 (Adj. R2); (iii) Mallows' Cp (CP) 

and; (iv) Bayesian information criterion (BIC).  

The second model uses PLS with the STW criteria to select the predictors. The main 

challenge when using PLS is to avoid multicollinearity, finding an alternative when we 

have few data and a significant number of predictors [76]. PLS generates new latent 

variables or components in a lineal way.  

Finally, the last model uses an ANN in an MLP, with a hidden layer and six hidden nodes 

to compute the predictive model. The nodes are computed according to [161]. In this 

model we use all the predictors. This method is used when the model is complex, giving 

a different weight to each predictor corresponding to its importance. Additionally, we use 

a non-linear activation function with backpropagation. The training data to build the MLP 

consider 75% of the dataset and the rest 25% for test. We use a backpropagation 

approach to train the algorithm. The R studio software was used in this study to extract 

the data and to compute all the models. 

 

Figure 4.2. Workflow of the methodology proposed to establish the land use regression (LUR) models. 

 

4.4 Results 

PM10 ground measurements and remote sensing data are matched in a table with the 

same date. Thus, the unique condition is to consider remote sensing data with less than 

10% cloud density. So, the three-month-averages matching tables for each sensor 
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contain 35 observations for Landsat-7, 93 observations for Landsat-8 and 108 

observations for MODIS. The main reasons to have only these numbers of observations 

are the high cloud density in the study area and the incomplete/not available air pollution 

data. Furthermore, the criteria to select predict variables consider 5 dependent variables 

for Landsat-7, 8 dependent variables for Landast-8 and 6 dependent variables for 

MODIS, for each STW and PLS model, as shown in table 4.3. They were obtained 

according to STW criteria (RSS, Adj. R2, CP and BIC). The variables common to all the 

three cases considered are blue band, near infrared (NIR) band and Normalized 

Difference Vegetation Index (NDVI).   

  

Table 4.3. Number of observations and predictors per satellite to build the LUR models. 

Variable Landsat-7 Landsat-8 MODIS 

No. Observations 35 93 108 

No. Predictors 5 8 6 

Predictors 

NDVI 
B 
R 

NIR 
S 

NDVI 
SAVI 
LST 

B 
G 
R 

NIR 
Y 

NDVI 
B 
G 
R 

NIR 
S 

 

The LUR models are computed considering STW and PLS regressions in a linear way 

and MLP in a non-linear way. They are shown and compared in Table 4.4 (Equations 

4.7 to 4.12). In the case of Landsat-7, the STW shows a coefficient of determination (R2) 

of 0.37, the PLS a R2 of 0.36, and, for MLP, a R2 of 0.46. The lowest root-mean-square 

error (RMSE) was obtained for STW with a value of 9.47. For Landsat-8, in STW a R2 of 

0.42 was obtained, and a R2 of 0.43 for PLS, and a R2 of 0.68 for MLP (Figure 4.3). The 

lowest RMSE obtained was for MLP. Finally, for MODIS, a R2 of 0.15 for STW, a R2 of 

0.19 for PLS and a R2 of 0.25 for MLP were obtained. The lowest RMSE was for STW. 

 
Table 4.4. LUR models for each sensor with different regression techniques. In the case of MLP, the model is not linear. 

Sensor Model 
Equation/Method 

Coefficient of 
determination 

(R2) 

Root-mean-
square error 

(RMSE) 

Landsat-7 
ETM+ 

Stepwise 
regression 

(STW) 

PM10 = −26.770 + 205.289NDVI − 0.073B +
0.144R − 0.048NIR + 2.270S (4.7) 

0.37 9.47 

Partial least 
square 

regression 
(PLS) 

PM10 = 24.786 − 54.369NDVI − 0.059B +
0.049R − 0.008NIR + 2.165S (4.8) 

0.36 10.14 

Multilayer 
perceptron 

(MLP) 

Non-linear. One hidden layer and six hidden 
nodes.  

0.46 12.69 
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(a) 

 
(b) 

 
(c) 

Figure 4.3. Comparison between R2 and RMSE in the model results for Landsat-8 data: (a) STW; (b) PLS; (c) MLP. 

 
 

The results in Table 4.3 show that Landsat-8 data with MLP are the fittest model. The 

MLP employed (Figure 4.4) has one hidden layer with six hidden nodes.  

Landsat-8 
OLI/TIRS 

STW PM10 =  −4125.506 +  350.130NDVI −
200.334SAVI— 0.936LST − 0.035B −

0.036G + 0.099R − 0.013NIR + 2.061Y (4.9) 
0.42 9.19 

PLS PM10 =  −4146.508 +  115.816NDVI −
40.465SAVI— 1.020LST − 0.036B − 0.038G +

0.104R − 0.016NIR + 2.073Y (4.10) 

0.43 9.46 

MLP Non-linear. One hidden layer and six hidden 
nodes. 

0.68 6.22 

MODIS 

STW PM10 = 1.248 + 93.411NDVI + 0.056B −
0.070G + 0.056R − 0.017NIR + 3.190S (4.11) 

0.15 12.91 

PLS PM10 = 5.661 + 79.106NDVI + 0.060B −
0.072G + 0.050R − 0.014NIR + 3.308S (4.12) 

0.19 12.93 

MLP Non-linear. One hidden layer and six hidden 
nodes. 

0.25 16.38 
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Figure 4.4. MLP diagram for Landsat-8 data. 

 

Figure 4.5 shows the relative variable importance according to the assigned weights, 

where the red band is the most significant in the model, while LST presented the lowest 

significance.  

 

Figure 4.5. Relative variable importance in Landsat-8 MLP. The scale is between -0.5 and 1, where 0 is the lowest (null) 
importance. 

 

The Landsat-8 LUR-MLP model is chosen to predict PM10, considering the highest R2 

and the lowest RMSE. In Figure 4.6, the quarterly maps show the PM10 spatial 

concentration during 2015, in a color scale in µg/m3. The white gaps showed in the maps 

are clouds with a high density. 

 



FCUP 
Remote Sensing applied to the study of environment-sensitive chronic diseases: A case study 

applied to Quito, Ecuador 

60 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure 4.6. PM10 concentrations during the season 4 (July to September) with Landsat-8 LUR-MLP model in: (a) 2013; 
(b) 2014; (c) 2015; (d) 2016; (e) 2017. The white gaps represent areas with a high cloud density. 

 

4.5 Discussion 

As demonstrated in this study, LUR models are an interesting alternative to model air 

quality, specifically PM10 concentrations, when the in-situ air quality measures are 

insufficient. Usually, most of the predictors are geographical variables (such as roads), 

traffic, meteorological data, and others [132]. LUR models are usually applied in small 

cities or regions where AQMN stations are limited [162], and where spatial interpolation 

techniques, such as ordinary kriging or inverse distance weighting, cannot be applied, 

considering the low number of ground measurements available [163]. One of the main 

problems with these geographic variables is the low accessibility to the data and the time 

of acquisition. Sometimes, these variables are obsolete, and they are not enough to 

establish a possible trend.  

In this study, we propose an alternative, considering only free remote sensing variables. 

We apply this approach to the city of Quito, Ecuador, during the period between 2013 

and 2017, in order to compare three different satellite data. Quito is growing in new poles. 

When REEMAQ was established in 2002, Quito did not have its current size and 

configuration. Now, REEMAQ is an obsolete air quality network, especially in the 

distribution of stations, which urgently needs improvement. Air pollutant spatial models 

are techniques based on interpolation or geostatistics approaches, which can be useful 

if a reasonable number of stations are available with a good spatial distribution [164]. In 
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this study, only nine stations are available. Moreover, in some cases the data are 

incomplete during some months. Additionally, according to some authors [127,128], it is 

possible to have more air ground data with low-cost sensors, however they must be 

implemented in the cities in order to monitor the air quality. The alternative to improve 

the air quality model in Quito is to establish different spatiotemporal LUR models, 

considering only remote sensing data as predictor variables. A preliminary study shows 

the use of only remote sensing variables, but using a MLR in order to build the model. 

The limitation is the use of all remote sensing predictors without considering the 

collinearity [6]. In order to establish the models, three different remote sensing data were 

tested (Landsat-7, Landsat-8 and MODIS) and three techniques for modeling (STW, PLS 

and MLP) were employed. The selected variables to compute the model are the visible 

NIR and SWIR bands of the three sensors, different environmental indices (NDVI, NDSI, 

SAVI, NDWI) and LST, computed from the data retrieved from each sensor. Most of the 

studies published use aerosol optical thickness (AOT) derived from MODIS (MOD04) 

[165] as the input in LUR models, however, this product has a low spatial resolution (3 x 

3 km)[166]. This resolution is not practicable when considering cities like Quito, where 

the maximum width is near to 10 km. On the other hand, some MODIS products do not 

have a suitable quality for local studies [167]. Other studies use Landsat-8 combined 

with AOT ground stations to spatially model the AOT [142]. This could be a good 

alternative, however, in our study area we do not have access to this information 

between 2013 and 2017.  

Comparing the LUR models established, we found that Landsat-8 is the most adequate 

sensor to model PM10 concentration, considering the 93 records and according to a 

previous study [6]. MLP is the fittest alternative to model PM10, with a R2 of 0.68 and a 

RMSE of 6.22. In this context, the non-linear model (MLP) has a fitter result when 

compared to the linear models (STW and PLS) [144]. Therefore, the LUR-MLP model 

was chosen to map the spatial concentration of PM10 in Quito, between 2013 to 2017. 

MODIS presents the lowest R2 with a value of 0.19, considering the PLS regression. This 

could be related to the lowest spatial resolution. Thus, most of the LUR models use MLR 

or STW. MLR is easy to implement. However, one of the main problems could be the 

multicollinearity, because MLR not analyze the correlation between predictors [168]. On 

the other hand, the linear PLS helps to avoid the multicollinearity creating new latent 

variables with few observations [34]. In a future work, a possible combination between 

STW (in order to select the predictor variables), non-linear PLS (in order to avoid the 

multicollinearity between remote sensing data) and a machine learning technique (as 

ANN) can improve the LUR models [169]. 
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In the case of the predictors, all the models present, in all the cases, the variables blue 

band, NIR and NDVI. In the case of NDVI, a possible reason is the direct influence of 

vegetation on the PM10 concentration and distribution [137]. On the other hand, the red 

band has the most importance in MLP, because there could be a relationship between 

the retrieval of PM10 with the blue and red bands [50]. In most of the LUR studies, the 

authors use traffic, roads, meteorological, land use, population and other predictors, 

reporting values of R2 according to the reality of each local [144]. These models also 

considered different time periods (monthly, quartly, yearly). The main difference of our 

approach is the use of remote sensing data only as predictors, which can replace the 

necessity to have all geographical variables. Another advantage is the data availability 

and continuity in order to recompute the LUR models. One of the main limitations of our 

model is the high cloud density presented in the images during all the year [32], making 

complicated to use more data in order to improve the model. However, in a future work 

will intend to have more satellite sensors or to find new alternatives to recover remote 

sensing data contaminated with clouds [33]. 

Figure 6 shows variations year by year according to PM10 mean concentration based 

on in-situ data (REEMAQ Stations). We choose the 3th season to show the variation 

year by year (2013 - 2017), because we have more remote sensing data available 

(without a high cloud density) during this time-window. According to the results presented 

in Figure 6, an increasing of PM10 concentration between 2013 to 2017 is notorious in 

the most of the urban parishes [170]. However, some areas showed a decreasing 

tendency in some years. The lowest PM10 concentration was found in some peripheral 

parishes during the 2014 year, because the air stations which influences these parishes 

(Tumbaco and Los Chillos) had a variation in the concentrations. Thus, Tumbaco and 

Los Chillos stations are in the east part of the study area and began to present the lower 

values in 2014 followed by 2013, according to the in-situ measures. After 2014, the PM10 

values for these stations began to increase. The main reason could be related to the 

begin operation of the new airport of Quito (2013), and the construction of important road 

infrastructures around it (end of 2014). Another possible explication is the traffic influence 

during the last years, particularly in the peripheral areas were an increment was 

registered since 2015 and also the increase of the population in these areas [171]. In the 

northern parishes, the stations of San Antonio P. and Carapungo are influenced by the 

presence of stone and sandy point quarries [172]. The stations Centro, Belisario and El 

Camal are in the city downtown, and it is the main reason why an increase of PM10 

concentration during the last years is verified in the centre parishes. 
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According to our results, several areas presented concentrations higher than 50 µg/m3 

(Figure 4.6), while the World Health Organization (WHO) recommends, in its guidelines, 

maximum values of 20 µg/m3 as an annual mean and 50 µg/m3 as a 24-hour mean [123]. 

However, some areas do not show values, due to the high cloud density (white areas in 

Figure 4.6). Thus, the PM10 concentration maps from the Landsat-8 LUR-MLP model 

can help local government decision makers to manage air quality concentration and to 

organize new policies, specifically in the places where the highest concentrations were 

identified. 

 

4.6 Conclusions 

In this study, three different satellite datasets were compared to retrieve models of PM10 

through LUR, in Quito, Ecuador between 2013 and 2017. Additionally, three techniques 

were compared to compute the LUR models (SWR, PLS and MLP). From this work, 

several conclusions could be taken: (i) it is possible to build empirical models established 

only using remote sensing variables as predictors without any other geographic 

variables, as traditional LUR models; (ii) in the case of Quito, the study results show that 

Landsat-8 provides the most suitable satellite data to retrieve PM10, in comparison with 

Landsat-7 and MODIS; (iii) MLP allows the obtainment of the most robust result in 

comparison with the other modeling techniques. MLP is the fittest alternative to model 

PM10, with a R2 of 0.68 and a RMSE of 6.22, and; (iv) the MLP model established helps 

in the spatial mapping of PM10, where in the time window of this study, were found areas 

with PM10 values higher than the limit established by WHO. Thus, these models are 

useful in the management of air quality in the city of Quito and can be applied to other 

locations with similar characteristics.  
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5.1 Abstract 

Surface ozone is problematic to air pollution. It influences respiratory health. The air 

quality monitoring stations measure pollutants as surface ozone, but they are sometimes 

insufficient or do not have an adequate distribution for understanding the spatial 

distribution of pollutants in an urban area. In recent years, some projects have found a 

connection between remote sensing, air quality and health data. In this study, we apply 

an empirical land use regression (LUR) model to retrieve surface ozone in Quito. The 

model considers remote sensing data, air pollution measurements and meteorological 

variables. The objective is to use all available Landsat-8 images from 2014 and the air 

quality monitoring station data during the same dates of image acquisition. Nineteen 

input variables were considered, selecting by a stepwise regression and modelling with 

a partial least square (PLS) regression to avoid multicollinearity. The final surface ozone 

model includes ten independent variables and presents a coefficient of determination 

(R2) of 0.768. The model proposed help to understand the spatial concentration of 

surface ozone in Quito with a better spatial resolution. 

Keywords: Landsat-8, Quito, Ozone, PLS, Air modelling 

 

5.2 Introduction 

Surface ozone (O3) is one of the principal greenhouse gases [173]. It is produced in the 

troposphere and is not emitted directly into the air. A chemical reaction between nitrogen 

oxides (NOx), volatile organic compounds (VOC) and sunlight produces O3 [174]. Thus, 

urban growth, vehicular traffic and industry are sources of NOx and VOC in cities, 

deteriorating the vegetation conditions [175], the air quality and creating a health problem 

[15,176]. 

Several cities around the world have an air quality monitoring network (AQMN) to 

manage air pollution [62,177]. One of the cities with an AQMN is Quito, the capital of 

Ecuador. The city has traffic and population problems that increase air pollution. Its 

AQMN is the “Red Metropolitana de Monitoreo Atmosférico de Quito” (REMMAQ), 

constituted by nine stations. It has managed the air quality in Quito in real time since 

2002 [38]. The REMMAQ stations measure air pollutants such as carbon monoxide (CO), 

nitrogen dioxide (NO2) as part of NOx, sulphur dioxide (SO2), particulate matter less than 

10 microns (PM10), fine particles less than 2.5 microns (PM2.5) and O3. Nevertheless, 

the number of stations is insufficient to measure the air quality in all urban zones in the 

city. 
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Some empirical models to retrieve the spatial concentration of air pollutants have been 

developed using variables such as roads information and vegetation. The land use 

regression (LUR) models are the basis of most of these approaches. The principle of 

LUR focuses on the environmental characteristics of the place where the pollutant is 

present [159]. Some models consider remote sensing data, meteorological data (MD), 

aerosol optical depth (AOD) field measurements and AQMN data [19,178,179]. In most 

of these studies, the limitations are related to the input variables, especially AOD field 

measurements. This is because models require AOD parameters to obtain high-

resolution spatialization [142,179]. The most commonly used remote sensing data are 

Landsat [20,180,181] and MODIS [133,182] sensors. The main advantage of Landsat 

images in specific Landsat-8 [10], is the high spatial resolution to map middle cities. Their 

limitation is the temporal resolution (16 days) [10]. The advantage of MODIS is its high 

temporal resolution, but the major limitation is the low spatial resolution, which limits the 

accurate retrieval of maps (Daac, Falls, & March 2012). Moreover, remote sensing data 

are used to obtain environmental variables such as vegetation health [184,185] to input 

variables in the air pollutant models. Furthermore, empirical models using remote 

sensing data are focused on only some air pollutants, such as NO2, PM10 and PM2.5. 

At present, the main challenge is to retrieve the remaining air pollutants, such as O3, 

which is considered only in few studies [186]. 

In the case of Quito, a study found the spatial distribution of PM10 by applying remote 

sensing data [129]. The main limitation of the study was the small quantity of data used 

(3 images). On the other hand, a study making a comparison between remote sensing 

to retrieve air pollutant in Quito is considered [6]. However, there are few studies about 

air quality in the city, specifically considering O3 [187]. Thus, the possibility of obtaining 

AQMN public data, and combining them with other environmental variables, can lead to 

new models for retrieving air pollutants in places where AQMN are insufficient. 

This study uses remote sensing data, air pollution measurements and meteorological 

variables to retrieve O3 for one year (2014) in Quito. Moreover, this study combines two 

regression techniques, stepwise regression (SWR) and partial least-square regression 

(PLS), to compute the O3 model, finding the fittest model to spatialize the variable in all 

the areas. The main objective is to find the spatial variables that influence O3 in Quito. 

 

 

5.3 Materials and Methods 

5.3.1. Study Area 
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This study was developed in Quito, the capital of Ecuador. The city elevation is 

approximately 2800m over sea level. During 2014, the mean minimum and maximum 

temperatures were 9.0°C and 25.4°C [111]. Furthermore, Quito has a dry season and a 

wet season. It does not have four seasons considering that the city is in the middle of 

the tropic zone. The latitude and longitude of the study area are 0º30’S to 0º10’N and 

78º10’W to 78º40’W. These coordinates delimit most of the urban zone, which is divided 

into urban parishes (Figure 5.1). 

 

Figure 5.1. Quito’s urban parishes considered as the study area. The blue marks represent the REMMAQ stations. 

 

5.3.2. Air pollutant ground data 

The daily air pollutant concentration data from 2014 were obtained from the REMMAQ 

stations. The REMMAQ has nine automatic stations that have been operated by the 

“Secretaria del Ambiente de Quito” since 2002 (Figure 5.1). The stations measure 

concentrations of air pollutants such as PM2.5, SO2, CO, O3, NO2, PM10 and MD (Table 

5.1). In this study, daily average measurements were considered to match with the 

satellite overpass (Figure 5.2) (See section 5.3.4). Furthermore, only complete datasets 

were used, which means that if a dataset was incomplete, it was not considered for the 

model establishment. PM2.5, SO2, CO, and NO2 were the complete datasets to estimate 

O3. The pollutant concentration was measured in micrograms per cubic meter (µg/m3) 

according to the Environmental Protection Agency (EPA) methods. The O3 measuring 

device was a Teledyne API/T400, and the collection method was EPA No. EQOA-0992-
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087 [38]. The hourly pollutant concentration data have public access 

(http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos). 

 

Figure 5.2. Mean levels from 10:00 to 11:00 (GMT-5) of O3 concentration (µg/m3) observed in each month during 2014. 
The San Antonio P. station did not present measures during 2014. 

 

5.3.3. Meteorological data 

The MD were collected only by eight REMMAQ stations (Table 5.1). The data used were 

the daily average temperature (TMP) in Celsius degrees (°C), relative humidity (HM) in 

percentage (%) and solar radiation (SR) in Watt per square metres (W/m2). The 

precipitation measurements were not used because most of the values were null in the 

time range considered. 

In both cases, (air pollutant ground data and meteorological data), the R software was 

used to analyse the data and compute the statistics. The packages readxl and stringi 

were used. 

 
Table 5.1. Field sensors of the REEMAQ 

Station Variables measured 

Cotocollao PM2.5, SO2, CO, O3, NO2, PM10, MD 

Carcelen PM2.5, SO2, CO, O3, NO2, PM10, MD 

Belisario PM2.5, SO2, CO, O3, NO2, MD 

Jipijapa PM2.5, SO2, CO, O3, NO2, PM10, MD 

Camal PM2.5, SO2, CO, O3, NO2, MD 

Centro PM2.5, SO2, CO, O3, NO2 

Guamani SO2, CO, O3, NO2, PM10, MD 

Tumbaco SO2, O3, PM10, MD 

Los Chillos PM2.5, SO2, CO, O3, NO2, MD 

 

 

 

http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos
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5.3.4. Remote sensing data 

Landsat-8 is a satellite launched on February 11, 2013. It is the last satellite of the 

Landsat project launched. The satellite carries two push-brown instruments to collect 

land remote sensing data on an image: The Operational Land Imager (OLI) with 9 bands 

and the thermal infrared sensors (TIRS) with two bands. Additionally, the Landsat-8 data 

file provides a quality assessment band (QA) to assess the different image products. The 

Landsat-8 images are freely available on the United States Geological Survey (USGS) 

website. The USGS develops research-quality and application-ready products such as 

the Landsat-8 surface reflectance Level-2 products (L2T). These products are generated 

from the Landsat Surface Reflectance Code (LaSRC) [50]. The LaSRC products are 

radiometric and atmospherically corrected. The LaSRC products include surface 

reflectance of the OLI bands (bands 1 to 9), top-of-atmosphere brightness temperature 

(BT) (band 10 and band 11) and some environmental indexes such as the normalized 

difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI) and enhanced 

vegetation index (EVI). 

In this study, Landsat-8 L2T images were downloaded from the Earth Resources 

Observation and Science (EROS) Center Science Processing Architecture (ESPA) at 

the demand interface (https://espa.cr.usgs.gov/). The search criteria were images in 

2014 with less than 20% cloud cover in the study area. One of the challenges was to 

choose the subset of images without high cloud density in the study area [152]. 

According to the search criteria, ten images (path 11; row 60) were selected (Table 5.2). 

 

Table 5.2. Landsat-8 L2T images selected 

No. Image Date 

1 LC08_L1TP_010060_20140115_20170426_01_T1 15/01/2014 

2 LC08_L1TP_010060_20140131_20170426_01_T1 31/01/2014 

3 LC08_L1TP_010060_20140216_20170425_01_T1 16/02/2014 

4 LC08_L1TP_010060_20140304_20170425_01_T1 04/03/2014 

5 LC08_L1TP_010060_20140405_20170424_01_T1 05/04/2014 

6 LC08_L1TP_010060_20140608_20170422_01_T1 08/06/2014 

7 LC08_L1TP_010060_20140710_20170421_01_T1 10/07/2014 

8 LC08_L1TP_010060_20140726_20170420_01_T1 26/07/2014 

9 LC08_L1TP_010060_20140811_20170420_01_T1 11/08/2014 

10 LC08_L1TP_010060_20141030_20170418_01_T1 30/10/2014 

 

Considering the direct influence of the sunlight over O3 concentration [188] and knowing 

the principle of passive remote sensing data to capture the radiation measured 

reflectance sunlight [88,189], bands 1 to 7 (visible and infrared bands) [10] were used as 

input variables. NDVI, SAVI and EVI were used to highlight the vegetation because there 

is a high relation between O3 and vegetation [190]. The indexes were obtained from 

https://espa.cr.usgs.gov/
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LaSRC and multiplied by 0.0001 [191] to retrieve the surface environmental indexes 

(values between -1 and 1). 

The NVDI provides information about health vegetation, using band 4 (B4) and band 5 

(B5) in Landsat-8 images. It is computed using Equation 5.1; 

𝑁𝐷𝑉𝐼 =
𝐵5 − 𝐵4

𝐵5 + 𝐵4
 (5.1) 

 
The SAVI is an improvement of NDVI considering a soil correction factor (usually 

LS=0.5). Considering Landsat 8, it uses B4 and B5 as input (Equation 5.2). 

𝑆𝐴𝑉𝐼 = (1 + 𝐿𝑆)
𝐵5 − 𝐵4

𝐵5 + 𝐵4 + 𝐿𝑆
 (5.2) 

 
The EVI enhances the vegetation in areas with high biomass. Thus, EVI helps to identify 

stress vegetation using Equation 5.3. 

𝐸𝑉𝐼 = 𝐺 ∗
𝐵5 − 𝐵4

𝐵5 + 𝐶1 ∗ 𝐵4 − 𝐶2 ∗ 𝐵2 + 𝐿
 (5.3) 

 
where the gain factor (G) is 2.5, L is the canopy background adjustment (L=1), C1 and 

C2 are coefficients for atmospheric resistance (C1=6, C2=7.5). The B4 and B5 have a 

high contrast in the detection of built-up areas and bare lands areas [57]. 

Moreover, the land surface temperature (LST) retrieved from remote sensing has been 

used in other studies to estimate the air quality [20]. It was computed as a function of 

BT. Equation 5.4 represents the LST in degrees Celsius. 

𝐿𝑆𝑇 =
𝐵𝑇

(1 + (
𝜆 ∗ 𝐵𝑇

𝑝 ) 𝑙𝑛E)
− 273.15 

(5.4) 

 

where λ is the centre wavelength (λ=10.8 μm),  is a constant obtained in Equation 5.5, 

E is the emissivity as Equation 5.6 and 273.15 is the value to transform degrees Kelvin 

to degrees Celsius. 

The constant p is estimated using Equation 5.5, where h is the Planck constant (6.626e-

34 Js), c is the speed of light (2.998e8 m/s), and s is the Boltzmann constant (1.38e-23 

J/K). 

𝑝 =
ℎ ∗ 𝑐

𝑠
 (5.5) 

 

Equation 5.6 represents the emissivity E [59]. E is the efficiency that a surface emits heat 

as thermal infrared (TIR) radiation [60]. 

𝐸 = {

𝐸𝑠 , 𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑠

𝐸𝑠 + (𝐸𝑣 − 𝐸𝑠)𝑃𝑉 , 𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣

𝐸𝑣 , 𝑁𝐷𝑉𝐼 > 𝑁𝐷𝑉𝐼𝑣

 (5.6) 
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where Es represents the emissivity for soil. A value of 0.973 is used in this study [157]. 

EV is the vegetation emissivity with a value of 0.985 in this study [157]. NDVIv is the NDVI 

in vegetation with a value of 0.2 [59], NDVIs is the NDVI in the soil with a value of 0.5 

[59] and PV is the proportion of vegetation in the area using Equation 5.7. 

𝑃𝑉 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠
)

2

 (5.7) 

 
The remote sensing variables were represented as raster data (GeoTIFF format). They 

were computed in R studio software with the rgdal and raster packages. Through the 

shapefile of REMMAQ stations, the raster values for each station were extracted. The 

package dismo was used to perform this task. 

 

5.3.5. Model building 

The first step in building the model is the compilation of all possible variables (air 

measurement data, meteorological data and remote sensing data) in a database. Each 

row in the table has all the values of these variables in a REMMAQ station during the 

date established (Table 5.3). 

 
Table 5.3 Variables considered in the model 

No. Variable Units 

Air pollutants 
ground data 

O3, PM2.5, SO2, CO, NO2 µg/m3 

Meteorological 
data 

Temperature (TMP) °C 

Relative humidity (HUM) % 

Solar radiation (SR) W/m2 

Remote sensing 
data 

Band 1 (B1), Band 2 (B2), Band 3 (B3), 
Band 4 (B4), Band 5 (B5), Band 6 (B6), 

Band 7 (B7) 

Surface 
reflectance 

Environmental Indexes: NDVI, SAVI, EVI - 

Land surface temperature (LST) °C 

 
LUR models are a good alternative for finding the spatial location of pollutants [192]. LUR 

are empirical regression models that consider the pollutant of interest as the dependent 

variable and other geographical variables as independent variables (meteorological 

data, traffic, topography, remote sensing data, etc.). In this study, we generate an LUR 

model using the available data from each station on different dates during 2014 to 

preserve the accuracy of the variables. 
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Assuming that multicollinearity between variables is real, especially between remote 

sensing variables [147], a preliminary correlation analysis was realized to provide an 

overview of which variables are more adequate for integration into the model. 

To select the fittest predictor variables and the best model to predict O3, a subset analysis 

is performed with stepwise regression. The subset analysis used four analyses: the 

residual sum of squares for each model (RSS), the adjusted regression coefficient R2 

(Adj. R2), Mallows' Cp (CP) and the Bayesian information criterion (BIC). The R-package 

used to compute this was leaps. 

The original LUR model with all the possible predictor variables as input in the analysis 

is shown in Equation 5.8. 

 
𝑂3 = 𝑎𝑃𝑀2.5 + 𝑏𝑆𝑂2 + 𝑐𝐶𝑂 + 𝑑𝑁𝑂2 + 𝑒𝑇𝑀𝑃 + 𝑓𝐻𝑈𝑀 + 𝑔𝑆𝑅 + ℎ𝐵1 + 𝑖𝐵2 + 𝑗𝐵3 + 𝑘𝐵4

+ 𝑙𝐵5 + 𝑚𝐵6 + 𝑛𝐵7 + 𝑜𝑁𝐷𝑉𝐼 + 𝑝𝑆𝐴𝑉𝐼 + 𝑞𝐸𝑉𝐼 + 𝑟𝐿𝑆𝑇 + 𝐼 (5.8) 

 
where a, b, c … , r are the coefficients of the regression model, and I is the intercept in 

the equation. The subset analysis reduces the number of input variables with the 

considered criteria (RSS, Adj. R2, CP, BIC). 

Once the input variables are selected, a PLS regression is applied to avoid the 

multicollinearity between the variable subsets. PLS is a technique applied in cases where 

traditional regression models fail, and the predictors have a high correlation, as shown 

in Equations 5.9 – 5.10. 

𝑋 = 𝑇𝑃𝑇 + 𝐸 (5.9) 
𝑌 = 𝑈𝑄𝑇 + F (5.10) 

 
Where X is a n x m matrix of predictors, Y is a n x p matrix of responses; T and U are n 

x l matrices that are, respectively, projections of X and projections of Y; P and Q are, 

respectively m x l and p x l orthogonal loading matrices; and matrices E and F are the 

error terms. The decompositions of X and Y are made in order to maximise the 

covariance between T and U. Additionally, PLS generate an orthogonal transformation 

to obtain components by finding the most appropriate model to explain the variance 

starting from the maximise covariance matrixes [76]. In the case of remote sensing data, 

some studies consider multicollinearity when the same sensor is used to obtain different 

variables [147,193]. Finally, the validation is performed by cross-validation (Figure 5.3) 

and the criterion to accept or reject models where R2, RMSE, predicated vs measured 

graphic and residuals analysis. The R-packages used were pls and plsdepot. 
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Figure 5.3. Methodology workflow 

 

5.4 Results 

 

5.4.1. Building the ozone LUR model 

The LUR model tested 19 variables (18 independent variables or predictors and O3 as 

the dependent variable), matching all variables (air measurement data, meteorological 

data and remote sensing data). The result is a database with 36 observations, where 

most of the remote sensing data variables show a high correlation (Figure 5.4). The high 

correlation or multicollinearity (in some cases near 1) indicates that some variables are 

highly related, such as NDVI, SAVI and EVI, or the visible bands (B1, B2, B3, B4). On 

the other hand, the highest correlation between all predictors with O3 is PM2.5, showing 

a value of -0.44. The highest correlation considering only the remote sensing data 

variables is B6 with 0.22. 

To find the model with the best fit, a stepwise regression subset is used. In the first 

instance (Figure 5.5), the coefficient of determination (R2) is near 0.68, considering all 

18 independent variables to build the model. The subset variables are analysed by the 

less Akaike information criterion (AIC) and the maximum Adj. R2. 
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Figure 5.4. Correlation graph between input variables. 

 

 

Figure 5.5. Variable combinations with their corresponding R2 values as part of the subset task to select the model with 
the best fit. 

 

The preliminary predictors are known (Figure 5.5), so to find a simple model with fewer 

input variables, a new subset of variables, applying RSS, Adj. R2, CP and BIC criteria 

are analysed (Figure 5.6). Analysing the four criteria, eleven independent variables are 

used to build the simplest model (PM2.5, HUM, TMP, B2, B4, B5, B7, NDVI, SAVI, EVI). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.6. Subset analysis to select variables with different criteria: (a) RSS; (b) Adj. R2; (c) CP; (d) BIC. The red point 
shows the optimal value of variables for each criterion. 

 

The eleven variables chosen were then considered in the PLS analysis (Figure 5.7). The 

number of components in PLS regression was nine. These components explain most of 

the percentage of variance (Table 5.4), after cross validation (data not shown). The R2 

obtained was 0.77, and the RMSE was 3.03 through the PLS regression.  

 

  
(a) 

   
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 5.7. PLS analysis a) The number of components that explain the variance. b) The number of components to obtain 
the highest R2. c) The histogram of the residuals. d) The number of components to obtain the lowest RMSE. e) Measured 
vs. predicted values with PLS regression. 

 

Table 5.4. Variables explained variance by PLS components (t1, t2, …, t6). The red text shows the maximum variance 
explained with nine components, considering O3 as the dependent variable. 

 

Variable t1 t2 t3 t4 t5 t6 t7 t8 t9 

PM2.5 0.148 0.655 0.660 0.787 0.897 0.999 1.000 1.000 1.000 

HUM 0.212 0.433 0.442 0.593 0.775 1.000 1.000 1.000 1.000 

TMP 0.017 0.350 0.902 0.978 0.979 1.000 1.000 1.000 1.000 

B2 0.611 0.918 0.918 0.947 0.955 0.966 0.998 1.000 1.000 

B4 0.609 0.934 0.948 0.994 0.995 0.998 0.998 1.000 1.000 

B5 0.123 0.158 0.362 0.994 0.997 0.999 1.000 1.000 1.000 

B7 0.460 0.714 0.777 0.951 0.952 0.974 0.996 1.000 1.000 

NDVI 0.515 0.873 0.904 0.987 0.987 0.993 0.994 1.000 1.000 

SAVI 0.435 0.740 0.805 0.989 0.990 1.000 1.000 1.000 1.000 

EVI 0.387 0.677 0.729 0.957 0.958 0.991 0.999 1.000 1.000 

R2 0.232 0.345 0.390 0.404 0.541 0.617 0.634 0.646 0.768 

 

Avoiding the multicollinearity, the PLS regression is applied, presenting values different 

from 1 in the correlation matrix between the variables and the components (Table 5.5). 

Moreover, cross-validation is applied to the components. Equation 5.9 shows the 

resulting model to retrieve O3 during 2014, considering the dataset. 

 
𝑂3 = −0.47𝑃𝑀2.5 − 3.41𝑇𝑀𝑃 − 0.34𝐻𝑈𝑀 − 1371.47𝐵2 + 9449.41𝐵4 − 7852.43𝐵5 − 436.68𝐵7

− 1028.50𝑁𝐷𝑉𝐼 + 4961.14𝑆𝐴𝑉𝐼 + 1178.61𝐸𝑉𝐼 + 66.06 
(5.9) 
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Table 5.5 Correlation matrix between the variables and the PLS components. 

Variable t1 t2 t3 t4 t5 t6 t7 t8 t9 

PM2.5 -0.38514 -0.71215 -0.06697 -0.35607 0.33247 -0.31854 0.03311 -0.01169 0.00006 

HUM -0.46074 -0.46963 -0.09577 0.38916 -0.42616 0.47404 -0.01179 0.00889 -0.00005 

TMP 0.13159 0.57670 -0.74288 -0.27615 -0.02596 0.14489 0.01716 0.00092 -0.00003 

B2 0.78187 -0.55363 0.01333 0.17146 -0.08946 -0.10447 0.17864 -0.04175 -0.00072 

B4 0.78063 -0.56987 -0.11695 0.21595 -0.01183 0.05406 0.00119 -0.04905 0.00434 

B5 0.35068 -0.18755 -0.45108 0.79548 0.05186 -0.04768 0.01853 -0.01613 -0.00254 

B7 0.67796 -0.50463 -0.25075 0.41702 0.02133 -0.14883 -0.14855 0.06528 -0.00017 

NDVI -0.71749 0.59850 -0.17601 0.28787 -0.02397 -0.07591 -0.02313 -0.07924 -0.00011 

SAVI -0.65920 0.55261 -0.25518 0.42854 0.03350 -0.09995 0.00418 0.00529 0.00143 

EVI -0.62209 0.53862 -0.22889 0.47707 0.02165 -0.18231 0.08867 0.03466 0.00153 

O3 0.48204 0.33513 0.21357 0.11803 0.36972 0.27520 0.13251 0.10736 0.34908 

 

Finally, Equation 5.9 allows mapping the O3 concentration during 2014 (Figure 8). 

 

 
(a) 
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(b) 

Figure 5.8. Maps of O3 during 2014: (a); January; (b) July maps obtained from Equation 8. The left map is with an inverse 
distance weighting (IDW) technique while the centre map is applying the O3 model in all the study area. The right maps 
are a zoom in an assessment area (red square). 

 

5.5 Discussion 

The main goal of this study was to establish a model to retrieve O3 from several input 

variables, implementing a variant of the classical LUR model. In most cases, LUR models 

are used to model air pollutants from road networks, land use, building density, MODIS 

AOD, population density and other geographic variables [132,143,162,194–196]. In this 

study, the variables selected are air pollution measurements, meteorological data (MD) 

and remote sensing data. The air pollution measurements and MD were obtained from 

REMMAQ stations. Moreover, considering the accuracy of LUR models in order to 

retrieve air pollutants (R2 values between 0.45 and 0.80) [132,143,162,194–196], ten 

Landsat-8 images were selected to retrieve O3 in Quito-Ecuador. Most LUR models use 

MODIS data. However, MODIS data probably do not have the accuracy and the quality 

to model pollutants or other environmental variables in middle cities [167]. 

To select the predictor variables, a subset was applied considering 19 variables (18 

independent variables and O3 as the dependent variable), obtained a preliminary best fit 

model with the 18 variables (R2=0.68). However, to find the best fit and simplest (with 
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the lowest number of predictors) model, four criteria (RSS, Adj.R2, CP, BIC) are 

analysed, resulting in a model with ten independent variables (PM2.5, HUM, TMP, B2, 

B4, B5, B7, NDVI, SAVI, EVI), showing an R2 of 0.72 considering stepwise regression. 

In most of the subsets, the remote sensing data variables B1, B2, B6 and B7 appear, 

showing the relation between these bands with O3. Thus, B1 and B2 reflect the blues 

and violets related to the aerosol presence [10]. Additionally, B6 and B7 reflect the short 

infrared related to greenhouse gas absorption [197]. Some studies that use LUR models 

employed stepwise regression to automatically find the predictors in a model [26,141]. 

However, the main problem with stepwise regression is not allowing a multicollinearity 

analysis [74]. PLS regression is used in some studies to compute the LUR model 

[163,195] to avoid multicollinearity. PLS builds a model with latent variables 

(components) as independent variables [76]. Moreover, PLS regression is used when 

we have a model with few observations [198]. If a high correlation is present between 

variables, a PLS regression is used to build the model, where nine components explain 

most of the variance and obtained an R2 value of 0.768. This value is higher than R2 in 

the stepwise regression (R2 = 0.72) and avoids the multicollinearity of remote sensing 

variables. 

The final model can be mapped, in comparison with other techniques, such as thematic 

point maps, interpolation or geostatistical analysis (Figure 8), showing a robust 

perception of spatial concentration of O3 in the city, and these maps can be used as input 

to make a more accurate air pollution analysis. 

The limitation is the few observations used to build the model because our model 

requires some data from the REMMAQ stations and sometimes these data are 

incomplete or unavailable. On the other hand, the remote sensing variables depend on 

the number of clouds. Quito is known as a city with a high cloud density during the year 

[152], and this factor limits the computation of LUR models. A possible alternative can 

be to combine different sensors with high spatial and temporal resolution and use similar 

techniques to PLS to compute the model. 

Another limitation is the generation of a raster to each independent variable. In the case 

of remote sensing, data are not a problem considering all images over the study area, 

but the air pollutant measurements and MD raster can be limited. They were obtained 

with a geostatistical technique as inverse distance weighting (IDW) [199]. Nevertheless, 

this kind of technique works fine in a region with some stations, but in Quito, we only 

have nine stations (Figure 5.8). Therefore, in future work, we will propose the use of only 

remote sensing data to spatialize air pollutants in Quito. 
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5.6 Conclusion 

A spatial estimation was performed in Quito to obtain the O3 spatial concentration in 

2014. The spatial estimation was computed by a variant of LUR models with PLS 

regression. LUR models can explain the spatial concentration of an air pollutant, helping 

in urban planning, environmental analysis and governmental decisions. Moreover, the 

idea of having a variant of LUR models with variables from remote sensing sensors 

different from MODIS will help to build more accurate models. The main limitation is 

related to the small quantities of field data available. In future work, we will try to find new 

alternatives only considering the use of remote sensing data as input without other field 

data variables. 
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6.1 Abstract 

Over the last few years, the use of remote sensing data to retrieve air pollution variables 

through land use regression (LUR) models has become very popular. LUR models are 

an effective alternative to predict air quality, and some studies have established a 

possible relationship between environmental variables and respiratory health 

parameters. This study proposes that there is a relationship between remote sensing 

data (Landsat 8) and environmental variables (air pollution and meteorological data) that 

can be used to determine the number of hospital discharges of patients with chronic 

respiratory diseases in Quito, Ecuador, between 2013 and 2017. The main objective of 

this study is to establish and evaluate an alternative LUR model that is capable of 

calculating the prevalence of chronic respiratory diseases, in contrast with traditional 

LUR models, which typically assess air pollutants. Moreover, this study also evaluates 

different analytic techniques (multiple linear regression, multilayer perceptron, support 

vector regression, and random forest regression) that often form the basis of spatial 

models. The results show that machine learning techniques, such as support vector 

machine, are the most effective in computing such models, presenting the lowest root-

mean-square error (RMSE). Additionally, in this study, we show that the most significant 

remote sensing predictors are the blue and infrared bands. Our proposed model is a 

spatial modeling approach that is capable of determining the prevalence of chronic 

respiratory diseases in the city of Quito, which can serve as a useful tool for health 

authorities in policy- and decision-making. 

 

Keywords: remote sensing; machine learning; respiratory disease; spatial models; 

Quito  

 

6.2 Introduction 

During the last few years, remote sensing data have increasing been used in monitoring, 

spatial predictive modeling, surveillance, and risk assessment with respect to human 

health [23]. These human health studies have also been associated with air pollution 

spatial modeling, which is connected to some vector-borne [61] and respiratory diseases 

[26]. In this context, spatial models relying on remote sensing data have been developed 

to identify different air pollutants, the most common of which are particulate matter (PM) 

[6,129], nitrogen dioxide (NO2) [200], tropospheric ozone (O3) [34], sulfur dioxide (SO2) 

[201], and carbon dioxide (CO2) [13]. The aforementioned air pollutants are greenhouse 

gases and precursors of global warming [202]. Moreover, evidence of the adverse effects 

of exposure to air pollutants (PM2.5, PM10, O3) on health has been collected in several 
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countries around the world [203]. Specifically, air pollution is a threat to respiratory 

health, and several chronic respiratory diseases (CRDs), such as asthma, chronic 

obstructive pulmonary disease (COPD), and others, represent nearly 6% of global 

annual deaths [1,2]. According to the World Health Organization (WHO), 92% of people 

around the world live in places with poor outdoor air quality, where the main risk factors 

of developing a CRD are related to the climate and the environment [1,4].  

One of the most famous missions in satellite remote sensing is the Landsat program, 

launched in 1972. The most recent program satellite is the Landsat 8, which has the 

Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) [204] on board. This 

satellite provides a wide spatial–temporal perspective of the Earth, enabling a variety of 

applications and retrieving several variables, such as vegetation, land use, aerosol 

particles, and environmental and meteorological information, which can be retrieved and 

analyzed [10]. Due to the potential of the variables collected by remote sensing of the 

Earth’s environment [40], it is possible to develop models to analyze air pollutants. Such 

models typically use air quality monitoring network (AQMN) data and remote sensing 

variables to conduct spatial modeling of air pollutants, using remote sensing-derived 

parameters in the form of environmental indexes, such as the normalized difference 

vegetation index (NDVI) [205], and measures, such as aerosol optical thickness (AOT) 

[19,190]. It is important to note that sensors, such as the MODIS instruments on Terra 

and Aqua and Landsat 8’s OLI, allow us to obtain (directly or indirectly) this information. 

The Terra/Aqua MODIS instruments have an AOT product with a low spatial resolution 

(3 x 3 km), which is ideal for regional studies [166]. Landsat 8’s OLI is capable of 

retrieving AOT in fine spatial resolution (30 meters); however, AOT information from 

ground stations is also needed [142]. AOT measurements are retrieved by the blue and 

red bands of Landsat 8’s OLI [50]; its infrared bands are also used to retrieve O3 

measurements [181,206].  

With respect to health studies based on remote sensing data, predictive models have 

been used to analyze air pollutants by combining geographic variables (traffic, land use, 

population, etc.) with remote sensing data, in the form of land use regression (LUR) 

models [159,168]. Thus, a LUR model could potentially be used to investigate the 

possible relationship between hospital discharge rates and certain environmental 

variables [26,207]. A hospital discharge is defined as the release of a patient who has 

stayed at least one night in the hospital, including people who die in hospital care [208]. 

However, most LUR models do not consider the dynamics of geographical variables, 

because such variables are sometimes out of date or obsolete [209]. Some health 

studies have related hospital discharge with exposure to different traffic-related pollution, 
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in which the NDVI and MODIS AOT are the most commonly used predictors. These 

studies aim to find a possible relationship between air pollution exposure and hospital 

discharge [210,211].  

LUR models use analytic techniques, such as multiple linear regression (MLR), stepwise 

regression (STW), and multiple logistic regression [212,213]. However, these techniques 

do not analyze the correlation between predictors, and it is well known that remote 

sensing variables have a high correlation or multi-collinearity [214]. An alternative to MLR 

is the use of more complex models, such as machine learning techniques (MLTs) in 

order to avoid multi-collinearity. Examples of non-linear MLTs are multilayer perceptron 

(MLP), support vector regression (SVR), and random forest regression (RFR), among 

others.  

In this context, the aim of this study is to establish and compare spatial empirical models, 

based on LUR models, that are capable of determining the number of hospital discharges 

of patients with CRDs (HCRD) in Quito, Ecuador, between 2013 and 2017, using remote 

sensing data, air pollution field measurements, and meteorological data as predictors 

and considering three different complex machine learning techniques: MLP, SVR, and 

RFR. The spatial model selected will allow us to map the prevalence of HCRD. This 

approach will provide insight into and an understanding of the most significant spatial 

predictors and the spatial distribution of HCRD in the city of Quito. Furthermore, the 

present study is an innovative approach to the use of remote sensing data in human 

health studies.  

  

6.3 Materials and Methods 

6.3.1. Study Area 

The study area is the most populated zone of Quito, Ecuador. The area is divided into 

45 administrative urban districts. Its latitude is 0º30’S to 0º10’N, its longitude is 78º10’W 

to 78º40’W, and the equatorial line crosses through it (Figure 6.1). Quito’s annual median 

temperature is 17 °C, and its elevation is about 2800 meters above sea level. This 

specific study area was chosen for the following reasons: (i) it is covered by nine AQMN 

stations; (ii) its road traffic is relatively high; and (iii) the urban downtown is located in 

this area. The influence zones of each AQMN station were established through Thyssen 

polygons and their respective intersection with the urban districts. 
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Figure 6.1. The study area (Quito, Ecuador). The green dots represent the air quality monitoring network (AQMN) stations 
and their influence areas. 

 

6.3.2. Data Collection 

6.3.2.1 Remote Sensing Data 

Between 2013 and 2017, 46 Landsat 8 level 2 images were acquired over the study area. 

The on-demand images were obtained from the Land Satellite Data Systems (LSDS) 

Science Research and Development (LSRD) website (https://espa.cr.usgs.gov/). The 

main advantage of level 2 images is that they use the Landsat 8 Surface Reflectance 

Code (LaSRC) to generate products with geometrical, radiometric, and atmospheric 

corrections [51]. These products have a spatial resolution of 30 meters. The products 

used in this study as predictors are the surface reflectance (SR) OLI bands, the top of 

the atmosphere (TOA), brightness temperature (BT), and some pre-processed indexes, 

such as the NDVI [54], the soil-adjusted vegetation index (SAVI) [55], and the enhanced 

vegetation index (EVI) [56]. Moreover, considering the high cloud density in the Andean 

Region [32], the images were filtered, and only images with a maximum of 10% cloud 

density over the study area were considered.  

BT was converted to land surface temperature (LST) using the emissivity equation 

according to [157,215] and the inversion of Planck’s function, as shown in Equation (6.1): 

 

𝐿𝑆𝑇 =
𝐵𝑇

(1+(
𝜆∗𝐵𝑇

𝜌
)𝑙𝑛𝜀)

− 273.15    (6.1) 

 

https://espa.cr.usgs.gov/
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where BT is obtained from Landsat 8 level 2 images in kelvin degree (K), λ is the center 

wavelength of the Landsat 8 TIR 1 band (10.8 μm) [156], 𝜌 is expressed in Equation 

(6.2), and ε is the emissivity derived from Equation (6.3), which has to be selected 

according to the NDVI evaluation in the study area. The result is the LST in degrees 

Celsius (°C). 

𝜌 =
ℎ∗𝑐

𝑠
      (6.2) 

where h represents Planck’s constant (6.63e-34 Js), c is the speed of light (2.99e-8 ms-

1), and s is the Boltzmann constant (1.38e-23 m2kgs-2K-1). 

𝜀 = {

𝜀𝑠, 𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑠

𝜀𝑠 + (𝜀𝑣 − 𝜀𝑠)𝑃𝑉 , 𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣

𝜀𝑣 , 𝑁𝐷𝑉𝐼 > 𝑁𝐷𝑉𝐼𝑣

  (6.3) 

 

where εs is the emissivity for the soil (0.973) and εv is the emissivity for the vegetation 

(0.985) [157]. NDVIv is the NDVI for the vegetation (0.2), and NDVIs is the NDVI for the 

soil (0.5) [59]. Pv represents the proportion of vegetation in the study area according to 

Equation (6.4). 

𝑃𝑉 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣−𝑁𝐷𝑉𝐼𝑠
)

2
    (6.4) 

Moreover, the cloud pixels are removed from each satellite image considering the 

information available in the level 2 pixel quality band (Band QA). All the processes were 

computed on RStudio with the raster v2.9-5 package. 

 

6.3.2.2 Field Measurement Data 

Most of the models that calculate air pollutants require airfield measurements. In this 

work, field data were obtained from the Quito AQMN, known as “Red Metropolitana de 

Monitoreo Atmosférico de Quito” (REMMAQ) [38]. This AQMN has been in operation 

since 2002, providing hourly field measurements of air pollutants and meteorological 

variables. REMMAQ has nine georeferenced stations (Figure 1), which collect the 

following air pollution variables of interest to this study: carbon oxide (CO), PM less than 

2.5 and 10 microns (PM2.5 and PM10, respectively), SO2, O3, and NO2. The following 

meteorological variables were considered in this study: pressure, wind direction, relative 

humidity, precipitation, wind speed, air temperature, and solar irradiance. The 

Environmental Secretary of Quito manages the REMMAQ, and the data are available to 

download for free on her website 

(http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos). 

Spatial air pollutant rasters for each trimester of every year were computed using the 

http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos
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inverse distance weight (IDW) algorithm [5]. All the information was processed with the 

R packages rgal v1.4-4 and gstat v2.0-2.  

 

6.3.2.3. Hospital Discharges of Patients with Chronic Respiratory Diseases 

The National Institute of Statistics and Census (INEC) is the official government 

institution in Ecuador in charge of collecting and disseminating information about 

population and other socioeconomic statistics and variables. This information is public 

and available on a district scale (http://www.ecuadorencifras.gob.ec/camas-y-egresos-

hospitalarios/). One of the variables included in this information is the number of hospital 

discharges (the number of released patients who stayed at least one night in the hospital, 

including people who died in hospital care) organized by their home district. This variable 

is classified according to the International Classification of Diseases 10 th version (ICD-

10) from the WHO [68]. Considering the aim of this study, only hospital discharges of 

patients with CRDs were considered—those with ICD-10 classification codes of J40–

J47. This filter includes the most significant CRDs, such as asthma and bronchitis. A 

summary of hospital discharges in each AQMN area of influence was computed for each 

trimester of each year. The main reason to group the dataset by trimester was the 

availability of matched data. Furthermore, population data are necessary to compute 

HCRD (the number of patients per 10,000 people who are admitted to the hospital with 

a CRD) to compare the different urban districts. This variable is a continuous dependent 

variable.  

 

6.3.3. Input Dataset 

In order to compile a unique dataset encompassing the remote sensing data, 

environmental variables (air pollution and meteorological field data), and HCRD, all the 

variables were correlated by trimester, year, and AQMN area of influence. Clipping the 

Shapefile of the AQMN area of influence and the variables allowed us to obtain the 

median trimestral variable for each AQMN area of influence. Table 6.1 shows the 

variables used in this study and their respective statistics.  

 

Table 6.1. Descriptive statistics of the input variables 

No. Variable Min. Max. Mean Median Units/scale 

0 HCRD 0.334 23.433 4.463 3.689 

Hospital discharges per 

10,000 people with chronic 

respiratory disease  

1 
Coastal aerosol band 

(B1) 
0.029 0.077 0.056 0.060 reflectance (0–1) 

http://www.ecuadorencifras.gob.ec/camas-y-egresos-hospitalarios/
http://www.ecuadorencifras.gob.ec/camas-y-egresos-hospitalarios/
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2 Blue band (B2) 0.034 0.095 0.068 0.072 reflectance (0–1) 

3 Green band (B3) 0.062 0.136 0.098 0.101 reflectance (0–1) 

4 Red band (B4) 0.050 0.149 0.105 0.111 reflectance (0–1) 

5 
Near–infrared (NIR) 

(B5) 
0.182 0.291 0.231 0.228 reflectance (0–1) 

6 
Short-wave infrared 1 

(SWIR 1) (B6) 
0.170 0.268 0.208 0.206 reflectance (0–1) 

7 
Short-wave infrared 2 

(SWIR 2) (B7) 
0.092 0.218 0.159 0.163 reflectance (0–1) 

8 

Normalized Difference 

Vegetation Index 

(NDVI) 

0.171 0.721 0.359 0.312 0-1 

9 

Soil-Adjusted 

Vegetation Index 

(SAVI) 

0.101 0.408 0.209 0.184 0-1 

10 
Enhanced vegetation 

index (EVI) 
0.106 0.428 0.217 0.190 0-1 

11 
Land Surface 

temperature (LST) 
15.031 39.758 26.232 26.299 degrees Celsius 

12 Pressure (P) 712.945 761.178 740.476 741.018 mb 

13 Wind direction (WD) 58.155 273.426 142.357 146.345 degrees 

14 Relative humidity (RH) 49.140 84.582 69.190 72.632 percentage (%) 

15 Precipitation (PR) 0.000 4.443 0.406 0.000 mm 

16 Wind speed (WS) 0.879 2.482 1.686 1.743 m/s 

17 Air temperature (AT) 11.749 17.421 14.957 15.041 degrees Celsius 

18 Solar irradiance (SR) 0.092 278.691 166.728 215.724 W/m2 

19 CO 0.435 0.852 0.622 0.598 µg/m3 

20 NO2 11.458 35.256 23.055 22.169 µg/m3 

21 O3 7.518 44.055 22.786 22.130 µg/m3 

22 PM2.5 10.441 23.504 16.490 16.316 µg/m3 

23 PM10 0.030 87.590 35.770 38.364 µg/m3 

24 SO2 0.839 7.829 3.459 3.273 µg/m3 

 

6.3.3. Model Establishment 

An LUR model is an empirical model that considers some geographical predictors as 

independent variables and a dependent variable. The first step in establishing such a 

model is the selection of the input predictors. The simplest model with the least number 

of independent variables should be found in order to avoid overfitting. Here, the Bayesian 
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information criterion (BIC) was considered to conduct backward elimination, by which the 

lowest BIC values were used to choose the predictors [216,217]. Then, the models were 

computed, considering different MLTs in order to compare linear (MLR) and non-linear 

regression models (MLP, SVR, and RFR). In each model, 80% of the dataset was used 

as training data, and 20% of the dataset was used as test data.  

MLR is probably the simplest and most common analytic technique used in building a 

predictive model. It computes a linear relationship between the independent (predictors) 

and the dependent variables [218]. However, MLR does not analyze the correlation 

between predictors—a major limiting factor when considering remote sensing variables 

[147], which are highly correlated. In contrast, MLP with a back-propagation learning 

process is classified as an artificial neural network (ANN) model, and it can be used in 

the classification of remote sensing data. MLP uses a series of neuronal activities where 

the ideal is to have interconnection weights in a multilayer perceptron [77]. In this study, 

a non-linear MLP with an architecture defined by a hidden layer and six hidden nodes 

was computed according to [161] and evaluated. The R package neuralnet v1.44.2 was 

used to compute the MLR. SVR is a non-linear transformation of an MLT, which works 

as a support vector machine (SVM) classifier. SVM and SVR work in a higher 

dimensional space. The main difference is that SRV uses a continuous number as a 

dependent variable [82]. The R package used to compute SVR was e1071 v1.7-2. 

Finally, the last MLT employed was RFR. It is based on ensemble learning, which uses 

the training dataset to generate multiple decision trees, making it less sensitive to the 

overfitting problem. The decision trees are simply combined according to their weights. 

Moreover, RFS is considered to be one of the most effective non-parametric ensemble 

learning methods in image analysis [85]. The R package randomForest v4.6-14 was 

used to implement RFS in this study. 

In the model evaluation, the coefficient of determination (R2) between the observed 

values and the predicted values and the root-mean-square error (RMSE) were 

compared. Models (considering the test dataset) with a higher R2 and lower RMSE were 

selected to develop a spatial map of HCRD for each trimester for each year. The final 

model developed a raster file with 30 meters of spatial resolution. Figure 6.2 shows the 

workflow of the methodology used in this study. 
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Figure 6.2. Workflow of the methodology applied in this work 

 

 

6.4 Results 

6.4.1. Selected Predictor Variables 

The final dataset considered 162 observations, which included all the variables (the 

remote sensing, environmental, and HCRD variables). The dataset consisted of 25 

variables (one dependent variable and 24 predictors), including registers by trimester, 

year, and the AQMN area of influence. The lowest BIC values were chosen in order to 

consider only the most significant variables, avoiding multi-collinearity. A total of 10 

predictors (B1, B2, B7, EVI, LST, RH, SR, AT, CO, and SO2) were considered as inputs 

in all the MLTs (p-value < 0.050). Equation (6.5) shows the MLR established with the 10 

predictors considered: 

𝐻𝐶𝑅𝐷 = 𝐼 + 𝑎𝐵1 + 𝑏𝐵2 + 𝑐𝐵7 + 𝑑𝐸𝑉𝐼 + 𝑒𝐿𝑆𝑇 + 𝑓𝑅𝐻 + 𝑔𝑆𝑅 + ℎ𝐴𝑇 + 𝑖𝐶𝑂 + 𝑗𝑆𝑂2 

 (6.5) 

where HCRD is the hospital discharges per 10,000 people with chronic respiratory 

disease; I is the intercept; a, b, c, d, and e are the coefficients in each predictor; and the 

other variables are described in Table 6.1. 
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6.4.2. Comparison and Evaluation of the Models 

The results presented in Figure 6.3 allow us to analyze the relationship between the 

observed data and the predicted data considering the value of R2.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

 (h) 

Figure 6.3. Scatter plots of the different methods employed the model. The blue line represents the training data 
(a),(c),(e),(g), and the red line represents the test data (b),(d),(f),(h). 

  

Figure 6.4 shows the comparison between R2 and RMSE for all the models established. 

The non-linear models RFR and SVR showed the best adjustment both in the training 

data and in the test data. 

According to the results presented in Table 6.2, the model with the lowest RMSE 

(1.6923) and the highest R2 (0.9144), considering the training data, was the RFR. On the 

other hand, the model with the lowest RMSE (2.0439) and the highest R2 (0.5066), 

considering the test data, was the SVR. The SVR model, considering the test data, was 

used to map HCRD. Figure 6.5 presents the SVR model by trimester (and year). 

 

 

       (a) 

 

     (b) 
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         (c) 

 

       (d) 

Figure 6.4. Comparison between models considering the RMSE and R2: (a) RMSE training data; (b) R2 training data; (c) 
RMSE test data; (d) R2 test data. 

 

 
Table 6.2. RMSE and R2 for all the models tested. 

Model 
RMSE  

Training Data 
R2  

Training Data 
RMSE 

Test Data 
R2 

Test Data 

Multiple Linear 
Regression (MLR) 

3.0615 0.3358 2.3153 0.3709 

Multilayer Perceptron 
(MLP) 

2.8154 0.4395 2.7904 0.3635 

Support Vector 
Regression (SVR) 

2.5115 0.6254 2.0434 0.5066 

Random Forest 
Regression (RFR) 

1.6923 0.9144 2.7499 0.1300 

     

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 6.5. HCRD maps considering the third trimester of the year (July–September) using the SVR model in (a) 2013, 
(b) 2014, (c) 2015, (d) 2016, and (e) 2017. The white areas show cloud presence.  
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6.5 Discussion 

In most cases, LUR models are used to estimate air pollutants [34,36,136,219], and 

geographical variables, such as roads, traffic, land use, etc., are used to establish MLR 

models. However, these models include geographic variables that are not always 

available or updated in a timely manner. Some studies have also compared the air 

pollution calculated by LUR models with health data [16,26]. However, this comparison 

is only performed considering categorical variables [220] and not with numerical 

variables in order to quantify the value.  

In this study, spatial models were developed to compute HCRD, considering remote 

sensing and environmental variables (air pollution and meteorological ground data) as 

predictors. The predictors were chosen considering their relationships with variables that 

may potentially affect respiratory health, such as vegetation, land use, climate, and air 

pollution. Air pollution is defined as the presence of one or more harmful substances in 

the air [221]. Some studies have shown that air pollution is a serious issue, posing a 

grave threat to respiratory health [14]. On the other hand, climate variables, specifically 

meteorological variables, such as temperature or humidity, have a direct influence on the 

potential to acquire CRDs [222,223]. Moreover, using RS data, it is possible to derive 

some of these environmental variables. One such example is the high correlation 

between the Landsat 8 blue and red bands with AOT [50]. As noted above, AOT 

influences the retrieval of air pollutants [18,20,224]. In this context, in this work, 24 

predictors were considered as inputs in the original model with a matched dataset of 162 

observations. Considering BIC, 10 significant predictor variables were selected for use 

in the final spatial HCRD models. The RS variable predictors included the coastal 

aerosol, blue, and SWIR-2 bands (bands 1, 2, and 7, respectively). The blue band is 

more correlated with PM [50] and the SWIR-2 band with O3 concentrations [181,206]. 

Additionally, EVI and LST were also selected. The environmental variable predictors 

were CO and SO2, and the meteorological variables were HR, SR, and AT. Several 

studies have already reported a correlation between these variables and the presence 

of CRDs [124]. 

Four MLTs were selected to compute the model: (i) linear MLR; (ii) non-linear MLP; (iii) 

SVR and; (iv) RFR. During the computation, 80% of the dataset was used as training 

data, and 20% of the dataset was used as test data. The main advantage of non-linear 

MLTs is the avoidance of concerns regarding multicollinearity. Several studies have 

found that the use of MLP and SVR with RS data improves the performance of regression 

models using ground true data [225]. RFRs are often implemented in prediction 

analyses, because they provide better accuracy [226]. The results show that the use of 
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RFR and SVR created the most successful models. SVR had the highest R2 (0.5066) 

and the lowest RMSE (2.0434) with the test data. Thus, the SVR model helped to develop 

a spatial map of HCRD in different trimesters between 2013 and 2017 (Figure 6.5). The 

third trimester was selected because there were more available images during that 

trimester during the five years of the study period. Additionally, there was more variation 

in the rates of hospital discharges in September, according to the input data. It is also 

worth noting that there was a significant increase in reported air pollutant concentrations 

in some areas between 2013 and 2017 [170]. Indeed, in the north and east regions of 

the city, there were higher values of HCRD, which was likely due to the fact that these 

areas had higher rates of air pollutants, traffic, and population. Thus, these results allow 

us to identify possible trends in the growth patterns of CRDs in the next few years. 

The main limitations of this study were as follows: (i) There were a limited number of 

satellite images available without high cloud density [32]. In future research, a possible 

improvement could be the use of more sensors to combine data or to develop and apply 

new techniques to remove cloud interference [152]; (ii) The REEMAQ and INEC data 

were incomplete for some months during all study years. In some cases, the stations 

were unavailable or did not have complete quality data. On the other hand, some hospital 

discharge data were lacking information regarding location, or such information suffered 

from poor-quality codification or registration. We discarded these data in order to obtain 

a more accurate dataset; however, in future work, we will extend this study for a longer 

period of time in order to improve our models; (iii) The percentage of training and test 

data may not have been ideal. Our future research could consider different cutoff values 

in the dataset; (iv) Despite the fact that the spatial HCRD maps give us a general idea of 

the presence of CRDs and possible future trends, these maps must be improved with 

more input data.  

In this context, the models presented in this work, despite having some limitations, were 

shown to be valid tools in the prediction of HCRD, which will provide local health 

authorities with valuable information to improve policy- and decision-making.  

 

6.6 Conclusions 

This study proposed an innovative, alternative use of LUR models to establish a spatial 

modeling approach to calculating the number of hospital discharges of patients with 

CRDs in Quito, Ecuador. The proposed model considered geographical predictors, 

specifically RS data (Landsat 8) and environmental variables (air pollution and 

meteorological information) from 2013 to 2017. The most significant predictors were the 

red band, the SWIR 1 band, CO, PM2.5, and SO2. Different machine learning techniques 
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were tested. RFR performed best considering the training dataset, and SVR performed 

best considering the test dataset. These models allowed us to generate spatial maps 

identifying areas with a high prevalence of chronic respiratory diseases, representing an 

effective approach to using RS data in public health research. This work also provides 

more information about the spatial distribution of respiratory diseases, which can help in 

the identification and eradication of their possible causes.  
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7.  Overall conclusion and perspectives 

The presented PhD project provides an alternative to the use of RS data/techniques in 

different environmental applications in a region with different environmental and climate 

conditions. Thus, RS data/techniques help to improve established approaches and can 

be used to propose new methodologies to retrieve environmental variables and 

investigate the relationship with health data.  

The main objective of this project was to evaluate the applicability of RS data in the study 

of CRDs, computing the most effective spatial models to estimate and to locate hospital 

discharge of CRDs between 2013 and 2017 in Quito, Ecuador. The method proposed in 

this work aimed to generate an empirical spatial LUR model to estimate hospital 

discharge of CRDs considering dynamic geographic variables. The first step was to 

evaluate the RS data available in the study area, where most of the images had a high 

cloud density [32]. Considering this limitation, a new methodology was developed and 

applied to remove the clouds in order to have more RS data available [152]. After, several 

spectral indexes were computed.  

The second step was to investigate the most adequate RS data to the study area and to 

this specific problem. NASA EOS satellites were evaluated considering their free data 

access and availability in the time window of the health data available (2013 to 2017). 

Specifically, Terra/Aqua MODIS, Landsat-7 ETM+, Landsat-8 OLI were evaluated in 

order to find the most adequate RS data to predict PM10, and Landsat-8 was selected 

[6]. Additionally, were concluded that blue and NIR bands are very important as 

predictors. Several MLTs were also tested (STW, PLS and MLP). 

Most of the studies of air pollutants use AOT derived from MODIS products (MOD04-

MYD04) [165] as the input in LUR models. This product has a low spatial resolution (3 x 

3 km) [166] and in Quito, this resolution is not applicable because the maximum city 

width is 10 km. Knowing this limitation, new alternatives were investigated using Landsat-

8. Some studies have already combined Landsat-8 data with AOT ground stations to 

model the AOT [142]. However, in our study area this information is not available 

between 2013 and 2017. Therefore, another alternative is established, considering the 

visible bands; specifically the blue and red bands; to retrieve AOT [50].   

The third step in this research project was to develop different LUR algorithms to retrieve 

O3 concentration from RS data, selecting the predictors in order to model air pollutants, 

also considering Landsat-8 data. A stepwise regression was chosen to select the 

predictors, based on the comparison with different MLT. The result showed the presence 

of the coastal aerosol band (B1) and blue band (B2) in the final models, contrasting that 
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the blue and red bands are related to the AOT presence [10,50]. The SWIR-2 band (B7) 

is also related to the O3 concentration in the final model [181,206]. Additionally, other 

significative predictors are EVI (related to the vegetation) and LST (related to 

temperature and climate).  

In the fourth and final step, based on the previous knowledge, the association between 

the different CRDs and the environmental parameters computed from RS data were 

investigated. Spatial CRDs models were developed from different MLT (MLR, MLP, SVR 

and RFR). The result allowed to map the CRDs presence with RS, air pollution and 

meteorological variables as predictors. The predictors considered have a known 

relationship with variables which affect the respiratory health as the vegetation, land use, 

climate and air pollution [14]. The SVR and RFR were the most effective MLT. It is known 

that in some classification and regression problems related to RS both techniques are 

the most efficient [81]. Finally, a relationship between RS data and CRDs were 

established. 

There are some limitations associated with this project, mainly the quantity of satellite 

images available due to the high cloud density; the quality of air pollutant and 

meteorological ground data; and the incorrect hospital discharge data.  

Considering the limitations of the project, future work still being done. One of the future 

tasks is to collect more RS data. Another future work will be the improvement of the cloud 

removal methodologies in order to recover more RS data and then combined different 

RS data from different satellites. Moreover, in order to have more data available, more 

years (2018 – 2019) will be used in the establishment of the new models. Another 

objective will be to use more RS predictors and more multispectral indexes. Finally, the 

advance of the MLT is real. In this sense, new evaluations to compute more efficient 

models will be established. 

One of the most grateful achievements of this study was the real and established 

relationship between RS data and the CRDs. Thus, the spatial hospital discharge of CRD 

maps give a possible answer of the presence of a CRDs. These spatial models can help 

to local government decision makers to manage the public health and to organize new 

policies, specifically in places where the highest presence of a CRDs is evident. 

The published papers (original files) are presented in Annex I and the conference 

proceedings (original files) are presented in Annex II.   
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A B S T R A C T

The Andean region has a high cloud density throughout the year. The use of optical remote sensing data in the
computation of environmental indices of this region has been hampered by the presence of clouds. To maximize
accuracy in the computation of several environmental indices including the normalized difference vegetation
index (NDVI), we compared the performance of two algorithms in removing clouds in Landsat-8 Operational
Land Imager (OLI) data of a high-elevation area. The study area was Quito, Ecuador, which is a city located close
to the equator and in a high-elevation area crossed by the Andes Mountains. The first algorithm was the au-
tomatic cloud removal method (ACRM), which employs a linear regression between the different spectral bands
and the cirrus band. The second algorithm was independent component analysis (ICA), which considers the noise
(clouds) as part of independent components applied over the study area. These methods were evaluated based on
several images from different years with different cloud conditions. The results indicate that neither algorithm is
effective over this region for the removal of clouds or for NDVI computation. However, after improving ACRM,
the NDVI computed using ACRM showed a better correlation than ICA with the MODIS NDVI product.

1. Introduction

Optical remote sensing (ORS) data have the major advantage of
providing synoptic and frequent overviews of the Earth's surface, but
the distribution of ground-based measurements is scarce in some parts
of the world. ORS data include visible (VIS), short-infrared (SWIR), and
thermal infrared (TIR) regions of the electromagnetic spectrum
(Lillesand et al., 2015).

Regions with a high cloud density during most of the year, such as
the Brazilian Amazon (Rees, 2012; Ju and Roy, 2008; Asner, 2001) and
the Andean region (Fernández et al., 2015), are particularly challenging
for ORS, especially in terms of the computation of the environmental
indices, such as normalized difference vegetation index (NDVI) (Weier
and Herring, 2000; Rajitha et al., 2015). Several studies on cloud
density have been conducted based on Landsat data (Rees, 2012; Asner,
2001; Ju and Roy, 2008). Richter et al. (2011) takes the spectral/spatial
characteristics of Sentinel-2 as a template for instruments with similar

properties as Sentinel-2 to investigate the relevant cirrus effects. Shen
et al. (2014) proposed a method based on the classic homomorphic
filter executed in the frequency domain to thin cloud removal for visible
remote sensing images. Gao and Li (2017) propose an empirical tech-
nique for the removal of thin cirrus scattering effects in OLI visible near
infrared and shortwave IR spectral regions. In the work of Lv et al.
(2018), the top-of-atmosphere reflectance of thin clouds is modeled
using the empirical relationships of the deep blue and blue bands of
Landsat-8 OLI.

The Landsat program has provided calibrated and high-resolution
spatial data of the Earth's surface for more than 45 years. Landsat-8,
launched in February 2013, is the latest satellite in a continuous series
of land remote sensing satellites that began in 1972. Landsat-8 has
provided data to support several fields and research topics, such as
agriculture, forestry, geology, land use, air contamination (USGS,
2013), and the removal of clouds in remote sensing images (Hashim
et al., 2014; Pour and Hashim, 2017; Lv et al., 2016; Cheng et al., 2014;
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Gao and Li, 2012; Shen et al., 2015a, 2015b; Huadong et al., 2009; Zhu
and Woodcock, 2012; Xu et al., 2014). Landsat-8 includes two sensors:
the Operational Land Imager (OLI), which is divided into nine bands
with a spatial resolution of 30m, and the Thermal Infrared Sensor
(TIRS) instrument, which is divided into two bands with a native spatial
resolution of 100m. The OLI bands include a cirrus band (B9). Cirrus
clouds are high-altitude clouds in the atmosphere and are mainly
composed of miniscule ice crystals (Stephens, 2005). They are strong
reflectors of radiation at a wavelength of 1.38 µm (Department of the
Interior U.S. Geological Survey, 2016). Cirrus clouds have a significant
number of thin, non-spherical ice crystals that can absorb sunlight and
attenuate the pixel values of surface reflectance in remote sensing (Gao
et al., 1998). Additionally, cirrus clouds limit the accuracy in the
computation of environmental indices. Thus, it is crucial to remove
them (Rajitha et al., 2015).

The purpose of this work is to develop an approach to remove
clouds and noise in optical remote sensing data without losing surface
pixel accuracy in order to compute environmental indices, such as
NDVI. Several methods have been tested to remove clouds considering
Landsat-8 data in different places around the world with satisfactory
results. Some of these methods used a reference Landsat-8 image to
patch the cloudy area (Cheng et al., 2014; Lin et al., 2014; Lv et al.,
2016), or combine Landsat-8 with other sensors (Wu et al., 2016), or
work with the Landsat-8 cirrus band (B9) (Shen et al., 2015a, 2015b; Xu
et al., 2014). All these studies were conducted in low elevation regions
and in no tropical areas. Both parameters can have an effect over cirrus
clouds (He et al., 2013), considering that these clouds can form at any
altitude between 5.0 km and 14 km above sea level. In the tropical re-
gions, cirrus clouds cover around 70% of the region's surface area.

In this work, to remove cirrus clouds over an area in the Andean
region (Quito, Ecuador) considering the Landsat-8 cirrus band (B9), two
methods were evaluated: the automatic cloud removal method (ACRM)
and independent component analysis (ICA). ACRM was first tested on
images of Sydney, Australia (Xu et al., 2014). The algorithm applies a

linear regression between each multispectral band and the cirrus band
(B9), evaluates the coefficient of determination (R2) and slope in some
areas, and generalizes them for the entire image (Xu et al., 2014). In
order to remove clouds, the algorithm uses the area with the highest R2

to extrapolate values for the entire image. In ICA, independent com-
ponents (ICs) are separated, and one of them is the component that
storing the thin clouds (Hyvärinen and Oja, 2000). This algorithm was
tested on Landsat-8 images of a low elevation region (North Carolina,
USA), and the results were satisfactory (Shen et al., 2015a, 2015b). The
performance of the two methods in removing clouds and their effi-
ciency in future computation of environmental indices such as NDVI are
evaluated based on the same image.

2. Materials and methods

2.1. Study area and dataset

2.1.1. Study Area
The study area is Quito, the capital of Ecuador (Fig. 1). The equator

line crosses the city in the north part. The Quito latitude ranges be-
tween 0°30′S to 0°10′N and its longitude ranges between 78°10′W to
78°40′W. Quito has a high elevation of approximately 2800m. The
cloud density over the city is considerable, all over the year. Quito has
only one dry season and one wet season, considering that it is a tropical
zone and is influenced by the Andes Mountains. In 2015, the mean
minimum and maximum temperatures were approximately 9.0 °C and
25.4 °C, respectively, with a high precipitation of approximately
1126mm (Instituto Nacional de Meteorología e Hidrología, 2016). The
geology of northeastern Ecuador and present-day physical processes
related to geology are greatly influenced by the tectonic mechanisms
responsible for the development of the Andes Mountains. Both geology
and active physical processes (landsliding, volcanism, erosion, weath-
ering) are complex and varied (Baldock, 1982).

Fig. 1. Quito metropolitan area.
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2.1.2. Dataset
In this study, ten Landsat-8 L1T images were processed to evaluate

and improve the two methods to remove clouds. Seven images of Quito,
Ecuador (Path 10; Row 60) from different years (Fig. 2); one image of
Pedernales, Ecuador (Path 11; Row 60), which is a coastal region with

characteristics similar to those of Sydney; and the image of Sydney,
Australia (Path 89; Row 83) used in (Xu et al., 2014) were considered.

Images at the L1T processing level were considered because they
take advantage of geometric and radiometric corrections (Department
of the Interior U.S. Geological Survey, 2016). Moreover, the MODIS

Fig. 2. Landsat-8 Images from Quito Metropolitan Area (Path: 10; Row: 60): (a) Image from 2013/10/11; (b) Image from 2013/07/07; (c) Image from 2014/07/26;
(d) Image from 2015/07/13; (e) Image from 2015/08/30; (f) Image from 2016/02/06; (g) Image from 2016/10/19; (h) Image from 2013/06/21 (Reference image to
ICA evaluation).
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Fig. 2. (continued)

Table 1
Characteristics of datasets used in this study.

Sensor Product Spatial Resolution Temporal resolution Bands/Products

Landsat-8 L1T 30m 16 days Coastal aerosol, blue, green, red, near infrared, SWIR 1 and SWIR 2, Cirrus, Thermal Infrared 1, Thermal
Infrared 2

MODIS MOD13Q1 250m 16 days NDVI/EVI Values
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MOD13Q1 product (tiles H10V08 and H10V09) for the study area was
also used in order to compare the results obtained in the computation of
NDVI (further details in Section 3.4) (Table 1).

2.2. Methodology

Two methods to remove clouds, ACRM and ICA, were evaluated in
this work for Landsat-8 images and the corresponding cirrus band (B9).
Most of the processing steps were implemented in R programming
language (R Core Team, 2016) and its associated packages: raster ver-
sion 2.5–8 (Hijmans, 2016), rgdal version 1.1 (Bivand et al., 2016), and
gdalutilities version 2.0.1.7 (Greenberg and Mattiuzzi, 2015). Further-
more, ENVI® and ERDAS® software were used to perform some image
processing tasks.

2.2.1. Automatic Cloud Removal Method (ACRM)
ACRM attempts to obtain clean pixel data from each digital number

DN recorded at each OLI multispectral band =i 1, 2, 3, 4, 5, 6, 7. DN
contains clean pixel data plus contaminated data at the location u v( , ).
Contaminated data are affected by clouds (Xu et al., 2014). The model
can be expressed as follows:

= + =DN u v x u v x u v i( , ) ( , ) ( , ), 1, 2, 3, 4, 5, 6, 7,i
f

i
c (1)

where x u v( , )i
f is the clean cloud-free pixel from each of bands 1–7

and x u v( , )i
c is the cirrus cloud pixel from each of bands 1–7 obtained

with band 9. Eq. (1) results from the strong linear relationship between
the bands found in (Ji, 2008), where x (u, v)i

c is linearly related to the

Fig. 3. Input regions considered to test the ACRM algorithm.

Fig. 4. Flowchart of the methodology adopted to perform a comparison between ACRM and ICA algorithms.
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DN recorded in the cirrus band c u v( , ) as follows:

=x u v c u v min c u v( , ) [ ( , ) { ( , )}].i
c

i (2)

The aim is to obtain the slope i for each band, considering a linear
relationship between each multispectral band and band 9 in a homo-
genous area. Two approaches can be considered to determine this
homogenous area. The first approach is a photo-interpretation to find
this area by taking, for example, water bodies that have a near-zero
pixel value over the near-infrared (NIR) band. However, this approach
cannot be used for images that do not contain water bodies. The second
approach is to use random areas of a constant size covering the entire

region or zones with a specific land use. In this study, we considered the
second approach of finding random areas with a size of 10×10 km2,
covering the entire study area (Fig. 3). Smaller regions (250m * 250m)
were also tested, but the results were identical.

By combining Eq. (1) with Eq. (2), x (u, v)i
f can be estimated as

follows:

=x u v DN u v c u v min c u v( , ) ( , ) [ ( , ) { ( , )}]i
f

i (3)

2.2.2. Independent Component Analysis (ICA)
ICA is a method for finding underlying factors or components from

multivariate (multidimensional) statistical data (Hyvärinen et al.,
2001). The relationship is represented as follows:

=X AS (4)

where S is a random vector containing the independent source signal or
independent components (IC) with elements …s s, , ,1 2 and sn. A is the
“mixing” square matrix having elements aij. X is the observed signal
(mixed) having elements …x x, , ,1 2 and xn.

In Eq. (4), X represents surface reflectance data from each of bands
1–7 and pixel cirrus data from band 9. The surface reflectance data
were obtained by applying atmospheric correction with the fast line-of-
sight atmospheric analysis of hypercubes (FLAASH) algorithm (ENVI,
2009; Allred et al., 1994). FLAASH works as a physical method to ob-
tain surface reflectance, and it allows us to describe the shape of the
signatures (Mandanici et al., 2015) in ENVI software. The column
vector s represents ICs and matrix A represents the linear transforma-
tion. Both s and A are unknown.

In some studies, ICA is used to separate some parts of satellite
images by considering their bands as ICs. The algorithm achieves cloud
removal by considering that each IC is a linear mixture of bands 1–7
and 9. Band 9 is used to delineate the cloud component in the IC
(Huadong et al., 2009; Shen et al., 2015a).

Table 2
Linear regression results between bands 1–7 and 9 in the Quito study area for
different dates.

Band R2 Slope
(α)

R2 Slope
(α)

R2 Slope
(α)

R2 Slope
(α)

Quito (11/10/
2013)

Quito (07/26/
2014)

Quito (07/13/
2015)

Quito (02/06/
2016)

B2 0.96 0.05 0.93 0.02 0.95 0.03 0.95 0.03
B3 0.96 0.05 0.93 0.02 0.95 0.03 0.95 0.03
B4 0.96 0.05 0.93 0.02 0.95 0.02 0.95 0.02
B5 0.88 0.02 0.85 0.01 0.91 0.02 0.85 0.01
B6 0.85 0.02 0.89 0.17 0.88 0.02 0.89 0.03
B7 0.86 0.02 0.88 0.02 0.87 0.02 0.88 0.02

Quito (07/07/
2013)

Quito (08/30/
2015)

Quito (10/19/
2016)

Quito (21/06/
2013)

B2 0.96 0.05 0.93 0.02 0.97 0.03 0.95 0.03
B3 0.96 0.06 0.93 0.02 0.97 0.03 0.95 0.03
B4 0.95 0.05 0.93 0.02 0.97 0.02 0.95 0.02
B5 0.85 0.03 0.85 0.01 0.95 0.02 0.85 0.01
B6 0.90 0.06 0.89 0.17 0.92 0.02 0.89 0.03
B7 0.89 0.06 0.88 0.02 0.89 0.03 0.88 0.02

Fig. 5. Landsat-8 Images from Quito Metropolitan Area (Path: 10 Row: 60): Image from 2014/07/26 (a) Original Image; (b) Image applied ACRM.
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ICA works with a non-Gaussian distribution, where ICs (surface
reflectance and pixel cloud data) are not normally distributed, because
various surface types and cloud types produce different reflectance
values. The robust FastICA algorithm can be applied to estimate an
unmixing matrix W, which is the inverse of mixing matrix A
(Hyvärinen and Oja, 2000). The source vector s can be obtained by
inverting Eq. (4) as follows:

=s A X.1 (5)

Band 9 (cirrus band, which is a part of X) is considered the sum of
eight products (bands 1–7 and 9) for each IC: the product of each source
vector with its coefficients in A. Eq. (6), derived from Eq. (4), allows us
to obtain the cloud pixel value x17 as follows:

Table 3
Linear regression results between bands 1–7 and 9 in the other evaluated zones.

Sydney (2013/10/04) Pedernales (2016/05/13)

Band R2 Slope (α) R2 Slope (α)

B2 0.97 1.70 0.67 0.69
B3 0.99 1.63 0.68 0.68
B4 0.98 1.68 0.67 0.62
B5 0.98 1.74 0.67 0.52
B6 0.99 1.11 0.63 0.44
B7 0.98 1.02 0.53 0.58

Fig. 6. Landsat 8 OLI images (a) Original image from Pedernales; (b) Image after applied ACRM in Pedernales; (c) Original image from Sidney; (d) Image after
applied ACRM in Sidney.
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= sx a ,c1 7 1 7 (6)

Where a1 7 is the coefficient of sc in matrix A corresponding to the
reflectance data of bands 1–7. The largest factor in the row corre-
sponding to band 9 of A determines the sc to be used to obtain the cloud
reflectance data xc. The final reflectance-free data xf is obtained by
subtracting the original reflectance data from each band xo by the cloud

reflectance data from each band xc (Eq. (7)).
=x x x .f o c (7)

2.2.3. Normalized Difference Vegetation Index (NDVI)
NDVI is an index that allows to obtain information about the

greenest vegetation considering red and NIR bands of a sensor (Tucker,

Fig. 7. (a–h) are first, second, …, and eighth independent components, respectively.,.
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1979). In the case of Landsat-8 OLI, NDVI is calculated using bands 4
(red band) and 5 (NIR band). The NDVI in a Landsat-8 OLI image is
computed as follows (Eq. (8)):

= +NDVI B B B B( 5 4)/( 5 4) (8)

NDVI is one of the most commonly used remote sensing vegetation
indices (Roy et al., 2016; Mishra and Mainali, 2017), and it is con-
sidered an environmental index owing to its strong relationship with
the land surface (e.g., surface temperature, vegetation cover, land use)
and meteorological data (e.g., temperature, humidity) (Kuenzer et al.,
2015). Moreover, NDVI is used to validate and compare results between

Fig. 7. (continued)

Table 4
Coefficients (×10–2) of A.

Band S1 S2 S3 S4 S5 S6 S7 S8

B1 4.719 0.678 0.653 9.672 1.731 1.818 1.308 0.207
B2 4.613 0.939 0.494 9.192 1.628 1.661 1.722 0.372
B3 4.537 0.802 1.153 8.826 1.645 1.644 2.201 1.149
B4 4.487 0.696 0.851 8.954 1.493 1.692 3.413 1.006
B5 2.824 0.475 0.524 6.962 1.743 1.148 −1.815 7.568
B6 0.236 0.764 1.266 7.093 1.508 1.632 3.497 3.671
B7 0.256 0.901 1.214 6.417 −0.022 1.794 3.746 1.656
B9 −0.021 −0.023 0.018 −0.152 0.984 4.011 0.617 0.108
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sensors by considering future environmental applications (Zambrano
et al., 2016).

2.2.4. Evaluation and Validation
In order to validate the efficiency of ACRM and ICA cloud removal

methods in the computation of environmental indices, the NDVI was
computed in the original Landsat-8 images after applying both algo-
rithms. Then, the images were compared with a MODIS NDVI product
resampled to a spatial resolution of 30m, assuming a similar period of
Landsat-8 data used. A MOD13Q1 product (NDVI 16-Day L3 Global
250m version 6) was used as reference data, considering that MODIS is
a ready-to-use product (Huete et al., 2002; Solano et al., 2010) and is
evaluated in vegetation phenology. The validation was tested in a small
area where cirrus clouds are present, which allowed us to evaluate the
performance of the algorithms to remove clouds and to estimate en-
vironmental indices. The methodology adopted in this work is pre-
sented in the flowchart shown in Fig. 4.

3. Results

3.1. Cloud removal using ACRM

The ACRM algorithm was applied to ten images considered in this
study. The code was programmed in R Studio with the raster package.
The main objective was to obtain the best correlation (R2) between
bands 1–7 and band 9 in selected areas of the images with cirrus clouds.

The first step was to choose the zones to evaluate the algorithm in a
geographic information system (GIS) covering the entire study area in
Quito. These areas, called zones (Z), are 10 km×10 km regular grids
covering the study area (Fig. 3). Subsequently, the algorithm was ap-
plied, and the best-fit regions with the best R2 coefficients between each
multispectral band (1−7) and band 9 (Table 2) were evaluated.

Table 1 lists the highest R2 coefficients obtained in the application
of the algorithm, considering only values higher than 0.85. Slope values
are lower than 0.18. These results are shown in Fig. 5 (see Section 4.3).

ACRM was also tested considering an image from Pedernales and an
image from Sydney (Table 3). In Pedernales, the R2 coefficients had
values lower than 0.68. Better results were obtained over Sydney with
higher R2 coefficients (higher than 0.97). To corroborate the results of
R2 coefficients (Fig. 6), we confirmed that the image of Pedernales is
practically unchanged by the algorithm, while the algorithm removes
all the clouds in the image of Sydney.

3.2. Cloud removal considering ICA

The ICA algorithm was applied only to the Quito image from 26/07/
2014, which shows clouds over the study area. Different software were
used (R Studio, ENVI, ERDAS) to obtain the different parameters
showed in the Eq. (4). The principal inputs to the algorithm were the
surface reflectance data of multispectral bands (calculated with
FLAASH correction from ENVI) and the DN from band 9. Furthermore,
the IC for the selected image was obtained in ENVI software with the
FastICA algorithm (Hyvärinen and Oja, 2000) (Fig. 7). The matrix A
from Eq. (6) was obtained using the ICA algorithm in ERDAS software
(Table 4), and sc was selected as s6, which had the high absolute value
of 4.011×10−2 in the row of band 9. Then, to obtain the input data for
Eq. (7), the product of the coefficient in the column for each band at s6
with each IC was used. The results are shown in Fig. 8. Again, as in
ACRM, the result was not satisfactory in comparison with the original
image (see Section 4.3).

Moreover, to corroborate that the application of the ICA algorithm
does not provide satisfactory results for Quito, some scatterplots were
computed with respect to a cloud-free reference image (Fig. 9). The
scatterplots show a linear correlation between the reference image

Fig. 8. Landsat-8 Images from Quito Metropolitan Area (Path: 10 Row: 60): Image from 2014/07/26 (a) Original Image; (b) Image after applied ICA.
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(Fig. 2h) and the images with and without ICA correction (Table 5),
which indicates that the ICA algorithm does not work properly for
Quito.

As indicated in Table 4, if ICA is applied, the algorithm changes the
surface reflectance values; in comparison with a cloud-free image, the
correlation decreases.

3.3. Validation – NDVI computation

As mentioned previously, one of the main objectives of the cloud
removal in high-altitude areas is to obtain a better accuracy in the
computation of environmental indices, such as NDVI. Therefore, in the
process of validation of the proposed algorithms, the NDVI values for a
selected area (Quito airport) with a high density of cirrus clouds were
computed (Fig. 10).

NDVI values were compared to the MODIS MOD13Q1 product and
resampled to a spatial resolution of 30m to enable them to be related to
Landsat data. The MODIS product is of a nearer date (07/28/2014) to
the Landsat-8 image (Fig. 11(a)). The validation compares the reference
NDVI product (MODIS MOD13Q1 resampled) and the NDVI computed
through the Landsat-8 image. NDVI values are computed considering
the original surface reflectance of the Landsat-8 image (Fig. 11(b)) and
the surface reflectance of the images after applying the two algorithms
for removing cirrus clouds: i) ACRM (Fig. 11(c)) and ii) ICA
(Fig. 11(d)).

In order to compare MODIS NDVI and the other NDVI computations,
a linear regression was established to obtain R2 coefficients, and the
results showed that the highest R2 (0.426) is obtained after applying
ACRM. On the other hand, the lowest coefficient is obtained after ap-
plying ICA with an R2 value of 0.262 (Table 6).

Fig. 9. Scatterplots of bands 2–5. (a, c, e, g) Left an image before ICA algorithm implementation vs. reference image. (b, d, f, h) Right image considers ICA algorithm
implementation vs. Reference image. Reference image is from June 21, 2013 to evaluate ICA (Fig. 2h).
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3.4. Improvement of ACRM

According to the preliminary results (Table 6), the ACRM algorithm
yielded the highest R2 to calculate environmental indices; nevertheless,
one improvement of the ACRM method was developed to remove
clouds in Landsat-8 OLI images of high-elevation areas (Xu et al., 2014).
This development attempts to find the best-fit slope in the ACRM al-
gorithm, established in Eq. (3), to remove clouds in order to compute
environmental indices. When ACRM was applied to an image of Quito,
the slope parameter presented low values, which led us to conclude that
the correction to remove clouds does not work properly when it takes
values close to 0 (Table 2).

A previous work used a fixed slope value (Alvarez et al., 2017). The
main improvement in the ACRM algorithm was to find the highest R2

coefficients in the homogeneous zones and the best-fit slope to remove

Fig. 9. (continued)

Table 5
Linear Regression. R2 coefficients before and after ICA computation.

Band R2 before R2 after

B2 0.43 0.20
B3 0.49 0.26
B4 0.53 0.33
B5 0.49 0.47

Fig. 10. Area evaluated in Quito airport to compute NDVI (Landsat-8 image
from 07/26/2014).
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clouds. Several slope values from 0 to 100 (in increments of 0.1) were
tested. Therefore, the improvement was to find the highest R2 with the
fittest slope testing several slopes values. This procedure was im-
plemented in R Studio software.

To compare and validate the best-fit slope, NDVI was computed for
the original image (07/26/2014) after applying the ACRM algorithm
and compared with the MODIS NDVI, resulting in the highest R2

(0.5077) with a slope value of 2.9 (Fig. 12).

Fig. 11. NDVI computed from (a) MODIS NDVI 30m resampled image; (b) original Landsat-8 image; (c) Landsat-8 image after cloud correction using the ACRM
algorithm; (d) Landsat-8 image after cloud correction using the ICA algorithm.

Table 6
Linear Regression between MODIS NDVI and NDVI computed from each
cloud removal method.

NDVI Computation with R2

Original Image with Surface Reflectance Data 0.396
After ACRM algorithm 0.428
After ICA algorithm 0.262
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The slope value of 2.9 allowed to a visualization without clouds
(Fig. 13 and 14). However, this value is not necessarily the same in each
case. The slope value must be investigated for each case, in order to find
the best fit to the corresponding area and image.

The results of comparing the R2 between the different methods are
shown in Fig. 15. The improved ACRM shows the highest R2 value
(0.5077), and visually, it removes clouds to yield a clean image
(Fig. 13(d)). Thus, the improved ACRM works satisfactorily over the
study area.

In order to validate the ACRM, a new image (11/10/2013) with
similar properties was used in the same area. The results show a higher
R2 (0.5283) with a slope value of 2.8 in the ACRM (Fig. 16).

4. Discussion and conclusion

Two algorithms, ACRM and ICA, were employed to remove cirrus
clouds in Landsat-8 images with the cirrus band (B9) (Department of
the Interior U.S. Geological Survey, 2016), in Quito city. The main
advantage of these two methods is that they do not use additional
images to patch data, in contrast to other methods (Cheng et al., 2014;
Lin et al., 2014; Lv et al., 2016; Wu et al., 2016). These methods use the
same image to remove thin cloud without the insertion of pixel values
from other images. In this work, because cirrus clouds could have a
great impact in the computation of environmental indices such as NDVI,
these two methods were tested and compared with the aim of evalu-
ating their applicability to accurately compute NDVI for an area located
in the Andean region.

ACRM generated satisfactory results for images with conditions si-
milar to Sydney (Xu et al., 2014). The same original image of Sydney
was used to reproduce the correct application of ACRM, which yielded
an R2 coefficient higher than 0.95, with slopes higher than 1. These
satisfactory results were also evident from visual inspection, because
clouds were adequately removed (Fig. 6(d)). When the ACRM algorithm
was tested for images of Quito from different dates, the results showed
R2 coefficients higher than 0.90 in most of the cases but with low slope
values (lower than 0.1 in most of the cases for all bands) (Table 3). The
low slope values indicate poor correction. Moreover, it is evident from
visual inspection that this algorithm does not remove the cirrus clouds
over the images (Fig. 5). Another area, Pedernales, was chosen to test
the algorithm because it has similar characteristics to Sydney. The re-
sults for this area are also unsatisfactory for the clouds removal

(Fig. 6b).
The other algorithm tested to remove cirrus clouds was ICA (Shen

et al., 2015a, 2015b), which is a blind source method that attempts to
obtain the cloud component of images (Hyvärinen and Oja, 2000). All
ICs contain free pixel data and cloud noise, and the noise should be
removed, considering all image data to have a non-Gaussian distribu-
tion (Hyvärinen et al., 2001). ICA was tested for images of Quito, and
the results were compared with a cloud-free image (image with surface
reflectance data). The results are unsatisfactory because the correlation
was worse than the case without applying ICA (Table 4). For example,
in band 4, the R2 value obtained in comparison with the cloud-free
image was 0.33; the value without applying ICA was 0.53.

In order to validate the results, NDVI was computed. In the first
approximation, the results were compared with a reference image
product (MODIS MOD13Q1). The results showed the highest R2 when
the ACRM algorithm was applied; these values were higher than those
obtained with ICA or those of the surface reflectance data. Finally, an
improvement to ACRM was proposed. This algorithm had two main
objectives: (i) visually remove clouds and (ii) improve the pixel values
to compute environmental indices. The ACRM algorithm was improved,
so that the homogeneous area has the highest R2 coefficient value and
the slope should be significant to reduce the density of cirrus clouds. In
the case of the study area (Quito), the first condition was achieved with
a high R2 coefficient between Landsat multispectral bands and band 9
in a homogeneous area (Table 1). The challenge was to achieve cloud
correction using ACRM. Therefore, we tested different slope values
(Alvarez et al., 2017) between 0 and 100, and the best-fit slope value of
2.9 was obtained. This approach proved to be a good alternative to the
previous algorithms tested (Fig. 13). In order to validate this new ap-
proach, the NDVI values were computed and compared with the re-
ference NDVI values (MODIS). This new approach yielded higher R2

values (Figs. 15 and 16). The ACRM Improved using the highest R2

value can approximate to other products ready to use like MODIS NDVI,
finding a better relationship than other algorithms or methods, and a
considerable best performance, since can be applied to Landsat 8 data,
which have a spatial resolution of 30m.

The preliminary results show that the algorithms to remove cirrus
clouds (ACRM and ICA) do not work properly in the geographical
conditions considered in this study, leading us to suppose that there are
other factors such as altitude and closeness to the equator that influence
the results. Therefore, future research should focus on testing these

Fig. 12. Comparison between NDVI obtained using ACRM for each slope tested (dots) with the MODIS NDVI. The red lines indicate the highest R2 and the
corresponding slope.
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Fig. 13. Images of Quito airport used to compute NDVI (based on Landsat-8 image from 07/26/2014) (a) original image; (b) image obtained after applying the
ACRM algorithm; (c) image obtained after applying the ICA algorithm; (d) image obtained after applying the improved ACRM algorithm.
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algorithms in different regions around the world to determine the best
method for each area or to identify better alternatives to improve the
cloud removal algorithms. Moreover, in some parts of the world such as
Quito, Landsat images are affected by a high cloud density throughout
the year, limiting the time frame to obtain phenology data at a spatial

resolution of 30m. Nevertheless, the ACRM improved can help in a
more accurate computation of environmental indexes when compared
to other algorithms or methods.

Fig. 14. Comparison of result applying the ACRM improvement (b),(d) in different regions vs. the surface reflectance image (a),(c).
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Abstract: The monitoring of air pollutant concentration within cities is crucial for environment
management and public health policies in order to promote sustainable cities. In this study, we
present an approach to estimate the concentration of particulate matter of less than 10 µm diameter
(PM10) using an empirical land use regression (LUR) model and considering different remote sensing
data as the input. The study area is Quito, the capital of Ecuador, and the data were collected between
2013 and 2017. The model predictors are the surface reflectance bands (visible and infrared) of
Landsat-7 ETM+, Landsat-8 OLI/TIRS, and Aqua-Terra/MODIS sensors and some environmental
indexes (normalized difference vegetation index—NDVI; normalized difference soil index—NDSI,
soil-adjusted vegetation index—SAVI; normalized difference water index—NDWI; and land surface
temperature (LST)). The dependent variable is PM10 ground measurements. Furthermore, this study
also aims to compare three different sources of remote sensing data (Landsat-7 ETM+, Landsat-8 OLI,
and Aqua-Terra/MODIS) to estimate the PM10 concentration, and three different predictive techniques
(stepwise regression, partial least square regression, and artificial neuronal network (ANN)) to build
the model. The models obtained are able to estimate PM10 in regions where air data acquisition is
limited or even does not exist. The best model is the one built with an ANN, where the coefficient
of determination (R2 = 0.68) is the highest and the root-mean-square error (RMSE = 6.22) is the
lowest among all the models. Thus, the selected model allows the generation of PM10 concentration
maps from public remote sensing data, constituting an alternative over other techniques to estimate
pollutants, especially when few air quality ground stations are available.

Keywords: remote sensing; air quality modeling; air quality monitoring; PM10; LUR

1. Introduction

Due to some factors such as air pollutants permanency over the time, the air quality has decreased
in recent years, all over the world. One of the direct indicators of air quality is particulate matter with
an aerodynamic diameter lower than 10 µm, usually called PM10 [1]. It is well-known that PM10
has a negative environmental impact on outdoor air quality and that it that is linked to public health
problems such as cardiovascular and respiratory diseases [2,3]. Many cities around the world are
monitoring PM10 in order to prevent environmental problems. However, this monitoring process
needs to be improved in order to establish reliable environmental policies [4]. Thus, understanding the
spatial distribution of PM10 requires a scientific and accurate basis to locate the possible sources of this
pollutant in cities, in order to avoid environmental problems linked to air quality.
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The air quality monitoring network (AQMN) is a classical procedure to monitor PM10 in cities.
However, some difficulties are found, for instance, high maintenance cost by station [5], a low quantity
of stations in large cities, or non-representative spatial distribution [6]. An alternative could be
high resolution air ground measures with the implement of low-cost sensors [7,8], however, they
are an investment of the local governments, and most of the time is not possible to realize it. An
example of where there is insufficient information provided by AQMN stations and a lack of PM10
measures is in Quito, Ecuador [9–12], where there is not enough information to establish environmental
strategies. Quito, the capital of Ecuador, is a special geographic zone, considering its high elevation
altitude (2800 m) in the middle of the Andean region. Considering the difficulties of a city like Quito,
one valid alternative to complement AQMN monitoring is applying land-use regression models
(LUR) [13]. LUR models use different geographical variables as predictors (remote sensing data,
meteorological data, road density, vehicular traffic, land use, emission inventory, etc.) [13–16]. However,
oftentimes this information cannot be easily accessed. Moreover, these geographical variables are not
frequently updated by government institutions. In the case of remote sensing data, the predictors most
commonly used in LUR models to retrieve PM10 are aerosol optical depth (AOD) and normalized
difference vegetation index (NDVI) from moderate-resolution imaging spectroradiometer (MODIS)
products [17–20]. MODIS products have a low spatial resolution that limits their application in medium
or small cities [21–23], but they are an efficient alternative to retrieve pollutants in regional (large
cities/regions) or national (countries) areas. Consequently, a possible alternative to MODIS products
is Landsat data. Nowadays, the operational Landsat satellites are Landsat-7 and Landsat-8 [24,25].
Landsat data have a higher spatial resolution compared with MODIS (30 m instead of 250 m) [23].
Several strategies to retrieve AOD from Landsat data have already been established [24]. Nevertheless,
these strategies require AOD ground station data in the study area to have aerosol information in a
medium spatial resolution [25,26]. Considering this limitation, other studies suggest that the visible
bands of Landsat sensors can be used to invert PM10 [27]. The strategy proposed in this work is useful
and effective when the AOD stations are limited.

In order to construct empirical LUR models, some studies have used multiple linear regression
(MLR) [26], considering a subset of variables through the stepwise regression (STW) algorithm [28,29].
Nevertheless, the use of MLR cannot analyze the possible multicollinearity between variables, because
we have a high correlation between near bands in the spectrum [30]. Moreover, it is well-known
that multicollinearity exists between remote sensing variables [31], producing a source of error in
MLR empirical models. However, an alternative that allows the computing of more accurate models,
avoiding multicollinearity, is to use partial least square (PLS) regression [32–34] or an artificial neuronal
network (ANN) [35]. Generally, ANNs give more accurate results in comparison with traditional
linear methods, considering the complexity of modeling air pollutants. Some atmospheric studies use
a multilayer perceptron (MLP) in the context of ANN in order to obtain a predictor model [26,36].

In Alvarez-Mendoza et al. [12], only remote sensing data were considered to compute the LUR
model based in a MLR without a method to select predictors. In this work, three main objectives are
proposed: (i) Using only remote sensing data will be used to establish LUR models without any AOD
predictor; (ii) making a comparison between three different remote sensing satellite/sensors (MODIS,
Landsat-7, and Landsat-8) to retrieve long-term PM10 considering only a selection of predictors and;
(iii) comparing the accuracy of different techniques (STW, PLS, and MLP) in the generation of the
predictive models. The two last items are the new contributions of this work.

2. Materials and Methods

2.1. Study Area

The study area is the urban zone of Quito, the capital of Ecuador. Quito comprises 45 urban
parishes or parroquias, distributed between the latitudes 0◦30′ S and 0◦10′N and the longitudes 78◦10′W
and 78◦40′ W (Figure 1). The average elevation is around 2800 meters above sea level. The city is
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located in the middle of the Andean Region. The mean minimum and maximum temperatures are
approximately 9.0 ◦C and 25.4 ◦C, respectively. On the other hand, Quito is a region without four
seasons because it is in the tropical area, near to the equatorial line. This area was chosen considering
the influence of nine AQMN stations.
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2.2. PM10 Data from AQMN Stations

In order to monitor air quality in Quito, nine stations have been acquiring air pollutants since
2002 (Figure 1). Together they form the “Red Metropolitana de Monitoreo Atmosférico de Quito”
(REMMAQ) [37]. REEMAQ is the AQMN of Quito, where one of the air pollutants daily measured
is PM10. These data are public and free to download (http://www.quitoambiente.gob.ec/ambiente/

index.php/datos-horarios-historicos). The PM10 concentration is measured in micrograms per cubic
meter (µg/m3). In this study, we use three-month-averages from 2013 to 2017, matching with the dates
of the remote sensing data (time when the satellite passes over the study area). The main reasons to
use three-month-averages are the few available remote sensing data and REMMAQ stations (stations
without data in some months or with negative data values). In this study, PM10 three-month-averages
are used as the dependent variable.

2.3. Remote Sensing Data Predictors

In this study, three different types of remote sensing data were used to retrieve PM10 between
2013 and 2017: Landsat-7 ETM+, Landsat-8 OLI/TIRS and MODIS/Terra and Aqua (Table 1). The
remote sensing data are free to download from the United States Geological Survey (USGS) website
(http://earthexplorer.usgs.gov). Moreover, only images with less than 10% cloud cover were considered
in the study, because one of the main problems in these regions is the presence of a high cloud
density [38,39]. According to this limitation, just 40% of remote sensing data was considered.

http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos
http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos
http://earthexplorer.usgs.gov
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Table 1. Characteristics of satellites and sensors used in the study.

Satellite Sensor Overpass Time of
Satellite Spatial Resolution

Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 16 days 30 m

Landsat-8 Operational Land Imager (OLI)
Thermal Infrared Sensor (TIRS) 16 days 30 m

Terra (EOS AM-1)
Aqua (EOS PM-1)

Moderate Resolution Imaging
Spectroradiometer (MODIS) MCD43A4 1 to 2 days 500 m

The predictors or independent variables (surface reflectance bands and environmental indexes)
are listed in Table 1. The selection of remote sensing predictors was related to their possible correlation
with the PM10 concentration [9,40–42]. In the case of the environmental indexes, the most popular
indexes in LUR studies to retrieve PM10 were used. They were computed as (1), (2), (3), (4), and (5) in
Table 2, respectively.

Table 2. Remote sensing predictors used to build the model for each sensor.

Predictors Landsat-7 Landsat-8 MODIS

Blue band (B)
Green band (G)

Red band (R)
Near Infrared (NIR)

Short Wave infrared (SWIR)

Landsat surface data
Level-2

Landsat surface data
Level-2

MODIS MOD09A1
MYD09A1 products

Normalized Difference
Vegetation Index (NDVI) NDVI = NIR−R

NIR+R (1)
MODIS MOD13Q1
MYD13Q1products

Normalized Difference Soil
Index (NDSI) NDSI = SWIR−NIR

SWIR+NIR (2)

Soil-Adjusted Vegetation
Index (SAVI)

SAVI = (1 + L) NIR−R
NIR+R+L (3)

where L represents a minimal change in the soil brightness with a value of 0.5 [43]

Normalized Difference
Water Index (NDWI) NDWI = G−NIR

G+NIR (4)

Land Surface Temperature
(LST)

LST = BT(
1+
(
λ∗BT
ρ

)
lnε
) − 273.15 (5)

where BT is the brightness temperature, λ is the
center wavelength (Landsat-7 = 11.45 µm,

Landsat-8 = 10.8 µm) [44], ρ is a constant and ε is the
emissivity [45,46].

MODIS MOD11A1
MYD11A1 products

2.4. LUR Models

LUR models are an alternative to predict the spatialization of air pollutants, particularly when
the number of AQMN stations is limited. They use different geographical variables such as roads,
traffic information, meteorological and remote sensing data, and other environmental variables, in
order to build a model to retrieve air pollutants. However, often several geographical variables are not
available. Thus, we should use simple alternatives, such as free remote sensing data, as variables to
approach a LUR model.

In most cases, LUR uses MLR to establish the model [47,48]. MLR allows an easy and simple model
construction. In our case, the dependent variable is the quarterly PM10 value and the independent
variables or spatial predictors are the remote sensing data in each coordinate of the AQMN station,
considering the free cloud pixel value. Equation (6) shows the original LUR model, considering all the
remote sensing predictors in MLR.

PM10 = I + aNDVI− bNDSI− cSAVI + dNDWI− eLST− f B− gG+ hR+ iNIR+ jSWIR+ kY− lS (6)
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where I is the intercept, NDVI is normalized difference vegetation index, NDSI is the normalized
difference soil index, SAVI is the soil-adjusted vegetation index, NDWI is the normalized difference
water index, LST is the land surface temperature, B is the blue band, G is the green band, R is the
red band, NIR is the near infrared band, SWIR is the shortwave infrared band, Y is the year of image
acquisition, S is the three-month-averages of image acquisition (January–March—1, April–June—2,
July–September—3, and October–November—4), a, b, . . . , l, are the coefficients in each predictor. The
other variables are described in Table 1.

Nevertheless, considering that multicollinearity exists between remote sensing variables [31],
different predictor techniques should be employed to compute the LUR model. We compare three
techniques, namely, MLR with STW, PLS, and ANN, in order to find the fittest model (Figure 2).

In the first model, we use MLR considering an STW. It contemplates different parameters in order
to identify the most adequate/influencing variables as predictors. The parameters used to subset
the variables are: (i) The residual sum of squares for each model (RSS); (ii) the adjusted regression
coefficient R2 (Adj. R2); (iii) Mallows’ Cp (CP) and; (iv) Bayesian information criterion (BIC).

The second model uses PLS with the STW criteria to select the predictors. The main challenge
when using PLS is to avoid multicollinearity, finding an alternative when we have few data and a
significant number of predictors [49]. PLS generates new latent variables or components in a lineal way.

Finally, the last model uses an ANN in an MLP, with a hidden layer and six hidden nodes to
compute the predictive model. The nodes are computed according to [50]. In this model, we use all
the predictors. This method is used when the model is complex, giving a different weight to each
predictor corresponding to its importance. Additionally, we use a non-linear activation function with
backpropagation. The training data to build the MLP consider 75% of the dataset and the remaining
25% for test. We use a backpropagation approach to train the algorithm. The R studio software was
used in this study to extract the data and to compute all the models.
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3. Results

PM10 ground measurements and remote sensing data are matched in a table with the same
date. Thus, the unique condition is to consider remote sensing data with less than 10% cloud density.
So, the three-month-averages matching tables for each sensor contain 35 observations for Landsat-7,
93 observations for Landsat-8, and 108 observations for MODIS. The main reasons to have only these
numbers of observations are the high cloud density in the study area and the incomplete/not available
air pollution data. Furthermore, the criteria to select predict variables consider five dependent variables
for Landsat-7, eight dependent variables for Landast-8, and six dependent variables for MODIS, for
each STW and PLS model, as shown in Table 3. They were obtained according to STW criteria (RSS,
Adj. R2, CP, and BIC). The variables common to all the three cases considered are blue band, near
infrared (NIR) band, and normalized difference vegetation index (NDVI).
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Table 3. Number of observations and predictors per satellite to build the LUR models.

Variable Landsat-7 Landsat-8 MODIS

No. Observations 35 93 108
No. Predictors 5 8 6

Predictors

NDVI
B
R

NIR
S

NDVI
SAVI
LST

B
G
R

NIR
Y

NDVI
B
G
R

NIR
S

The LUR models are computed considering STW and PLS regressions in a linear way and MLP
in a non-linear way. They are shown and compared in Table 4 (Equations (7)–(12)). In the case of
Landsat-7, the STW shows a coefficient of determination (R2) of 0.37, the PLS a R2 of 0.36, and, for
MLP, a R2 of 0.46. The lowest root-mean-square error (RMSE) was obtained for STW with a value of
9.47. For Landsat-8, in STW a R2 of 0.42 was obtained, and a R2 of 0.43 for PLS, and a R2 of 0.68 for
MLP (Figure 3). The lowest RMSE obtained was for MLP. Finally, for MODIS, a R2 of 0.15 for STW,
a R2 of 0.19 for PLS and a R2 of 0.25 for MLP were obtained. The lowest RMSE was for STW.

Table 4. LUR models for each sensor with different regression techniques. In the case of multilayer
perceptron (MLP), the model is not linear.

Sensor Model Equation/Method
Coefficient of

Determination
(R2)

Root-Mean-Square
Error (RMSE)

Landsat-7 ETM+

Stepwise
regression (STW)

PM10 = −26.770 +
205.289NDVI− 0.073B +

0.144R− 0.048NIR + 2.270S (7)
0.37 9.47

Partial least square
regression (PLS)

PM10 = 24.786−
54.369NDVI− 0.059B +

0.049R− 0.008NIR + 2.165S (8)
0.36 10.14

Multilayer
perceptron (MLP)

Non-linear. One hidden layer
and six hidden nodes. 0.46 12.69

Landsat-8
OLI/TIRS

STW

PM10 =
−4125.506 + 350.130NDVI −

200.334SAVI0.936LST−
0.035B− 0.036G + 0.099R−

0.013NIR + 2.061Y (9)

0.42 9.19

PLS

PM10 =
−4146.508 + 115.816NDVI −

40.465SAVI1.020LST−
0.036B− 0.038G + 0.104R−

0.016NIR + 2.073Y (10)

0.43 9.46

MLP Non-linear. One hidden layer
and six hidden nodes. 0.68 6.22

MODIS
STW

PM10 =
1.248 + 93.411NDVI +

0.056B− 0.070G + 0.056R−
0.017NIR + 3.190S (11)

0.15 12.91

PLS

PM10 =
5.661 + 79.106NDVI +

0.060B− 0.072G + 0.050R−
0.014NIR + 3.308S (12)

0.19 12.93

MLP Non-linear. One hidden layer
and six hidden nodes. 0.25 16.38
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(Figure 4) has one hidden layer with six hidden nodes.
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Figure 5 shows the relative variable importance according to the assigned weights, where the red
band is the most significant in the model, while LST presented the lowest significance.
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The Landsat-8 LUR-MLP model is chosen to predict PM10, considering the highest R2 and the
lowest RMSE. In Figure 6, the quarterly maps show the PM10 spatial concentration during 2015, in a
color scale in µg/m3. The white gaps showed in the maps are clouds with a high density.
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4. Discussion

As demonstrated in this study, LUR models are an interesting alternative to model air quality,
specifically PM10 concentrations, when the in-situ air quality measures are insufficient. Usually, most
of the predictors are geographical variables (such as roads), traffic, meteorological data, and others [13].
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LUR models are usually applied in small cities or regions where AQMN stations are limited [51], and
where spatial interpolation techniques, such as ordinary kriging or inverse distance weighting, cannot
be applied, considering the low number of ground measurements available [52]. One of the main
problems with these geographic variables is the low accessibility to the data and the time of acquisition.
Sometimes, these variables are obsolete, and they are not enough to establish a possible trend.

In this study, we propose an alternative, considering only free remote sensing variables. We apply
this approach to the city of Quito, Ecuador, during the period between 2013 and 2017, in order to
compare three different satellite data. Quito is growing in new poles. When REEMAQ was established
in 2002, Quito did not have its current size and configuration. Now, REEMAQ is an obsolete air quality
network, especially in the distribution of stations, which urgently needs improvement. Air pollutant
spatial models are techniques based on interpolation or geostatistics approaches, which can be useful
if a reasonable number of stations are available with a good spatial distribution [53]. In this study, only
nine stations are available. Moreover, in some cases, the data are incomplete during some months.
Additionally, according to some authors [7,8], it is possible to have more air ground data with low-cost
sensors, however they must be implemented in the cities in order to monitor the air quality. The
alternative to improve the air quality model in Quito is to establish different spatiotemporal LUR
models, considering only remote sensing data as predictor variables. A preliminary study shows the
use of only remote sensing variables but using an MLR in order to build the model. The limitation is the
use of all remote sensing predictors without considering the collinearity [12]. In order to establish the
models, three different remote sensing data were tested (Landsat-7, Landsat-8, and MODIS) and three
techniques for modeling (STW, PLS, and MLP) were employed. The selected variables to compute
the model are the visible NIR and SWIR bands of the three sensors, different environmental indices
(NDVI, NDSI, SAVI, NDWI), and LST, computed from the data retrieved from each sensor. Most of the
studies published use aerosol optical thickness (AOT) derived from MODIS (MOD04) [54] as the input
in LUR models, however, this product has a low spatial resolution (3 × 3 km) [55]. This resolution is
not practicable when considering cities like Quito, where the maximum width is near to 10 km. On the
other hand, some MODIS products do not have a suitable quality for local studies [56]. Other studies
use Landsat-8 combined with AOT ground stations to spatially model the AOT [24]. This could be a
good alternative, however in our study area, we do not have access to this information between 2013
and 2017.

Comparing the LUR models established, we found that Landsat-8 is the most adequate sensor to
model PM10 concentration, considering the 93 records and according to a previous study [12]. MLP
is the fittest alternative to model PM10, with a R2 of 0.68 and a RMSE of 6.22. In this context, the
non-linear model (MLP) has a fitter result when compared to the linear models (STW and PLS) [26].
Therefore, the LUR-MLP model was chosen to map the spatial concentration of PM10 in Quito, between
2013 to 2017. MODIS presents the lowest R2 with a value of 0.19, considering the PLS regression. This
could be related to the lowest spatial resolution. Thus, most of the LUR models use MLR or STW.
MLR is easy to implement. However, one of the main problems could be the multicollinearity, because
MLR does not analyze the correlation between predictors [57]. On the other hand, the linear PLS helps
to avoid the multicollinearity creating new latent variables with few observations [34]. In a future
work, a possible combination between STW (in order to select the predictor variables), non-linear
PLS (in order to avoid the multicollinearity between remote sensing data), and a machine learning
technique (as ANN) can improve the LUR models [58].

In the case of the predictors, all the models present, in all the cases, the variables blue band, NIR,
and NDVI. In the case of NDVI, a possible reason is the direct influence of vegetation on the PM10
concentration and distribution [18]. On the other hand, the red band has the most importance in MLP,
because there could be a relationship between the retrieval of PM10 with the blue and red bands [27].
In most of the LUR studies, the authors use traffic, roads, meteorological, land use, population, and
other predictors, reporting values of R2 according to the reality of each local [26]. These models also
considered different time periods (monthly, quarterly, yearly). The main difference of our approach
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is the use of remote sensing data only as predictors, which can replace the necessity to have all
geographical variables. Another advantage is the data availability and continuity in order to recompute
the LUR models. One of the main limitations of our model is the high cloud density presented in the
images during all the year [38], making it complicated to use more data in order to improve the model.
However, a future work will intend to have more satellite sensors or to find new alternatives to recover
remote sensing data contaminated with clouds [39].

Figure 6 shows variations year by year according to PM10 mean concentration based on in-situ
data (REEMAQ Stations). We choose the third season to show the variation year by year (2013–2017),
because we have more remote sensing data available (without a high cloud density) during this
time-window. According to the results presented in Figure 6, an increasing of PM10 concentration
between 2013 to 2017 is notorious in the most of the urban parishes [59]. However, some areas showed
a decreasing tendency in some years. The lowest PM10 concentration was found in some peripheral
parishes during the 2014 year, because the air stations that influence these parishes (Tumbaco and
Los Chillos) had a variation in the concentrations. Thus, Tumbaco and Los Chillos stations are in the
east part of the study area and began to present the lower values in 2014 followed by 2013, according
to the in-situ measures. After 2014, the PM10 values for these stations began to increase. The main
reason could be related to the new operation of the new airport of Quito (2013), and the construction
of important road infrastructures around it (end of 2014). Another possible explication is the traffic
influence during the last years, particularly in the peripheral areas where an increase was registered
since 2015 and also the increase of the population in these areas [60]. In the northern parishes, the
stations of San Antonio P. and Carapungo are influenced by the presence of stone and sandy point
quarries [61]. The stations Centro, Belisario, and El Camal are in the city downtown, and it is the main
reason that an increase of PM10 concentration during the last years is verified in the center parishes.

According to our results, several areas presented concentrations higher than 50 µg/m3 (Figure 6),
while the World Health Organization (WHO) recommends, in its guidelines, maximum values of
20 µg/m3 as an annual mean and 50 µg/m3 as a 24-h mean [1]. However, some areas do not show
values, due to the high cloud density (white areas in Figure 6). Thus, the PM10 concentration maps
from the Landsat-8 LUR-MLP model can help local government decision makers to manage air quality
concentration and to organize new policies, specifically in the places where the highest concentrations
were identified.

5. Conclusions

In this study, three different satellite datasets were compared to retrieve models of PM10 through
LUR, in Quito, Ecuador between 2013 and 2017. Additionally, three techniques were compared to
compute the LUR models (SWR, PLS, and MLP). From this work, several conclusions could be taken:
(i) It is possible to build empirical models established using only remote sensing variables as predictors
without any other geographic variables, as traditional LUR models; (ii) in the case of Quito, the study
results show that Landsat-8 provides the most suitable satellite data to retrieve PM10, in comparison
with Landsat-7 and MODIS; (iii) MLP allows the obtainment of the most robust result in comparison
with the other modeling techniques. MLP is the fittest alternative to model PM10, with a R2 of 0.68 and
a RMSE of 6.22, and; (iv) the MLP model established helps in the spatial mapping of PM10, where in
the time window of this study, were found areas with PM10 values higher than the limit established by
WHO. Thus, these models are useful in the management of air quality in the city of Quito and can be
applied to other locations with similar characteristics.
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Abstract Surface ozone is problematic to air pollution.
It influences respiratory health. The air quality monitor-
ing stations measure pollutants as surface ozone, but
they are sometimes insufficient or do not have an ade-
quate distribution for understanding the spatial distribu-
tion of pollutants in an urban area. In recent years, some
projects have found a connection between remote sens-
ing, air quality and health data. In this study, we apply an
empirical land use regression (LUR) model to retrieve
surface ozone in Quito. The model considers remote
sensing data, air pollution measurements and meteoro-
logical variables. The objective is to use all available
Landsat 8 images from 2014 and the air quality moni-

toring station data during the same dates of image ac-
quisition. Nineteen input variables were considered,
selecting by a stepwise regression and modelling with
a partial least square (PLS) regression to avoid
multicollinearity. The final surface ozone model in-
cludes ten independent variables and presents a coeffi-
cient of determination (R2) of 0.768. The model pro-
posed help to understand the spatial concentration of
surface ozone in Quito with a better spatial resolution.

Keywords Landsat 8 . Quito . Ozone . PLS . Air
modelling

Introduction

Surface ozone (O3) is one of the principal greenhouse
gases (US Department of Commerce 2018). It is pro-
duced in the troposphere and is not emitted directly into
the air. A chemical reaction between nitrogen oxides
(NOx), volatile organic compounds (VOC) and sunlight
produce O3 (US EPA 2014). Thus, urban growth, ve-
hicular traffic and industry are sources of NOx and VOC
in cities, deteriorating the vegetation conditions (Monks
et al. 2015), the air quality and creating a health problem
(US EPA; WHO (World 2013)).

Several cities around the world have an air quality
monitoring network (AQMN) to manage air pollution
(Liang et al. 2016; Lee et al. 2018). One of the cities
with an AQMN is Quito, the capital of Ecuador. The city
has traffic and population problems that increase air
pollution. Its AQMN is the BRed Metropolitana de
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Monitoreo Atmosférico de Quito^ (REMMAQ), consti-
tuted by nine stations. It has managed the air quality in
Quito in real time since 2002 (Secretaria del Ambiente
de Quito 2018). The REMMAQ stations measure air
pollutants such as carbon monoxide (CO), nitrogen
dioxide (NO2) as part of NOx, sulphur dioxide (SO2),
particulate matter less than 10μm (PM10), fine particles
less than 2.5 μm (PM2.5) and O3. Nevertheless, the
number of stations is insufficient to measure the air
quality in all urban zones in the city.

Some empirical models to retrieve the spatial con-
centration of air pollutants have been developed using
variables such as road information and vegetation. The
land use regression (LUR) models are the basis of most
of these approaches. The principle of LUR focuses on
the environmental characteristics of the place where the
pollutant is present (Habermann et al. 2015). Some
models consider remote sensing data, meteorological
data (MD), aerosol optical depth (AOD) field measure-
ments and AQMN data (Liu et al. 2007; Chen et al.
2010; Zhang et al. 2018). In most of these studies, the
limitations are related to the input variables, especially
AOD field measurements. This is because models re-
quire AOD parameters to obtain high-resolution
spatialization (Bilal et al. 2013; Zhang et al. 2018).
The most commonly used remote sensing data are
Landsat (Chen et al. 2014; Meng et al. 2015; Zheng
et al. 2017) and MODIS (Stafoggia et al. 2017; Braun
et al. 2018) sensors. The main advantage of Landsat
images in specific Landsat 8 (U.S. Geological Survey
2016) is the high spatial resolution to map middle cities.
Their limitation is the temporal resolution (16 days)
(U.S. Geological Survey 2016). The advantage of
MODIS is its high temporal resolution, but the major
limitation is the low spatial resolution, which limits the
accurate retrieval of maps (Daac et al. 2012). Moreover,
remote sensing data are used to obtain environmental
variables such as vegetation health (Jia et al. 2014;
Zhang et al. 2016) to input variables in the air pollutant
models. Furthermore, empirical models using remote
sensing data are focused on only some air pollutants,
such as NO2, PM10 and PM2.5. At present, the main
challenge is to retrieve the remaining air pollutants, such
as O3, which is considered only in few studies (e.g. Mok
et al. 2018).

In the case of Quito, a study found the spatial distri-
bution of PM10 by applying remote sensing data
(Alvarez and Padilla Almeida 2016). The main limita-
tion of the study was the small quantity of data used

(three images). On the other hand, a study making a
comparison between remote sensing to retrieve air pol-
lutant in Quito is considered (Alvarez-Mendoza et al.
2018b). However, there are few studies about air quality
in the city, specifically considering O3 (Cazorla 2016).
Thus, the possibility of obtaining AQMN public data,
and combining them with other environmental vari-
ables, can lead to new models for retrieving air pollut-
ants in places where AQMN are insufficient.

This study uses remote sensing data, air pollution
measurements and meteorological variables to retrieve
O3 for 1 year (2014) in Quito. Moreover, this study
combines two regression techniques, stepwise regres-
sion (SWR) and partial least-square (PLS) regression, to
compute the O3 model, finding the fittest model to
spatialize the variable in all the areas. The main objec-
tive is to find the spatial variables that influence O3 in
Quito.

Materials and methods

Study area

This study was developed in Quito, the capital of Ecua-
dor. The city elevation is approximately 2800 m above
sea level. During 2014, the mean minimum and maxi-
mum temperatures were 9.0 °C and 25.4 °C (Instituto
Nacional de Meteorología e Hidrología 2016). Further-
more, Quito has a dry season and a wet season. It does
not have four seasons considering that the city is in the
middle of the tropic zone. The latitude and longitude of
the study area are 0° 30′ S to 0° 10′ N and 78° 10′W to
78° 40′ W. These coordinates delimit most of the urban
zone, which is divided into urban parishes (Fig. 1).

Air pollutant ground data

The daily air pollutant concentration data from 2014
were obtained from the REMMAQ stations. The
REMMAQ has nine automatic stations that have been
operated by the BSecretaria del Ambiente de Quito^
since 2002 (Fig. 1). The stations measure concentrations
of air pollutants such as PM2.5, SO2, CO, O3, NO2,
PM10 and MD (Table 1). In this study, daily average
measurements were considered to match with the satel-
lite overpass (Fig. 2) (See section 2.4). Furthermore,
only complete datasets were used, which means that if
a dataset was incomplete, it was not considered for the
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model establishment. PM2.5, SO2, CO, and NO2 were
the complete datasets to estimate O3. The pollutant
concentration was measured in micrograms per cubic
metre (μg/m3) according to the Environmental Protec-
tion Agency (EPA) methods. The O3 measuring device
was a Teledyne API/T400, and the collection method
was EPA No. EQOA-0992-087 (Secretaria del
Ambiente de Quito 2018). The hourly pollutant concen-
tration data have public access (http://www.
quitoambiente.gob.ec/ambiente/index.php/datos-
horarios-historicos).

Meteorological data

The MD were collected only by eight REMMAQ sta-
tions (Table 1). The data used were the daily average
temperature (TMP) in degrees Celsius (°C), relative
humidity (HM) in percentage (%) and solar radiation
(SR) in watt per square metre (W/m2). The precipitation
measurements were not used because most of the values
were null in the time range considered.

In both cases (air pollutant ground data and meteo-
rological data), the R software was used to analyse the

Fig. 1 Quito’s urban parishes were considered as the study area. The blue marks represent the REMMAQ stations
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data and compute the statistics. The packages readxl and
stringi were used.

Remote sensing data

Landsat 8 is a satellite launched on February 11, 2013. It
is the last satellite of the Landsat project launched. The
satellite carries two push-brown instruments to collect
land remote sensing data on an image: the Operational
Land Imager (OLI) with nine bands and the thermal
infrared sensors (TIRS) with two bands. Additionally,
the Landsat 8 data file provides a quality assessment
(QA) band to assess the different image products. The
Landsat 8 images are freely available on the United
States Geological Survey (USGS) website. The USGS

develops research-quality and application-ready prod-
ucts such as the Landsat 8 Surface Reflectance Level-2
products (L2T). These products are generated from the
Landsat Surface Reflectance Code (LaSRC) (Vermote
et al. 2016). The LaSRC products are radiometric and
atmospherically corrected. The LaSRC products include
surface reflectance of the OLI bands (bands 1 to 9), top-
of-atmosphere brightness temperature (BT) (band 10
and band 11) and some environmental indexes such as
the normalised difference vegetation index (NDVI),
soil-adjusted vegetation index (SAVI) and enhanced
vegetation index (EVI).

In this study, Landsat 8 L2T images were
downloaded from the Earth Resources Observation
and Science (EROS) Center Science Processing Archi-
tecture (ESPA) at the demand interface (https://espa.cr.
usgs.gov/). The search criteria were images in 2014 with
less than 20% cloud cover in the study area. One of the
challenges was to choose the subset of images without
high cloud density in the study area (Alvarez-Mendoza
et al. 2018a). According to the search criteria, ten im-
ages (path 11; row 60) were selected (Table 2).

Considering the direct influence of the sunlight over
O3 concentration (US EPA 2014) and knowing the
principle of passive remote sensing data to capture the
radiation-measured reflectance sunlight (Liew 2001;
NASA EOSDIS 2018), bands 1 to 7 (visible and infra-
red bands) (U.S. Geological Survey 2016) were used as
input variables. NDVI, SAVI and EVI were used to
highlight the vegetation because there is a high relation

Table 1 Field sensors of the REEMAQ

Station Variables measured

Cotocollao PM2.5, SO2, CO, O3, NO2, PM10, MD

Carcelen PM2.5, SO2, CO, O3, NO2, PM10, MD

Belisario PM2.5, SO2, CO, O3, NO2, MD

Jipijapa PM2.5, SO2, CO, O3, NO2, PM10, MD

Camal PM2.5, SO2, CO, O3, NO2, MD

Centro PM2.5, SO2, CO, O3, NO2

Guamani SO2, CO, O3, NO2, PM10, MD

Tumbaco SO2, O3, PM10, MD

Los Chillos PM2.5, SO2, CO, O3, NO2, MD

Fig. 2 Mean levels from 10:00 to
11:00 (GMT-5) of O3

concentration (μg/m3) observed
in each month during 2014. The
San Antonio P. station did not
present measures during 2014
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between O3 and vegetation (Sicard et al. 2017). The
indexes were obtained from LaSRC and multiplied by
0.0001 (USGS 2017) to retrieve the surface environ-
mental indexes (values between − 1 and 1).

The NVDI provides information about health vege-
tation, using band 4 (B4) and band 5 (B5) in Landsat 8
images. It is computed using Eq. 1.

NDVI ¼ B5−B4
B5þ B4

ð1Þ

The SAVI is an improvement of NDVI considering a
soil correction factor (usually LS = 0.5). Considering
Landsat 8, it uses B4 and B5 as input (Eq. 2).

SAVI ¼ 1þ LSð Þ B5−B4
B5þ B4þ LS

ð2Þ

The EVI enhances the vegetation in areas with high
biomass. Thus, EVI helps to identify stress vegetation
using Eq. 3.

EVI ¼ G� B5−B4
B5þ C1� B4−C2� B2þ L

ð3Þ

Where the gain factor (G) is 2.5, L is the canopy
background adjustment (L = 1) and C1 and C2 are
coefficients for atmospheric resistance (C1 = 6, C2 =
7.5). The B4 and B5 have a high contrast in the
detection of built-up areas and bare lands areas (As-
syakur et al. 2012).

Moreover, the land surface temperature (LST) re-
trieved from remote sensing has been used in other
studies to estimate the air quality (Chen et al. 2014). It
was computed as a function of BT. Equation 4 repre-
sents the LST in degrees Celsius.

LST ¼ BT

1þ λ� BT

p

� �
lnE

� � −273:15 ð4Þ

Where λ is the centre wavelength (λ = 10.8 μm), ρ is
a constant obtained in Eq. 5, E is the emissivity as Eq. 6
and 273.15 is the value to transform degrees Kelvin to
degrees Celsius.

The constant ρ is estimated using Eq. 5, where h is
the Planck constant (6.626e-34 Js), c is the speed of light
(2.998e8 m/s), and s is the Boltzmann constant (1.38e-
23 J/K).

p ¼ h� c
s

ð5Þ

Equation 6 represents the emissivity E (Vieira et al.
2016). E is the efficiency of a surface that emits heat as
thermal infrared (TIR) radiation (Gillespie 2014).

E ¼
Es;NDVI < NDVIs

Es þ Ev−Esð Þ PV; NDVIs≤NDVI≤NDVIv
Ev; NDVI > NDVIv

8<
:

ð6Þ

Where Es represents the emissivity for soil. A value
of 0.973 is used in this study (Sobrino et al. 2008). Ev is
the vegetation emissivity with a value of 0.985 in this
study (Sobrino et al. 2008). NDVIv is the NDVI in
vegetation with a value of 0.2 (Vieira et al. 2016),
NDVIs is the NDVI in the soil with a value of 0.5
(Vieira et al. 2016) and Pv is the proportion of vegeta-
tion in the area using Eq. 7.

Table 2 Landsat 8 L2T images selected

No. Image Date

1 LC08_L1TP_010060_20140115_20170426_01_T1 15/01/2014

2 LC08_L1TP_010060_20140131_20170426_01_T1 31/01/2014

3 LC08_L1TP_010060_20140216_20170425_01_T1 16/02/2014

4 LC08_L1TP_010060_20140304_20170425_01_T1 04/03/2014

5 LC08_L1TP_010060_20140405_20170424_01_T1 05/04/2014

6 LC08_L1TP_010060_20140608_20170422_01_T1 08/06/2014

7 LC08_L1TP_010060_20140710_20170421_01_T1 10/07/2014

8 LC08_L1TP_010060_20140726_20170420_01_T1 26/07/2014

9 LC08_L1TP_010060_20140811_20170420_01_T1 11/08/2014

10 LC08_L1TP_010060_20141030_20170418_01_T1 30/10/2014
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PV ¼ NDVI−NDVIs
NDVIv−NDVIs

� �2

ð7Þ

The remote sensing variables were represented as
raster data (GeoTIFF format). They were computed in
R studio software with the rgdal and raster packages.
Through the shapefile of REMMAQ stations, the raster
values for each station were extracted. The package
dismo was used to perform this task.

Model building

The first step in building the model is the compilation of
all possible variables (air measurement data, meteoro-
logical data and remote sensing data) in a database. Each
row in the table has all the values of these variables in a
REMMAQ station during the date established (Table 3).

LUR models are a good alternative for finding the
spatial location of pollutants (Larkin et al. 2017).
LUR models are empirical regression models that
consider the pollutant of interest as the dependent
variable and other geographical variables as indepen-
dent variables (meteorological data, traffic, topogra-
phy, remote sensing data, etc.). In this study, we
generate an LUR model using the available data from
each station on different dates during 2014 to pre-
serve the accuracy of the variables.

Assuming that multicollinearity between variables
is real, especially between remote sensing variables
(Chen and Meentemeyer 2016), a preliminary corre-
lation analysis was realised to provide an overview of
which variables are more adequate for integration
into the model.

To select the fittest predictor variables and the best
model to predict O3, a subset analysis is performed
with stepwise regression. The subset analysis used

four analyses: the residual sum of squares for each
model (RSS), the adjusted regression coefficient R2

(Adj. R2), Mallows’ Cp (CP) and the Bayesian infor-
mation criterion (BIC). The R-package used to com-
pute this was leaps.

The original LURmodel with all the possible predic-
tor variables as input in the analysis is shown in Eq. 8.

O3 ¼ aPM2:5þ bSO2 þ cCOþ dNO2 þ eTMP

þ fHUMþ gSRþ hB1þ iB2þ jB3

þ kB4þ lB5þ mB6þ nB7þ oNDVI

þ pSAVIþ qEVIþ rLSTþ I ð8Þ
Where a, b, c … r are the coefficients of the regres-

sion model, and I is the intercept in the equation. The
subset analysis reduces the number of input variables
with the considered criteria (RSS, Adj. R2, CP, BIC).

Once the input variables are selected, a PLS regres-
sion is applied to avoid the multicollinearity between the
variable subsets. PLS is a technique applied in cases
where traditional regression models fail, and the predic-
tors have a high correlation, as shown in Eqs. 9 and 10.

X ¼ TPT þ E ð9Þ

Y ¼ UQT þ F ð10Þ
Where X is a n x m matrix of predictors, Y is a n x p

matrix of responses; T and U are n x l matrices that are,
respectively, projections of X and projections of Y; P and
Q are, respectively m x l and p x l orthogonal loading
matrices; and matrices E and F are the error terms. The
decompositions of X and Y are made in order to

Table 3 Variables considered in
the model No. Variable Units

Air pollutants ground
data

O3, PM2.5, SO2, CO, NO2 μg/m3

Meteorological data Temperature (TMP) °C

Relative humidity (HUM) %

Solar radiation (SR) W/m2

Remote sensing data Band 1 (B1), Band 2 (B2), Band 3 (B3), Band 4
(B4), Band 5 (B5), Band 6 (B6), Band 7 (B7)

Surface reflectance

Environmental indexes: NDVI, SAVI, EVI –

Land surface temperature (LST) °C
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maximise the covariance between T and U. Additional-
ly, PLS generates an orthogonal transformation to obtain
components by finding the most appropriate model to
explain the variance starting from the maximised co-
variance matrixes (Williams et al. 2013). In the case of
remote sensing data, some studies consider
multicollinearity when the same sensor is used to obtain
different variables (Chen and Meentemeyer 2016;
Gholizadeh and Robeson 2016). Finally, the validation
is performed by cross-validation (Fig. 3) and the criteri-
on to accept or reject models where R2, RMSE, predi-
cated vs measured graphic and residuals analysis. The
R-packages used were pls and plsdepot.

Results and discussion

Building the ozone LUR model

The LUR model tested 19 variables (18 independent
variables or predictors and O3 as the dependent

variable), matching all variables (air measurement data,
meteorological data and remote sensing data). The result
is a database with 36 observations, where most of the
remote sensing data variables show a high correlation
(Fig. 4). The high correlation or multicollinearity (in
some cases near 1) indicates that some variables are
highly related, such as NDVI, SAVI and EVI, or the
visible bands (B1, B2, B3, B4). On the other hand, the
highest correlation between all predictors with O3 is
PM2.5, showing a value of − 0.44. The highest correla-
tion considering only the remote sensing data variables
is B6 with 0.22.

To find the model with the best fit, a stepwise regres-
sion subset is used. In the first instance (Fig. 5), the
coefficient of determination (R2) is near 0.68, consider-
ing all 18 independent variables to build the model. The
subset variables are analysed by the less Akaike infor-
mation criterion (AIC) and the maximum Adj. R2.

The preliminary predictors are known (Fig. 5); so to
find a simple model with fewer input variables, a new
subset of variables, applying RSS, Adj. R2, CP and BIC

Fig. 3 Methodology workflow
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criteria, are analysed (Fig. 6). Analysing the four
criteria, 11 independent variables are used to build the
simplest model (PM2.5, HUM, TMP, B2, B4, B5, B7,
NDVI, SAVI, EVI).

The 11 variables chosen were then considered in the
PLS analysis (Fig. 7). The number of components in
PLS regression was nine. These components explain
most of the percentage of variance (Table 4), after
cross-validation (data not shown). The R2 obtained
was 0.77, and the RMSE was 3.03 through the PLS
regression.

Avoiding the multicollinearity, the PLS regres-
sion is applied, presenting values different from 1

in the correlation matrix between the variables and
the components (Table 5). Moreover, cross-
validation is applied to the components. Equation 9
shows the resulting model to retrieve O3 during
2014, considering the dataset.

O3 ¼ −0:47PM2:5−3:41TMP−0:34HUM−1371:47B2

þ 9449:41B4−7852:43B5−436:68B7−1028:50NDVI

þ 4961:14SAVIþ 1178:61EVIþ 66:06

ð9Þ

Finally, Eq. 8 allows mapping the O3 concentration
during 2014 (Fig. 8).

Fig. 4 Correlation graph between input variables
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Discussion

The main goal of this study was to establish a model to
retrieve O3 from several input variables, implementing a
variant of the classical LUR model. In most cases, LUR
models are used to model air pollutants from road net-
works, land use, building density, MODIS AOD,

population density and other geographic variables
(Ann Becerra et al. 2013; Adam-Poupart et al. 2014;
Meng et al. 2016; Wolf et al. 2017; Cattani et al. 2017;
Yang et al. 2017). In this study, the variables selected are
air pollution measurements, meteorological data (MD)
and remote sensing data. The air pollution measure-
ments and MDwere obtained from REMMAQ stations.

Fig. 5 Variable combinations with their corresponding R2 values as part of the subset task to select the model with the best fit

Fig. 6 Subset analysis to select variables with different criteria. a RSS, bAdj. R2, cCP and d BIC. The red point shows the optimal value of
variables for each criterion
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Moreover, considering the accuracy of LUR models in
order to retrieve air pollutants (R2 values between 0.45
and 0.80) (Ann Becerra et al. 2013; Adam-Poupart et al.
2014; Meng et al. 2016; Wolf et al. 2017; Cattani et al.
2017; Yang et al. 2017), ten Landsat 8 images were
selected to retrieve O3 in Quito, Ecuador. Most LUR
models use MODIS data. However, MODIS data prob-
ably do not have the accuracy and the quality to model
pollutants or other environmental variables in middle
cities (Teodoro 2015).

To select the predictor variables, a subset was applied
considering 19 variables (18 independent variables and

O3 as the dependent variable), obtained a preliminary
best fit model with the 18 variables (R2 = 0.68). How-
ever, to find the best fit and simplest (with the lowest
number of predictors) model, four criteria (RSS, Adj.
R2, CP, BIC) are analysed, resulting in a model with ten
independent variables (PM2.5, HUM, TMP, B2, B4,
B5, B7, NDVI, SAVI, EVI), showing an R2 of 0.72
considering stepwise regression. In most of the subsets,
the remote sensing data variables B1, B2, B6 and B7
appear, showing the relation between these bands with
O3. Thus, B1 and B2 reflect the blues and violets related
to the aerosol presence (Department of the Interior U.S.

Fig. 7 PLS analysis. a The number of components that explain the variance. b The number of components to obtain the highest R2. c The
histogram of the residuals. d The number of components to obtain the lowest RMSE. eMeasured vs. predicted values with PLS regression
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Geological Survey 2016). Additionally, B6 and B7 re-
flect the short infrared related to greenhouse gas absorp-
tion (North 2015). Some studies that use LUR models
employed stepwise regression to automatically find the
predictors in a model (Ayres-Sampaio et al. 2014;
Olmanson et al. 2016). However, the main problemwith
stepwise regression is not allowing a multicollinearity
analysis (NCSS and LLC). PLS regression is used in
some studies to compute the LUR model (Adam-
Poupart et al. 2014; Wang et al. 2016) to avoid
multicollinearity. PLS builds a model with latent vari-
ables (components) as independent variables (Williams
et al. 2013). Moreover, PLS regression is used when we
have a model with few observations (Chi et al. 2018). If
a high correlation is present between variables, a PLS

regression is used to build the model, where nine com-
ponents explain most of the variance and obtained an R2

value of 0.768. This value is higher than R2 in the
stepwise regression (R2 = 0.72) and avoids the
multicollinearity of remote sensing variables.

The final model can be mapped, in comparison with
other techniques, such as thematic point maps, interpo-
lation or geostatistical analysis (Fig. 8), showing a ro-
bust perception of spatial concentration of O3 in the city,
and these maps can be used as input to make a more
accurate air pollution analysis.

The limitation is the few observations used to
build the model because our model requires some
data from the REMMAQ stations, and sometimes,
these data are incomplete or unavailable. On the other

Table 4 Variables explained variance by PLS components (t1, t2, …, t6). The red text shows the maximum variance explained with nine
components, considering O3 as the dependent variable

Variable t1 t2 t3 t4 t5 t6 t7 t8 t9

PM2.5 0.148 0.655 0.660 0.787 0.897 0.999 1.000 1.000 1.000

HUM 0.212 0.433 0.442 0.593 0.775 1.000 1.000 1.000 1.000

TMP 0.017 0.350 0.902 0.978 0.979 1.000 1.000 1.000 1.000

B2 0.611 0.918 0.918 0.947 0.955 0.966 0.998 1.000 1.000

B4 0.609 0.934 0.948 0.994 0.995 0.998 0.998 1.000 1.000

B5 0.123 0.158 0.362 0.994 0.997 0.999 1.000 1.000 1.000

B7 0.460 0.714 0.777 0.951 0.952 0.974 0.996 1.000 1.000

NDVI 0.515 0.873 0.904 0.987 0.987 0.993 0.994 1.000 1.000

SAVI 0.435 0.740 0.805 0.989 0.990 1.000 1.000 1.000 1.000

EVI 0.387 0.677 0.729 0.957 0.958 0.991 0.999 1.000 1.000

R2 0.232 0.345 0.390 0.404 0.541 0.617 0.634 0.646 0.768

Table 5 Correlation matrix between the variables and the PLS components

Variable t1 t2 t3 t4 t5 t6 t7 t8 t9

PM2.5 − 0.38514 − 0.71215 − 0.06697 − 0.35607 0.33247 − 0.31854 0.03311 − 0.01169 0.00006

HUM − 0.46074 − 0.46963 − 0.09577 0.38916 − 0.42616 0.47404 − 0.01179 0.00889 − 0.00005
TMP 0.13159 0.57670 − 0.74288 − 0.27615 − 0.02596 0.14489 0.01716 0.00092 − 0.00003
B2 0.78187 − 0.55363 0.01333 0.17146 − 0.08946 − 0.10447 0.17864 − 0.04175 − 0.00072
B4 0.78063 − 0.56987 − 0.11695 0.21595 − 0.01183 0.05406 0.00119 − 0.04905 0.00434

B5 0.35068 − 0.18755 − 0.45108 0.79548 0.05186 − 0.04768 0.01853 − 0.01613 − 0.00254
B7 0.67796 − 0.50463 − 0.25075 0.41702 0.02133 − 0.14883 − 0.14855 0.06528 − 0.00017
NDVI − 0.71749 0.59850 − 0.17601 0.28787 − 0.02397 − 0.07591 − 0.02313 − 0.07924 − 0.00011
SAVI − 0.65920 0.55261 − 0.25518 0.42854 0.03350 − 0.09995 0.00418 0.00529 0.00143

EVI − 0.62209 0.53862 − 0.22889 0.47707 0.02165 − 0.18231 0.08867 0.03466 0.00153

O3 0.48204 0.33513 0.21357 0.11803 0.36972 0.27520 0.13251 0.10736 0.34908
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(a)

(b)
Fig. 8 Maps of O3 during 2014. a January and b July maps obtained from Eq. 8. The left map is with an inverse distance weighting (IDW)
technique while the centre map is applying the O3 model in all the study area. The right maps are a zoom in an assessment area (red square)
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hand, the remote sensing variables depend on the
number of clouds. Quito is known as a city with a
high cloud density during the year (Alvarez-Mendoza
et al. 2018a), and this factor limits the computation of
LUR models. A possible alternative can be to com-
bine different sensors with high spatial and temporal
resolution and use similar techniques to PLS to com-
pute the model.

Another limitation is the generation of a raster to each
independent variable. In the case of remote sensing, data
are not a problem considering all images over the study
area, but the air pollutant measurements and MD raster
can be limited. They were obtained with a geostatistical
technique as inverse distance weighting (IDW) (de
Mesnard 2013). Nevertheless, this kind of technique
works fine in a region with some stations, but in Quito,
we only have nine stations (Fig. 8). Therefore, in future
work, we will propose the use of only remote sensing
data to spatialize air pollutants in Quito.

Conclusion

A spatial estimation was performed in Quito to obtain
the O3 spatial concentration in 2014. The spatial
estimation was computed by a variant of LUR
models with PLS regression. LUR models can ex-
plain the spatial concentration of an air pollutant,
helping in urban planning, environmental analysis
and governmental decisions. Moreover, the idea of
having a variant of LUR models with variables from
remote sensing sensors different from MODIS will
help to build more accurate models. The main limi-
tation is related to the small quantities of field data
available. In future work, we will try to find new
alternatives only considering the use of remote sens-
ing data as input without other field data variables.
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ABSTRACT   

Thin clouds in the optical remote sensing data are frequent and in most of the cases don’t allow to have a pure surface 
data in order to calculate some indexes as Normalized Difference Vegetation Index (NDVI). This paper aims to evaluate 
the Automatic Cloud Removal Method (ACRM) algorithm over a high elevation city like Quito (Ecuador), with an 
altitude of 2800 meters above sea level, where the clouds are presented all the year. The ACRM is an algorithm that 
considers a linear regression between each Landsat 8 OLI band and the Cirrus band using the slope obtained with the 
linear regression established. This algorithm was employed without any reference image or mask to try to remove the 
clouds. The results of the application of the ACRM algorithm over Quito didn’t show a good performance. Therefore, 
was considered improving this algorithm using a different slope value data (ACMR Improved). After, the NDVI 
computation was compared with a reference NDVI MODIS data (MOD13Q1). The ACMR Improved algorithm had a 
successful result when compared with the original ACRM algorithm. In the future, this Improved ACRM algorithm 
needs to be tested in different regions of the world with different conditions to evaluate if the algorithm works 
successfully for all conditions. 

 

Keywords: Remove Cloud, Landsat, NDVI, Cirrus Band, Quito 
 

1. INTRODUCTION  
One of the principal problems that are considered in optical remote sensing is the cloud density over some areas of the 
world1, understanding that in some areas like South America2 and places with high mountains like Andean Region3 the 
presence of high cloud density is real during most of the year, discussing if the remote sensing data is real useful to 
calculate some environmental parameters as Normalized Difference Vegetation Index (NDVI)4. In the studies previous 
referred2, Landsat images are considered. Landsat is a land optical remote sensing program that for four decades 
provides images that could be used in different areas, as agriculture, geology, forestry, environment and mapping5. The 
last satellite of this program is Landsat 8, which include two sensors: (1) Operational Land Imager (OLI) and; (2) 
Thermal Infrared Sensor (TIR). Moreover, Landsat 8 OLI provides detection of high-altitude cloud contamination that 
may not be detectable in other spectral bands6. 

Some algorithms had been developed with the challenge to try to remove thin clouds in different regions considering 
Landsat 8 OLI imagery. Nevertheless, these algorithms use a Landsat reference image from other dates to patch the 
cloud area7–9. Other algorithms combine Landsat with other sensors10 and others use the same image considering the 
Cirrus band (B9) in Landsat 8 in order to remove thin clouds11–13. 

The main idea in this work was to evaluate and improve for the Andean Region (Quito, Ecuador) one of the algorithms 
developed to remove thin clouds called Automatic Cloud Removal Method (ACRM)13. This algorithm was originally 
evaluated in Sidney, Australia, which have conditions very different from Quito. The ACRM algorithm established a 
linear regression between each band in the OLI sensor with B9, considering some selected areas in the image13. The 
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(c) 

 
(d) 

Figure 2. Quito Landsat 8 OLI: (a) Image from 2013/07/07; (b) Image from 2014/07/26; (c) Image from 2015/08/30; (d) Image 
from 2016/10/19. 

3.1 Automatic Cloud Removal Method (ACRM) 

The Cirrus band provides a way to remove thin clouds in an image considering that the noise and clouds are part of the 
original image, in each band. Considering this, the Equation (1) explains how the algorithm is computed. 

DN(u,v) = ),(),( vuxvux c
i

f
i +   i = 1,2,3,4,5,6,7.    (1) 
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Where DN(u,v) represents the Digital Number in each band, ),( vux f
i  represents the pure surface pixel data from each 

Landsat OLI band, and ),( vuxc
i  represents the pixel with noise (clouds). Consequently, the challenge is to obtain 

),( vuxc
i  represented as a linear relation to pixel data in the Cirrus band ),( vuc , as showed in Equation (2). 

),( vuxc
i  = { }[ ]),(min),( vucvuci −α      (2) 

Replacing the Equation (2), in Equation (1) is obtained the Equation (3).  

),( vux f
i  = { }[ ]),(min),(-),( vucvucvuDN i −α     (3) 

In Equation (3) is showed the final pure surface pixel data ),( vux f
i . The objective is to obtain the slope iα  in a 

homogenous area and established a linear regression between each OLI Band (B1-B7) and B9. Accordingly, the 
challenge is to obtain this homogeneous area considering that it is a part of the entire image. For this, two possibilities 
should to be analyzed. Firstly, the homogeneous area can be determined manually considering aspects as the water areas 
have strong absorption in the NIR and MIR bands nearest to zero and the contaminated pixel in these water areas can 
show the clouds presence, in this case can be considered. The method is effective, but it doesn’t have a good accuracy 
considering other physics aspects in water zones like waves dynamics. On the other hand, the automatic homogenous 
area identification can be used considering some aspects like different soil cover areas or vegetation areas. In this work, 
the second approach (automatic) was chosen in order to obtain the slope value because the study area doesn’t present 
water bodies to be considered, generating regular zones of 10x10 km which cover all the study area (Figure 3). A total of 
90 zones were tested, divided around the entire image.  

 
Figure 3. Example of some areas evaluated to test the algorithm over Quito. Each area has 10x10 km. 

3.2 Normalized Difference Vegetation Index (NDVI) 

The NDVI is one of the most used remote sensing indices19,20. It allows to obtain information about the greenest 
vegetation considering Red and NIR bands21, as shown in Equation (4). 
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      (4) 

 

NDVI also could be considered an environmental index20, besides that it has a great relation with Land Surface22 due to 
their relationship to other variables like temperature, vegetation, humidity, etc. 

NDVI was calculated considering Landsat 8 image from Quito (Figure 4) and applying the ACRM algorithm (Figure 5), 
considering Red Band B4 (0.636 - 0.673 µm) and NIR Band B5 (0.851 - 0.879 µm), as given in Equation (4). 

 

Figure 4. NDVI computed in Landsat 8 for the study area. 

 

Figure 5. NDVI computation considering the Landsat 8 image after the application of ACRM algorithm for the study area. 

3.3 Validating Data 

In order to validate the ACRM algorithm, a MOD13Q1 product (NDVI 16-Day L3 Global 250 m version 6) was used as 
a reference data, resampled to a spatial resolution of 30 m (Figure 6), considering a similar period of the Landsat data 
used. 
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Figure 6. NDVI obtained from MOD13Q1 data for the study area (2014/07/28). 

The idea to use MOD13Q1 is to compare the NDVI values with those values calculated with Landsat 8 original image 
(Figure 4) and Landsat 8 after applied ACRM algorithm (Figure 7). The validation was done over a small area that can 
be recognized (Quito Airport image of 2014/07/26) in an image with only a part of thin clouds to check the preliminary 
results considering the application of ACRM algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Workflow to evaluate ACRM (and Improved) algorithm in high elevation areas. 

 

Landsat-8 Data

OLI Bands (B1-B7) Cirrus Band (9)

Tested Areas

Automatic Cloud Removal Method (ACRM)
ACRM Improved

Calculate NDVI

MODIS MOD13Q1

Resampling 30 m

Comparison with Lineal Regression

Final evaluation calculating 
Environmental Indexes

Clip Image in a reference area

Proc. of SPIE Vol. 10428  1042809-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/7/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



i

I

UMW' n.m<.noo nn. n un.. R2

MOO

Linear ReppwNon aren Highest RE

The ACRM algorithm tries to find the best slope fittest to the study area. Consequently, ACRM was validated in 
comparison with the product MODIS MOD13Q1 as a reference image because it had evaluated vegetation phenology in 
some studies23,24 and it has been corrected25 in comparison with NDVI calculated with original Landsat 8 imagery26 and 
ACRM algorithm; moreover, MODIS product was resampled to 30 meters in spatial resolution to make the comparison27 
and validation. NDVI is used to validate because it is one of the most commonly used remote sensing indices19,20 and can 
be considered an environmental index because it has relation with land surface dynamics22.  

4. RESULTS AND DISCUSSION 
4.1 Applying ACRM algorithm 

Applying the ACRM algorithm over the 4 images in Quito the results shows (Table 1) a R2 close to 1 (Figure 8), appears 
that algorithm works properly in this kind of regions. The special situation can be observed in the case of slope, where 
the values are closer to 0, considering that if the algorithm applies a value close to 0, this can be have a little correction 
and in comparison with original slopes obtained in Sidney, here the slopes are lower. In most of the cases, the slope 
between OLI Bands and Cirrus bands are close to 0. However, when we check visually the result, the algorithm does not 
work properly on the removal of thin cloud region, as can be observed in Figure 9.  

 

Table 1. Coefficient of Determination (R2) and Slope (α) obtained applying the ACRM algorithm in Quito. 

AREA 
QUITO  

(PATH:10 ROW:60) 

QUITO  

(PATH:10 ROW:60) 

QUITO  

(PATH:10 ROW:60) 

QUITO  

(PATH:10 ROW:60) 

DATE 2013/07/07 2014/07/26 2015/08/30 2016/10/19 

BAND R2 Slope (α) R2 Slope (α) R2 Slope (α) R2 Slope (α) 
B2 0.96 0.05 0.93 0.02 0.97 0.03 0.95 0.03 
B3 0.96 0.06 0.93 0.02 0.97 0.03 0.95 0.03 

B4 0.95 0.05 0.93 0.02 0.97 0.02 0.96 0.03 

B5 0.85 0.03 0.85 0.01 0.95 0.02 0.83 0.08 

B6 0.90 0.06 0.89 0.17 0.92 0.02 0.91 0.04 

B7 0.89 0.06 0.88 0.02 0.89 0.03 0.93 0.04 
 

 
(a)  

(b) 

Figure 8. Scatterplots considering the highest R2 in the image: a) Linear Regression B9 vs. B4; b) Linear Regression B9 vs. B5. 

Considering the lower slope values in Quito (Table 1), the ACRM algorithm was computed consider two differentes 
regions (Table 2). Different results in the evaluation were founded: Pedernales dind´t  have a R2 value close to 1; and  
Sidney (consider the same image used in the original algorithm) obtained a higher R2, with a value close to 1 and a 
higher slope value when compared with all Quito images. Visually, it also can be checked that in Sidney image the 
ACRM algorithm works properlly,  (Figure 10), but in Pedernales image the same is not true (Figure 11).  
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(a) 

 
                                  (b) 

Figure 9. Evaluation of ACRM algorithm in the Quito: a) Before apply ACRM; b) After apply ACRM. 

Table 2. Coefficient of Determination (R2) and Slope (α) obtained applying ACRM in other places. 

AREA 
PEDERNALES 

(PATH:11 ROW:60) 

SIDNEY  

(PATH:89 ROW:83) 

DATE 2016/05/13 2013/10/04 

BAND R2 Slope (α) R2 Slope (α) 

B2 0.67 0.69 0.97 1.70 

B3 0.68 0.68 0.99 1.63 

B4 0.67 0.62 0.98 1.68 

B5 0.67 0.52 0.98 1.74 

B6 0.63 0.44 0.99 1.11 

B7 0.53 0.58 0.98 1.02 
 

 
(a)  

                                      (b) 

Figure 10. Evaluation of ACRM algorithm in the original Sidney image: a) Before apply ACRM; b) After apply ACRM. 
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(a) 

 
                                 (b) 

Figure 11. Evaluation of ACRM algorithm in Pedernales: a) Before apply ACRM; b) After apply ACRM. 

4.2 Validating ACRM to calculate Environmental Indices 

In order to validate the application of ACRM algorithm over Quito, we compared the NDVI from a reference image 
(MODIS MOD13Q1), the original Landsat image with the NDVI computation and the same Landsat image, but 
considering the application of the ACRM algorithm. With the application of ACMR algorithm the results can be 
satisfactory in order to recover pixel data, considering that other algorithms use masks and can lose the pixel value under 
thin clouds. The validation was realized in a small area in Quito where is located the airport and can be detected visually 
with remote sensing images. The R2 between MODIS and the original Landsat 8 was 0.435, while the R2 between 
MODIS and Landsat 8 consider the ACRM algorithm was 0.436. Therefore, this result shows an insignificant difference 
of R2 in the retrieving of the environmental indices (NDVI).  

4.3 Improving ACRM algorithm 

Recognizing the contribution in the ACRM algorithm of the slope value, different slope values were tested in order to 
choose the best fitted in the region, considering only few changes considering the original algorithm values (1.988) 
obtained13. In this final consideration the Equation (5) shows how was applied the algorithm considering the slope 
change in order to improve and to know if this new conditions in slope value affects directly the quality of the results 
obtained.  

),( vux f
i  = { }[ ]),(min),(.9881-),( vucvucvuDN −     (5) 

Visually, the result shows a substantial improvement in the removal on thin clouds (Figure 12).  

 
            (a) 

 
(b) 

 
                         (c) 

Figure 12. a) Original Image; b) After apply ACRM algorithm; c) After ACRM algorithm Improved. 
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Also, the same method described in section 4.2 was considered here in order to validate the computation on NDVI in the 
new image after applied the ACRM algorithm (NDVI MODIS). The R2 value is higher, with a value around 0.504 
(Figure 13). 

 

Figure 13. Lineal regression between MODIS NDVI and NDVI computed in Landsat 8 image, ACRM and ACRM Improved. 

Improve the slope value in the ACMR algorithm allows to obtain better results and removal most of the thin clouds 
presented in the Landsat images. Also, was tested other images with the same slope values, but the results were the 
identical to those obtained in the original application of ACRM algorithm13.  

Accordingly, a simple modification in the slope of this algorithm improves in the data set to have a little bit better result 
in the final calculation of environmental indexes, having the challenge to try to find a way to improve the slope 
calculation in future studies. 

5. CONCLUSIONS 
The evaluation of ACRM algorithm in high elevation regions revealed that the ACRM algorithm cannot remove thin 
clouds in this kind of areas like Quito, Ecuador, considering that some factors like altitude and meteorological conditions 
can determine clouds presence during all the year. Accordingly, the application of the algorithm tries to remove thin 
clouds with the idea to don’t lose the data under clouds to consider sensors like Landsat 8 to obtain environmental 
indices as NDVI. Landsat was considered because it has a higher spatial resolution when compared to other sensors, but 
a lower temporal resolution (16 days) trying to take advantage of the data obtained in each visit of this sensor. The 
results show a performance in the application when is calculated NDVI in comparison with a reference data like MODIS 
NDVI, obtaining a R2 nearer to 1, but a low slope (nearer to 0). This final situation was to improve the algorithm finding 
the fittest slope to apply in this region, testing some slope values, considering that environmental indices can approach a 
reference. The point of view in future work is the question of what is the best way to obtain a fittest slope to improve this 

Proc. of SPIE Vol. 10428  1042809-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/7/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



algorithm and what is the fittest slope to each region around the world, considering that Cirrus band has a lot of 
possibilities to explain where the thin clouds are present. 
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ABSTRACT   

Most of the large cities have an air quality network to measure air pollution including PM10. However, air quality 
monitoring network has a high cost and it is spatially limited. Quito, capital of Ecuador, is a city with an automatic air 
quality network (REMMAQ) composed by 9 stations. The REMMAQ works since 2002, measuring PM10 only in 4 regular 
stations located at different points along the city. This scarce quantity of PM10 measures led us to propose a new strategy 
to obtain PM10 data in all the city. Several studies have already considered the retrieving of PM10 from remote sensing 
data in cities with an air quality network. In order to find an optimal model to retrieve PM10 in Quito, this study compare 
the use of 3 different satellite sensors (Landsat-7 ETM+, Landsat-8 OLI and TERRA/MODIS) between 2013 to 2017. 
Additional to remote sensing data, we also use field data considering the REMMAQ. In each sensor, we used different 
variables and environmental indexes to model the best fit equation to quantify PM10 in all the city, finding the significant 
variables for each type of data and year. The variables considered were the Normalized Difference Vegetation Index 
(NDVI), Land Surface Temperature (LST), Soil-adjusted Vegetation Index (SAVI), Normalized Difference Water Index 
(NDWI), Normalized Stability Index (NSI), surface reflectance Blue Band (B1), surface reflectance Green Band (B2) and 
surface reflectance Red Band (B3). These variables were considered because most of them are used in different studies 
combined with meteorological data. All the procedures were implemented in R Studio. The empirical models using remote 
sensing data/derived products and air quality data can help in retrieving air pollutants in large cities. This work is a valuable 
contribution for the study of the spatialization of PM10 in order to find new alternatives in the use of remote sensing data 
to support government decisions. 

Keywords: PM10, Landsat, MODIS, Air Quality, Quito 

 

1. INTRODUCTION  

One of the changes that Earth had suffered on its dynamic is the air quality, where human activities as car traffic, industries 
and other activities generate air pollution1. Air pollution includes gaseous and particulate contaminants considering the 
last as a problem in the respiratory human health2. The World Health Organization (WHO) claims that most people around 
the world are breathing air polluted, specifically particulate contaminants3. Within particulate contaminants, one of the 
most common is particulate matter of less than 10 microns (PM10). PM10 is a pollutant that can be measure by air quality 
station in the cities4. Most of the largest capital cities have an air quality monitoring network (AQMN) to measure air 
pollution including PM10. However, acquiring an air quality station can cost a lot of money and it results limiting to 
municipal governments5. Quito, the capital of Ecuador, is a city with an AQMN. Its name is Red Metropolitana de 
Monitoreo Atmosférico de Quito (REMMAQ) who is composed by 9 stations6. The REMMAQ works since 2002, where 
PM10 is measured only in some years by nine automatic stations. The low quantity of PM10 measures requires a different 
strategy to obtain data with more accuracy in all the city, especially in the urban part7. Several studies consider the 
retrieving of PM10 from remote sensing data in cities with an air quality network8–11. In the case of Quito, a previous study 
shows good results with Landsat-7 images8.  Other studies around the world used Landsat-8 and Moderate Resolution 
Imaging Spectroradiometer (MODIS) data using empirical models 9–11. In the case of empirical models to retrieve air 
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quality data from remote sensing data, some of the environmental indexes are computed in order to retrieve PM10. The 
multiple linear regression (MLR) considering the visible bands is one of the most frequently method applied to estimate 
air quality with remote sensing data12. Nevertheless, due to this methodology cannot treat intercorrelated variables and 
missing data13, a Partial Least Square (PLS) methodology can be used in order to analyze the collinearity between spatial 
data14.     
In order to find an optimal and accuracy model to retrieve PM10 in Quito, this study compare three different remote sensing 
data (Landsat 7 ETM+, Landsat 8 OLI and TERRA/MODIS) between 2013 to 2017. Where, additional to remote sensing 
data, the use of field measurements is important considering the REMMAQ. The model proposed is built considering a 
PLS Regression15. 

2. STUDY AREA AND DATA 

2.1 Study area 

Quito is the capital of Ecuador. It is a city with some air pollutions problems, as many cities around the world. One of this 
air pollution problems is the car traffic16. Quito is located above equatorial line, in the middle of Andean regions in South 
America17, where, the meteorological conditions can strongly influence the air quality. For this project, the study area is 
centered in the urban region in Quito, where the REMMAQ stations are presented (Figure 1). 

  

Figure 1. Study area location (Quito, Ecuador). The black points are the REMMAQ Stations. The red polygons are the districts or 
“parroquias”. Most of the stations are located in the urban area. 

 

2.2 Data collection 

About the remote sensing data, three satellite sensor data were used (Landsat-7 ETM+, Landsat-8 OLI and 
TERRA/MODIS) between 2013 to 2017 (Figure 2). The images were obtained from Earth Explorer website18. These 
images are open access and freely download. In the case of Landsat data, it was chosen considering the spatial 
resolution19,20 (30 m) and also because most of the similar studies around the world use this type of data. On the other 
hand, MODIS was selected considering the temporal resolution and the availability of ready products to use21. Only images 
with less than 10% clouds in the study area were considered. A total of approximately 30 images for each sensor was 
considered. In all the data the surface reflectance ready products were used.  
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In order to compute a mathematical empirical model, the air quality data was obtained by REEMAQ stations considering 
the same period of remote sensing data (2013 – 2017). The data were downloaded from Secretaria del Ambiente Website22. 
Unfortunately, just three stations have PM10 measures during all the studied period. These data are public.   

(a) (b) 

 
(c) 

 

Figure 2. Example of images used to compute the PM10 model in the study area (Red color polygons): (a) Landsat-7 ETM+; (b) 

Landsat-8 OLI; (c) MODIS 
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3. METHODOLOGY 

In order to generate a model to retrieve PM10, remote sensing data and field air data were considered. Firstly, database 
containing the most adequate satellite bands (visible, NIR, SWIR bands), some environmental indexes and PM10 
measurements was built. With this database, PLS regression was applied in order to compute the empirical models to each 
sensor. Finally, the models were applied in the images and the PM10 was retrieving and mapped (Figure 3). 
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Figure 3. Methodology workflow. 

The surface reflectance data from Blue, Green, Red, Near Infrared (NIR) and Short-wave infrared (SWIR) bands were 
extracted from each image. Besides, some of the most common environmental indexes as Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Soil Index (NDSI), Soil-Adjusted Vegetation Index (SAVI), 
Normalized Difference Water Index (NDWI) and Land Surface Temperature (LST) were used in this study as independent 
variables. A point shapefile with the location of REMMAQ stations was used to extract the raster values. The ArcGIS 10.5 
with Extract Multi values to points tool was used to extract the data in each station23.  

3.1 Surface reflectance data 

The Blue, Green, Red, NIR and SWIR Bands were extracted from each sensor. These variables are used because most of 
the studies in similar regions prove to be a relation between visible and infrared data with PM108,24–26. Moreover, the 
aerosol optical thickness (AOT) or aerosol optical depth (AOD) is a measurement of the aerosols, where PM10 can be 
contained27. The AOT shows how the atmosphere reflects and absorbs visible and infrared light28. 

Landsat program has acquired land surface data since 1972. Nowadays, Landsat-7 and Landsat-8 are operational, obtaining 
visible, infrared and thermal data in a middle spatial and temporal resolution29. In order to use surface data and computing 
environmental indexes, the Landsat surface data Level-2 were download to each image. The advantage of Level-2 is to 
have data ready to use with all the corrections applied (Geometric, radiometric and atmospheric corrections)30,31.  
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MODIS sensor is presented in Terra and Aqua satellites. Its uses are in the land surface observation, aerosol detecting, etc. 
An advantage of this satellite is to have ready products (Geometric, radiometric and atmospheric corrections) as surface 
bands (MOD09)32,33 and some environmental indexes. MODIS has 36 bands and a high temporal resolution. 

3.2 Normalized Difference Vegetation Index (NDVI) 

The NDVI is an environment index that allowed to obtain information about the greenest vegetation, using Red and NIR 
bands34. In order to consider the influence of vegetation over PM10 in the urban areas35, the NDVI was computed to 
Landsat-7 and Landsat-8 data, as shown in Equation (1). 

���� = ���	�
�
�����
� (1) 

On the other hand, MOD13Q136 product was used to get NDVI data from MODIS. This product has a 250 m of spatial 
resolution. The pixel data were multiplied by 0.000136. 

3.3 Normalized Difference Soil Index (NDSI) 

The NDSI index was computed considering surface reflectance data. It identifies zones where built areas are presented37. 
NDSI is computed by Equation (2). 

��� = ����	���
�������� (2) 

3.4 Soil-Adjusted Vegetation Index (SAVI) 

The SAVI is an improvement of NDVI, where a soil correction factor is introduce to prevent the reduction of difference 
in Red and NIR of the canopy by background soil38, as shown in Equation (3). 

��� = �1 + �� ���	�
�
�����
��� (3) 

Where, L value is 0.5, considering that the change in soil brightness is minimal. 

3.5 Normalized Difference Water Index (NDWI) 

The NDWI maximizes the reflectance of water by using Green and NIR bands (surface reflectance). The aim is to build a 
model with water consideration39. It is expressed as shown in Equation (4). 

���� = ��

�	���
��

����� (4) 

3.6 Land Surface Temperature (LST) 

In order to compare PM10 with meteorological data, the LST was obtained from thermal bands by Inversion of Planck’s 
function40 in order to become a variable in the model. The LST is in Kelvin degrees. Converting to Celsius degrees requires 
to subtract 273.15 value.  LST computation is described by equation (5). 

�� = ��
�����∗ !" #$%&# (5) 

Where, BT is the brightness temperature obtained from Landsat Level 2 products. λ is the center wavelength (Landsat-7 = 
11.45 μm, Landsat-8 = 10.8 μm)41, ρ is the a constant obtained as Equation (6) and ε is the emissivity as Equation (7). 

' = (∗)
* (6) 

Where, h is the Planck’s constant (6.626e-34 Js), c is the velocity of light (2.998e8 m/s) and s is the Boltzmann constant 
(1.38e-23 J/K). 

Furthermore, the emissivity is a variable required to compute LST. It is defined as the efficiency with a surface emits heat 
as Thermal Infrared (TIR) radiation42. The algorithm showed by Equation 7 considered a semi-empirical method where 
the variations of NDVI in the vegetation (NDVIv) and soil (NDVIs) are important43. In order to choose the item in the 
Equation 7, the NDVI should be analyzed in the study area. 
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+ = , +*, ���� < ����*+* + �+0 − +*�23 , ����* ≤ ���� ≤ ����0+0, ���� > ����0
     (7) 

Where, εs represents the emissivity for soil considering in this study a value of 0.973. εv is the emissivity for vegetation 
considering a value of 0.98544 and Pv is the proportion of vegetation in the area, which is computed by Equation 8, using 
the NDVI. 

23 = � ��3�	��3�6��3�7	��3�6#8
      (8) 

NDVIv and NDVIs were 0.2 and 0.5 values, respectively, used in Equation 843. 

MOD11A2 is the product used to retrieve LST in MODIS sensor. Its pixel size is 1000 meters. The scale factor used to get 
LST was 0.0245. 

3.7 Air Quality Measurements 

PM10 measurements were obtained from REEMAQ Stations. The REEMAQ works since 2002 with automatic stations. 
The stations measure some air pollutants as CO, SO2, NOx, O3, PM2.5 and PM10 in an hourly basis. One of the major 
challenges was to retrieve the PM10 data from stations because we found them only in some years and in ten stations 
(Table 1).  

Table 1. PM10 Semmianual median by each REEMAQ Station founded between 2013 – 2017 

REEMAQ Station Years data 
PM10 Semmianual median 

(μg/m3) 
Belisario 2013 – 2016 31.9 

Carapungo 2013 – 2017 84.1 

Cotocollao 2013 – 2014 33.8 

El Camal 2013 60.9 

Guamaní 2013 – 2017 40.1 

Jipijapa 2014 – 2016 58.8 

Los Chillos 2013 – 2016 27.3 

San Antonio 2017 54.6 

Tababela 2013 – 2016 35.8 

Tumbaco 2013 - 2017 42.9 

 

Due to the few quantities of PM10 field data, the semiannual median was used to build the variable database. In this 
database was considered remote sensing data, PM10 field measurements, and additional data as Season (Season 1 January 
to June or Season 2 July to December) and Year. Moreover, the PM10 semiannual medians data were obtained with hourly 
data measurements. The hourly data collected were between 10:00 to 11:00 (GMT-5) in each station according to the time 
when Landsat-8 acquires data. 

A PLS regression was employed in order to predict the dependent value (PM10) from a set of predictors. This technique 
is used to handle a possible multicollinearity. Likewise, PLS regression can be used when standard regression methods 
fail, and we have multiple data collected on the same observations15. R studio was the software used to compute PLS 
regression, considering the package pls and plsdepot. 

4. RESULTS AND DISCUSSION 

The final semiannual tables generated to each sensor contains 29 observations for Landsat-7, 53 observations for Landsat-
8 and 59 observations for MODIS. Applying the PLS technique in each semiannual data table, the first part was to analyze 
the number of components in the model. The aim of PLS is to explain the variance model with the less quantity of 
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components (Figure 4). In the case of Landsat-7 and Landsat-8 was considered 10 components to explain the model 
variance. On the other hand, MODIS considered 12 components in the PLS model.   

 

   

(a) (b) (c) 

Figure 4. Explained Variance Vs. Number of components in PLS Regression (a) Landsat-7; (b) Landsat-8; (c) MODIS 

In order to choose the fittest model, the R2 was analyzed, for each sensor (Figure 5). For Landsat-7 was founded a value 
of 0.41, for Landsat-8 a value of 0.72 and for MODIS a value of 0.28. Considering the R2 values obtained to retrieve PM10, 
the fittest model is considering Landsat-8 (Figure 5).     

   

(a) (b) (c) 

Figure 5. Coefficient of Determination with components (R2) (a) Landsat-7; (b) Landsat-8; (c) MODIS 

The model validation was done with a comparison between predicted vs. measured PM10 (Figure 6) and a histogram of 
residuals (Figure 7), where the model considered in the linear equation fittest is the Landsat-8 model. Additionally, in the 
Landsat-8 model the residual shows a trend of a normal distribution with residual values until 20 µg/m3.  

   

(a) (b) (c) 

Figure 6. Predicted values Vs. Measured values (a) Landsat-7; (b) Landsat-8; (c) MODIS 
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In the models is evident the multicollinearity (vectors that follow the same direction and magnitude). Therefore, 
plotting individual factor scores, allows to identify the most relevant variables in projection of the information over 
the new latent variables. These new variables (all Comps), however, contains information for variance in dependent 
variable that will be used later to model its behavior taking the information from the components considering a 
regression equation (Figure 8). 

   

(a) (b) (c) 

Figure 7. Histogram of residuals (a) Landsat-7; (b) Landsat-8; (c) MODIS 

   

(a) (b) (c) 

Figure 8. Biplot of data used in PLS regression (a) Landsat-7; (b) Landsat-8; (c) MODIS 

PLS regression, in fact, used correlated variables information to create new “variables” called components that are 
uncorrelated, increasing the reliability of the model. In the three sensors, we can see that the first component gives the 
most percentage of variance explication (Figure 9). 

The Equation 9 shows the final model, where the remotes parameters were taken as independent variables.  

2910 = � + ;���� − <�� − =��� + >���� − ?�� − @A − BC + ℎE + F� + G� + HIJ�E − K  (9) 

Where, I is the intercept, B is the blue band, G is the green band, R is the red band, N is the NIR band, SW is the SWIR 
band, s is the season, a, b…, l are the coefficients to each independent variable. 

The values of intercept and coefficients were computed with PLS (Table 2) to each sensor. The fittest equation was 
obtained for Landsat-8 with the highest R2 value (0.74). 
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(a) (b) (c) 

Figure 9. Components loadings on variables (X matrix) (a) Landsat-7; (b) Landsat-8; (c) MODIS 

Table 2. Model coefficients (considering Equation 9)  

Coefficient Landsat-7 Landsat-8 MODIS 

Intercept (I) -6385.47 -3327.619 -97.9388 

NDVI - a -137.7962 255.9988 8.4164 

NSI - b 55.7566 -13.3961 174.1538 

SAVI - c 31.0459 -236.1787 44.3324 

NDWI - d -62.9931 13.3961 57.7680 

LST - e 0.6050 -1.6362 0.5463 

BAND_BLUE - f -0.0680 -0.0477 0.0936 

BAND_GREEN - g 0.1531 -0.0408 -0.0746 

BAND_RED - h -0.0908 0.0735 0.0000089 

BAND_NIR - i 0.0378 0.0082 0.0000005 

BAND_SWIR - j -0.0176 0.0048 0.0000004 

YEAR - k 3.1807 1.6918 0.0632 

SEASON - l -6.9296 -3.8854 -8.6446 

R2 0.41 0.74 0.28 

 

Applying the model presented in Equation 9 to the Landsat-8 images (Figure 10), the resulting raster shows the PM10 
concentration in all the study area for the image date.  

The limitation of the PM10 algorithm is directly related to the images quality (clouds), images availability and PM10 field 
measurements. In the case of Quito, most of the images have more than 20% of clouds and the REEMAQ stations are not 
constant during the study time. This was the main reason why we choose semiannual medians to input variables in the 
model. One of the main innovations of this work is the consideration of Landsat-8 images (30 images). It is the higher 
difference with other similar studies around the world where the R2 obtained in these models is lower and uses less quantity 
of data10,46. In some studies, meteorological ground data47 are also used to retrieve PM10 , but these variables are too 
difficult to obtain. Other studies uses only MODIS products to retrieve PM1048,49, but this sensor has a low spatial 
resolution, which can be a limitation. In addition, in this work, the PLS regression was chosen to avoid a possible 
correlation between the independent variables.  

In order to retrieve PM10 in Quito between 2013 – 2017, the Landsat-8 model can be used to obtain better results than 
other sensors as Landsat-7 or MODIS. The reasons can be: (1) the image quality in comparison with Landsat 7 SLC-off50; 
(2) the higher spatial resolution. This model can be applied to all the images between 2013 to 2017, generating new PM10 
concentration maps that could be used for the governmental authorities to take decisions. 
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Figure 10. Landsat-8 PM10 retrieved (20/09/2018). 

5. CONCLUSIONS 

In this study, three satellite sensors were considered in order to retrieve PM10 from remote sensing data, in Quito, Ecuador. 
The evaluation showed than Landsat-8 images give the fittest model (R2 = 0.74) in comparison with Landsat-7 (R2 = 0.41) 
and MODIS (R2 = 0.28). PLS regression was used to compute the models to retrieve PM10. This is a robust technique that 
discompose the original predictors values in components. Its results are useful when just a few PM10 field 
measurements/observations are available in different periods. The model was applied in all the Landsat-8 images between 
2013 to 2017 available in the dataset, showing the behavior of PM10 during this period. Also, using the model proposed 
in this study is possible to find a possible relation with respiratory diseases cases in some places in Quito. As a future work, 
the work will use more regression techniques to improve the results. 
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ABSTRACT   

Several studies have demonstrated that air quality and weather changes have influence in the prevalence of chronic 

respiratory diseases. Considering this context, the spatial risk modeling along the cities can help public health programs in 

finding solutions to reduce the frequency of respiratory diseases. With the aim to have a regional coverage and not only 

data in specific (point) locations, an effective alternative is the use of remote sensing data combined with field air quality 

data and meteorological data. During the last years, the use of remote sensing data allowed the construction of models to 

determine air quality data with satisfactory results. Some models using remote sensing based air quality data presented 

good levels of correlation (R2 > 0.5), proving that it is possible to establish a relationship between remote sensing data and 

air quality data.  

In order to establish a spatial health respiratory risk model for Quito, Ecuador, an empirical model was computed 

considering data between 2013 and 2017, using the median data values in each parish of the city. The variables are: i) 46 

Landsat-8 satellite images with less than 10% of cloud cover and some indexes (normalized difference vegetation index 

NDVI, Soil-adjusted Vegetation Index SAVI, etc.); ii) air quality data (nitrogen dioxide - NO2, Ozone - O3, particulate 

matter less than 2.5μm - PM2.5 and sulfur dioxide - SO2) obtained from local air quality network stations and; iii) the 

hospital discharge rates from chronic respiratory diseases (CRD). In order to establish a probability model to get a CRD, 

a logistic regression was used. The empirical model is expressed as the probability of occurrence during the studied time. 

All the procedures were implemented in R Studio. The methodology proposed in this work can be used by health and 

governmental entities to access the risk of getting a respiratory disease, considering an application of remote sensing in 

the environmental and health management programs.  

 

Keywords: Landsat-8, Quito, Air quality, health respiratory risk, logistic regression model 

 

1. INTRODUCTION  

According to the World Health Organization (WHO), more than 3 million of people have died every year by a chronic 

respiratory disease (CRD). The CRDs deaths represent approximately 6% of global annual deceases1. The CRDs are 

diseases of the airways where the most common are asthma, chronic obstructive pulmonary disease (COPD), among others. 

The principal risk factors are the tobacco smoke, air pollution in the cities, occupational chemicals and dust, and frequent 

lower respiratory infections during childhood2. Regarding this, the study of environmental parameters is important 

considering the direct and indirect relationship between the climate, the environment and the respiratory health3. Thus, one 

of the alternatives to obtain environmental and climate variables is considering remote sensing (RS) data. These data can 

provide information related to vegetation, urban land use, temperature, retrieve air pollutants and others4–6. Regarding this, 

several studies show an increment in the use of RS in health studies7,8. These studies involve infectious disease epidemics 

and others CRDs, as asthma9,10.  

In the case of use RS data, the most common satellite are from Landsat program and Terra/Aqua Moderate Resolution 

Imaging Spectroradiometer (MODIS), considering that they are free and easy to download. Typically, the use of RS is 

related to parameters of vegetation, soil use and climate. Some of the most used indexes are: normalized vegetation 
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difference index (NVDI), enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), land surface 

temperature (LST) and others11–14. On the other hand, the air pollution has a big influence into the probability to get a 

CRD. The most common air pollutants are measured in the cities by an automatic air quality network (AQMN). The 

AQMN measures particulate matter (PM), tropospheric ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2) and 

others. They are implemented in order to establish a monitoring system in the cities, considering that these air pollutants 

have a high influence in the incidence in some CRDs and other diseases 15–18. In order to establish a model to relate health 

data and other variables, a logistic regression is implemented, considering environmental variables are part of the predictor 

variables19,20. The aim is to find what are the most common independent variables that have the highest probability to be 

related to CRDs.  

In this preliminary study, we compute a model to estimate CRDs in Quito, Ecuador. In order to build the model, we use 

RS, environmental data and hospital discharge rates (HDR) from CRDs as entry with a logistic regression. The result 

shows us probability maps from the logistic regression model, where people can see if their zones have or not have a big 

probability in base to the built model. The idea is to find new alternatives to use RS data in different regions in order to 

have additional possible health related answers. 

 

2. METHODOLOGY 

2.1 Study area 

The study area of this work is the city of Quito, Ecuador. The project area is focused on the urban zone, under the influence 

of AQMN stations and where most of the people live. In the study area, the considered zones are the parishes or 

“parroquias” as the unit, because of the availability of hospital discharge rates only at this level of information (Figure 1). 

Quito is located in the middle of Andean region with a middle latitude, having a constant temperature during all the year. 

The mean Quito altitude is about 2800m amsl. 

  

Figure 1. Study location (Quito, Ecuador). The green polygons are the parishes or “parroquias” and the yellow points are the AQMN 

stations. The base image is a Landsat-8 OLI from 20/09/2017. 
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2.2 Methodology 

The challenge of the study is to compute a risk for CRDs (predictive model), considering the RS and environmental data 

(air pollution) as input in the model (independent variables) between 2013 to 2017. Thus, a final table where are matched 

the RS, the air pollution parameters and the hospital discharge rates data (Table 1) is established, with the objective to 

build a final model and show the spatial distribution. The general methodology is showed in the Figure 3. 

 

Figure 3. Summary methodology workflow. 

Table 1. Input model variables 

Data type Variable Units 

Remote Sensing 

Band 1 – Coastal aerosol (B1) 

Band 2 - Blue (B2) 

Band 3 – Green (B3) 

Band 4 – Red (B4) 

Band 5 – Near Infrared NIR (B5) 

Band 6 – Short-wave infrared SWIR 1 (B6) 

Band 7 – Short-wave infrared SWIR 2 (B7) 

NDVI 

SAVI 

EVI 

LST 

Surface reflectance 

(Landsat 8 – Level 2) 

Environmental data - Air 

pollution 

PM2.5 

SO2 

O3 

NO2 

µg/m3 

Hospital discharge rates CRDs admission rate (per 10,000) (NS) 
Hospital discharge rates divided per 

population 
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2.3 Extracting remote sensing variables 

Three classes of variables are chosen in this study (RS, AQMN data and HDR) between 2013 to 2017. Considering the RS 

data, forty six Landsat-8 Level-221 images are used in the study. These images are geometric, radiometric and atmospheric 

corrected22. They were downloaded from Land Satellites Data Systems Science Research and Development (LSRD) 

(https://espa.cr.usgs.gov/). The available download products are: (i) land surface reflectance bands from the Operational 

Land Imager (OLI) sensor; (ii) some environmental indexes already computed (NDVI, SAVI, EVI) and; (iii) the brightness 

temperature (BT). Moreover, we contemplate only images with less than ten percentage of cloud cover in the study area, 

considering that Quito is a city with a high cloud density during all the year, and so some methods to remove clouds have 

been applied in order to recover some image data13,23. 

The RS variables used as predictor are the surface reflectance and some environmental indexes. In the case of the surface 

reflectance, the variables are B1, B2, B3, B4, B5, B6 and B7. The reason to consider them is the high relationship between 

the OLI bands and air pollution5,24–27. On the other hand, we use some environmental indexes as NDVI, SAVI and EVI. 

They are used because they have a high relationship with the vegetation type and coverage and the land use. Moreover, in 

order to have a climate variable, the LST is computed. It is computed from the BT by Inversion of Planck’s function28 as 

presented in the Equation 1.  

𝐿𝑆𝑇 =
𝐵𝑇

(1+(
𝜆∗𝐵𝑇

𝜌
)𝑙𝑛𝜀)

      (1) 

Where, λ is the center wavelength (Landsat-8 = 10.8 μm)29, ρ is the a constant (Equation 2) and ε is the emissivity (Equation 

3). 

𝜌 =
ℎ∗𝑐

𝑠
       (2) 

Where, h is the Planck’s constant (6.626e-14 Js), c is the velocity of light (2.998e-8 m/s) and s is the Boltzmann constant 

(6.626 e-34 J/K). 

The emissivity (ε) is the efficiency with a surface emits heat as Thermal Infrared (TIR) radiation30. The Equation 3 is a 

semi-empirical algorithm where the variations of NDVI in the vegetation (NDVIv) and soil (NDVIs) are considered31.  

𝜀 = {

𝜀𝑠, 𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑠

𝜀𝑠 + (𝜀𝑣 − 𝜀𝑠)𝑃𝑉 , 𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣

𝜀𝑣 , 𝑁𝐷𝑉𝐼 > 𝑁𝐷𝑉𝐼𝑣

     (3) 

Where, εs is the emissivity for soil (0.973). εv is the emissivity for vegetation (0.985)32. Pv is the proportion of vegetation 

in the study area (Equation 4), where NDVIv and NDVIs are 0.2 and 0.531. 

𝑃𝑉 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣−𝑁𝐷𝑉𝐼𝑠
)

2

      (4) 

With the forty-six Landsat-8 Level 2 images, we extract a median pixel value in each parish every month from the RS 

variables. The extraction considers a previous analysis, where the pixels with clouds are not considered in order to obtain 

the median value. This is done considering the Landsat-8 thin cloud band (B9). All the extraction and computation process 

were performed with R software. The final output is a medium RS data monthly table.  

 

2.4 Air Quality Measurements 

On the other hand, the collected data from AQMN are air daily measures. The AQMN in Quito is the “Red Metropolitana 

de Monitoreo Atmosférico de Quito” (REMMAQ)33. It is working since 2002 and it is composed by nine monitoring 

stations in some city zones (Figure 1). REMMAQ stations get meteorological and air pollution variables. In our case, we 

consider the main air pollutions related to respiratory health. They are particulate matter less than 2.5 microns (PM2.5), 

SO2, O3 and NO2. The data is available in “Secretaria del Ambiente” page 

(http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos). All the process to normalize the data 

was realized on R software, where we choose a median value between each month and parish in order to match with RS 

and HDR data in a unique input data table. The inverse distance weighted (IDW) method was applied to build the raster 

data to extract each variable by parish.  
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2.5 Hospital discharge rates (HDR) 

Finally, the CRDs admission rates are obtained from “Instituto Nacional de Estadisticas y Censos” (INEC). INEC provides 

this data from 2012 to 2017 in each parish, based in the International Classification of Diseases 10 (ICD-10) from the 

WHO34. The HDR data can be downloaded from INEC web page (http://www.ecuadorencifras.gob.ec/camas-y-egresos-

hospitalarios/). In order to have only the CRDs admission rates, we filter the INEC tables selecting the cases of chronic 

lower respiratory diseases (ICD-10 codes: J40 – J47) per month and parish. Furthermore, we also collect the population 

data from INEC in order to obtain the HDR per 10000 people. With this new computed variable, we generate the binomial 

dependent variable to be modeled. This was done considering a cutoff in a main break value in the analysis of the histogram. 

The final HDR data is showed in a binomial variable (0 or 1) per month, year and parish. 

 

2.6 CRDs risk modeling 

In order to compute the model, the technique employed was the multiple logistic regression. This method needs a binomial 

variable as dependent variable. Several health studies use the logistic regression to established probability models35, 

considering some predictors to analyze if they have or not relationship with the binomial dependent variable (0 or 1), which 

is a classification variable. 

The Equation 5 shows the model considering all variables.  

PS =
1

1+𝑒−(I+a∗B1 + b∗B2 + c∗B3 + d∗B4 + e∗B5 + f∗B6 + g∗B7 + h∗NDVI + i∗SAVI + j∗EVI + k∗LST + l∗NO2 + m∗O3 + n∗PM2.5 + o∗SO2) (5) 

Where, a,b,…,o are coefficients computed from the multiple logistic regression from the independent variables, I is the 

intercept and PS is the probability to have or not a CDRs. 

Nevertheless, the objective is to build the simplest model with few predictors, thus, the backward stepwise selection method 

was applied to obtain the model with less variables through the lowest Akaike information criterion (AIC). Moreover, the 

final process is to analyse if the model with the lowest AIC has correlation variables, specifically the RS variables. If they 

have correlation, only a variable is selected between them in order to establish the final model and to elaborate the risk 

maps. 

3. RESULTS AND DISCUSSION 

The final monthly parish data table is the result of combining 892 observations from RS, air pollution and HDR data 

between 2013 to 2017. Considering the requirement to have a binomial dependent variable, the HDR histogram was 

analyzed (Figure 4) in order to define a cutoff value. A cutoff value of 0.35 HDR per 10000 people was them selected. It 

means if the HDR per 10000 people have a value less than 0.35, it takes the value 0 and, if the value is more than 0.35, it 

takes a value 1 (Table 2). In this aspect, we consider a parish with less than 0.35 HDR per 10000 people without sick 

people. 

Thus, the model is built considering a multiple linear regression, where the backward stepwise selection gives a new model 

with the lowest AIC value. The Equation 6 shows the new model with 8 independent variables as predictors, where most 

of them are RS variables related to vegetation and soil use. 

𝑃(𝑌 = 1) =
1

1+𝑒−(I+a∗B1 + b∗B2+d∗B4+f∗B6+ h∗NDVI + i∗SAVI + j∗EVI+ o∗SO2)   (6) 

On the other hand, considering the evaluation of multicollinearity in Equation 6, where some of the predictors have a high 

correlation value (near to 1), they are discarded in the final model36. For example, the B1, B2 and B4 are the same variables 

according to the correlation graphic. In this case, we used only a variable (B2) considering the relationship of blue band 

with humidity and it possible relationship with CRDs37. The rest of them were discarded in the final model. Another group 

of variables to discard is between NDVI, SAVI and EVI, where NDVI was selected according to the importance of this 

variable in most of the studies.  
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Figure 4. Histogram of CRDs admission rate per 10000 people. The red line is the cutoff value to define the binomial variable 

(0.35). 

Table 2. Definition of new binomial variable considering a cutoff value 

Category – Binomial value Number of observations % of observations 

0 (NS < 0.35) 589 66 

1 (NS > 0.35) 303 44 

Total 892 100 

 

 

Figure 5. Correlation graphic. Most of the RS variables have a high correlation value.  
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The Equation 7 presents the final model considering the correlation analysis (Figure 5). The final predictors are B2, B6, 

NDVI and SO2, meaning that only three RS variables and one air pollution variable entry in the final model. 

𝑃(𝑌 = 1) =
1

1+𝑒−(I+b∗B2 + f∗B6 + h∗NDVI + o∗SO2)     (7) 

In the evaluation of parameters (Table 3), we see that the more significative variables are SO2 and B6, meaning that the 

probability to get a CRDs with this data are in areas with a high response of the short-wave infrared. Some authors relate 

the infrared with the presence of O3
5,38 and O3 with the presence of CRDs16,19. On the other hand, the SO2 is related with 

asthma in some recent studies as a risk factor39,40. 

Table 3. Final model parameters 

Variable 
Coefficients - 

Estimate 
Significance Odds ratio (OR) 

Intercept (I)  2.53030 0.006 12.557 

B2 b = -6.04123 0.601 0.0024 

B6 f = -7.62867 0.061 0.0004 

NDVI h = -1.42922 0.219 0.2395 

SO2 o = -0.21053 0.000 0.8101 

 

The final model is evaluated in a relative operating characteristic (ROC) curve with an area under the curve (AUC) of 

0.609. This suggests a probability of 61% of correctly classifying between the two classes (having CRDs or not having a 

CRDs) 41,42. 

 

Figure 6. AUC of the final model 

Finally, the logistic model is represented over monthly maps in order to compare what can be the risk to get CRDs according 

to color levels (Figure 7), where red is a high risk and blue low risk. In this case, the final maps are created with a spatial 

resolution of 30 meters, considering the Landsat-8 bands and environmental indexes computed by IDW. Thus, we have 

maps with a medium resolution in order to know the probability to get a CRD with more accuracy if it is combined with 

other spatial information as roads, hospital locations, etc. For example, on Figure 7 maps, we have more probability to get 

CRDs in regions with more road density and less probability in regions with more green area. 
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Figure 7. Probability maps to get CRDs in base to the final model computed. On the left the map in September 2013. On the right, 

the map in September 2015. 

4. CONCLUSIONS 

This preliminary study investigates a possible relationship between remote sensing, environmental variables and hospital 

discharge rates by chronic respiratory diseases in Quito, Ecuador. The model established uses a multiple logistic regression 

considering parishes where it is possible the presence of a sick people by a chronic respiratory disease. The results show a 

model with four variables; where three of them were obtained by remote sensing and one by air quality measures. The 

most significant variables are the short-wave infrared or band 6 in Landsat-8 and sulfur dioxide (SO2). Moreover, the AUC 

of the model was 0.609. Considering this model evaluation, we generated risk maps. This kind of models can be an 

interesting alternative tool to health authorities in order to evaluate the public health with remote sensing variables. 
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