1,533 research outputs found

    Influence of EEG tonic changes on Motor Imagery performance

    Full text link
    © 2017 IEEE. In Motor Imagery literature, performance predictors are commonly divided in four categories: personal, psychological, anatomical and neurophysiological. However these predictors are limited to inter-subjects changes. To overcome this limitation and evaluate intra-subjects performance, we tried to combine two groups of these measures: psychological and neurophysiological. As neurophysiological variables tonic changes in resting EEG theta and alpha sub-bands were considered. As psychological parameter we analyzed internalized attention and its correlates in lower alpha. We found that when internalized attention doesn't decrease, Motor Imagery performance outcome can be correctly predicted by resting EEG tonic variations

    Influence of positive emotion on probabilistic learning : an experimental approach

    Get PDF

    Linear and non linear measures of pupil size as a function of hypnotizability

    Get PDF
    Higher arousal and cortical excitability have been observed in high hypnotizable individuals (highs) with respect to low hypnotizables (lows), which may be due to differences in the activation of ascending activating systems. The present study investigated the possible hypnotizability-related difference in the cortical noradrenergic tone sustained by the activity of the Locus Coeruleus which is strongly related to pupil size. This was measured during relaxation in three groups of participants—highs (N = 15), lows (N = 15) and medium hypnotizable individuals (mediums, N = 11)—in the time and frequency domains and through the Recurrence Quantification Analysis. ECG and Skin Conductace (SC) were monitored to extract autonomic indices of relaxation (heart interbeats intervals, parasympathetic component of heart rate variability (RMSSD) and tonic SC (MeanTonicSC). Most variables indicated that participants relaxed throughout the session. Pupil features did not show significant differences between highs, mediums and lows, except for the spectral Band Median Frequency which was higher in mediums than in lows and highs at the beginning, but not at the end of the session.Thus, the present findings of pupil size cannot account for the differences in arousal and motor cortex excitability observed between highs and lows in resting conditions

    The microstructure of REM sleep: Why phasic and tonic?

    Get PDF
    Rapid eye movement (REM) sleep is a peculiar neural state that occupies 20-25% of nighttime sleep in healthy human adults and seems to play critical roles in a variety of functions spanning from basic physiological mechanisms to complex cognitive processes. REM sleep exhibits a plethora of transient neurophysiological features, such as eye movements, muscle twitches, and changes in autonomic activity, however, despite its heterogeneous nature, it is usually conceptualized as a homogeneous sleep state. We propose here that differentiating and exploring the fine microstructure of REM sleep, especially its phasic and tonic constituents would provide a novel framework to examine the mechanisms and putative functions of REM sleep. In this review, we show that phasic and tonic REM periods are remarkably different neural states with respect to environmental alertness, spontaneous and evoked cortical activity, information processing, and seem to contribute differently to the dysfunctions of REM sleep in several neurological and psychiatric disorders. We highlight that a distinctive view on phasic and tonic REM microstates would facilitate the understanding of the mechanisms and functions of REM sleep in healthy and pathological conditions.info:eu-repo/semantics/publishe

    Angular gyrus connectivity at alpha and beta oscillations is reduced during tonic pain - Differential effect of eye state

    Get PDF
    The angular gyrus (AG) is a common hub in the pain networks. The role of the AG during pain perception, however, is still unclear. This crossover study examined the effect of tonic pain on resting state functional connectivity (rsFC) of the AG under eyes closed (EC) and eyes open (EO). It included two sessions (placebo/pain) separated by 24 hours. Pain was induced using topical capsaicin (or placebo as control) on the right forearm. Electroencephalographic rsFC assessed by Granger causality was acquired from 28 healthy participants (14 women) before (baseline) and 1-hour following the application of placebo/capsaicin. Subjects were randomly assigned and balanced to groups of recording sequence (EC-EO, EO-EC). Decreased rsFC at alpha-1 and beta, but not alpha-2, oscillations was found during pain compared to baseline during EC only. For alpha-1, EC-EO group showed a pain-induced decrease only among connections between the right AG and each of the posterior cingulate cortex (PCC, P = 0.002), medial prefrontal cortex (mPFC, P = 0.005), and the left AG (P = 0.023). For beta rsFC, the EC-EO group showed a bilateral decrease in rsFC spanning the connections between the right AG and mPFC (P = 0.015) and between the left AG and each of PCC (P = 0.004) and mPFC (P = 0.026). In contrast, the EO-EC group showed an increase in beta rsFC only among connections between the left AG and each of PCC (P = 0.012) and mPFC (P = 0.036). No significant change in the AG rsFC was found during EO. These results provide insight into the involvement of the AG in pain perception and reveal methodological considerations when assessing rsFC during EO and EC
    • …
    corecore