2,869 research outputs found

    Correcting Spacecraft Jitter in Hirise Images

    Get PDF
    abstract: Mechanical oscillations or vibrations on spacecraft, also called pointing jitter, cause geometric distortions and/or smear in high resolution digital images acquired from orbit. Geometric distortion is especially a problem with pushbroom type sensors, such as the High Resolution Imaging Science Experiment (HiRISE) instrument on board the Mars Reconnaissance Orbiter (MRO). Geometric distortions occur at a range of frequencies that may not be obvious in the image products, but can cause problems with stereo image correlation in the production of digital elevation models, and in measuring surface changes over time in orthorectified images. The HiRISE focal plane comprises a staggered array of fourteen charge-coupled devices (CCDs) with pixel IFOV of 1 microradian. The high spatial resolution of HiRISE makes it both sensitive to, and an excellent recorder of jitter. We present an algorithm using Fourier analysis to resolve the jitter function for a HiRISE image that is then used to update instrument pointing information to remove geometric distortions from the image. Implementation of the jitter analysis and image correction is performed on selected HiRISE images. Resulting corrected images and updated pointing information are made available to the public. Results show marked reduction of geometric distortions. This work has applications to similar cameras operating now, and to the design of future instruments (such as the Europa Imaging System).The final version of this article, as published in ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, can be viewed online at: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W1/141/2017

    Manned observations technology development, FY 1992 report

    Get PDF
    This project evaluated the suitability of the NASA/JSC developed electronic still camera (ESC) digital image data for Earth observations from the Space Shuttle, as a first step to aid planning for Space Station Freedom. Specifically, image resolution achieved from the Space Shuttle using the current ESC system, which is configured with a Loral 15 mm x 15 mm (1024 x 1024 pixel array) CCD chip on the focal plane of a Nikon F4 camera, was compared to that of current handheld 70 mm Hasselblad 500 EL/M film cameras

    Problems and limitations of satellite image orientation for determination of height models

    Get PDF
    The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC). The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py) for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3), WorldView-2 (WV2), Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs). The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the object height more as by 2-dimensional orientation. The 3-dimensional orientation showed advantages for orientation based on a limited number of GCPs, but in case of poor GCP distribution it may cause also negative effects. For some of the used satellites the bias correction by affinity transformation showed advantages, but for some other the bias correction by shift was leading to a better levelling of the generated height models, even if the root mean square (RMS) differences at the GCPs were larger as for bias correction by affinity transformation. The generated height models can be analyzed and corrected with reference height models. For the used data sets accurate reference height models are available, but an analysis and correction with the free of charge available SRTM digital surface model (DSM) or ALOS World 3D (AW3D30) is also possible and leads to similar results. The comparison of the generated height models with the reference DSM shows some height undulations, but the major accuracy influence is caused by tilts of the height models. Some height model undulations reach up to 50% of the ground sampling distance (GSD), this is not negligible but it cannot be seen not so much at the standard deviations of the height. In any case an improvement of the generated height models is possible with reference height models. If such corrections are applied it compensates possible negative effects of the type of bias correction or 2-dimensional orientations against 3-dimensional handling

    UAV image blur – its influence and ways to correct it

    Get PDF
    Unmanned aerial vehicles (UAVs) have become an interesting and active research topic in photogrammetry. Current research is based on image sequences acquired by UAVs which have a high ground resolution and good spectral resolution due to low flight altitudes combined with a high-resolution camera. One of the main problems preventing full automation of data processing of UAV imagery is the unknown degradation effect of blur caused by camera movement during image acquisition. The purpose of this paper is to analyse the influence of blur on photogrammetric image processing, the correction of blur and finally, the use of corrected images for coordinate measurements. It was found that blur influences image processing significantly and even prevents automatic photogrammetric analysis, hence the desire to exclude blurred images from the sequence using a novel filtering technique. If necessary, essential blurred images can be restored using information of overlapping images of the sequence or a blur kernel with the developed edge shifting technique. The corrected images can be then used for target identification, measurements and automated photogrammetric processing

    APOLLO: the Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections

    Full text link
    A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millimeter range precision to the moon which should lead to approximately one-order-of-magnitude improvements in the precision of several tests of fundamental properties of gravity. We briefly motivate the scientific goals, and then give a detailed discussion of the APOLLO instrumentation.Comment: 37 pages; 10 figures; 1 table: accepted for publication in PAS

    Which Satellite Image should be used for Mapping

    Get PDF
    Today, topographical mapping based on satellite images is a standard method. With the large number of very high-resolution optical satellites, it only a question of the Ground Sampling Distance (GSD) and the map scale to be generated. But the classical large-format satellite images are expensive. With the today's variety of the classical small satellites (601kg to 1200kg) to Nano-satellites (1.1kg to 10kg) of 3U (10cm x 10cm x 30cm), various options are available that influence the economic solutions. An overview of the accessible optical satellites is given, with some specific information on the mini-satellites that offer new economical solutions for topographic mapping. Significantly more optical satellites are currently in operation, but their images are used only for military purposes or they are restricted for national use due to lack of image storage and limited download possibilities

    MMASTER: improved ASTER DEMs for elevation change monitoring

    Get PDF
    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system on board the Terra (EOS AM-1) satellite has been a source of stereoscopic images covering the whole globe at 15-m resolution with consistent quality for over 16 years. The potential of these data in terms of geomorphological analysis and change detection in three dimensions is unrivaled and should be exploited more. Due to uncorrected errors in the image geometry due to sensor motion (“jitter”), however, the quality of the DEMs and orthoimages currently available is often insufficient for a number of applications, including surface change detection. We have therefore developed a series of algorithms packaged under the name MicMac ASTER (MMASTER). It is composed of a tool to compute Rational Polynomial Coefficient (RPC) models from the ASTER metadata, a method that improves the quality of the matching by identifying and correcting jitter-induced cross-track parallax errors and a correction for along-track jitter when computing differences between DEMs (either with another MMASTER DEM or with another data source). Our method outputs more precise DEMs with less unmatched areas and reduced overall noise compared to NASA’s standard AST14DMO product. The algorithms were implemented in the open source photogrammetric library and software suite MicMac. Here, we briefly examine the potential of MMASTER-produced DEMs to investigate a variety of geomorphological changes, including river erosion, seismic deformation, changes in biomass, volcanic deformation and glacier mass balance
    • …
    corecore