61 research outputs found

    Infinitely connected subgraphs in graphs of uncountable chromatic number

    Get PDF

    Simplicial decompositions of graphs: a survey of applications

    Get PDF
    AbstractWe survey applications of simplicial decompositions (decompositions by separating complete subgraphs) to problems in graph theory. Among the areas of application are excluded minor theorems, extremal graph theorems, chordal and interval graphs, infinite graph theory and algorithmic aspects

    Universal graphs with forbidden subgraphs and algebraic closure

    Get PDF
    We apply model theoretic methods to the problem of existence of countable universal graphs with finitely many forbidden connected subgraphs. We show that to a large extent the question reduces to one of local finiteness of an associated''algebraic closure'' operator. The main applications are new examples of universal graphs with forbidden subgraphs and simplified treatments of some previously known cases

    Chromatic number of the product of graphs, graph homomorphisms, Antichains and cofinal subsets of posets without AC

    Full text link
    We have observations concerning the set theoretic strength of the following combinatorial statements without the axiom of choice. 1. If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. 2. If in a partially ordered set, all chains are finite and all antichains have size ℵα\aleph_{\alpha}, then the set has size ℵα\aleph_{\alpha} for any regular ℵα\aleph_{\alpha}. 3. CS (Every partially ordered set without a maximal element has two disjoint cofinal subsets). 4. CWF (Every partially ordered set has a cofinal well-founded subset). 5. DT (Dilworth's decomposition theorem for infinite p.o.sets of finite width). 6. If the chromatic number of a graph G1G_{1} is finite (say k<ωk<\omega), and the chromatic number of another graph G2G_{2} is infinite, then the chromatic number of G1×G2G_{1}\times G_{2} is kk. 7. For an infinite graph G=(VG,EG)G=(V_{G}, E_{G}) and a finite graph H=(VH,EH)H=(V_{H}, E_{H}), if every finite subgraph of GG has a homomorphism into HH, then so has GG. Further we study a few statements restricted to linearly-ordered structures without the axiom of choice.Comment: Revised versio

    Graphs with tiny vector chromatic numbers and huge chromatic numbers

    Get PDF
    Karger, Motwani, and Sudan [J. ACM, 45 (1998), pp. 246-265] introduced the notion of a vector coloring of a graph. In particular, they showed that every k-colorable graph is also vector k-colorable, and that for constant k, graphs that are vector k-colorable can be colored by roughly Δ^(1 - 2/k) colors. Here Δ is the maximum degree in the graph and is assumed to be of the order of n^5 for some 0 < δ < 1. Their results play a major role in the best approximation algorithms used for coloring and for maximum independent sets. We show that for every positive integer k there are graphs that are vector k-colorable but do not have independent sets significantly larger than n/Δ^(1- 2/k) (and hence cannot be colored with significantly fewer than Δ^(1-2/k) colors). For k = O(log n/log log n) we show vector k-colorable graphs that do not have independent sets of size (log n)^c, for some constant c. This shows that the vector chromatic number does not approximate the chromatic number within factors better than n/polylogn. As part of our proof, we analyze "property testing" algorithms that distinguish between graphs that have an independent set of size n/k, and graphs that are "far" from having such an independent set. Our bounds on the sample size improve previous bounds of Goldreich, Goldwasser, and Ron [J. ACM, 45 (1998), pp. 653-750] for this problem
    • …
    corecore