3 research outputs found

    Coinductive big-step operational semantics

    Get PDF
    Using a call-by-value functional language as an example, this article illustrates the use of coinductive definitions and proofs in big-step operational semantics, enabling it to describe diverging evaluations in addition to terminating evaluations. We formalize the connections between the coinductive big-step semantics and the standard small-step semantics, proving that both semantics are equivalent. We then study the use of coinductive big-step semantics in proofs of type soundness and proofs of semantic preservation for compilers. A methodological originality of this paper is that all results have been proved using the Coq proof assistant. We explain the proof-theoretic presentation of coinductive definitions and proofs offered by Coq, and show that it facilitates the discovery and the presentation of the results

    Cost Automata, Safe Schemes, and Downward Closures

    Full text link
    Higher-order recursion schemes are an expressive formalism used to define languages of possibly infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply typed λY\lambda Y-calculus and collapsible pushdown automata. In this work we prove, under a syntactical constraint called safety, decidability of the model-checking problem for recursion schemes against properties defined by alternating B-automata, an extension of alternating parity automata for infinite trees with a boundedness acceptance condition. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes.Comment: accepted at ICALP'2

    Infinite lambda-calculus and types

    No full text
    corecore