142 research outputs found

    A Graph Theoretic Perspective on Internet Topology Mapping

    Get PDF
    Understanding the topological characteristics of the Internet is an important research issue as the Internet grows with no central authority. Internet topology mapping studies help better understand the structure and dynamics of the Internet backbone. Knowing the underlying topology, researchers can better develop new protocols and services or fine-tune existing ones. Subnet-level Internet topology measurement studies involve three stages: topology collection, topology construction, and topology analysis. Each of these stages contains challenging tasks, especially when large-scale backbone topologies of millions of nodes are studied. In this dissertation, I first discuss issues in subnet-level Internet topology mapping and review state-of-the-art approaches to handle them. I propose a novel graph data indexing approach to to efficiently process large scale topology data. I then conduct an experimental study to understand how the responsiveness of routers has changed over the last decade and how it differs based on the probing mechanism. I then propose an efficient unresponsive resolution approach by incorporating our structural graph indexing technique. Finally, I introduce Cheleby, an integrated Internet topology mapping system. Cheleby first dynamically probes observed subnetworks using a team of PlanetLab nodes around the world to obtain comprehensive backbone topologies. Then, it utilizes efficient algorithms to resolve subnets, IP aliases, and unresponsive routers in the collected data sets to construct comprehensive subnet-level topologies. Sample topologies are provided at http://cheleby.cse.unr.edu

    Discovering the IPv6 Network Periphery

    Get PDF
    We consider the problem of discovering the IPv6 network periphery, i.e., the last hop router connecting endhosts in the IPv6 Internet. Finding the IPv6 periphery using active probing is challenging due to the IPv6 address space size, wide variety of provider addressing and subnetting schemes, and incomplete topology traces. As such, existing topology mapping systems can miss the large footprint of the IPv6 periphery, disadvantaging applications ranging from IPv6 census studies to geolocation and network resilience. We introduce "edgy," an approach to explicitly discover the IPv6 network periphery, and use it to find >~64M IPv6 periphery router addresses and >~87M links to these last hops -- several orders of magnitude more than in currently available IPv6 topologies. Further, only 0.2% of edgy's discovered addresses are known to existing IPv6 hitlists

    Study of network-service disruptions using heterogeneous data and statistical learning

    Get PDF
    The study of network-service disruptions caused by large-scale disturbances has mainly focused on assessing network damage; however, network-disruption responses, i.e., how the disruptions occur depending on social organizations, weather, and power resources, have been studied little. The goal of this research is to study the responses of network-service disruptions caused by large-scale disturbances with respect to (1) temporal and logical network, and (2) external factors such as weather and power resources, using real and publicly available heterogeneous data that are composed of network measurements, user inputs, organizations, geographic locations, weather, and power outage reports. Network-service disruptions at the subnet level caused by Hurricanes Katrina in 2005 and Ike in 2008 are used as the case studies. The analysis of network-disruption responses with respect to temporal and logical network shows that subnets became unreachable dependently within organization, cross organization, and cross autonomous system. Thus, temporal dependence also illustrates the characteristics of logical dependence. In addition, subnet unreachability is analyzed with respect to the external factors. It is found that subnet unreachability and the storm are weakly correlated. The weak correlation motivates us to search for root causes and discover that the majority of subnet unreachability reportedly occurred because of power outages or lack of power generators. Using the power outage data, it is found that subnet unreachability and power outages are strongly correlated.PhDCommittee Chair: Ji, Chuanyi; Committee Member: Clark, Russell; Committee Member: Copeland, John; Committee Member: Juang, Biing Hwang (Fred); Committee Member: Riley, Georg

    Discovery of IPv6 router interface addresses via heuristic methods

    Get PDF
    With the assignment of the last available blocks of public IPv4 addresses from Internet Assigned Numbers Authority, there is continued pressure for widespread IPv6 adoption. Because the IPv6 address space is orders of magnitude larger than the IPv4 address space, researchers need new methods and techniques to accurately measure and characterize growth in IPv6. This thesis focuses on IPv6 router infrastructure and examines the possibility of using heuristic methods in order to discover IPv6 router interfaces. We consider two heuristic techniques in an attempt to improve upon current state-of-the-art IPv6 router infrastructure discovery methods. The first heuristic examines the ability to generate candidate IPv6 addresses by finding the most common lower 64 bit patterns among IPv6 router interface address observed in historical probing data. The second heuristic generates candidate IPv6 addresses by assuming that an IPv6 address seen in historical probing data is one end of a point-to-point link, and uses the corresponding end’s IPv6 address. Using a distributed active topology measurement system, we test these heuristic methods on the IPv6 Internet. We find that our first heuristic is successful in discovering a non-trivial number of new router interfaces, while the second heuristic is more efficient.http://archive.org/details/discoveryofipvro1094547265Lieutenant, United States NavyApproved for public release; distribution is unlimited

    Travelling Without Moving: Discovering Neighborhood Adjacencies

    Full text link
    peer reviewedSince the early 2000's, the research community has explored many approaches to discover and study the Internet topology, designing both data collection mechanisms and models. In this paper, we introduce SAGE (Subnet AggrEgation), a new topology discovery tool that infers the hop-level graph of a target network from a single vantage point. SAGE relies on subnet-level data to build a directed acyclic graph of a network modeling how its (meshes of) routers, a.k.a. neighborhoods, are linked together. Using two groundtruth networks and measurements in the wild, we show SAGE accurately discovers links and is consistent with itself upon a change of vantage point. By mapping subnets to the discovered links, the directed acyclic graphs discovered by SAGE can be re-interpreted as bipartite graphs. Using data collected in the wild from both the PlanetLab testbed and the EdgeNet cluster, we demonstrate that such a model is a credible tool for studying computer networks

    On the Analysis of the Internet from a Geographic and Economic Perspective via BGP Raw Data

    Get PDF
    The Internet is nowadays an integral part of the everyone's life, and will become even more important for future generations. Proof of that is the exponential growth of the number of people who are introduced to the network through mobile phones and smartphones and are connected 24/7. Most of them rely on the Internet even for common services, such as online personal bank accounts, or even having a videoconference with a colleague living across the ocean. However, there are only a few people who are aware of what happens to their data once sent from their own devices towards the Internet, and an even smaller number -- represented by an elite of researchers -- have an overview of the infrastructure of the real Internet. Researchers have attempted during the last years to discover details about the characteristics of the Internet in order to create a model on which it would be possible to identify and address possible weaknesses of the real network. Despite several efforts in this direction, currently no model is known to represent the Internet effectively, especially due to the lack of data and the excessive coarse granularity applied by the studies done to date. This thesis addresses both issues considering Internet as a graph whose nodes are represented by Autonomous Systems (AS) and connections are represented by logical connections between ASes. In the first instance, this thesis has the objective to provide new algorithms and heuristics for studying the Internet at a level of granularity considerably more relevant to reality, by introducing economic and geographical elements that actually limit the number of possible paths between the various ASes that data can undertake. Based on these heuristics, this thesis also provides an innovative methodology suitable to quantify the completeness of the available data to identify which ASes should be involved in the BGP data collection process as feeders in order to get a complete and real view of the core of the Internet. Although the results of this methodology highlights that current BGP route collectors are not able to obtain data regarding the vast majority of the ASes part of the core of the Internet, the situation can still be improved by creating new services and incentives to attract the ASes identified by the previous methodology and introduce them as feeders of a BGP route collector

    Steering hyper-giants' traffic at scale

    Get PDF
    Large content providers, known as hyper-giants, are responsible for sending the majority of the content traffic to consumers. These hyper-giants operate highly distributed infrastructures to cope with the ever-increasing demand for online content. To achieve 40 commercial-grade performance of Web applications, enhanced end-user experience, improved reliability, and scaled network capacity, hyper-giants are increasingly interconnecting with eyeball networks at multiple locations. This poses new challenges for both (1) the eyeball networks having to perform complex inbound traffic engineering, and (2) hyper-giants having to map end-user requests to appropriate servers. We report on our multi-year experience in designing, building, rolling-out, and operating the first-ever large scale system, the Flow Director, which enables automated cooperation between one of the largest eyeball networks and a leading hyper-giant. We use empirical data collected at the eyeball network to evaluate its impact over two years of operation. We find very high compliance of the hyper-giant to the Flow Director’s recommendations, resulting in (1) close to optimal user-server mapping, and (2) 15% reduction of the hyper-giant’s traffic overhead on the ISP’s long-haul links, i.e., benefits for both parties and end-users alike.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    A Brave New World: Studies on the Deployment and Security of the Emerging IPv6 Internet.

    Full text link
    Recent IPv4 address exhaustion events are ushering in a new era of rapid transition to the next generation Internet protocol---IPv6. Via Internet-scale experiments and data analysis, this dissertation characterizes the adoption and security of the emerging IPv6 network. The work includes three studies, each the largest of its kind, examining various facets of the new network protocol's deployment, routing maturity, and security. The first study provides an analysis of ten years of IPv6 deployment data, including quantifying twelve metrics across ten global-scale datasets, and affording a holistic understanding of the state and recent progress of the IPv6 transition. Based on cross-dataset analysis of relative global adoption rates and across features of the protocol, we find evidence of a marked shift in the pace and nature of adoption in recent years and observe that higher-level metrics of adoption lag lower-level metrics. Next, a network telescope study covering the IPv6 address space of the majority of allocated networks provides insight into the early state of IPv6 routing. Our analyses suggest that routing of average IPv6 prefixes is less stable than that of IPv4. This instability is responsible for the majority of the captured misdirected IPv6 traffic. Observed dark (unallocated destination) IPv6 traffic shows substantial differences from the unwanted traffic seen in IPv4---in both character and scale. Finally, a third study examines the state of IPv6 network security policy. We tested a sample of 25 thousand routers and 520 thousand servers against sets of TCP and UDP ports commonly targeted by attackers. We found systemic discrepancies between intended security policy---as codified in IPv4---and deployed IPv6 policy. Such lapses in ensuring that the IPv6 network is properly managed and secured are leaving thousands of important devices more vulnerable to attack than before IPv6 was enabled. Taken together, findings from our three studies suggest that IPv6 has reached a level and pace of adoption, and shows patterns of use, that indicates serious production employment of the protocol on a broad scale. However, weaker IPv6 routing and security are evident, and these are leaving early dual-stack networks less robust than the IPv4 networks they augment.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120689/1/jczyz_1.pd
    • …
    corecore