EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Passive asset discovery and operating system fingerprinting in industrial control system
networks

Mavrakis, C.

Award date:
2015

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain


https://research.tue.nl/en/studentTheses/0a73b3dc-17a0-4b73-a9a6-27b063225b23

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Passive Asset Discovery
and Operating System
Fingerprinting in
Industrial Control System
Networks

Master Thesis

Chris Mavrakis

Supervisors:
prof.dr. S. Etalle

dr. T. Ozcelebi
dr. E. Costante

Eindhoven, October 2015






Abstract

Maintaining situational awareness in networks of industrial control systems is challenging due to
the sheer number of devices involved, complex connections between subnetworks and the delicate
nature of industrial processes. While current solutions for automatic discovery of devices and
their operating system are lacking, plant operators need to have accurate information about the
systems to be able to manage them effectively and detect, prevent and mitigate security and
safety incidents. In this work, we present two tools that enable automatic and completely passive
discovery of hosts and their operating systems (OSes) and we prove that using machine learning
to perform passive OS detection yields promising performance gains. The results of the tests we
performed on real-world ICS network data bolster the effectiveness of our approach and propose
the direction that future work can follow towards further improvement.
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Chapter 1

Introduction

As industrial control system (ICS) networks consist of numerous devices, interconnected in complex
ways, managing and securing them effectively is becoming challenging. Increasingly, internet
connectivity is added into the mix to enable remote observation and control, but at the same time
the attack surface is increased substantially. Consider the network of an electric power company
that consists of over 300 devices, organized in 5 subnetworks, spread out in 5 different locations.
The administrators and operators of the plant need to know what devices normally live in their
network and in what ways they communicate with each other, to be able to quickly identify and
tackle safety or security issues, but documentation about the networks is scarce.

One way to gain the desired situational awareness is to manually (using software tools) examine
the network, and record all findings in inventory lists, but this approach is flawed in three ways.
First, given the device count and complex subnetwork interconnections, it takes a tremendous
amount of effort for an administrator to meticulously enumerate all items and find out e.g. what
operating system they are running. Second, actively probing devices to discover used IP! addresses,
open ports and operating systems can be detrimental to ICS components, which are often legacy
devices, fine-tuned to handle exactly the connections needed to perform their duties and can
even freeze or reset if pinged?. Third, the exact moment that the enumeration is completed, the
information can be considered time-stamped and stale, since the real situation of the network may
soon change. This change, which may be a rogue device just installed on the network, will not be
registered in the operator’s inventory until the next (costly) enumeration happens, which may be
months or years away.

At the same time, monitoring of the network is important because relying on the process of
timely vulnerability patching to ensure security cannot be an effective strategy. The lifetime of
devices is much longer than that in typical information technology (IT) networks. ICS devices
are designed to operate for 15 or more years before needing replacement and taking parts of
the system offline to apply updates is done in pre-scheduled maintenance windows that may be
months apart. At the same time, the priority of the three components of the information secu-
rity triad, confidentiality, integrity and availability (CIA) is inverted in industrial environments.
Confidentiality comes third, while availability is usually the most important attribute that must
be preserved. This hierarchy makes sense, e.g. if one thinks about a power distribution plant or
a nuclear reactor’s cooling circuit, but it also makes patch management more involved.

The problem. This situation creates the need for tools that can detect attributes of systems,
along with their positioning and organization in networks in a way that does not obstruct normal
operation. The method must be reasonably effective and fast, so that it can be run frequently or

P refers to the widely used Internet Protocol https://en.wikipedia.org/wiki/Internet_Protocol.

2The act of pinging refers to the practice of sending an internet control message protocol (ICMP) echo request
packet to a remote network host, with the expectation that if it is alive and connected it will issue an ICMP echo
reply towards the requesting host.
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continuously, to maintain an updated image of the network and even provide feedback to intrusion
detection systems (IDS) that may be in place, aiding detection or interpretation of security events.

Contributions. Current approaches have come a long way towards fulfilling the previously-
mentioned requirements, but as we will discover in Chapter 2 there is no security silver bullet yet.
While we do not claim to provide one ourselves, we design our own approach which revolves around
employing classic machine learning techniques to improve passive OS fingerprinting performance
and is discussed in Chapter 3. In the same chapter, we set out to measure the performance of the
two prominent tools in passive OS fingerprinting, PRADS and pOf v3, which has not been done
before in a formal manner. Along with the two well-known tools, we evaluate an implementation
of our approach, by testing it on the same real-world datasets and comparing the results head to
head.

In regard to the arrangement and connections of networked devices, we refer to the concept
as network topology, and we examine methods to discover it passively in Chapter 4. First we
measure how much various routing protocols are used in several ICS networks, and demonstrate
which are the best candidates to provide topology data. Next, we propose an algorithm that
performs topology discovery functions and demonstrate its effectiveness. The algorithm can be
run in a continuous way, only outputting data that are considered final, unlikely to change, so that
the operator is confident in the readings. We close the chapter with useful take-aways that include
conclusions about the minimum time for which a network must be observed before a reliable
topology map can be drawn, and what pieces of information should be considered final, after how
much time.

In Chapter 5 we wrap the work up with a summary of the findings of individual sections, and
their implications in ICS network security. Furthermore, we provide suggestions of exciting new
directions that future work can take, to achieve further performance improvements.

Conclusion teaser. The results in both fronts (OS fingerprinting and topology discovery) are
encouraging. Especially in the former, we show that our approach builds upon the state of the
art and improves the desired attributes, while reducing the effects of their limitations. Regarding
discovering topologies, our tests bring forth interesting remarks on the time that is required to
passively complete a network map of reasonable detail.

2 Passive Asset Discovery and Operating System Fingerprinting in ICS Networks



Chapter 2

Related work

Identification of devices that comprise a computer network is both an interesting and technically
challenging task. In networks that include hundreds or more devices, organized in tens of sub-
networks, maintaining situational awareness by manual inspection becomes infeasible. As such,
the operators of these networks can find great benefit from using tools that automatically complete
most of the recognition task, and generate accurate and up-to-date information about the network.
We can distinguish two main activities that are needed for such information acquisition:

e Device Fingerprinting. In this activity, device-specific information, independent from the
network where the device is placed, is acquired. Device-specific attributes gathered in this
phase may include the hostname, the operating system (0OS), the firmware version (in the
case of embedded devices), the services that are running on the device, protocols and ports
in use, MAC address and vendor of the network interface.

e Topology Discovery. The term network topology refers to the configuration of a network
in terms of how nodes (i.e. hosts or routers) are inter-connected and how a network is divided
in segments (i.e. subnets). To gather information about network topology, one should collect
data such as IP address of each device in the network, their geographical location, the set
of subnet or local area network (LAN) and the mapping between a device and the subnet
in which it resides. During topology discovery, subnets should be fully defined, i.e. either
the complete range of IPs included in a subnet or the first IP address and the subnet mask
should be known.

Device fingerprinting and topology discovery caught the interest of the research community,
as shown by the presence of numerous scientific papers (from 1999 [31] until recently [2]) and
application tools (such as PRADS and the infamous p0f). However, the state-of-the-art mainly
proposes solutions for standard IT networks, while few efforts have been done with a specific
focus on ICS networks. In this latter case, standard device fingerprinting and topology discovery
techniques cannot be applied due to environment-specific constraints: for instance, techniques
based on traffic injection (e.g. port scanning) cannot be adopted because of the limited resources
of the nodes in the network.

In this chapter, we will explore relevant studies and tools and examine their applicability to ICS
networks. The chapter is separated in two sections: Section 2.1, that discusses existing solutions
for the device fingerprinting, and Section 2.2 that deals with topology discovery. Most of the
methods and tools described throughout the chapter will be assumed to run on a measurement
device, referred to as a sensor from here on, that is comprised of a computer system that is
connected to a computer network and is able to communicate with the rest of the devices.

Passive Asset Discovery and Operating System Fingerprinting in ICS Networks 3
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2.1 Device Fingerprinting

In this section, we will examine existing techniques and tools that enable the recognition of appli-
cations, operating system or firmware that are running on network connected devices. Due to the
focus of the current work, emphasis is given to OS detection and passive acquisition of information.
However, approaches for application detection or active acquisition are also briefly discussed.

2.1.1 Operating System Detection

Operating system detection can be performed by leveraging various sources of data to predict
what OS or firmware version is running on a device. The traditional approach is to use fields of
transmission control protocol (TCP) packet headers and compare them to a database of known
OSes, a process known as OS fingerprinting. Recently, techniques that are based on other protocols
have also been developed and they will be discussed in the following.

A main distinctive characteristic between existing OS fingerprinting techniques is related to
the way data is gathered, so that we can have active or passive fingerprinting techniques. Active
methods require a two-way interaction between the sensor device (or software) and the network
that is being observed. These interactions typically include queries to services running on hosts
and subsequent analysis of the reply or lack thereof. Passive methods, on the other hand, solely
rely on the observation of communications of the target network or host, without ever needing to
transmit any packets on the wire. The network sensor can sometimes be connected to an ethernet
network using a cable or plug that has the transmitting wires disconnected, as long as it receives
packets that are destined for the hosts or networks it needs to identify. Passive approaches should
operate normally even when a network trace file is provided to them, instead of live traffic. Given
that no interaction is required, such tools should be able to successfully complete their task just
by observing traffic.

Active OS Detection

In [41], Veysset et al. analyze the pattern of packet retransmissions caused by network congestion
and delays to deduce the OS of a host. Although congestion is a prerequisite, it does not need to
be caused intentionally, but can be simulated instead. This is achieved by manipulating the 3-way
handshake that is done when a TCP connection is first opened. The second part of the handshake,
the SYN+ACK request, must be responded to with an acknowledgement (ACK), and by blocking
that response, congestion is simulated. This interaction, though, renders the technique effectively
active. Combining multiple packets and analyzing them together has also been proposed, mainly
for stimulus-response pairs such as TCP SYN and SYN+ACK. Using this method, signatures can
be extracted more efficiently for protocols like ARP, IP, ICMP, UDP and TCP [27]. DNS queries
can be captured and analyzed to determine that a mobile device is running the Android OS [24],
but this conclusion is probably of limited practical value.

In [20] Kollmann argues that most networked systems in IT networks run services that transmit
a plethora of information on the network, which can be used to passively fingerprint them. The
claims for the effectiveness of the method are encouraging, as the level of detail and accuracy of
the information achieved is unmatched, and successful implementation would provide impressive
network maps. In this document, emphasis is given in the DHCP protocol, the implementation
of which heavily depends on the version of the OS that a host is running. Using signatures for
some of the DHCP fields, such as Option 55, can lead to easy and accurate OS identification on
IT networks. Unfortunately, DHCP is not commonly used in ICS networks, so this innovative and
highly effective technique cannot be leveraged in these environments.

In an earlier report [19], Kollmann enumerates most of the usable fingerprinting methods
available in 2005. Among many valid observations, the ones more relevant to our purposes include
the following;:

e Time to live (TTL) can be a very useful metric. Its initial value is predictable with high
accuracy, while at the same time different values are used by different OSes.

4 Passive Asset Discovery and Operating System Fingerprinting in ICS Networks
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o Server message block (SMB) and Microsoft Windows browser protocol frequently include the
exact version of used OS and service pack level.

e Combining multiple techniques to have multiple sources of information available will prob-
ably give the best results.

The author of the above reports has incorporated his findings and techniques in a closed-source
tool called Satori'. Further documentation about how the program operates is scarce and the main
supported environment is Microsoft Windows systems. A linux version exists but only implements
a small subset of the features.

One of the most established methods for OS identification is TCP fingerprinting [23] which
is based on the observation that different TCP implementations construct packets in different
ways. As developers add features, fix bugs or improve performance in subsequent releases of im-
plementations, differences can be observed between different versions of an OS, or even a TCP
implementation. By exploiting these differences in the packets, one can determine which imple-
mentation is used, and consequently estimate which OS is running on the host. Even when the
implementation’s code is not known, particularities like the rate of connection re-attempts can be
observed and recorded in the form of fingerprints, which can later be used for identification [31].

This approach is widely used in tools such as NMAP[23] which initiate TCP connections with
hosts, frequently using uncommon combinations of flags and options, and analyze the responses to
draw assumptions on the OS of the host that replied. The principle can also be used in a passive
manner, where no special connections are initiated but packets of normal TCP traffic are analyzed
[37]). Using normal packets instead of crafted ones has negative implications in the performance
of the approach, and the options to be used for fingerprinting need to be chosen using different
criteria [22] [37] [38].

SinFP is a tool that contains both active and passive OS fingerprinting based on three packets
[4]. The packets can be collected easily when in active mode, but doing the same passively can
be problematic. The matching engine is different from other solutions, as it uses the intersection
of the domains generated by elements of the three packets being checked against the signature
database in file. Xprobe2++ is yet another active fingerprinting tool that uses various layers [12].
The signature matching method used is unique, as each element of the signature (e.g. the TTL)
is considered independently and a match is seeked [3]. A score is calculated for each possible OS
and each possible element, and in the end all the scores for each OS are added together. The OS
with the highest score is considered to be the dominant prediction.

Passive OS Detection

Research has also been done on approaches that do not require the transmission of any packets on
the network, enabling a network sensor to determine the OS of other hosts in a passive fashion. This
knowledge may help intrusion detection systems (IDS) solve ambiguities when possible malicious
activity is detected [10] [38].

This technique is used by tools that are well known outside academia. Ettercap?, a tool for
man-in-the-middle attacks, also includes active as well as a primitive passive fingerprinter with its
own database [30]. POf3, on the other hand, can be considered one of the most advanced passive
OS fingerprinting tools. Since its release in 2000 there have been three major versions, and the
latest one (p0fv3) is the most sophisticated. The tools emphasizes on TCP fingerprinting, although
v3 also employs Layer 7 recognition. In order to increase p0f’s performance, Barnes et al. have
designed k-pOf. The main difference with the original tool is that high layer processing, such as
HTTP parsing, is dropped and a kernel module is used to increase efficiency and enable the system
to process more packets per time interval [6]. A different approach, to improve the accuracy of
pOf, correlates FIN+ACK to the corresponding SYN packets, and analyzes them with respect to
each other. While this may yield better results in networks where connections are short-lived, it

lhttp://chatteronthewire.org
2https://github.com/Ettercap/ettercap/blob/master/README
Shttp://lcamtuf . coredump.cx/p0Of3
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may be impractical when the ending packet of a connection is transmitted days or months after
the connection is first opened [2].

Due to p0f’s supremacy, other tools or toolkits have reused its engine or signatures instead of
starting an implementation from scratch. One such approach is PRADS (Passive real-time asset
detection system?) which combines pOfv2, earlier system PADS (Passive asset detection system)
and new techniques, to passively obtain information about network hosts. More details about how
PRADS and pOf work can be found in Section 3.1.

Most of the above approaches require fingerprints of known systems to be known beforehand,
and generating them manually is a tedious and inefficient task. Especially in areas like ICS
networks, where not enough work has been done, automatic fingerprint extraction would be useful.
By passively analyzing Layer 7 features such as the grammar of messages, and given labeled data
set, the algorithm in [1] can create signatures for the firmware version of embedded devices. These
signatures can then be used for identification of malicious devices on a network. This method
may be labeled as fingerprinting but in essence it is more closely related to what is refereed as
white-listing, while the criteria used for filtering are dynamically generated.

As far as we know, there have been very few attempts to use machine learning to improve
passive OS fingerprinting. In [7], Beverly has used two techniques to build a naive Bayesian
classifier, which can later be used for matching OS fingerprints. The comparison is done between
using pOf’s signature database and captured HTTP UserAgent data to train the classifier, and
the latter proves to be more effective. The classifier’s matching accuracy is not evaluated, due to
lack of a suitable data set. An earlier work by Lippmann et al. [22] has studied the way common
passive OS fingerprinting software worked and how machine learning could be employed to improve
matching. The results suggest that binary tree classifiers are the most effective, a notion that we
will re-use in Chapter 3.

Active versus Passive Fingerprinting. In the following, we provide a list of the main differ-
ence between active and passive fingerprinting

e Active methods usually result in faster and more accurate recognition of hosts and networks,
because specially crafted messages can be used to trigger responses that contain a lot of
data. Also, the rate at which packets are exchanged, and thus the OS detection speed can
be increased by the sensor, while within the target device’s and network’s abilities.

e In contrast, passive approaches are slower to produce results and their conclusions may be
less accurate or detailed because they have to work with whatever data is provided to them,
at whatever rate it is “naturally” present in the network.

e When stealthiness is required, passive information gathering is the go-to solution. If partial
stealthiness is acceptable, an active approach with reduced transmitting rates can be used.

e When operating in sensitive environments, where integrity in general and uptime in partic-
ular are required, actively probing devices may prove too dangerous. Either fully passive or
fine-tuned active tools must be used to ensure safe operation.

e Passive methods can be run off-line on recorded network data, whereas most of their active
counterparts will fail.

2.1.2 Service/Application Detection

Instead of the operating system, some techniques have been proposed for the identification of
the services and applications used by hosts on a network. For instance, observing that port 22
is accepting connections on a host indicates that an ssh service may be running, which in turn
means that ssh vulnerabilities might available for exploitation.

4https://gamelinux.github.io/prads

6 Passive Asset Discovery and Operating System Fingerprinting in ICS Networks


https://gamelinux.github.io/prads

CHAPTER 2. RELATED WORK

Statistical analysis of TP packet size, inter-arrival time and order can be used to classify
application-specific traffic [9]. Using IP flow fingerprinting, the technique can determine what
protocol is running in layer 7. This method’s main advantage is better performance than the
traditional approach of deep packet inspection (DPI), which involves meticulously parsing higher
layers of packets and requires the use of a significant amount of system resources.

In [28] it is denoted that using default port numbers to identify which application is running on
a host is considered unreliable. This is because random ports may be caused by applications using
custom port configurations or traffic encapsulating techniques, such as VLAN functionality over
HTTP. Instead, it is proposed that information from higher layers should be used. The approach
is further developed in [15], in which packet contents from layers above the transport layer (L4),
is used to create signatures, which are then fed to a classifier to determine which application is
running. An interesting property is that the approach seems resilient to encryption [28].

Techniques that exploit alternative sources of information have occasionally been proposed,
aiming to recognize specific hardware at the remote end of a connection. Typical examples include
the analysis of the particularities observed in analog signal of ethernet devices [11] or microscopic
deviations in network device hardware known as clock skews [18]. The applicability of these
methods is limited because either direct access to the hardware is required or extensive training
of the algorithm must be done on specific devices before its deployment.

2.1.3 Towards Fingerprinting in ICS

While most of the approaches described above are designed for wide use in I'T networks and over the
Internet, there exist some approaches that are specialized for ICS networks. In [21], Leverett uses
banner grabbing to gather information on publicly facing ICSes, searches for relevant exploits in an
online archive of exploits and shellcode, known as ExploitDB, and presents the information along
with location data to the user. Furthermore, a complete system called Sophia has been deployed
in two power utilities and the results documented. Sophia monitors the ports used by hosts
and the relevant network flows, and allows the user to whitelist legitimate instances. Although
the approach is dubbed passive fingerprinting, it must be noted that the term fingerprinting
concerns the whole system and not specific hosts [35]. A slightly different approach, called flow
fingerprinting, is described in a deliverable of the Crisalis project[8]. Instead of identifying specific
software, the focus is put on the role of each device inside the ICS network. The system works by
fingerprinting a known network and is then able to recognize devices in similar setups.

All the examined techniques have contributed to the advancement of OS detection, but each
one is aiming at solving a slightly different problem or in a different environment. An approach
that is completely passive and still offers reasonable performance when used in ICS networks could
not be located. For these reasons, in Chapter 3 we propose a solution that focuses on solving the
problem of OS detection for ICS networks. Note that, some of the techniques we mentioned above
(namely PRADS and p0fv3) will be used as benchmarks to discuss and evaluate the performance
of our solution.

2.2 Topology Discovery

The term topology discovery refers to the process of identifying a network structure, its connections
with other networks and the details of its subnets. Information about hosts is also included, such
as their physical location, their IP address and the subnet and LAN they belong to. In this section,
we survey the existing works that aim at solving the topology discovery problem. The methods
can be characterized as active and passive in the same way that OS detection methods have been
classified in Section 2.1.1.

When terms such as L2 or L3 are used, they refer to the respective layer of the open systems
interconnection model (OSI Model) as defined in [33]. OSI includes layers from physical (L1) up
to application (L7). The layers most relevant to our purposes are L2 and L3, the data link and
network layer respectively. MAC addresses and network switches reside in L2, while IP addresses

Passive Asset Discovery and Operating System Fingerprinting in ICS Networks 7
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and routers in L3. Subnetworks or subnets are L3 divisions of IP networks, in which hosts have IP
addresses with the most significant part, called the network prefix, being the same. The classless
inter-domain routing (CIDR) notation is used to describe the IP addresses range of a subnet. With
this notation, the first IP address of a subnet is followed by the symbol ¢/’ and the length of the
prefix in bits. For example, a subnet can be described with the notation 192.168.0.0/24, meaning
that the subnet can contain 256 IP addresses that can range from 192.168.0.0 to 192.168.0.255.
Note that only 254 of the possible IP addresses can be used for hosts, as the first and last are
reserved for special purposes (i.e. .0 is the network address and .255 is the broadcast address).
Instead of the CIDR notation, the same subnet can be defined by the first IP address, 192.168.0.0,
and the subnet mask 255.255.255.0.

Network topology discovery has been discussed in numerous research works. Some focus on the
discovery of routers and the relationships between them, while others emphasize on discovering as
many of the network hosts as possible, regardless of whether they are routers, personal devices or
printers. Active and passive techniques seem to be used interchangeably, and in most papers the
authors assume that the networks under investigation are connected to the Internet. As far as we
know, none of the existing works has a precise focus on a passive approach for topology discovery
and no solutions exist that are specifically crafted for ICS networks.

Alias resolution is the act of determining which IP addresses in a given subnet (that is remote
in relation to the observation point) map to one router that is local. For example, consider two
adjacent subnets with IPs such as 192.168.0.0/24 and 192.168.1.0/24, being connected together
through a router. The router will have at least two network interfaces; the first of which can have
the TP address 192.168.0.1 and the second 192.168.1.1. If both subnets have network sensors in-
stalled, and these sensors aggregate the observed data, there will be packets from both 192.168.0.1
and 192.168.1.1 in the dataset, as if the two addresses belong to different devices. Successful alias
resolution can correlate the two IPs into a single device with two network interfaces on two dif-
ferent subnets, which is the real situation. After examining alias resolution methods it is evident
that many rely on the use of traceroute-like techniques [12], [14]. Traceroute is a tool that aims
to detect the intermediate hosts between the computer it is running on and a remote system. To
obtain this information, traceroute sends packets towards the destination with various time to live
(TTL) values in the IP layer. The TTL counter of each packet is decreased every time the packet
is being forwarded by a router, and when it reaches zero the packet is dropped. By using different
(decreasing) TTL values and observing which packets are getting dropped, traceroute can list each
intermediate host up until the destination. Projects that use similar methods, such as traceNET
[39] and exploreNET [40], have been shown to be quite effective in network mapping. Although
proven, these techniques may not always be applicable in networks in which active probing is
prohibited. In these cases, passive collection of data will be used, but as traceroute data may not
be present, reliable operation can not be guaranteed.

Alternative methods eliminate the need for traceroute-like probing by making use of the inter-
net group management protocol (IGMP) [26]. It has been suggested that some IGMP messages
can be used to infer L2 topology, but they are only transmitted as answers to specific queries.
These transactions are not present under normal conditions in networks, but have to be generated,
rendering the technique effectively active [25]. Additionally, further limitations apply, such as the
fact that only networks with two or more routers can be detected. The symmetry rule though, as
formulated in [25] should be noted for further re-use: “All routers attached to the potential L2
network should have the same view [of the network]”. This rule can be used to double check that
the results of an algorithm that detects a topology using some other method are correct.

Detecting subnets is another important component of topology discovery. Having a subnet fully
defined is an important step towards being able to tell whether a host is part of it or not. The
straight forward way to define a subnet is to know one or more IPs that belong to it, along with
the subnet mask. This information is not always readily available, making subnet definition hard.
In those cases, methods based on heuristics, like the one outlined in [13], can be used. Network
prefixes of all the possible lengths are first calculated for each IP, and then various conditions
and rules are used to narrow the candidates down. The technique focuses on internet-connected
systems but one of the rules used may be more generally applicable and is formulated as follows.
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“Given a candidate /x subnet, the IP addresses from within this subnet should be at similar
distances to a vantage point”. The “/x” notation refers to CIDR format of subnetting and the
mentioned distance is measured in network hops.

Simple network management protocol (SNMP) is portrayed as the dominant source for active
gathering of topology data, and is used by the majority of tools that have achieved a high level of
suitability for practical operation. In SNMP-enabled hosts, information is saved in management
information bases (MIBs) which have flexible but pre-defined formatting. A tool that is aware of
the MIBs used can parse data that is relevant and produce topology information in an effective
manner [43]. The useful data found in MIBs can be a list of the network interfaces of the host, TP
addresses, subnet masks, whether the host is forwarding packets, default TTL, IP routing tables
and other information that can greatly aid a topology discovery effort.

While standard MIBs exist, such as MIB-II [34], which are defined globally and are openly
available, vendors may opt to use custom ones that are not always published. This feature of
SNMP introduces additional complexity during the design of tools that depend on the protocol,
while the networks in which the tools will successfully operate may be limited. Some approaches
that use SNMP, have built-in MIB compilers which allow them to “learn” new MIBs [5]. This
may be useful when vendor-specific MIBs are used and may increase the number of networks that
the tool can successfully operate in.

Additional concerns have been expressed about SNMP-based approaches, as they require par-
tial knowledge of the topology of the network already [17]. Also, authorization and credentials
for SNMP management is supposedly not always available due to network administrator secu-
rity practices. Alternatives to SNMP must thus be seeked, especially if only completely passive
approaches are required.

Additional systems for creating topology maps that have been designed and implemented
include Microsoft’s Link layer topology discovery (LLTD)® and network introspection by collabo-
rating endpoints (NICE) [17]. LLTD is a link layer protocol that is natively supported by modern
Windows OS versions (later than Vista) using software agents, while it can be retrofitted to earlier
Windows variants. Using LLTD information, a host can create an accurate map of the L2 local
network, which reaches the boundaries that are formed by routers and other L3 devices. NICE
also requires agents installed on devices to locate and map them at the L2 level. Despite the
inherent activeness of both approaches, NICE also has limited passive detection capabilities, to
cope with non-compliant devices such as printers. This is achieved by monitoring ARP messages,
but the method cannot be used in networks where no NICE clients are present at all, completely
passive operation is not functional.

A 2003 study on network discovery and mapping [5] found that passive tools were generally
underdeveloped. Only one passive tool was rendered relevant, which could only provide limited
information such as IP, OS version, limited port detection and limited application status and
whether the device is active at a given time. During the last decade there have been some
advancements in the area of passive topology discovery, but the available tools are still lacking.

Ettercap® provides basic topology discovery features such as device type and network distance
recognition. It identifies routers by keeping note of the MAC addresses in packets that come
from IPs in different subnets, or observing which hosts transmit ICMP TTL-exceeded or redirect
messages [36]. It is important to note, though, that the subnet mask must be known, which is a
non-trivial task. Arpwatch” similarly associates MAC and IP addresses and monitors MAC pairs
for connections and traffic volume, trying to detect routers.

Re-using the limited ideas that have been implemented, and taking passive detection further,
an article by Hee So at SANS [36] proposes that protocols that are integral to the operation of
the network can be used as sources for topology information. Examples include the spanning
tree protocol (STP) and multiprotocol label switching (MPLS), used by switching equipment,
routing information protocol (RIP), open shortest path first (OSPF), interior gateway routing
protocol (IGRP) and intermediate system to intermediate system (IS-IS), used for interior routing.

Shttps://msdn.microsoft.com/en-us/windows/hardware/gg463061.aspx
6https://ettercap.github.io/ettercap/index.html
"http://ee.1bl.gov/
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Information that can be extracted from observed packets may include IP addresses, subnet masks,
types of the devices (e.g. router or managed switch) which can be used to feed an algorithm that
will create network topology map. Finally, [36] also mentions that multicast join group messages
may be used to extract useful relevant information.

Given the lack of a completely passive topology discovery tool that works reasonably well in ICS
environments, we propose a topology discovery mechanism that works in a passive manner. The
design, implementation and experiments of the algorithm are thoroughly explained in Chapter 4.

A topic that is slightly outside our scope, but is worth mentioning is autonomous system (AS)
level discovery. Paraphrasing a definition from RFC 1930 [16], to ease understanding, we can say
that an AS is a set of routers and other hosts that use an interior gateway protocol and common
metrics to route packets within the AS, and an exterior gateway protocol to route packets to other
ASes. Numerous methods can be used to achieve AS discovery. Internet registries such as the
internet routing registry (IRR)® and regional internet registries (RIRs)? contain information about
ASes as well as how routing between them is done. Also, border gateway protocol (BGP) is a
good source of topology information [36], which can be obtained either by directly querying BGP-
enabled devices or by accessing BGP dumps which are gathered by projects such as Route Views'°
asynchronously. Although data can be acquired efficiently in these manners, these techniques only
apply to inter-AS topologies, which are outside the scope of this work.

8ftp://ftp.radb.net/radb/dbase
9http://www.isoc.org/briefings/021
Ohttp://www.routeviews.org/
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Chapter 3
Operating System Fingerprinting

As discussed in Section 2.1, PRADS and POf represent the state-of-the-art solutions for passive
operating system (OS) fingerprinting. In order to identify the gap that still exists towards desired
performance and to provide a solution that extends the state of the art by improving the accu-
racy and detection rate of passive OS recognition, in this Chapter we will first proceed with an
evaluation and comparison of PRADS and POf (Section 3.1). In particular, we will execute the
two tools over the same dataset and discuss their capabilities and limitations. As results of this
analysis, we will highlight the improvements we intend to make and in Sections 3.2 and 3.3 we
will present our solution, that merges the best characteristics of the two tools and tries to address
their limitations. Finally, in Section 3.4 we will validate our approach and present the results of
our experiments that demonstrate how our solution enhances the state of the art by increasing
the detection rate, confidence in results and accuracy of OS fingerprinting.

3.1 Evaluation of Existing Solutions

3.1.1 Technical Features

The technical features of PRADS and pOf will be explained, so that a deep understanding of
their workings is gained. This is not important only to evaluate these tools, but also because the
techniques used by them are effective and will be re-used during the design of our solution.

PRADS is a system for passively discovering network hosts and determining some of their
attributes. Numerous protocols are used for the recognition of the various attributes, but OS
fingerprinting is performed using transmission control protocol (TCP), user datagram protocol
(UDP) and internet control message protocol (ICMP). In the project’s website it is noted that
“ICMP and UDP fingerprinting is not 100% accurate, but it gives an indication about the OS that
can be used for building up a higher confidence level for a total OS detection/fingerprinting.”. This
suggests that TCP is mainly used for OS detection and the technique used by PRADS is called
TCP fingerprinting. Specifically, various elements in the header of TCP packets are inspected,
and a signature is extracted from each packet. Some elements from the IP layer are also added to
the signature, which is then compared to a database which contains fingerprints labeled with OS
families or variants, and the closest match is output as the OS of the host in question.

The elements of the TCP header that are used to create the fingerprints, along with which
TCP packets will be used and how the matching will be done, can heavily affect the performance
of the tool. The most common approach is to use only TCP packets that have the SYN flag set,
which are the first two packets of the connection, because the elements in the headers of these
packets are more affected by the sender’s TCP implementation rather than the communication
link or the receiver [31].

lhttps://en.wikipedia.org/wiki/Transmission_Control_Protocol
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PRADS’s TCP OS fingerprinting is based on pOf version 2 and uses the same fingerprint format
and database of known OSes. Consequently, the elements of the header that are used are the same
as in pOf, as the fingerprints in the database only carry that information. Specifically, according
to various online sources about IPv4%, TCP [32] and PRADS’s source code?, a fingerprint of p0fv2
and PRADS consists of the following elements:

Initial TTL (iTTL), an estimation of the TTL as set by the sender upon departure of the
packet, extracted from the IP layer.

Do not fragment flag (DF), which dictates that no fragmentation should be done, extracted
from the IP layer.

Window size (WS), which determines the amount of data that can be sent before receiving
an ACK.

Overall packet size.

Maximum segment size (MSS), the largest amount of data that TCP is willing to receive in
a single segment.

Window scaling (WSCALE), which allows increasing WS beyond its initial limit of 65.535
bytes to 1 gigabyte.

Timestamp, sometimes used to determine the order in which packets were sent.

Selective ACK (SACK), which allows the receiver to acknowledge discontinuous blocks of
packets which were received correctly.

No operation (NOP), acting as padding.
End of line (EOL), sometimes used to signal the end of the options field.

Quirks. This is a field that is used to hold a variety of observations about the packet. Not
all of these unique features are found in each packet, so the format is flexible. Irregularities
may include fields such as the URG or ACK fields (not flags) not being properly zeroed out
by the sender TCP implementation, which can be used to identify the latter. A full list of
the quirks can be found in PRADS’s source code.

OS genre, such as Windows or Linux.

OS detailed description, such as (Windows) 7, 8 or (Linux Kernel) 2.6.

POf version 3 is the latest tool released by Michal Zalewski. POf vl was first published in
2000 and pOf v2 in 2003 and has since been re-used and ported into many fingerprinting toolsets,
such as PRADS and Satori. POf v3 is a complete rewrite of v2, improving TCP fingerprinting and
allowing HTTP recognition along with provisions for other Layer-7 protocols. Due to the major
changes, pOfv3 utilizes a new signature format, making it incompatible with old signatures. The
features used by p0fv3 are the following. Features similar to the ones described before will not be
analyzed again.

IP version, which can be IPv4, IPv6 or “any”.
iTTL.

Length of IP options.

MSS.

2https://en.wikipedia.org/wiki/IPv4
Shttps://github.com/gamelinux/prads/blob/master/doc/pOf.fp
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o WS.
WSCALE.

Options layout, referring to the TCP options used and the layout in which they appear.

Quirks, similar to p0Ofv2.

Payload size.

e OS genre and version.

For the rest of this document, pOfv3 will be referred to simply as pOf.

3.1.2 Performance

Our next goal is to identify which are the strong areas of each tool and how the tools compare to
each other, when used in identical conditions. Initial tests show that each of the tools also has its
own deficiencies and limitations, which we will explore in this section.

PRADS is quite verbose with regard to systems for which it provides an OS prediction, while
pOf takes a more conservative approach, resulting in output about fewer hosts. In early tests that
we performed over small datasets, we consistently observed that pOf is able to recognize the OS of
less network hosts than PRADS. In our test lab environment, which consists of 7 hosts simulating
a small ICS network, pOf was able to recognize 4 of them, while PRADS managed to give an OS
prediction for 6. Possibly as a consequence, we observed that PRADS’s output is less accurate and
different OS predictions are often given for the same host, whereas p0f rarely contradicts itself.

To investigate this situation further, we ran both p0f and PRADS on a network traffic trace file
(PCAP) which had previously been captured at a real ICS network. The results for 4 representative
hosts (recognized by their IP addresses) have been selected and are presented below. For each TP
we present the responses that each of the two tools provided. Because the tools output one OS
prediction per suitable network packet, running them on a network trace resulted in thousands of
predictions for each host. These results have been filtered and aggregated, so that only one entry
per tool and per IP is shown. Furthermore, a percentage is given next to each OS prediction, to
indicate what part of all the responses the prediction represents.

The following results show that the two tools generally “agree” that the related hosts are
Windows and Linux systems respectively. What is also demonstrated, though, is that both tools
sometimes struggle to give a concrete answer to the user.

o [P 1

— PRADS

1. Windows Win2K (UC)/Win7/2008R2 - 50%
2. Windows 2000 SP2+, XP SP1+ (seldom 98) - 50%

— pOf
1. Windows 7 or 8 - 66%
2. Windows XP - 33%

o [P 2

— PRADS
1. Linux 2.6 - 42%
2. Linux recent 2.4/2.6 - 38%
3. Linux 2 - 19%
— pOf
1. Linux 2.4.x-2.6.x - 99%
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2. Linux 2.6.x - 0%

Moving on to different hosts, we can see that sometimes even pOf cannot confidently make a
choice about whether a system is running Windows or Linux.

o IP 3

— PRADS

1. Windows XP /2000 - 66%

2. Windows Win2K (UC)/Win7/2008R2 - 33%
— pOf

1. Windows 7 or 8 - 66%

2. Linux 2.6.x - 33%

In the last example, about host with IP 4, PRADS provides a wide variety of 5 possibilities,
one of which is just “unknown”, with equal percentage to a valid one. It is obvious that the end
user, a network operator or administrator, is not left with a confident, reliable OS prediction for
each host.

o [P 4

— PRADS
Windows 2000 SP4, XP SP1+ - 30%
unknown 30%
MacOS 9.1 (OT 2.7.4) (2) - 16%
Cisco LocalDirector - 13%

5. Windows XP /2000 - 10%
— pOf

1. Windows XP - 70%

2. Windows 7 or 8 - 30%

Ll

This behavior is not specific to a network topology or type of fingerprinted system, but has been
observed in numerous networks. The generality of this problem led us to seek an improvement
over the state-of-the-art OS fingerprinting tools, the instrumentation of which will be discussed in
the next sections.

Our aim is to construct a solution that exhibits a high detection rate, equivalent of that of
PRADS, while providing a narrow array of OS possibilities for each host, with confidence similar
to that of pOf. In other words, it would be ideal if we could have a solution that combines the
best behavior of the state-of-the-art tools, while suffering minimally from their limitations. The
design and implementation of such an approach is described in the following sections.

3.2 Proposed Solution

In order to be able to obtain more predictions of higher accuracy, we propose an improved approach
to passive OS fingerprinting. The overall workflow is similar to that of PRADS and pOf, using TCP
and IP header fields of captured packets to create fingerprints, which are compared to a database of
fingerprints labeled with OS version information. The engine that matches fingerprints collected
on the wire to the labeled set is replaced completely. While pOf and PRADS utilize simplistic
matching techniques of signatures, such as field-by-field comparisons and limited “fuzziness” or
flexibility hard coded into the logic, we will be using a machine learning technique and specifically
supervised learning. We chose to utilize the decision tree model to build a classifier using the
labeled fingerprint set. The classifier is then used to classify new fingerprints into OS classes,
providing a result about the related network hosts.
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For practical reasons, one of the existing labeled fingerprint sets was used. If a new labeled set
was to be constructed, we would have to gather fingerprints from dozens of different machines, run-
ning different OS families and versions. This task would require significant effort to be completed
adequately, and it would still be next to impossible for a database created by a single researcher
to match the breadth of existing datasets that have been enriched over years by various commu-
nity members. Furthermore, abandoning existing work and creating an incompatible fingerprint
format would only be justified if it would introduce significant performance benefits. Since there
was no strong evidence that such an approach would be beneficial, we used the signatures from
the latest release of pOf.

The selection of TCP/IP header fields that are used for matching is proven to greatly affect the
effectiveness of the approach [22], so it must be done wisely. If too few fields are used, fingerprints
of different systems may be identical, because there is not enough differentiation in values. If
the fields used are too many, fingerprints may become too specific, leading to significantly lower
matches, or the fingerprint database must increase in size to compensate. Similar problems arise
if the right number of fields is used but the wrong ones are selected. Due to the fact that we re-use
pOf’s signatures, the TCP/IP header fields that can be used are limited to the ones present in the
fingerprint list. Based on [22] we chose to use only the following elements, as they are suspected
to be the ideal combination: MSS, WS, iTTL. Additional fields such as options layout and IP
version are also added to our list, for different reasons. The options layout is a new “invention”,
introduced by pOf, and its effectiveness was not evaluated in the aforementioned work. The IP
version is only added to act as a filter for IPv4 and IPv6 signatures that may be different from
each other.

Our final goal is to match the fingerprints gathered on the network, which map to network
hosts, to OS labels, which will provide us with an indication of what OS the hosts are running.
The method chosen for this matching is decision tree learning. Given that the classes are finite,
and consist of the OS names and versions, the model used is a classification tree. This method
has been shown to be the most effective of four machine learning techniques, tested on fingerprint
matching by Lippmann et. al [22].

In addition to TCP fingerprinting, we will be utilizing observations made in [19] about OS
information that is present in server message block (SMB) and Microsoft Windows browser pro-
tocol. When these protocols are used and these fields are populated, our algorithm will be able to
quickly extract a precise OS match without the need to rely on TCP fingerprinting. Early exper-
iments show that SMB traffic in ICS networks is not transmitted by enough hosts to constitute a
reliable source for OS information by itself. This situation is depicted in Table 3.1, in which the
results from a scan for useful SMB packets are shown. The duration of the datasets is between
one and two days, and the networks were highly populated with over 100 active network hosts
each. Despite the high amount of traffic, dataset X only contained useful OS information about
two hosts over the entire period of almost two days, while dataset Y contained no useful SMB
packets at all. This is unfortunate as the quality of SMB OS recognition is theoretically very high
so it could constitute the primary OS detection method in networks with heavy SMB utilization.

Dataset Duration Network hosts | Relevant SMB packets | Identified Hosts
X 1 day, 23 hours approx. 121 79 2
Y 1 day, 16 hours approx. 346 0 0

Table 3.1: Coverage of SMB protocol in two datasets.

Despite its limitations, the method of SMB OS parsing provides highly accurate readings
and therefore it is included in our algorithm as a supplementary OS information source. The
specific messages that contain OS information are of type SMB Session Setup AndX. Because
these messages are not very common, one can also scan the text within SMB packets for strings
that start with the Windows keyword. Obviously, this method will only recognize Microsoft
Windows OS versions and may also include false positives, so its results are only offered to the
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user to be used after inspection.

There are additional messages that carry OS info, such as Microsoft Windows Lanman Remote
API Protocol over SMB over NetBIOS. This source contains fields of fixed format, where the OS
major and minor versions are given. For example, Windows 8 or Server 2008 R2 are coded as
Windows kernel version 6.2, so the relevant fields in SMB would indicate a major version of 6
and minor of 2. Despite the apparent advantages of these packets, we will intentionally not use
them to avoid a pitfall discovered by Kollmann [19]. In fact, along with the OS major and minor
versions, the packets include Browser Protocol major and minor versions. Ignoring the browser
protocol version has been shown to lead to wrong interpretations of OS version, because the same
OS version must be interpreted as different actual OS, when different Browser Protocol versions
are used. To sum up, in order to obtain a good result out of packets of this type, one would have
to have a database of OS and Browser Protocol versions and the related actual OS versions. This
database would look similar to a TCP fingerprint database and since, according to our knowledge,
it does not already exist we decided not to use these SMB packets at all.

3.3 Implementation

The solution outlined in Section 3.2 has been implemented as a prototype, so that its effectiveness
could be tested in practice. The process consists of two phases, carried out by two distinct
components. First, network trace files, in the PCAP format, are imported into a script which
parses each packet and extracts the most useful findings. Parts of this data, namely the fingerprints
of TCP packets, are saved to a file on disk. The file is then read by a separate process line-by-line.
Each line contains a TCP fingerprint captured from a packet that was sent from a specific network
host. A classifier is then used to predict which OS label best fits the fingerprint, completing the
OS detection process.

3.3.1 Phase 1: Information Extraction

Regarding the first phase, the algorithm was implemented using the Python* programming lan-
guage, due to its versatility, conciseness and availability of libraries. Specifically for manipulating
network trace files (PCAPs), the tool named Scapy® is imported as a library and used to dissect
and parse network packets.

Any packet that contains TCP layer information is checked for the SYN flag, which indicates
that the packet is one of the first packets of a new connection. This is essential because, as
explained in Section 3.1, these packets contain the information that best characterizes the sending
host, such as the MSS and TTL. Once the packet is rendered to be useful, it is further processed
to extract all the relevant fields, which are the following: MSS, WS, options layout, IP version
and TTL, as explained in Section 3.2.

These fields could form a TCP fingerprint, but using them as-is would lead to too specific
signatures, which would not be effective. Instead, some of the values need to be filtered or
normalized, to better serve as generic identifiers. Specifically, the following pre-processing is
performed:

e WS. According to pOf’s documentation®, some OSes set window size to a multiple of MSS,
MTU or a random number. Thus, upon capturing a packet we check if this is the case.
A series of test calculations (divisions by MSS, MTU plus and minus the size of the whole
header) are carried out, and if one of them results in a perfect division, the value of WS is
changed accordingly. For example, if WS is found to be 4 times the MSS value, the WS field
of the signature is substituted with the string “mss*4”.

4https://www.python.org
Shttp://wuw.secdev.org/projects/scapy
Shttp://lcamtuf . coredump.cx/pOf3
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e TTL. Most OSes set the initial TTL value of a packet they transmit to a power of 2 [19].
Usual values are 64, 128 and 255. Consequently, it is beneficial to “normalize” TTL values
of captured packets before using them in fingerprints. Since a TTL is only decreased as
the packet travels through the network (being decremented by one each time a router is
traversed), it only makes sense to correct the TTL upwards. This process is completed
before the TTL is stored in the final fingerprint.

Finally, each fingerprint is written to an output CSV file for further processing. This is achieved
using python’s csv module” which enables import, manipulation and export of comma separated
value (CSV) files. This specific CSV file is our testing set, namely a collection of fingerprints that
will be given in input to our classifier that will predict an OS label for each fingerprint.

A secondary feature of the first phase, done in parallel with the aforementioned actions, is to
parse SMB packets. As discussed earlier (Section 3.2), some SMB messages contain OS information
that is highly accurate and should be salvaged when found. This is done simply by parsing
specific bytes of an SMB message to check if it is of the relevant type, and then parsing the block
that according to the standard contains the sending system’s OS version. As an easter egg, the
hostname of the system is also checked for and extracted upon existence.

3.3.2 Phase 2: Fingerprint Matching

The second phase of the algorithm is responsible for the final fingerprint matching. The aim of this
process is to predict the best OS label for each fingerprint, hence to assign an OS to every network
host (identified by IP address). To help us in this task, we use the RapidMiner platform® which
includes implementations of most major machine learning algorithms. The flow of the process is
shown in Figure 3.1 and described below.

e The top branch takes a fingerprint training set as input, which consists of a list of fingerprints,
each one tagged with an OS label. These fingerprints are extracted from pOf’s signature
database, which we have previously parsed and converted using a script to match our needs.

e The training set is given as input to the decision tree learner. This learner produces a
classifier (a model in RapidMiner) that is able to predict a OS label for each fingerprint
given in input. Note that the model only needs to be learned once; in a real deployment
every time a fingerprint is available, the model can be queried to predict the OS label.

e In RapidMiner, the model can be sent to both the user for inspection and to the Apply
Model block (see Figure 3.1) that is the component in charge of predicting a label for each
fingerprint given in input.

e The second branch (lower part of the figure, left side) starts by reading the testing set which
contains the fingerprints of packets captured in Phase 1.

e The attributes of the fingerprints that will be used for matching are then selected. According
to earlier analysis in Section 3.2 we use only MSS, WS, iTTL, options layout and IP version.

e The testing set is finally fed to the Apply Model operator, which predicts an OS label for
each fingerprint in the testing set by applying the model learned by the decision tree learner.

e The results of the process are written to an output CSV file for evaluation purposes. Each
line of the file contains the original TCP fingerprint, the IP of the host that is relevant and
the OS label that has been chosen as a prediction.

The full decision tree that results from the first branch of the RapidMiner process cannot be
presented as a whole due to space constrains, but a part of it can be inspected in Figure 3.2. Each
rectangular with rounded corners represents an element of the TCP fingerprint, and depending

"https://docs.python.org/2/library/csv.html
8https://rapidminer.com
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Figure 3.1: Overview of the RapidMiner block diagram that trains and uses the decision tree
classifier.
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Figure 3.2: Part of the decision tree, generated using pOf’s fingerprint database. Nodes with
rounded corners represent TCP/IP header elements that are used to reach the leaves of the tree,
which represent OS predictions.

on the numeric value, which is noted on the respective edge, a child is chosen. When a leaf of the
tree is reached, an OS label can be output as the prediction of the algorithm.

The existence of a special kind of value, the asterisk (“*”) is particularly interesting. Tradition-
ally, a decision tree is constructed using specific values found in the training set. POf’s signatures
though, contained the asterisk character as a wildcard, to indicate that for some field of the fin-
gerprint, any value can be accepted. This concept is fundamentally simple from a programmer’s
perspective; a wildcard is an easy method to indicate that anything should match. In contrast, the
same concept creates logical problems when used within a classifier, because it alters the logic of
the matching non-linearly. The standard implementation of decision tree handled the asterisk as
a normal character, which led to poor results, as this character is never to be found in fingerprints
extracted from packets on a real network. As such, we modified the algorithm to use the asterisk
the way pOf intends it to be used, as a wildcard that matches anything. Effectively, this cancels
out the field in which it is used and renders it inactive for the specific fingerprint.
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In order to make the interpretation of the results easier, a post-processing script was used.
The script goes through the CSV that RapidMiner creates, and parses each IP and respective OS
prediction. Additionally, it counts how many times each OS prediction appears for a given IP and
then presents the most probable prediction first, along with a confidence percentage, to provide
the user with meaningful information.

3.4 Evaluation

In this section we will evaluate the performance of the algorithm we described previously. The
implementation that was created was used on two datasets that contain traffic captured on the
networks of two different, real industrial control system networks. First, we define the metrics
that will be used, and then we present and interpret the data from both datasets for each metric
separately.

3.4.1 Metrics

To evaluate the performance of our solution we will make use of the following metrics:

e Detection count is defined as the number of network hosts, identified by IP, that an OS
prediction has been made for. Multiple predictions for the same host are only counted once.
In essence, detection count shows how many systems were recognized by the tool.

e Accuracy is the ratio of OS predictions that are known to be correct over all of the predictions
made by the tool.

e Average Predictions per host shows how many OS predictions, on average, a tool has made
for each network host. A high figure translates in the tool giving many possible answers for
each host, which is a sign of low result quality.

o Average Confidence is the average of the confidence levels of all the OS predictions a tool
has made.

Because all three tools, pOf, PRADS and our prototype work on a packet-by-packet basis, with-
out saving and re-using any state information, they do not natively support confidence readings.
The only output the user gets for each packet is an OS prediction, without confidence level. To
overcome this, we created a script that measures how many times each OS prediction is given
for each host and calculates the confidence for each reading and host. The average confidence is
calculated as the average of all the individual figures.

3.4.2 Results
Detection

Table 3.2 contains the count of the hosts for which at least one OS prediction has been made. For
each tool examined, we provide the results from both datasets. Our tool detected 270 and 495
hosts in the two datasets. W.r.t. the first dataset, our tool recognized the most hosts, achieving
the 100% score in the last column. For dataset 2 the score is lower, 97.44%, indicating that the
performance is very close to the best tool.

Concentrating on the percentages column, and looking through the rows of the other two tools,
we can note that in most cases high percentages have been achieved, indicating that the tools are
roughly equivalent in detection rate. The exception of pOf must be noted, which in dataset 1
managed to detect less than half of the hosts that the leading tool (ours) did.

To sum-up, all three tools can detect an equivalent amount of hosts, while pOf’s and PRADS’s
worst case rates are lower (47.41% and 94.44% respectively) than our tool’s, which always scored
over 97.44%.
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Detection

# %
Our Tool Dataset 1 | 270 | 100.00%
Dataset 2 | 495 | 97.44%
POf Dataset 1 | 128 | 47.41%
Dataset 2 | 500 | 98.43%
Dataset 1 | 255 | 94.44%
PRADS Dataset 2 | 508 | 100.00%

Table 3.2: Host detection rates for all three tools and two datasets. The first of the detection
columns refers to the absolute number of hosts that have been recognized, while the second in-
dicates how many of the maximum recognized hosts (by any tool) were recognized for the given
tool and dataset.

Accuracy

The accuracy of the OS predictions of our tool is central to its effectiveness. If the tool’s output
is not correct, there is no use for it, regardless of its good performance in other metrics. To
estimate the accuracy we selected hosts from each dataset randomly, and asked the operators of
each network to verify what OS is running on those systems.

As a preliminary test, we chose 271 hosts from dataset 2 and obtained the ground truth for
them. Subsequently, we run our tool on the dataset and it managed to successfully identify the
OSes of 271 out of 271 hosts, which translates to an overall accuracy of 100%.

Next, we randomly selected 15 of these hosts and measured the performance of the other two
tools, pOf and PRADS. The results of this test are shown in Table 3.3. Calculated over the total,
the overall accuracy of each tool as a percentage of all hosts is shown in the last row. In this
dataset, pOf and PRADS did adequately well but still worse than our tool which achieved the
highest accuracy possible.

Our tool pOf PRADS
Correct OS predictions 15 12 11
Correct OS prediction percentage | 100.00% | 80.00% | 73.33%

Table 3.3: OS prediction accuracy, for three tools, tested on 15 hosts of dataset 2.

Next, we selected 18 hosts from dataset 1, for which ground truth was retrieved. The tools
successfully recognized the OSes of a subset of all the hosts, as shown in Table 3.4.

Our tool pOf PRADS
Correct OS predictions 9 10 15
Correct OS prediction percentage | 50.00% | 55.56% | 83.33%

Table 3.4: OS prediction accuracy, for three tools, tested on 18 hosts of dataset 1.

The score of our tool is remarkably low, which is unsettling, but investigation showed that this
nonperformance can be attributed to a distinct event. Six of the eighteen hosts were identical
systems, running the same OS, Solaris 10. Unfortunately, every single host running this OS was
erroneously recognized as Linux kernel 3.11+4 by our tool, ruining its accuracy performance. These
results underline the fact that a single bad fingerprint match, recurring over and over, can have a
significant effect in a tool’s performance. Nevertheless, this weakness is an isolated incident and
does not characterize the overall performance of the algorithm. If that signature was handled
properly, our tool would have identified 15 OSes, bringing it up to par with PRADS.
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Average Predictions and Confidence

To further evaluate the performance of the OS fingerprinting tools, we discuss the average number
of predictions per host and the average confidence of each tool, for each dataset. Each 4-row part
of Table 3.5 relates to data coming from a different dataset.

The first two lines about dataset 1 contain the total of network hosts for which OS predictions
have been made (Detected hosts) and the total number of predictions for the whole dataset (All
predictions). Dividing the later by the former gives us the average predictions per host, presented
in the third line of the group. A lower number in this row indicates that the respective tool
provided the same answer more consistently, when different packets from the same host were
processed. Intuitively, we can note that this translates to the tool “changing its mind” less, than
if the number is higher. In the first three lines of dataset 2, the equivalent metrics are calculated.
Let us delay discussion about average confidence until we analyze the rest three metrics for each
dataset.

Dataset Metric Our tool pOf PRADS
Detected hosts 270 128 255
Dataset 1 All predictions 288 247 464
Avg. predictions per host 1.07 1.93 1.82

Avg. Confidence 97.51% | 70.73% | 67.40%
Detected hosts 495 500 508
Dataset 2 All predictions 502 970 1304
Avg predictions per host 1.01 1.94 2.57

Avg. Confidence 99.97% | 90.86% | 55.91%

Table 3.5: Average predictions per host and confidence in predictions for all three tools and two
datasets. The number of detected hosts and all OS predictions made are included to provide
perspective. Lower average prediction per host and higher average confidence are better.

In both datasets, our tool exhibits the lowest number of predictions per host, indicating that
it provides the fewest possibilities of OSes per host, on average. Furthermore, the fact that the
number is very close to 1, for both datasets, means that in most cases only one prediction is
provided to the user, which is a positive characteristic of our tool.

The last metric we present in the table, is the average confidence each tool has in its predictions.
This metric is calculated separately for each tool, by averaging the confidence of each prediction
made for any host, whether right or wrong. Intuitively, a high percentage means that the tool is on
average almost completely confident in the OS prediction it outputs to the user. Lower percentages
indicate that the tool had trouble effectively evaluating the possible predictions against each other.
In a situation like this, the tool may output the prediction (for example) “Microsoft Windows 10”
with confidence 51% while the second in line was “Microsoft Windows 8” with confidence 49%. A
user that reads the tool’s output cannot, in turn, have a lot of confidence in such a result.

Reading the respective lines for both datasets, we can conclude that our tool scores highest
in all cases, while the second tool (p0f) scores significantly lower. This figure can be intuitively
connected to the low predictions per host metric described before, because being confident about
a result enables the tool to predict the same OS for a host consistently. Finally, PRADS, which
we have suspected to be “changing its mind too often” during preliminary tests, is now proved to
exhibit this kind of behavior, with average confidence reaching as low as 55.91% for one dataset.

SMB Parser Evaluation

The performance of the part of the algorithm that parses SMB messages was evaluated using the
same datasets. For dataset 1, the SMB parser recognized the OSes of 9 hosts, but we were unable
to obtain ground truth for any of them. Regardless, the fact that the TCP fingerprinter (discussed
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previously) predicted OSes for 270 hosts while SMB was only available for 9, supports our prelimi-
nary experiments (Section 3.2) and assumptions about SMB not being a fully dependable solution
in ICS networks. Running the SMB parser on dataset 2, which consists of over 500 identifiable
devices, only yielded 6 OS predictions, which we were able to verify and were found to be correct
in reality.

Take-aways

To sum up, we will be making a few notes on our results and contributions, that will provide
additional insight.

The comparison we did on the state-of-the-art tools showed that PRADS has the upper hand
over pOf in detection rates, recognizing the most hosts in all situations tested. In contrast, pOf is
superior in the confidence it has in its predictions, while PRADS scores much lower in some cases,
verifying our assumptions about its “uncertainty” in its results. The accuracy of the predictions
of the two tools was shown to be roughly equivalent, with each one of them surpassing the other in
one of the two datasets. These observations enable us to conclude that previously to the existence
of our solution, there was a trade-off between how many hosts a tool can detect and how certain
about its prediction it will be. Increasing one metric would lead to the decrease of the other, while
accuracy roughly stands unaffected.

With the introduction of our tool we managed to break this equilibrium, shifting the metrics’
interdependence. The new tool is able to detect more or the equivalent amount of hosts (2.66%
less) to what the top tool in detection (PRADS) can while having significantly higher confidence in
its predictions than pOf! At the same time, prediction accuracy is better (for dataset 1) or slightly
worse (for dataset 2, despite our tool exhibiting bad behavior due to an isolated incident) than pOf,
rendering it reliable enough for practical use. If all the aforementioned parameters are added to an
overall, weighted score, we believe that we have created a tool that successfully propels the state
of the art towards better results for the end user. The experience of the network administrator
will be qualitatively better, as they will receive more consistent predictions, about more devices on
their network, at the same or better accuracy than they used to. This advancement strengthens
the position of passive OS detection as a tool that can be realistically used to detect safety and
security hazards in ICS networks, such as misconfigurations or rogue devices.
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Chapter 4

Topology Discovery

Network administrators of large industrial control systems (ICS) experience difficulty keeping an
accurate and up-to-date diagram of all the operational devices. The multitude of network hosts
and complexity of the network make the task of manual book-keeping extremely resource intensive.
At the same time, knowing which devices are supposed to be connected to a network, and what
kinds of communications between them are considered normal can be crucial for the timely and
effective mitigation of safety and security incidents that can occur.

While the above problem exists in most complex IT networks, operators in ICS environments
are confronted with additional difficulties, specific to those networks. Actively querying systems
is often dangerous for the industrial process itself, and given that critical infrastructure may be
involved, the stakes are high.

Along with these restrictions, ICS networks also exhibit some characteristics that may aid
automated enumeration tasks; because many of the communications happening on the network are
parts of automated processes, most connections are characterized by regularity. This particularity
has different implications, depending on the specific network and the reason for which the topology
needs to be known. For example, one can possibly exploit the fact that the hosts of an ICS network
do not change significantly over time to issue alerts once new ones appear, or employ the same
logic on connections between existing hosts.

Currently available tools for network topology discovery, as discussed in Chapter 2, do not
solve the problem adequately in an ICS setting, either because they are active and unaware
of ICS protocols or because they require features such as internet connectivity, rendering them
inapplicable in the case of many ICS networks.

In this chapter, we will present a method that can be used by or be incorporated within a
passive monitoring system such as an intrusion detection system (IDS), to enable the automatic
creation of topology maps of otherwise unknown and uncatalogued networks. The principles of
the method are described in Section 4.1 and the detailed algorithm is outlined in 4.2, while an
implementation of the algorithm is described and evaluated in 4.3.

Before continuing into the subject matter, we should pro-actively define some concepts that
will be used frequently.

o A fully defined subnet refers to a part (subnetwork) of an IPv4 network that contains IP
hosts. The format used to define a subnet is the first address of the subnet, followed by the
slash character (/) and the bits of the network prefix, also known as the CIDR notation®.
A typical example for a LAN would be 192.168.0.0/24. A subnet is said to be fully defined
when both the first IP address and the network prefix are known.

e A network host or simply host is a computer system that is connected to an IPv4 network.
A host may have multiple network interfaces, attached to different subnets.

LCIDR refers to Classless Inter-Domain Routing, which has been explained in more depth in Section 2.2.
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o A network asset or simply asset refers to a network interface of a host. Although it is
usually the case, we avoid tying an asset to a host because the latter may have more than
one network interfaces and when viewed from the networks’ perspective it is not trivial to
identify that the interfaces belong to the same host (a problem known as aliasing, described
in Section 2.2).

e The L1 to L7 notation refers to Layers 1 to 7 of the OSI model, as explained in Section 2.2.
To jog the reader’s memory, we briefly remind that MAC addresses are L2 elements, while
TP addresses are L3.

4.1 Solution

In this section, we describe a technical solution that enables automatic, passive network topology
discovery. In order to achieve high performance, we will use ideas and techniques that have
either been shown to be effective in bibliography or their perspectives look promising based on our
observations and preliminary tests on real ICS network data. The methods used to obtain topology
data are separated in two sections. The first is about exploiting properties and information of
basic networking protocols such us Ethernet or IPv4, while the second deals with more specialized
and advanced protocols what useful information they carry.

4.1.1 Techniques Based on Basic Protocols

By understanding how network topologies work in regard to the lower OSI layers (up to L3), we
formulated rules that can be used to make conclusions about the topology of a network.

In local area networks (LANSs), network hosts are assumed to be able to reach each other
directly, only being separated by L2 devices such as switches. Ethernet frames are thus delivered
only based on their 48-bit MAC addresses and no information from higher layer protocols needs
to be used. We will consider a LAN to be tapped when frames are captured by a host that is
connected to it. The host will in turn be referred to as a network tap or sensor or simply tap. In
some cases, when tapping takes place for network monitoring purposes, the sensor is attached to
a special port of a switch that is connected to the LAN. The port is known as a mirror port or
Switched Port ANalyzer (SPAN) on Cisco Systems switches, and provides the host connected to
it with a copy of each packet that is received by the switch on any of its other ports, regardless of
whether the packet was destined for the host.

Based on knowledge of basic network protocols, we have identified the following rules that can
enable topology discovery:

1. When a sensor is connected to the mirror port of a switch on a LAN; it will receive a copy of
each frame that goes through the switch. This copy will be intact, in the sense that it will
include the original ethernet MAC addresses. In contrast, when a packet from a different
LAN arrives to the monitored LAN (destination LAN), its ethernet part is modified by the
router that is located at the edge of the two LANs. The router substitutes the source MAC
address with its own and the destination address with the one matching the recipient in
the destination LAN. Higher layers, such as the network layer (L3) which may contain IPv4
addresses, are not modified?. The above observations enable us to compose the following
rule:

When different frames are captured on a given LAN and their ethernet source
MAC addresses match, while their IPv4 source addresses differ, the packets most
probably originate in a different LAN. Furthermore, the MAC address may belong
to the local interface of a router, which is located at the edge of the monitored
LAN.

2Given that network address translation (NAT) is not in use.
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2. Information can also be derived from the network layer. Taking the case of the most popular
protocol at this layer, IPv4, we have observed that a part of the header called Time To Live
(TTL) may help us make useful conclusions. Specifically, TTL is initially set to a high value
and is decremented by one each time the packet traverses a router. If the value reaches 0
the packet is dropped. While this feature was built as a safeguard against forwarding loops
in problematic network topologies, it can be exploited for our purposes. When a packet
is captured, we can calculate the possible initial TTL value as set by the sender and then
subtract the current value from it. The resulting figure corresponds to the network distance
between the sender and the sensor, and it is referred to as network hops. For example, if
a packet with a TTL value of 125 is received, we can increment the value until the closest
power of 2 is reached (27 = 128). Subsequently, subtracting the initial value (125) from 128
will give 3, which can be read as “the packet comes from a host that is located in a LAN 3
hops away from the sensor/tap”. It must be noted that the calculation of the initial TTL is
an estimation that is based on the observation that most operating systems set the TTL to
powers of 2, as explained in Section 2.1.

3. Additionally, a heuristic can be devised to detect how many LANs are being tapped by the
same sensor. This may be useful because a sensor with multiple interfaces may be capturing
packets on different LANs and saving them in one trace file, or because a switch or other
network device may be aggregating packets from different LANs before serving a copy of
each to the sensor. To recognize these situations, one can check if the same packet appears
in a dataset more than once. In that case, the number of occurrences indicates the number
of sensors or taps that are in use. Furthermore, the network distance between two different
LANs can be estimated, given that both of them are tapped. When the same packet?® is
captured by both taps at the different LANs, the absolute difference of their TTL values will
be equal to the hop distance of the two LANS.

4. Address Resolution Protocol (ARP) packets can help with associating MAC and TP ad-
dresses, as this is the main purpose of the protocol itself. The same effect can be achieved
by observing most other IP packets and the underlying ethernet frames, so this method does
not provide much added value.

5. Active scanning techniques like traceroute and ping probes can provide quick and reliable
insights into the network but they are active and can even create negative consequences
such as IDS false positives and device reboots in ICS networks. Furthermore, they are not
applicable when captured data is analyzed off-line, so their value is limited to our purposes.

The last two techniques in the above list were not considered effective and in line with our
objectives and were thus not utilized.

4.1.2 Techniques Based on Specialized Protocols

Apart from basic, lower layer methods a series of higher layer protocols may typically contain
clues about the topology, so harvesting them may be beneficial. A short overview of each source,
along with applicability motivation is provided below.

e In networks monitored using simple network management protocol (SNMP), information
related to specific devices or the subnet may be available. Although SNMP is widely used,
the data format is not defined by the protocol but by the management information bases
(MIBs) instead. Since different MIBs may be used in different networks, to use SNMP
information one should be able to parse many different MIB, which requires substantial
effort and increases the complexity of the solution. In addition, as discussed in Section 2.2,
the use of SNMP comes with other disadvantages including the need for authentication
(i.e. credentials need to be available) and additional traffic injection due to the active nature
of the approach. For these reasons, this method is not adequate for our purposes.

3Contents above and including L3 should be equal. L2 addresses are expected to be different.
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e External routing protocols such as border gateway protocol (BGP) can supply information
about the interconnection of autonomous systems (AS). As defined in 2.2, an AS can be
summarized as a set of routers and other hosts that use an interior gateway protocol and
common metrics to route packets within the AS, and an exterior gateway protocol to route
packets to other ASes. In our case, external routing protocols can provide a limited amount
of useful information, as the problem we are trying to tackle involves discovering topologies
within ASes and not between them.

e Internal routing protocols such as routing information protocol (RIP), open shortest path
first (OSPF) and interior gateway routing protocol (IGRP) are used for communication of
network related data between routers.

e Simple service discovery protocol (SSDP) facilitates the advertisement of services running
on network hosts and constitutes the basis for the universal plug and play (UPnP) protocol.
Unfortunately, exchanged messages do not include enough information to fully define an L3
subnet.

e The Cisco discovery protocol (CDP) can provide information about the existence and capa-
bilities of neighboring hosts.

e Spanning tree protocol (STP) and rapid spanning tree protocol (RSTP) are used by ethernet
switches to determine which links should be used for communication within a LAN while
avoiding loops. Although these protocol messages contain useful L2 information, they do
not typically provide information about the IP destination and host (L3), so their suitability
was not investigated further.

Internal routing protocols RIP, OSPF and IGRP as well as CDP have been considered for
use with regard to the information they provide and their use in ICS environments and have
been found to be suitable. These protocols are regularly used to exchange messages that contain
information about routers or other hosts and the respective subnets they are connected to. This
information is usually adequate to identify the hosts that use them and the respective fully defined
subnets.

To verify the feasibility of a completely passive approach to network topology discovery and
to gather information about how effective such an approach could be, we decided to focus on the
analysis of a single protocol. Because not all protocols are used by all networks, it is important
to select the ones that are more frequently used in ICS environments, maximizing the possibility
of being able to gather valuable information.

In order to select the protocol on which we will focus our attention, we carried out a basic
experiment to see which of the protocols that we discussed earlier is more prevalent in ICS envi-
ronments. To this end, we used eight different datasets, consisting of traffic captured in real ICS
networks and we counted how many datasets contain each of the protocols we are considering.
Table 4.1 shows the result of such a test. As we can see, w.r.t. the data we are considering, SNMP
is the most commonly used protocol but we are discarding its usage for the reasons listed above.
Additional considerations for the final decision included the fact that some of the protocols are
vendor-specific. A prominent example is Cisco’s CDP, which we avoid using as it would restrict
the environments in which our approach will work effectively to networks using Cisco equipment.

Our final choice was to parse OSPF Version 2, which is an open standard defined in RFC 2328
[29] but is also used by large vendors such as Cisco. Furthermore, OSPF is believed to be the
most used interior gateway protocol in large enterprise networks®*, which makes it ideal for our
purposes.

The information carried by OSPF’s hello packets includes the IP address of the router trans-
mitting the OSPF packet, the mask of the subnet it belongs to, the backup router of the area and
zero or more neighbors that are also OSPF-capable. Based on this, we can identify which devices
are routers, and in which subnet they are located.

4https://en.wikipedia.org/wiki/Open_Shortest_Path_First
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Protocol | Detected in # of datasets
SNMP 4
CDP
STP
OSPF
SSDP
RSTP
RIP
IGRP

OO O NN W W

Table 4.1: Protocol presence in eight different datasets.

Given that OSPF packets do not traverse IP routers, they never travel more than one hop.
This is ensured by setting the IP layer’s TTL value to 1 upon transmission of an OSPF packet.
Consequently, when such a packet is captured, we can safely assume that one of the sensors resides
in the subnet of the router. Using the network mask provided in the packet, we can fully define
the network segment that the sensor is located in, which is a very important piece of information
for topology discovery.

4.2 Algorithm

Based on the observations presented in the previous section, an algorithm that uses them to
discover a network’s topology has been designed and implemented. The approach is bound by the
following assumptions and limitations.

Assumptions.

1. Unknown Sensor Number. The algorithm is designed to work with data that has been
or is being captured using an unknown number of network sensors or taps connected to
different LAN segments. The sensor is assumed to be connected to the mirror or SPAN
port of a network switch and as a result is expected to receive a copy of each packet that
travels through the given switch. Despite this requirement, it is realistic to expect that the
mirroring function of the switch is not perfect, resulting in some packets not being forwarded
to the sensor. One or more sensors connected to different LANs may be used at the same
time, so the algorithm must be able to cope with this situation and differentiate the LAN
each packet originates in. The number of sensors used and their location need to be detected
automatically.

2. Completely Passive Operation. Traffic is assumed to be captured in a completely passive
way. Ethernet frames captured must have the original destination address in place, and the
sensor’s hardware MAC address should not be found in their contents.

3. No NAT in place. Network address translation (NAT) must not be in use within the
network.

4. Aliasing. Each network host may have more than one network interfaces, on different or
the same LANs. The interfaces will be treated as independent assets, and alias resolution
(as introduced in Section 2.2) will not be performed.

Consequences of the Assumptions.

1. Hosts that do not transmit ethernet frames during the observed time period will not be
detected.

Passive Asset Discovery and Operating System Fingerprinting in ICS Networks 27



CHAPTER 4. TOPOLOGY DISCOVERY

2. Routers that do not use OSPF may or may not be recognized.

3. LANSs in which no router is using OSPF will not be fully defined.

Network Entities and Data Structures. The algorithm examines captured network packets
sequentially, and saves the relevant information for further processing and use. The main entities
and their relationships are shown in Figure 4.1 and analyzed below.

Type [router/host)

IPaddress

FAAC
address

Role Asset o&———9 Hiz +——e MAC
Haps away
#of hops
n
FirstSeen cont avemlD
ains
i Sensor_|D
Last Seen
" Is m
connected *~
to

CIDR definition  e——=a  Sybnpet \
* Hi  &—e Sensor e——e

Figure 4.1: Entity-relationship diagram of the information that the algorithm produces.

Assets are the identified network interfaces and mainly characterized by their main attribute,
the IP address. Other attributes include the type of the asset (whether it’s simply a network
host or a router etc), operating system, the role of the asset in the network, the times that
the host was first and last seen on the network, as well as the network distance between the
sensor and the asset in hops. As mentioned in the definition of an asset, in the beginning
of this Chapter, more than one assets may relate to one network host, so an asset does not
always match a host one to one.

MAC addresses are closely related to assets, but do not necessarily match them. MAC
addresses are only detected in the tapped LAN(s) and each one of them can be connected
with many assets. This situation is normal because packets that originate in different LANs
will have the same source MAC but different IPs when they reach the local one.

Subnets refers to the IPv4 subnetworks that have been identified and fully defined. A subnet
can have many assets belonging to it. There can also be relationships between different
subnets, known as interconnections between exactly two subnets. These interconnections
are characterized by the two subnets involved, their network distance measured in hops and
the asset that connects them (belonging to at least one subnet of the two).

Sensors or network taps are the physical or virtual devices that are used to capture network
traffic. Each sensor resides in exactly one subnet.

28
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The algorithm examines captured network packets sequentially, and saves the relevant infor-
mation in memory. A number of lists are used to save the state of the algorithm, but periodically
a part of those lists can be exported to a database for further use. Information that is exported is
considered unlikely to change, whereas some of the lists in memory contain states that may change
over time, when new observations are made, and are primarily used by the algorithm itself.

As noted before, while assets can be thought to map to network hosts, they may technically
differ. This is due to the fact that a host may have multiple network interfaces, each with different
IP addresses, and will thus occupy multiple places in the assets list. Still, for the most part, we
can loosely think of assets as network hosts.

Algorithm Tasks. The principle of operation of the algorithm is presented in Figures 4.2, 4.3
and 4.5. The algorithm can be run continuously on live network traffic, or in batch mode, when
recorded traffic is replayed. For each packet, the process shown in Figure 4.2 is run, which contains
all the necessary functions to extract useful data from the packet.

Source
MAC
known?

IP layer 2
present? *

Parseinfo
from IP
layer

Ethernet
layer
present?

Append to

all_macs list

Figure 4.2: Overview of the main topology discovery subprocess. Decision blocks are represented
as diamonds, while processes are noted in rectangles.

The main purpose of the subprocess in Figure 4.2 is to check for IP and Ethernet layers (blocks
1 and 3), and run appropriate actions or subprocesses. Conditional block 4 checks whether the
source MAC of the packet is already in the list of known MACs that is stored in memory. If this is
not the case, block 5 saves the MAC to the aforementioned list. The subprocess Parse info from
IP layer (2) is complicated and involved, and its details are thus presented separately, in Figures
4.3 and 4.5. These figures contain the main workhorse of topology discovery which parses the IP
layer of each packet. The main tasks carried out can be outlined as follows.

e In Figure 4.3, block 6, the network distance, measured in hops, is estimated based on the
packet’s TTL. The exact method used has been outlined in Section 4.1.1.

e If OSPF is present (block 7), and the message being processed is a hello message (8),
information such as the IP, subnet mask and neighboring routers is parsed (9). The hello
message is the one that contains the most useful pieces of information and that is why it
is the only one we need to parse. An anonymized sample of hello message that has been
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captured on an ICS network is shown in Figure 4.4. The most useful information, source IP
address and subnet mask, are marked with red.

In block 10, the subnet that the router belongs to is calculated using the information from
OSPF. Converting a subnet from IP/mask format to CIDR is trivial.

Block 12 checks if the detected subnet is already in the known subnets list. If not, it is saved
to memory.

Next (14), the router’s information is saved in the known assets list, along with neighboring
routers that may be referred-to in the OSPF hello message. This last piece of information
is also extracted from the same hello message, and shown as the last line in Figure 4.4.

If OSPF was not present, information from the IP layer is saved (15).

In conditional block 16, it is checked whether the subnet from which the packet comes is still
unknown. This would be the case if the packet has no OSPF layer, or if the OSPF subnet
extraction has failed (e.g. the check of block 11 failed). If no information exists, the source
IP is checked against all known subnets in the database, in an effort to find a match.

OSPF Extract IP,
hello subnet mask,
message neighboring
? routers

Calculate
network
prefix

Estimate
hops based

onTTL

Save router’s IP and hops
Save IP, host, Save neighboring router’s IP
hops
OSPF
layer
present? New
subnet

Subnet not
known yet

Check if MAC
belongs to
router

Figure 4.3: Overview of the algorithm that parses the IP layer, part 1.

Block 18 contains a subprocess that checks the source MAC against the MACs of known
routers in memory. If it turns out that the MAC belongs to a router (19 in Figure 4.5),
block 20 is chosen.

Subsequently (20), if the packet originates in a remote subnet (not monitored by the sensor),
and that source subnet is known already, an inter-subnet relationship can be deduced, so it
is saved to the appropriate list.

The MAC and IP pair of the current host is saved to the appropriate list if not already
known (23, 24).

If the packet comes from a host in the local (in relation to a sensor) subnet (25) and it is not
yet known (26) it is deduced that there is a sensor in it, so it is saved to the list of tapped
subnets (27).
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pFrame 1: 94 bytes on wire (752 bits), 94 bytes captured (752 bits)
»Ethernet II, Src: Cisco_ , Dst: IPv4mcast 00:00:05 (01:00:5e:00:80:85)
pInternet Protocol Version , Dst:
v0pen Shortest Path First
w 0SPF Header
0SPF Version: 2
Message Type: Hello Packet (1)
Packet Length: 48
Source OSPF Router: a.b.c.d
Area ID:
Packet Checksum: ©xb&d® [correct]
Auth Type: Null
Auth Data (none)

et secolds
pOptions: @x12 (L, E)
Router Priority: 1
Router Dead Interval: 40 seconds
Designated Router: e.f.g.h
Backup Designated Router: a.b.c.d
Active Neighbor: e.f.g.h

Figure 4.4: A sample of an OSPF Hello packet, with sensitive data masked. The IP and subnet
mask fields that are noted with red color are the pieces of information that enable us to fully
define a subnet.

MAC
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router?
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subnet? MAC-IP
pair

known? et

from local
host?

Source
subnet Save MAC-IP pair
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subnet
known?

Save |nt.er—su_bnet Save subnet as
relationship tapped

Figure 4.5: Overview of the algorithm that parses the IP layer, part 2.
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4.3 Implementation & Evaluation

4.3.1 The Prototype

The algorithm described earlier has been implemented in a prototype application. Asin Chapter 3,
Python® was used, along with Scapy® to manipulate PCAP network traces. Additionally, iptools”
facilitates the process of converting IP addresses and subnet definitions between notations, such
as 192.168.0.0/24 which is equivalent to IP 192.168.0.0 and mask 255.255.255.0. Vendor lookup
based on MAC addresses is achieved by issuing HTTP requests to an external service using the
requests® library for Python. To enumerate files and directories and run other system functions,
sys? and glob'0 are used.

During the initial PCAP manipulation tests with scapy it became evident that memory man-
agement would be challenging. Although performance is generally not a priority when building
a prototype, some measures had to be taken to make processing of large datasets feasible. As
soon as a PCAP file is read by scapy, it is parsed and loaded into memory but the process can
be considered to be inefficient. Early tests showed that the system memory used by scapy when
a 2 MB PCAP file was loaded can reach 117 MB, which translates to an effective multiplier of
approximately 58.5. Testing with a 22 MB PCAP led to the use of 1186 MB as shown in Figure
4.6.

Scapy Memory Usage

1200

1000

. ‘

Testdaaserl Test daaset2

mPCAPsize  mSystern memory used by scapy

Figure 4.6: Memory used by scapy for two different PCAP files. The system memory used to load
a PCAP is over 50 times its size.

In order to make the processing of large PCAPs possible, a script was used to pre-process files
before they were loaded to scapy. Using the linux utility editcap'!, the script scans directories
that contain large PCAPs and dissects them into new files that contain at most 100000 packets.
The resulting files can be handled easily by scapy, and the topology discovery prototype can scan
a directory and iterate over them using the glob python library. This technique effectively renders

Shttps://www.python.org
Shttp://www.secdev.org/projects/scapy
"https://pypi.python.org/pypi/iptools
8https://pypi.python.org/pypi/requests
9https://docs.python.org/2/library/sys.html
Ohttps://docs.python.org/2/library/glob.html
Uhttps://wuw.wireshark.org/docs/man-pages/editcap.html
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the prototype able to process files of up to a few GB, when run on a system with only 4 GB or
system memory (RAM).

The implementation follows the design described in Section 4.2. The final step of the process
is to export the results, which may be done periodically or when the algorithm terminates, and
contain the following information.

e The subnets that are fully defined,

e the sensors that have been used for tapping,

e all the assets that have sent at least one packet,

e all the MAC addresses of local devices along with their manufacturers,

e the MAC and IP addresses of all devices detected,
e the MAC addresses of local devices that have been associated with IPs,

e the interconnections between subnets that have been discovered.

4.3.2 Evaluation

The prototype was initially tested on several datasets that were available in the form of PCAP net-
work trace files. The datasets contained traffic that had previously been captured using network
sensors installed at various ICS installations. These industrial control systems belong to differ-
ent companies operating in different sectors, spanning from gas distribution to electric energy
production, and operate in different countries.

For the final evaluation of the prototype, two of those datasets were chosen, based on two
criteria: (i) if the OSPF protocol is used in the network, which is integral to the operation of our
algorithm; and ii) the availability of (part of the) ground truth, which will enable us to evaluate
and discuss the results we obtain. Note that complete knowledge of the network topology is not
available for any of the datasets we used, however we have partial information useful to make
interesting observations.

Our goal for this task is twofold; first, we seek to evaluate the performance of our algorithm,
in regard to its ability to successfully recognize the topology of a network based on the data that
it is provided with. Based on the ground truth we have obtained, we will be able to judge how
the algorithm’s findings compare to reality. Second, we aim to determine what is the minimum
observation time needed, for any passive algorithm, to reliable map an ICS network. Most algo-
rithms will give results as soon as they process the first few packets, but later packets may provide
information that adds to or changes the perceived topology. We need, thus, to know what amount
of time should be chosen, after which the results can be considered solid. We will achieve this by
measuring what information is gained over time, while monitoring and ICS network, and we will
conclude to an optimal minimum observation interval.

The network time covered by the datasets, which is the time during which the respective
networks were being tapped, is shown in Table 4.2.

Dataset Duration
1 approx. 80 hours
2 approx. 24 days

Table 4.2: Time durations of the two datasets used.

It is evident that the datasets cover a long time of network traffic, rendering them suitable for
a historic development study. Subsequently, we decided to divide the datasets in smaller subsets,
and run the prototype separately on each one. Each subset maps to a few hours of actual network
traffic, but their exact length depends on technical restrictions such as disk space on the test
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system. In any case, the subsets of each dataset are guaranteed to be of equal length. This
method will enable us to determine how the processing of each consecutive subset influences the
end recognition result.

Unfortunately, both datasets were acquired by using one tap or sensor, while the subnet inter-
connection feature of the topology discovery algorithm requires a minimum of two sensors to be
in place, and was thus not tested.

The results of the algorithm runs are presented in two separate sections. First, an aggregated
overview is given, with metrics that characterize each dataset as a whole. Then, the analysis of
the progression of features over time is given, to discover variables that are sensitive to timing.

Holistic Analysis
The metrics that are used to evaluate the overall performance of the prototype are the following:
e The number of IP source addresses of hosts that are present in the dataset.
e The number of assets that have been identified successfully (by IP address).
e The number of MAC source addresses that are present in the dataset.
e The number of MAC addresses of hosts that have been correlated with IPs.
e The multitude of detected network taps or sensors.

e The multitude of network taps or sensors that were used in reality during the packet captur-
ing process. External sources need to be used to obtain this information, because detecting
them in the dataset by hand is impractical.

e The subnets that have been fully defined by the algorithm.
e The subnets that we expected the algorithm to be able to define fully.
e The OSPF-enabled and all routers detected.

e The OSPF-enabled routers that are present in the dataset. It must be noted that it is
impractical to estimate non-OSPF routers in a dataset manually, so this value is unavailable.

The above metrics are provided for datasets 1 and 2 in Tables 4.3 and 4.4 respectively. For
both cases, the recognized IPs total count is actually higher than the one for IPs present in the
dataset. Although this may seem like a mistake at first, it is the result of one of the IPs being
listed as a neighbor of one of the OSPF-capable hosts, despite the fact that there are no packets
originating from it in the dataset. This discovery highlights the advantages of using the neighbor
feature of OSPF and shows that it can help increase discovery rates in practice.

‘ 1Ps ‘ MACs ‘ Sensors ‘ Fully defined subnets ‘ OSPF-enabled routers ‘ All routers
Detected 368 6 1 1 5 43
Ground truth | 366 1 1 4 -

Table 4.3: Overall results for dataset 1, when run on the complete dataset.

The OSPF capable routers in dataset 1 are 5, which is more than the expected 4, and is in line
with the above finding. The same holds for dataset 2, where 3 routers were found, while 2 were
expected.

The total of recognized routers in dataset 1 is 43, while only 6 MAC addresses are detected
in the tapped LAN. This discrepancy hints problems with the algorithm, and upon inspection it
was found that packets coming from hosts in the tapped subnet appeared to be arriving through
a router-like device. In reality, a part of the subnet was behind a firewall, which filtered traffic
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‘ IPs ‘ MACs ‘ Sensors ‘ Fully defined subnets ‘ OSPF-enabled routers ‘ All routers
Detected 225 24 1 1 3 6
Ground truth | 224 24 1 1 2 -

Table 4.4: Overall results for dataset 2, when run on the complete dataset.

and retransmitted it onto the tapped LAN. This unusual topology led our algorithm to mistakenly
deduce that these hosts were routers, while they were simple hosts. The router recognition part
of the algorithm can be fitted with detection of this topology, if successful recognition of it is
required. The improvement is outlined in Chapter 5.

In dataset 2, 6 routers were found, which seems plausible, but we cannot know for sure if more
exist that the algorithm missed. As shown in Tables 4.3 and 4.4, and verified through-out datasets
1 and 2, the detected sensors value was always 1, which is accurate compared to our ground truth.

Time Progression Analysis

To track how the network and its recognition change fluctuate, we measured the number of IPs,
MACs and identified subnets over time for both datasets. Each dataset is split in 12 parts of equal
length, called subsets. The number of new elements discovered when running the prototype on
each consecutive subset of data will illustrate the development of host detection over time. For
dataset 1, each subset covers a real time duration of 6 hours and 40 minutes. For dataset 2, the
corresponding duration is 1 day, 23 hours and 8 minutes.

Dataset 1. Table 4.5 provides the sums of IPs per algorithm run on each subset of dataset
1. The data is presented per subset, each column representing one of the 12 subsets that were
processed. The first two rows of data contain the ground truth about IPs that are present in the
dataset. The first of those is the Count of IPs found in each subset. The second row contains the
measure of how many new IPs appeared in each subset. This figure was calculated by comparing
the IPs that appear in each dataset with all the previously known addresses.

The last two rows of the table contain the equivalent figures, as detected by our algorithm.
We can observe that all the IP addresses present in the dataset are successfully detected by the
algorithm, with the addition of 2 extra ones which belong to neighbors of OSPF enabled devices,
which were discussed earlier.

1 2 3 4 5 6 7 8 9 10 11 12 | Total

Cromnd trath Count 317 | 322 | 331 | 321 | 331 | 318 | 323 | 317 | 321 | 310 | 328 | 333 | 366
ound tru New in thissubset | 317 | 8 | 14 | 3 | 4 | 0o | 2 | 0o | 0| o |11 ] 7 -
Count 319 | 324 | 333 | 323 | 333 | 320 | 325 | 319 | 323 | 321 | 330 | 335 | 368

Detected by the algorithm

New in this subset | 319 8 14 3 4 0 2 0 0 0 11 7 -

Table 4.5: Time-based progression analysis of IP addresses that are present in dataset 1, and how
many of them were detected by the algorithm. Each time division (subset) corresponds to almost
7 hours of traffic.

A measure that is not depicted is the detected subnets over time. For dataset 1, the subnet
detected by the algorithm matches ground truth in all 12 subsets.

Regarding the development of IPs over time, Figure 4.7 illustrates that the number of new
appearances after the first subset, which lasts for approximately 6.5 hours, is very low.

In addition to the above measurements, we tracked how many of the assets that have initially
been characterized as hosts have later been changed into routers. This provides us with an indi-
cation of how much observation time is needed for the algorithm to decide if a network host is
just that or if it “turn into” be a router. The characterizations of hosts as routers include three
notable cases:
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Figure 4.7: The development of detected IP addresses over time in dataset 1, as detected by the
algorithm.

One of the IPs that is first recognized in subset 2, is directly identified as a router.

An TP identified as a router appears only in subsets 2, 5, 7 and 9.

e Another router’s IP is recognized in subset 3.

There are no IPs that appear to be hosts in some of the subsets and change into routers in
others.

The above observations enable us to estimate that within the first 3 to 4 subsets, which translate
to approximately 24 hours of operation on a new network, our algorithm has adequately mapped
the network accurately enough for practical use. Neither of the detected IPs, routers or sensors
exhibit significant fluctuations after the first few subsets.

Dataset 2. The second dataset we obtained is much more extensive than the previous. A real
ICS network was monitored for approximately 24 days, and we processed the data in 12 runs of
the algorithm. Consequently, each subset covers almost 2 days of data. The measurements made
for this dataset were more extensive than the previous ones and included MAC addresses. Table
4.6 provides the MAC and IP counts for dataset 2.

The first four rows of data refer to the MAC addresses, the first two of which present the
MACs that exist in the dataset. Similar to the previous dataset, one line provides the Count of
the metric per subset (which covers 2 days in this case), while the next shows how many new
elements were identified in the specific subset. By comparing the rows about ground truth with
the rows about our algorithm’s detection, we can observe that the total of MACs existing in the
dataset is 24 and the algorithm recognized all of them. During subsets 2 through 5, one of the
MAC:s is not recognized although it is active, but it is included in the overall results.

Regarding IPs, the format of the second half of the table is similar to that of MACs. We can
note that the detected IPs almost completely match the ones present in the dataset, with the
exception of the first subset and the total. Also, the new IPs that appear in each subsequent
dataset are relatively low, as depicted in Figure 4.8, with the notable exception of subset 9 which
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1 2 3 4 5 6 7 8 9 10 | 11 12 | Total
Ground truth 'Cou.nt 23 |23 23 | 23 | 23 | 24 | 24 | 24 | 24 | 24 | 24 | 24 24
MACs New in this subset | 23 0 0 0 0 1 0 0 0 0 0 0 -
Detected by the algorithm . Cm{nt 23 |22 22 | 22 | 22 | 24 | 24 | 24 | 24 | 24 | 24 | 24 24
N New in this subset | 23 0 0 0 0 1 0 0 0 0 0 0 -
Ground truth 'Cou'nt 99 | 97 | 104 | 111 | 108 | 129 | 113 | 201 | 117 | 130 | 121 | 190 | 224
IPs New in this subset | 99 5 7 [§ 0 17 1 74 4 7 2 2 -
Detected by the algorithm 'CouAnt 100 | 97 | 104 | 111 | 108 | 129 | 113 | 201 | 117 | 130 | 121 | 190 | 225
New in this subset | 100 | 5 7 6 0 17 1 74 4 7 2 2 -

Table 4.6: Time-based progression analysis of MAC and IP addresses detected per subset of
dataset 2. Each time division (subset) corresponds to almost 2 days of traffic.

contains 74 new IPs. After further investigation, it was found that these IPs are only present in
subsets 8 and 12.
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(a) New MACs and IPs per subset, ground truth.  (b) New MACs and IPs per subset, as detected by the
algorithm.

Figure 4.8: MAC and IP development over time in dataset 2. Each time division covers approxi-
mately 2 days of traffic.

Further measurements, that are not depicted in these tables, include the detection of one
subnet consistently throughout the dataset, which is correct based on ground truth. Also, of the
six routers in dataset 2 (Table 4.4), one was present only in subset 9, while another was marked
as a host in subsets 1-3 and as a router only in 4. The detected sensors value was always 1, which
was correct.

Take-aways Based on the results of both datasets and their analysis, we can make the following
concluding remarks. In Section 4.2 we mentioned that the algorithm can be run continuously on
new traffic, while outputting its findings for further use by a user or IDS. The information should
only be output once it is considered unlikely to change. The following points aim to aid a future
developer in deciding which pieces of information can be considered final and after how much
observation time.

e Regarding IP addresses, the variance in the timing of discoveries was found to be low in
dataset 1 which lasted only 80 hours, while it was high in dataset 2 which covered 24 days.
We can conclude that an observation period of 24 days may not be adequate to obtain a
full “picture” of the situation in some ICS networks. IPs of new hosts and even routers
may appear within or beyond that period. This irregularity is probably caused by links
(interconnections) to remote subnets being enabled or disabled sporadically, and can be
considered to be a consequence of having large and complex networks.

The above recommendation though, does not mean that no conclusions about the network
can be made before the 24-day interval. Hosts that existed in the early days of monitoring
were promptly detected, so the user can be notified within the first few hours of operation
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and be given a fairly complete overview of the monitored subnets along with their close
neighbors. The 24-day interval only concerns the full image of a network, and is influenced
by the particularities and dynamics of specific networks.

The tapped LAN does not exhibit any significant changes beyond the first subset of obser-
vation, which translates to approximately 6 hours and 2 days of network traffic, for the two
datasets. We can thus consider a 6 hour interval adequate for local device mapping.

Our algorithm promptly recognizes new IPs and MACs that appear on the network as soon
as they do. We have every reason to believe that there is no delay between the time when a
host first starts transmitting on the network and when it is detected by the algorithm.

According to our measurements most of the routers are recognized as such fast, within the
first minutes of operation. A small percentage though (10% of them) have first appeared to
be simple hosts and were later detected as routers. Due to the small sample size, only one
router exhibited this behavior. To be completely safe, one could state that the detection
of the type of a device (whether it’s a router or other host), should be given 8 days to
settle. This means that once a host is identified, it should be given at least 8 days before
it’s characterized as a host. If this is not obeyed, there is the possibility of router behavior
emerging later. We must note that this only affects non OSPF-capable routers.

The algorithm’s performance on host recognition is outstanding, even detecting systems that
have not explicitly communicated on the tapped LAN, by using extra information in OSPF
messages.

Detection of sensors and tapped subnets works reliably, from the first subset, although
multiple sensor behavior was not tested.

38

Passive Asset Discovery and Operating System Fingerprinting in ICS Networks



Chapter 5

Conclusions and Future Work

In the beginning of this work we introduced the example of the administrators of an ICS network
with 300 devices distributed in 5 locations and the challenges they face trying to maintain situ-
ational awareness. Manually discovering and recording which device runs what operating system
(OS) version or firmware and how it is connected to the rest of the network is labor intensive and
can be dangerous. Active device query must be avoided so the operators are in need of tools or
systems that discover and characterize network devices in a passive way.

Existing OS fingerprinting tools do not suit these needs, so in Chapter 3 we introduced a novel
approach that utilizes machine learning to offer high performance passive OS fingerprinting. When
compared to the latest tools available, our implementation was shown to be a solid performer,
detecting almost as many hosts as PRADS (which came first in that area) and predicting OSes
with accuracy equivalent to pOf (which used to be the best in that aspect). Additionally, our tool’s
predictions were given with a much higher confidence than any other tool, with an average value
of over 97.5% for the two examined datasets.

In the topology discovery front, we showed that a mix of basic and specialized protocols can be
used to achieve results in a passive manner (Chapter 4). We introduced an algorithm that extracts
the most relevant features from the various layers and protocols and draws conclusions about the
detected hosts. An implementation of the algorithm was used to test the logic, and was shown to
have excellent performance, even recognizing some hosts that did not explicitly send data on the
wire. Furthermore, the explored datasets were also used to identify how often new devices appear
on ICS networks, a value that determines how soon a topology discovery tool can produce reliable
information after being run on a network.

While the proposed solutions performed well, their scope of use was purposely limited. The
topology discovery algorithm currently works most efficiently on networks where the open shortest
path first (OSPF) routing protocol is used, which despite probably being the most widely used
routing protocol inside autonomous systems, can not be considered ubiquitous. Also, the require-
ments for no internal network address translation (NAT) or firewall devices within the autonomous
system or subnet are in place, which are reasonable to make for this first iteration. Further work
can be based on our topology discovery findings and extend the algorithm by adding more sup-
ported routing protocols or adding support for NAT and mid-subnet firewalls. More extensive
parsing of protocols such as SMB can provide further insight into ICS networks.

With regard to OS fingerprinting, numerous options exist towards further development and
improvement of the technique. One direction would be to try different predictive models, such as
random forests which are based on decision trees but offer advantages over them, towards increasing
performance. A different approach would be to experiment with different TCP header fields that
compose TCP fingerprints. The choice of the options definitely has an effect on the end result, but
the optimum set of options needs to be determined in a robust way. A more detailed analysis of
possibilities for future development are given in the next few paragraphs. Nevertheless, given the
performance increase introduced by our tool, we can be confident that passively monitoring large
ICS networks and detecting devices and their characteristics can now be done in a more effective
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and efficient manner.

OS Fingerprinting: Future Work. The tests of our implementation showed that applying
machine learning is an effective technique to improve OS fingerprinting in challenging environments
such as completely passive application. The important implication of this is that a new road
is opened towards further performance improvements. We believe that by tuning two of the
parameters of the algorithm, further performance gains will follow. One such area is the predictive
model used; while we used decision trees based on research that has shown them to be effective
in our application [22], other methods such as random forests have not been tested, and due to
the relationship of the two techniques it is probable that a forest’s predictive performance will be
better. The same holds for the TCP header fields that are used to construct fingerprints. Lippmann
et al. have concluded, in the same paper, on what the optimum set of features is, but the research
is now over 12 years old, and new systems, TCP implementations and predictive models may be
affecting the effect of the chosen features. Thus, we propose that different combinations of models
and fields are evaluated using real network data to conclude whether accuracy, detection rate and
confidence of OS predictions can be improved further.

Other areas that can be extended include SMB parsing and performance. The former refers
to the messages of type Microsoft Windows Lanman Remote API which were deliberately not
used to avoid a possible pitfall, as explained in Section 3.2. If a sufficiently extensive network is
available, SMB signatures can be obtained comprising of the OS minor and major fields, along
with the browser protocol major and minor versions. These four elements can form signatures
that will identify OSes with very high accuracy and enable the use of Microsoft Windows Lanman
Remote API Protocol.

Finally, if system performance issues arise on the sensor, future solutions can utilize a trick
that has been introduced in Satori to reduce system load. A pre-processing stage is added, so
that the network stream is filtered to exclude packets known to not give any useful information
to the OS fingerprinter, which is in turn fed only the few select packets that it needs. For TCP
fingerprinting, such filtering would simply drop packets that do not have the SYN flag set.

Topology Discovery: Future Work. As shown in Section 4.3 the implementation of our al-
gorithm operates well and provides an effective step into discovering the topology of previously
unmapped networks. Nonetheless, there are changes and additions that may improve its perfor-
mance further and an overview of them is presented below.

e The tool can be run continuously or periodically on live traffic, given that it is modified to
export some of the results appropriately. This export can be into a database and should in-
clude most of the information that is internally available to the algorithm, with the exception
of elements that may change or are only destined for internal use. Examples of temporary
information include the list that includes all the relationships ever observed between MAC
and IP addresses, because only the entries of local hosts are of interest to the end user.

e Operating system detection may be incorporated to the information kept about each asset,
as there are already provisions for it and it can add a lot of value to an asset inventory.
Interoperability between the OS fingerprinting tool can be build to achieve this.

e OS detection can also be used in conjunction with topology discovery to achieve NAT detec-
tion. The way this works is that if multiple OSes are detected for an IP address, the IP may
be a router that utilizes NAT and serves numerous hosts “behind” it. This network topology
was explicitly not supported in the design of the current algorithm because it is not common
in ICS networks, but adding the capability of detecting it may add to the robustness of the
algorithm.

e Processing ICMP TTL_exceeded messages that may be sent from routers in situations like
traceroute execution can provide insights of the network that are normally available only
when active techniques are employed.
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e Additional specialized protocols can be parsed to enable the algorithm to operate in more
datasets, where OSPF may not be in use. According to previous measurements (presented
in Section 4.1.2), parsing CDP would be the next logical step to gain better coverage with
minimal effort. Protocol fields such as device capabilities can allow the flagging of a device
as a managed switch, router, wireless access point or other types. Further information
may include all the subnetworks (including netmasks) known to the device, detailed system
description and other.

e One of the challenges that has not been addressed in this work but is important to tackle is
the ability to correlate multiple network interfaces to one host. This situation arises when
two tapped LANs are connected to each other through a router. That router’s two interfaces
have different MAC and IP addresses on each LAN. Packets coming from or through the
router may be captured in both LANs, which will cause the algorithm to generate an entry
for each MAC-IP pair. It is non-trivial but also not infeasible to identify which of the
MAC-IP pairs belong to two different interfaces of the same physical host.

o [CMP router solicitation messages (type 10) contain information such as router IP addresses,
which may be useful if parsed.

e As explained in Section 2.2, information parsed off DHCP packets is shown to be extremely
accurate and detailed. Although DHCP is not widely used in ICS networks, parsing it may
help obtain the network mask and other attributes faster in some networks.

e Long duration measurements, such as the one done on dataset 2 in Chapter 4, should be
repeated on different datasets, coming from a variety of diverse ICS networks. The results of
such a study will determine if the sudden appearance of tens of IPs is a regular phenomenon
in these types of networks.

e Based on the algorithm’s findings when run on dataset 1, we can propose two future improve-
ments that will enable an implementation to cope with firewalls positioned inside subnets.
Specifically, the router recognition needs to be augmented, so that it is not confused by fire-
walls that mangle traffic and a firewall recognition module should be added. The necessary
changes should be in the context of a rule such as “when packets from the tapped subnet
arrive, and many of the source IPs seem to be positioned behind the same MAC, declare
that MAC to be a firewall in the middle of the subnet, and inhibit router detection for those
IPs”.
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