

University of Nevada, Reno

A Graph Theoretic Perspective on Internet Topology Mapping

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in

Computer Science and Engineering

by

Hakan Kardes

Dr. Mehmet H. Gunes / Dissertation Advisor

December, 2012

We recommend that the dissertation
prepared under our supervision by

HAKAN KARDES

entitled

A Graph Theoretic Perspective On Internet Topology Mapping

be accepted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

Mehmet Hadi Gunes, Ph.D., Advisor

Eelke Folmer, Ph.D., Committee Member

Sergiu Dascalu, Ph.D., Committee Member

Murat Yuksel, Ph.D., Committee Member

Cahit A Evrensel, Ph.D., Graduate School Representative

Marsha H. Read, Ph. D., Dean, Graduate School

 December, 2012

THE GRADUATE SCHOOL

i

A Graph Theoretic Perspective on
Internet Topology Mapping

Publication No.

Hakan Kardes

University of Nevada, Reno, 2012

Supervisor: Mehmet H. Gunes

Abstract

Understanding the topological characteristics of the Internet is an important

research issue as the Internet grows with no central authority. Internet topology

mapping studies help better understand the structure and dynamics of the Inter-

net backbone. Knowing the underlying topology, researchers can better develop new

protocols and services or fine-tune existing ones. Subnet-level Internet topology mea-

surement studies involve three stages: topology collection, topology construction, and

topology analysis. Each of these stages contains challenging tasks, especially when

large-scale backbone topologies of millions of nodes are studied.

In this dissertation, I first discuss issues in subnet-level Internet topology map-

ping and review state-of-the-art approaches to handle them. I propose a novel graph

data indexing approach to to efficiently process large scale topology data. I then

ii

conduct an experimental study to understand how the responsiveness of routers has

changed over the last decade and how it differs based on the probing mechanism.

I then propose an efficient unresponsive resolution approach by incorporating our

structural graph indexing technique.

Finally, I introduce Cheleby, an integrated Internet topology mapping system.

Cheleby first dynamically probes observed subnetworks using a team of PlanetLab

nodes around the world to obtain comprehensive backbone topologies. Then, it uti-

lizes efficient algorithms to resolve subnets, IP aliases, and unresponsive routers in

the collected data sets to construct comprehensive subnet-level topologies. Sample

topologies are provided at http://cheleby.cse.unr.edu.

iii

Acknowledgments
I would like to express my sincere gratitude for my adviser Dr. Mehmet H. Gunes,

whose guidance, inspiration, understanding, patience, and encouragement added con-

siderably to my graduate experience. I would like to thank Dr. Murat Yuksel, Dr.

Eelke Folmer, Dr. Sergiu Dascalu, and Dr. Cahit Evrensel for agreeing to be on my

dissertation committee despite their extremely busy schedule and for their invaluable

comments.

I would like to thank my colleagues David Shelly and Talha Oz for their effort

to put together the Cheleby project and all current and former Computer Networking

Lab members, Abdullah Sevincer, Bilal Gonen, Engin Arslan, Esra Erdin, Hayreddin

Ceker, Jeffrey Naruchitparames, Mehmet Bilgi, Mehmet Burak Akgun, Omer Kilavuz,

Suat Mercan, and Tarik Karaoglu for all their support during my graduate studies.

This dissertation also would never have been completed without the encouragement

of my colleagues, Dr. Vitor Carvalho, Dr. Xin Wang, Dr. Andrew Borthwick, Yigit

Kiran, and Jim Adler.

I would also like to thank my family for the support they provided me through

my entire life. Finally, I must acknowledge Enes, one of my best friends, without

whose encouragement I would not have decided an academic career.

Hakan Kardes

University of Nevada, Reno

December 2012

iv

Contents

Abstract i

Acknowledgments iii

List of Tables viii

List of Figures x

Chapter 1 Introduction 1

Chapter 2 Issues in Internet Topology Mapping and Literature Survey 7

2.1 Topology Collection . 9

2.1.1 Sampling Bias . 9

2.1.2 Load Balancing . 11

2.1.3 Probing Overhead . 12

2.2 Topology Construction . 13

2.2.1 Subnet Resolution . 14

2.2.2 IP Alias Resolution . 15

2.2.3 Unresponsive Router Resolution 18

v

Chapter 3 Structural Graph Indexing 23

3.1 Introduction . 24

3.2 Related Work . 25

3.3 Structural Graph Indexing . 26

3.3.1 Structure Models . 26

3.4 Evaluation on Internet Topologies 34

3.4.1 Graph Transformation . 34

3.4.2 Structure Statistics . 36

3.4.3 Resolution Results . 44

3.5 Evaluation on a Wikipedia Graph 44

3.6 Summary . 46

Chapter 4 Unresponsive Routers 47

4.1 Introduction . 48

4.2 Router Responsiveness Analysis . 52

4.2.1 Historical Data Analysis . 53

4.2.2 Responsiveness to Different Probe Mechanisms 60

4.2.3 Summary . 63

4.3 Graph Based Induction for

Unresponsive Router Resolution . 64

4.3.1 Structural Graph Indexing . 67

4.3.1.1 Parallel *-subpath Structures 67

4.3.1.2 Star Structures . 70

4.3.1.3 Complete Bipartite Structures 72

4.3.1.4 Triangle Structure 73

vi

4.3.2 Unresponsive Router Resolution 75

4.3.2.1 Triangle Resolution 75

4.3.2.2 Complete Bipartite Resolution 75

4.3.2.3 Star Resolution . 77

4.4 Evaluations . 77

4.4.1 Simulation-based Evaluations 77

4.4.2 Impact of Alias Resolution . 80

4.4.3 Experimental Results . 81

4.5 Summary . 83

Chapter 5 Cheleby: An Internet Topology Mapping System 85

5.1 Introduction . 86

5.2 Topology Sampling . 86

5.2.1 Destination List Generation 87

5.2.2 Response Wait Time . 88

5.2.3 Task Assignment to Monitors 88

5.2.4 Probing Overhead Reduction 98

5.3 Topology Construction . 100

5.3.1 Initial Pruning . 102

5.3.2 Subnet Inference . 105

5.3.3 IP Alias Resolution . 106

5.3.4 Unresponsive Router Resolution 108

5.3.5 Increasing Graph Density . 113

5.4 Summary . 116

vii

Chapter 6 Internet Topology Mapping Systems 117

6.1 Ark . 117

6.2 Dimes . 118

6.3 iPlane . 120

6.4 Cheleby . 122

Chapter 7 Conclusions 125

Bibliography 128

viii

List of Tables

3.1 SGI for Resolving unresponsive Routers in iPlane Data-set 44

4.1 Analysis of Historical Responsiveness 54

4.2 *-Subpath Characteristics . 56

4.3 Responsiveness to Direct Probes . 58

4.4 Responsiveness to Indirect Probes . 63

4.5 14% Unresponsive Router Regions for (10,2000) T-S Sample 78

4.6 Graph Based Induction Technique on Real Data Sets 79

4.7 Impact of Alias Resolution . 80

4.8 Complexity and Operational Overhead of GBI 83

4.9 Size of the Data Structures . 83

5.1 Team Statistics with Different Team Sizes 91

5.2 Team Statistics (Average of 8 Data Sets) 93

5.3 Topology Data (in millions) . 104

5.4 Average Subnet Statistics for 8 Data Sets 106

5.5 Alias Resolution Averages . 108

5.6 Unresponsive Router Resolution (Average of 8 data sets) 110

5.7 Improved Subnet Statistics . 113

ix

5.8 Improved Alias Resolution Statistics 115

6.1 Internet Topology Mapping Systems 124

x

List of Figures

1.1 Cheleby System Overview . 6

2.1 Effect of Sampling Bias . 9

2.2 Effect of Load Balancing . 11

2.3 Effect of Subnet Resolution . 14

2.4 Effect of IP Aliases . 16

2.5 Effect of Unresponsive Routers . 19

3.1 Structural Models . 27

3.2 Algorithm 1 - Star Structure Indexing 28

3.3 Algorithm 2 - Complete Bipartite Structure Indexing 30

3.4 Algorithm 3 - Triangle Structure Indexing 31

3.5 Algorithm 4: Clique Structure Indexing 33

3.6 Sample Transformation . 34

3.7 Transformation of Graph in Figure 2.5-b 35

3.8 Star Structure Distributions . 37

3.8 Star Structure Distributions . 38

3.9 Bipartite Structure Distribution - 2006 39

3.10 Bipartite Structure Distribution - 2010 40

xi

3.10 Bipartite Structure Distribution - 2010 41

3.11 Triangle Structure Distribution . 42

3.12 Clique Structure Distribution . 43

3.13 Wikipedia Graph . 45

4.1 Sample Network . 48

4.1 Sample Network . 49

4.2 Active Probing . 52

4.3 Historic Distance Distribution . 59

4.4 Structures (genuine and observed) . 65

4.5 Algorithm 5: Finding Parallel *-Subpaths 68

4.6 Resolution of Temporarily Unresponsive Routers 69

4.7 Algorithm 6: Resolving Temporarily Unresponsive Routers 70

4.8 Algorithm 7 - Star Structure Indexing 71

4.9 Algorithm 8 - Complete Bipartite Structure Indexing 72

4.10 Algorithm 9 - Triangle Structure Indexing 74

4.11 Algorithm 10: Resolving Triangle Substructures 76

4.12 Algorithm 11: Resolving Complete Bipartite Substructures 76

4.13 Algorithm 12: Resolving Star Substructures 76

4.14 Degree distribution . 82

5.1 Cheleby System Overview . 86

5.2 Cumulative Distribution Function for RTT 88

5.3 Team assignment of PlanetLab nodes (Blue lines: 5 teams. Green

boxes: 7 teams.) . 90

5.4 Number of Nodes and Edges for different team sizes 92

xii

5.5 Completion Time per Destination Block (in Seconds) 94

5.6 Team Completion Statistics . 95

5.7 The Number of New Known Nodes After Each Vantage Point 97

5.8 The Number of New Unresponsive Nodes After Each Vantage Point . 97

5.9 The Number of New Edges After Each Vantage Point 98

5.10 Number of Nodes and Edges (average of 8 data sets) 99

5.11 Intra- and Inter-monitor Redundancy Reduction 100

5.12 Topology Construction . 101

5.13 Sample Transformation . 104

5.14 Subnet Resolution . 105

5.15 Analytical and Probe-based Alias Resolver v2 (APARv2) 107

5.16 Number of Unresponsive Routers with Different Lengths 111

5.17 Initial vs. Final Unresponsive Routers 111

5.18 Initial vs. Final Unresponsive Routers according to UR length 112

5.19 Percentages of Resolved Unresponsive Routers after Each Step 112

5.20 Cheleby Subnet Distribution . 114

6.1 Ark Router Interface Distribution . 119

6.2 Ark Node Degree Distribution . 120

6.3 iPlane characteristics . 121

6.4 Cheleby characteristics . 123

1

Chapter 1

Introduction

Internet has become a cornerstone of our daily life. The number of users has grown

from a few researchers in early days to billions of population. As the largest man made

complex network, Internet grows with no central authority. Thousands of small and

medium size Autonomous Systems (ASes) connect individuals, businesses, universi-

ties, and agencies while focusing on optimizing their own communication efficiency.

Even though communication protocols and networking devices have been analyzed in

depth, the Internet as a whole has not been well characterized.

As each network is built by different AS for possibly different purposes, e.g.,

small local campus to large transcontinental backbone provider, a single AS is not

representative of the whole Internet [102]. Each AS grows its network based on

local economic and technical objectives. Moreover, even though Internet Service

Providers (ISPs) may compete for customers, they need to cooperate to provide overall

connectivity.

Internet topology maps are needed due to the commercial, social, and tech-

nical purposes. For instance, such graphs are valuable in analyzing the topologi-

2

cal characteristics of the Internet and designing topology generators that can pro-

duce realistic synthetic topologies. Additionally, analysis of the Internet topology is

needed to develop failure detection measures, network planning, and optimal rout-

ing algorithms [64]. Researchers test new protocols and systems using simulations

or emulations [8, 126], but more realistic results can be obtained when real topolo-

gies are utilized in the analysis [32, 71]. Network anomalies can also be identified

using the topology measurements [76, 96, 131]. Furthermore, knowledge of the net-

work graph helps in understanding the large scale characteristics and dynamics of

the Internet [98]. Internet topology analysis also provides insight into the current

trends. For instance, researchers have indicated that the deployment of networks by

content providers has a flattening effect on the hierarchical autonomous system (AS)

structure [50,83]. Similarly, evolution of the topology can be analyzed to predict the

future growth trends [63].

However, due to commercial and security reasons, ISPs keep their topology in-

formation confidential. This policy introduces challenges for the research community

to generate measurement probes for sampling the Internet topology at various lev-

els, including IP [89], router [114], point of presence (PoP) [45, 129], subnet [73, 121]

and AS levels [66, 88]. Several research groups have developed mapping systems to

collect the required information. These include the PlanetLab measurement infras-

tructure [8], the Archipelago measurement infrastructure of CAIDA [85], the iPlane

infrastructure [87], the DIMES project [110], the Scriptroute project [116], and several

others [92, 114, 122, 124].

Internet topology measurement studies, often, require three phases: (1) topol-

ogy sampling, (2) topology construction, and (3) topology analysis. Inaccuracies in

the first two processes may significantly affect the validity of the results obtained in

3

the measurement study [53,58,118]. Most measurement studies utilize traceroute [67]

to collect a large number of path traces from topologically diverse set of vantage

points. After collecting the path traces, the information is processed to build the cor-

responding topology map. In particular at subnet, router and PoP levels, following

issues should be addressed:

• Sampling Bias: During topology collection, the measurement study should

eliminate sampling bias [72, 84]. Since there are a limited number of vantage

points and a large number of destinations, collected topology may be biased

towards the vantage points.

• Load Balancing: Path tracing should consider the load balancing in order to

obtain accurate traces. Certain traffic engineering practices for load balancing

may cause traceroute to return IP addresses that do not correspond to a real

end-to-end path in the network [21]. This happens when a router forwards con-

secutive traceroute probes on different paths toward the destination, a common

phenomenon in the Internet [18].

• Probing Overhead: As the volume of active measurement practices has in-

creased in time, it is important to minimize redundant probing and carefully

consider any disruption that might be caused by the measurement study.

• Unresponsive Router Resolution: Certain routers are passive to measure-

ment probes and are represented by a ‘*’ in a traceroute output [61]. Since a

router may appear as a ‘*’ in multiple traceroute outputs, we need to identify

‘*’s (i.e., unresponsive nodes) that belong to the same router [60].

4

• IP Alias Resolution: As routers have multiple interfaces, each interface has a

unique IP address. In a given set of path traces, a router may appear on multiple

path traces with different IP addresses. Hence, we need to identify nodes that

appear to be separate in collected path traces and combine them into a single

node (i.e., to indicate IP addresses that belong to the same router) [62, 120].

• Subnet Resolution: As routers are connected to each other over point-to-

point or multi-access links, subnet resolution helps in identifying the underlying

link-level connectivity. Hence, we need to analyze observed IP addresses to

identify subnets and combine observed links to represent the corresponding

single hop connection medium (i.e., point-to-point or multi-access link) [59,119].

The accuracy and the completeness of these tasks may significantly affect the

representativeness of the resulting topology maps [58]. Hence, topology measurement

studies should address these tasks to obtain a representative topology map. Even

thought there are several systems providing the raw Internet topology data, there is

no system providing up-to-date Internet graph at subnet or router level.

In this dissertation, we first discuss the issues in subnet-level Internet topol-

ogy mapping and review state-of-the-art approaches to handle them. Secondly, we

present our novel Structural Graph Indexing (SGI) [74] approach for efficiently min-

ing complex networks. As indexing feature, we utilize graph structures such as star,

complete bipartite, triangle and clique that frequently appear in protein, chemical

compound, and Internet graphs. SGI lists all substructures matching formulated

structures while other structures can be identified and added to the SGI. Different

from previous graph indexing approaches, SGI does not limit the number of nodes in

the indexes and provides an alternative tool for querying large-scale graphs.

5

Next, we investigate the responsiveness of routers to active network measure-

ments in two directions (i) historical router responsiveness to active measurements

and (ii) current responsiveness to different probe mechanisms. Expanding an ear-

lier work [61] on skitter [94] data sets, we present the prevalence of unresponsive

routers in historical Ark [2] and iPlane [87] measurement data. For today’s practices,

we use different types of active probes, e.g, ICMP, UDP, and TCP, to observe the

responsiveness of routers.

We then enhance the Graph Based Induction (GBI) approach of [60] to resolve

unresponsive routers by incorporating our SGI technique and utilizing the findings

from our measurement study. In this approach, we index observed subgraphs that

contain unknown nodes and determine the corresponding minimal underlying struc-

ture that satisfies the trace accuracy condition. We also show that proper resolution

of IP aliases improves the unresponsive router resolution. Our work improves the

state of the art in unresponsive router resolution in terms of accuracy and efficiency.

We then introduce Cheleby1 [73], an integrated Internet topology mapping sys-

tem. Cheleby provides insight into the Internet backbone topology by taking daily

snapshots of the underlying networks. For this, Cheleby assembles state-of-the-art

topology collection and construction techniques, i.e., target list generation, probe

redundancy reduction, unbiased accurate data collection, subnet inference, alias res-

olution, and unresponsive router resolution.

1Evliya Cheleby was an Ottoman Turkish writer who extensively travelled through the Ottoman

empire and neighboring countries from 1640 to 1676. We named our topology mapping system after

him as our system collects topology information by traversing different paths from geographically

diverse points.

6
Probe Generator

Data Manager

ProbersTopology
Construction

Cheleby Server PlanetLab

Figure 1.1: Cheleby System Overview

Cheleby topology mapping system, shown in Figure 1.1, runs on a server which

actively manages PlanetLab nodes as its monitors to collect topology information from

geographically diverse vantage points. The server instructs monitors to collect partial

path traces and perform other probing activities. It then utilizes efficient algorithms

for resolving subnets, IP aliases, and unresponsive routers in collected data sets to

build accurate subnet-level topologies. Incorporating enhanced resolution algorithms

for collected raw data, Cheleby provides comprehensive topology maps.

Overall, main contributions of this dissertation are:

• A novel structural graph indexing (SGI) approach for efficiently mining complex

networks.

• A state-of-the-art unresponsive router resolution approach that is practical for

large-scale data sets.

• Cheleby Internet mapping system, which assembles state-of-the-art topology

collection and construction techniques.

7

Chapter 2

Issues in Internet Topology

Mapping and Literature Survey

Understanding the topological characteristics of the Internet is an important research

issue as the Internet grows with no central authority. Internet topology measurement

studies help better understand the structure and dynamics of the Internet backbone.

Additionally, Internet measurement studies can be divided into two categories: (i)

active measurement studies that generate probes to elicit responses from systems in

the network and (ii) passive measurement studies that do not generate traffic but

just observe the system.

In recent years, several research groups have been increasingly using active

probing to analyze various characteristics of the underlying Internet topology. For

example, in [76, 94, 110], active probing has been used to analyze the routing and

reachability behavior of the Internet. Additionally, several overlay or p2p network

applications utilize active probing for the performance optimization of their appli-

cations [82, 97]. Moreover, Luckie et al. analyzed router responsiveness for TCP,

8

UDP, and ICMP based active probing in [86]. They found that reachability ratio of

ICMP-based traceroute method is higher than that of the other ones. ICMP-based

method also collects evidence of a greater number of AS links. On the other hand,

UDP-based method infers the greatest number of IP links, despite reaching the fewest

destinations.

Several large scale distributed Internet measurement platforms have been de-

veloped to facilitate topology measurement studies and conduct various measurement

activities that include active probing. These include the PlanetLab measurement

infrastructure [8], the Archipelago measurement infrastructure of CAIDA [85], the

iPlane infrastructure [87], the DIMES project [110], the Scriptroute project [116],

and several others [92, 114, 122, 124].

Internet topology measurement studies, often, require three phases: (1) topol-

ogy sampling, (2) topology construction, and (3) topology analysis. Several studies

have shown that inaccuracies in the first two processes may significantly affect the

validity of the results obtained in the measurement study [53, 58, 118]. For topology

collection, most measurement studies utilize traceroute [67] to collect a large number

of path traces from topologically diverse set of vantage points. Traceroute is a well

known network diagnostic tool which returns a path, list of routers, from a vantage

point to a given destination by tracing the routers in between. After collecting the

path traces, the information is processed to build the corresponding topology map.

In the remainder of this chapter1, we review the related works in the Internet

1Preliminary versions of this chapter appeared in:

Hakan Kardes, Talha Oz, and Mehmet H. Gunes Cheleby: A Subnet-level Internet Topology Map-

ping System, COMSNETS’12, Banglore, India, Jan 3-7, 2012.

Hakan Kardes, and M.H. Gunes. Subnet-level Internet Topology Mapping: Issues and Resolution

Methodologies.Elsevier Computer Networks. (under review)

9

NU K C

H

S

A

y

L W

q rp z

o t vx

Figure 2.1: Effect of Sampling Bias

topology mapping area. Since, in this dissertation, we mainly focus on the topology

collection and topology construction stages of the Internet topology mapping, we

review these areas in more detail.

2.1 Topology Collection

There are several issues one needs to pay attention in sampling the Internet topology.

In the following subsections, we discuss the effect of sampling bias, load balancers,

and probing overhead.

2.1.1 Sampling Bias

An important issue in topology collection studies is to address sampling bias [72, 84]

problem. In Internet topology sampling practices, usually, there are small number of

vantage points from which traces originates and large number of destinations. There-

fore, collected topology may be biased towards the vantage points. In such a case,

connectivity of routers around the vantage point would be well discovered while many

10

distant routers and their connections would not be discovered as shown on Internet2

backbone in Figure 2.1. In the figure, orange node x, is the vantage point and green

nodes y, q and z are trace destinations. In this case, only blue nodes, i.e., S, K, N,

L, H, A and W, and corresponding links will be discovered revealing all neighbors of

the vantage point but few of the destination nodes. Even though several researchers

have pointed that adding new vantage points as traceroute sources has diminishing

return [23], others have emphasized the necessity of increasing the number of the van-

tage points in certain cases. [42,52,110]. Moreover, it is important to have geo-diverse

vantage points for accurate sampling of the topological characteristics [111].

In order to detect the sampling bias, Lakhina et al. have proposed a sampling

bias test based on the degree distribution characteristics of the topology in ques-

tion [84]. According to their study, if the measurement procedure used in topology

collection is not biased, node degree of a given router in the topology should not

change according to its hop distance to the vantage point(s).

In general, sampling approach may affect the observed characteristics of the

network. For instance, use of (k,m)-traceroute probes where the number of vantage

points k is much less than the number of destinations m on a non power-law topology

produce sample topologies with power-law degree distributions [31]. Additionally,

each network has a number of nodes that are interconnected according to some struc-

tural and functional relations. When sampling the topology, some of these relations

might get broken or modified [53]. Therefore, one should carefully select the sampling

methodology so that the resulting topology represents the original topology based on

the characteristics in question.

11

NU K

H

C

A

S

L W

y q rp z

o t vx

1

2

3

4

5

6

7

Figure 2.2: Effect of Load Balancing

2.1.2 Load Balancing

The second issue to keep in mind during topology collection is the deployment of load

balancing by ISPs. Due to various traffic engineering practices for load balancing,

traditional traceroute might return IP addresses that do not correspond to a real

end-to-end path in the underlying network topology [21]. In general, load balancing

happens when a router forwards sequential traceroute probes on different paths to-

ward the destination [18]. For instance, consider a Internet2 backbone in Figure 2.2

where there are two paths between y and z (underlying links are marked with black

lines). When router S forwards packets through both paths towards destination z,

then path traces will include non-existent links (marked with dashed red lines) as we

would observe a path of S-L-K-A-N-N-z from s.

Routers allow configuration of several parameters to determine load balancing

including destination IP, source IP, protocol and port number [11, 12]. Additionally,

routers can be set to randomly send packets as flow preserving parameters consume

storage and computation resources. Augustin et al. classify load balancers as per

destination, i.e., only destination IP affects load balancing decision, per flow, i.e., any

12

combination of the parameters are utilized for load balancing decision, and per packet,

i.e., packets are randomly distributed [20].

Traditional traceroute tools couldn’t address all types of load balancing. Even

though they would find accurate links with per destination load balancer, they could

not address per flow and per packet load balancers. On the other hand, Paris tracer-

oute fixes flow identifiers by ensuring that per flow load balancing routers always

pick the same next hop for probe packets toward the same destination [20]. However,

Paris traceroute can only detect the existence of per packet load balancers on a path

and would fail to accurately identify actual links on the balanced paths. Similarly,

sidecar enables the record route option of probe packets to detect changes in tra-

versed paths [113]. However, sidecar does not ensure that routers use the same path

in forwarding probe packets. Hence, accurate path traces would not be collected.

2.1.3 Probing Overhead

Since active probing has been increasingly utilized in Internet measurement studies, it

is important to minimize redundant probing so that Internet measurement studies do

not disrupt the network. To this end, several researchers have presented approaches to

reduce the amount of redundant active probes in measurement studies. For example,

Doubletree prunes redundant probes to nodes that are close to both the vantage

point and the destination since traces from a vantage point yield tree-like structures

(i.e., trees rooted at the vantage point and at the destination, respectively) [41, 42].

Moreover, Jin et al. utilize a network coordinate system to identify the minimum set

of path traces to collect at each vantage point [69]. Similarly, in order to reduce the

number of probes, AROMA analyzes the convergence of path traces in discovering

network topology [81]. More recently, Eriksson et al. proposed Depth-First Search

13

Ordering to reduce the probing overhead by clustering destinations based on a shared

infrastructure [44]. Finally, routing underlay has been proposed to unify measurement

activities [97]. In this method, overlay networks query the routing underlay, which

aggregates collected topology information.

2.2 Topology Construction

After collecting topology data one needs to process this information to obtain the

underlying network topology [39, 117]. Obtaining an accurate network map requires

several important tasks including: (1) filter faulty traces, e.g., initial pruning, (2)

identifying underlying physical subnets among the IP addresses to obtain the subnet

level connectivity [59], (3) finding IP addresses belonging to the same router as routers

may appear with different IP addresses in different path traces [26, 54, 62], and (4)

resolving unresponsive routers that are represented by ‘*’s in probing output since

some routers do not respond to probes during topology collection [60, 128]. These

resolution tasks, shown in Figure 5.12, are especially challenging when large scale

topologies of millions of nodes are processed.

The accuracy and the completeness of topology construction tasks significantly

affect the accuracy of the resulting topology maps [58,118]. Moreover, when handling

these tasks, one needs to make decisions based on observations from the measurement

data. As the earlier decisions affect the later ones, obtaining the most likely topology

under various conditions has shown to be NP-hard [14]. Hence, several approaches

have been proposed to reduce the set of hypotheses in the decision making of the

resolution tasks [19, 60, 62, 100, 112].

14

b) observed topologya) genuine topology
C D

A B

C D

A B

Figure 2.3: Effect of Subnet Resolution

In this section, we analyze each of these topology construction issues, and

discuss the approaches proposed by the research community. Note that, while these

algorithms were verified on sample networks, complete verification is not possible

since it requires the availability of the underlying topology map of the Internet.

2.2.1 Subnet Resolution

First task after building an initial network graph is the identification of the under-

lying physical subnets, i.e., the subnet level connectivity, among IP addresses in the

collected topology [59]. Routers are connected to each other over subnetworks and

the subnet resolution helps in identifying the underlying multi-access links. In this

task, the IP addresses in a data set are analyzed to infer the subnet relations among

them. As an example, consider four routers A, B, C, and D, in Figure 2.3-a, that are

connected to each other via a multi-access link. Assume that a collected set of path

traces includes A-B link and B-C link and no path trace at hand includes the A-C

link or any link between D and other routers from the subnet. In this case, a subnet

level map that does not consider the subnet relation among these IP addresses will

yield in a subgraph as shown in Figure 2.3-b which is considerably different from the

15

underlying topology. On the other hand, a careful study of the IP addresses may

detect the subnet relation between the routers and therefore improve the resulting

map with inclusion of the missing links.

The goal in subnet resolution is to identify multiple links that appear to be sep-

arate and combine them to reveal their corresponding single hop connection medium.

This is similar to the IP alias resolution task where the goal is to identify nodes that

appear to be separate in collected path traces and combine them into a single node

(see Section 2.2.2). Subnet resolution also finds missing links between IP addresses

that belong to the same subnet range but were not observed in collected path traces.

The successfully inferred subnet information helps in improving the scope and qual-

ity of the resulting map by annotating it with additional information, i.e., the subnet

relations among the existing set of IP addresses. Hence, inclusion of subnet relations

among the routers yields topology maps that are closer, at the subnet layer, to the

sampled segments of the Internet.

In this direction, in [59], Gunes et al. identified the subnet resolution task

for topology construction studies and analyze its utility. Moreover, TraceNET tool

enhances traceroute by identifying subnets between a source and a given destination

in order to collect more complete and accurate topology maps [119]. TraceNET, how-

ever, focuses on a single path and infers subnets on an end-to-end path. Furthermore,

ExploreNET discovers individually targeted subnets [121] . Authors also analyze the

statistical biased versus unbiased sampling of subnets.

2.2.2 IP Alias Resolution

The second issue to consider during subnet-level topology construction is the IP

aliases. As routers have multiple interfaces, each interface has a unique IP address.

16

(a) Sampled Network

s.3

s.1

s.2

l.3

l.1

u.1

u.2

k.1 c.1 n.1

n.2k.2 c.2

w.3
a.3

h.2

h.4

h.1

e

d

f

n.3

(b) Resulting Network

Figure 2.4: Effect of IP Aliases

In a given set of path traces, a router may appear on multiple path traces with

different IP addresses. Therefore, there is a need to identify and group IP addresses

belonging to the same router. Without IP alias resolution the resulting topology map

might be significantly different from the underlying topology [57,58]. For instance, in

Figure 2.4-a, each router has multiple interfaces with unique IP addresses. Collecting

traces between all pairs of e, d, and f end systems, we would obtain a sampled

topology as in Figure 2.4-b without the alias IP address resolution. We need to

identify IP aliases for each router and cluster them as shown with red circles.

17

Several studies have emphasized the impact of incomplete IP alias resolution in

certain measurement studies [27,118]. In [58], Gunes et al. performed an experimental

study on the impact of IP alias resolution on various topological characteristics. Vary-

ing the resolution success rate, they analyzed various graph characteristics including

topology size, node degree, degree distribution, joint degree distribution, character-

istic path length, betweenness, and clustering. The results indicate that the IP alias

resolution process has a significant impact on almost all topological characteristics

that they consider. According to these studies, it can be concluded that Internet

measurement studies should properly resolve the IP aliases to increase the accuracy

of the final topology.

Moreover, several mechanisms have been proposed to resolve IP aliases [30,

51,101,113,115] and few tools have been developed including ally [1] and iffinder [5].

These tools use an active probing approach to resolve IP aliases. They are easy-to-use

and provide a convenient way to verify if a given pair of IP addresses is alias or not.

As Gunes et al. stated in [57,58], these tools requires participation of the routers by

responding to the queries directed to them. This requirement introduces limitations

to the success of IP alias resolution task since some routers are configured to ignore

active probes directed to them. As an example, in their experiments, they observed

that 40 percent of IP addresses that they probed with ally did not return a response.

Hence, they presented a new IP alias resolution algorithm called Analytic and Probe-

based Alias Resolver (APAR) [56]. APAR consists of an analytical component [57,58]

and a probe-based component. Given a set of path traces, the analytical component

utilizes the common IP address assignment scheme to infer IP aliases. Later, CAIDA

released kapar which is an optimized implementation of APAR [79]. Furthermore,

since ally requires O(n2) probes to test all possible pairs, several approaches have

18

been deployed to reduce the number of probes [26, 79]. For example, MIDAR [79],

Monotonic ID-Based Alias Resolution tool inspired by ally, provides greater precision,

and sensitivity in a scalable manner. Moreover, as some routers do not respond to

certain probes, Garcia et al. has proposed alternative probes to increase the elicited

responses from routers [48].

2.2.3 Unresponsive Router Resolution

Unresponsive routers are the routers that are unresponsive to traceroute probes and

are represented by a ‘*’ in a traceroute output. Since an unresponsive router may

appear in multiple traceroute outputs as ‘*’, it is needed to identify ‘*’s (i.e., unre-

sponsive nodes) that belong to the same router. Based on the number of unresponsive

routers in the topology and the way of topology collection, there would be huge num-

ber of ’*’ in the collected set of path traces. For example, daily Internet topologies

collected by Cheleby have more than 7M unresponsive nodes along with 1.2M known

interfaces. Moreover, a sample network is shown in Figure 2.5-(a). Assume that in

this topology H, K, and N are configured to act as unresponsive routers. When we

run traceroute queries between all vantage points, represented as e, d and f in this

figure, collected path traces will be as shown below. Using these traces, the resulting

topology presented in Figure 2.5-(b).

19

U K C NS f

L H A W

d

e

f

d

(a) Sampled Network

f
S U C

e

f
L

A
W

d

(b) Resulting Network

Figure 2.5: Effect of Unresponsive Routers

d - * - L - S - e

d - * - A - W - * - f

e - S - L - * - d

e - S - U - * - C - f

f - * - C - * - * - d

f - * - C - * - U - S - e

Therefore, it can be concluded that even small number of unresponsive routers

may significantly alter the final network topology and prevent researchers from ob-

taining the actual Internet topology from the trace paths collected. This example

also shows the significance of the unresponsive router resolution task to obtain the

actual topology map.

20

Unresponsive router resolution is an essential problem in topology mapping

studies. Early work in this area did not pay attention to this problem or just proposed

simple heuristics to address it [27, 28, 33]. Cheswick et al. stop the trace whenever

they observe an unresponsive router on the path to the destination [33]. Broido et

al. proposed two different approaches to address the issue [28]. First, they replace

the unresponsive routers with edges to connect the known nodes at both ends of the

unresponsive routers. In their second approach, they treat each occurrence of ‘*’

as separate node. Bilir et al. addressed the issue by merging same length chain of

unknown nodes between the same pair of known nodes with each other [27] (called

as initial pruning in Sec. 4.4.1). However, all these approaches have some weaknesses

or just provide very limited resolution like in [27](see Sec. 4.4.1). For example, [33]

might result in losing significant connectivity information. Moreover, [28] causes

inaccuracies in the final constructed maps.

Yao et al. analyzed the unresponsive resolution problem in detail and provided

a formal definition to it [128]. In their study, they try to construct the minimum size

topology by merging unknown nodes when they satisfy trace and distance preservation

conditions. In trace preservation condition, merging two unknown nodes should not

create a routing loop. For distance preservation condition, the length of shortest path

between any given two nodes should not change at the end of resolution process. Next,

they proved that merging unresponsive routers while satisfying above conditions is

NP-complete problem. So, they proposed a heuristic to address the issue. However,

their approach has a high algorithmic complexity of O(n5) which makes it impractical

for large data sets.

Moreover, an ISOMAP based dimensionality reduction approach uses link de-

lays or node connectivity as attributes to cluster nearby nodes [70]. The main lim-

21

itation of this approach is again its high complexity, i.e., O(n3) where n is the size

of the topology. Additionally, they ignore the challenge in estimating individual link

delays from round trip delays in path traces [46]. These two limitations makes the

link delay based approach impractical for large scale topologies. They also provide

a simple and more practical neighbor matching heuristic with O(n2) complexity but

this approach might result in inaccuracies in the final graph with high false positive

and false negative ratios(see Sec. 4.4.1).

Gunes et al. [60] added a new dimension to the problem by classifying the un-

responsiveness types. They observe five different scenarios that cause routers to stay

unresponsive. They then formulate a number of graph structures that can be found in

traceroute-based topologies collected from the Internet. Namely, Parallel/Symmetric

*-substrings, Clique, Complete Bipartite, and Star structures are defined. Based

on this formulation, they introduced a graph based induction technique where they

search for structures similar to the identified ones in the topology and then reduce the

occurrences of unresponsive nodes into their corresponding routers. Even though this

approach results in more accurate maps, its time complexity might be considerably

reduced by using a proper graph indexing approach.

Finally, Almog et al. proposed semi-supervised spectral embedding of all nodes

followed by clustering of the unknown nodes in the projected space [15]. As the au-

thors indicate, the approach should be improved to be practical in large-scale data

sets. Moreover, it assumes that there is only one unresponsive router between two

known routers. According to our analysis in Table 4.2, however, there are consider-

able amount of unresponsive router chains and the number of these chains has been

increasing in recent years. Additionally, they use a k-means clustering approach to

cluster the unresponsive routers which requires the knowledge of the number of unre-

22

sponsive routers in the graph. Authors approximate the number of the unresponsive

routers in the graph but, according to our study in Section 4.2, the number of unre-

sponsive routers and their distribution depends on the topology collection approach.

Thus, developing a general approximation technique which will work for different

topology maps is a challenge.

23

Chapter 3

Structural Graph Indexing

Systems such as proteins, chemical compounds, and the Internet are being modeled

as complex networks to identify local and global characteristics of the system. In

many instances, these graphs are very large in size presenting challenges in their

analysis. Hence, graph indexing techniques are developed to enhance various graph

mining algorithms. In this chapter1, we propose a new Structural Graph Indexing

(SGI) technique that does not limit the number of nodes in indexing to provide an

alternative tool for graph mining algorithms. As indexing feature, we use common

graph structures, namely, star, complete bipartite, triangle and clique, that frequently

appear in complex networks such as protein, chemical compound, social network, and

Internet graphs. Note that, SGI lists all substructures matching structure formula-

tions and other graph structures can be identified and added as indexing features.

1A Preliminary version of this chapter appeared in:

Hakan Kardes, M.H. Gunes. Structural Graph Indexing for Mining Complex Networks. IEEE

ICDCS 2010 SIMPLEX, Genoa, ITALY, June 21 2010.

24

3.1 Introduction

Many systems can be modeled as a complex network to understand local and global

characteristics of the system. Studying network models of systems provides a new

direction towards better understanding biological, chemical, technological or social

systems. In many cases, the systems under investigation are very large and the corre-

sponding graphs have large number of nodes/edges requiring graph mining techniques

to derive information from the graph. Several graph mining techniques have been de-

veloped to extract useful information from graph representation and analyze various

features of complex networks [37]. In order to speed up graph queries, usually an

index of the graph is derived according to some predefined index features.

Graph indexing is often utilized by graph search algorithms that look for a

sub-graph within a graph database. For example, given a graph database G={g1, g2,
..., gn} and a subgraph s, we are interested in identifying all graphs gi that contain

the subgraph s. This query is shown to be NP-complete [49] and becomes challenging

as the size of graphs increase. For example, a typical graph of router-level Internet

consists of millions of nodes making it impractical to perform many operations on the

whole graph. In such cases, graph indexing allows operations to be more efficient.

In this chapter, we propose a new structural indexing approach to provide

an alternative tool for graph mining algorithms. For indexing, we specify a set of

common graph structures such as star, complete bipartite, triangle and clique. These

structures are ubiquitous in biological, chemical, technological, and social networks.

In order to reduce computational complexities, we index these structures within the

original graph in a consecutive manner. We first identify star structures, and then

the complete-bipartite, triangle and clique structures from the preceding ones. Our

25

approach, unlike the earlier indexing mechanisms, does not limit the size of subgraph

considered in indexing. However, it may be limited as maximum clique search is an

NP-complete problem [49].

In the remainder of the chapter, we first present existing graph indexing meth-

ods in Section 3.2. Next, we detail our structural graph indexing approach in Sec-

tion 3.3. Then, we present an evaluation of the approach on Internet topologies

in Section 3.4, and on a Wikipedia graph in Section 3.5. Finally, we conclude in

Section 3.6.

3.2 Related Work

The need for mining large graphs in an efficient manner increases as researchers look

into complex networks. Several studies have been carried out to make graph mining

in an efficient manner using indexing techniques [34, 38, 68, 77, 95, 109, 127]. Many of

the tools have constraints that limit the number of nodes/edges in index graphs or

are not capable of operating on very large graphs. The graph indexing studies can

be mainly categorized into two categories, namely, path-based and structure-based

approaches.

Path-based graph indexing approaches use path expressions as indexing fea-

tures such as GraphGrep [109] and Daylight [68]. GraphGrep enumerates all paths

in the graph up to the length maxL. Then, it looks for each gi whether it contains

all paths up to MaxL for a graph query qi. A significant feature of path-based ap-

proaches is that paths can be manipulated more easily than general graphs. However,

as Yan et. al. indicated, path is a simple structure loosing structural information of a

graph, and hence false positive ratio of path-based methods would be very high [127].

26

In addition, the number of paths in a graph database increases exponentially making

path-based methods impractical for very large graphs.

Alternatively, structure-based graph indexing approaches identifies subgraphs

to be indexed as in gIndex [127]. gIndex first searches for the frequent subgraphs

in the graph, then indexes these frequent structures. An issue in this case is that

frequent subgraph discovery increases complexity and exponential number of frequent

fragments may exist under low frequency support. Therefore, in their study, they limit

the number of nodes and index frequent structures up to 10 nodes.

In this chapter, we propose an alternative structural indexing approach to

search and process queries efficiently even in very large complex networks. As index-

ing features, we use commonly observed graph structures: star, complete bipartite,

triangle and clique. An important feature of these structures is that each one is com-

prised from the previous one where clique contains complete bipartite structures and

complete bipartite contains star structures.

3.3 Structural Graph Indexing

In this section, we present our structural graph indexing approach.

3.3.1 Structure Models

In structural indexing, we index predefined structures that are commonly observed

in complex networks. In particular, we index star, complete bipartite, triangle and

clique structures (shown in Figure 3.1) in a given graph G = (V,E). An important

difference of our approach from the previous studies is that we do not limit the size

of subgraph considered in indexing. We index all maximal graphs that match the

27

dd1

v1

d2

d1

d2v1

d3

d1

d2

..
v1

.

.

.

.

.

dn

(a) 2-Star (K1,2) (b) 3-Star (K1,3) (c) n-Star (K1,n)

d1

v1

d2

v2

d3

d1

v1
d2

v2

v3

2

d3

d4

d1

.v1
.
.

.

.

.

.
.
.

vm

.

.
.
.
.

dn

(d) 2*3-Comp. Bip. (K2,3) (e) 3*4-Comp. Bip. (K3,4) (f) m*n-Comp. Bip. (Km,n)

v1

v vv2 v3

v1 v2

v vv4 v3

v1 v2

vn
v3

v4

.
.

.
. ..

(g) 3-Clique (Triangle) (K3) (h) 4-Clique (K4) (i) n-Clique (Kn)

Figure 3.1: Structural Models

structure formulation. For instance, a maximal clique is a clique that cannot be ex-

tended by adding one more vertex from the graph. However, the substructure size

in indexing may be limited when needed since maximal clique search is known to

be NP-complete [49]. In order to reduce computational complexities, we index the

structures within the original graph in a consecutive manner. That is, we first identify

star structures, and then the complete-bipartite, triangle and clique structures from

the preceding ones as detailed below.

28

Let G = (V,E); S ← φ;

for (each node v ∈ V)
S ← S ∪ s(v,φ)

for (each edge e(a, b) ∈ E)
s(a,ns) ← s(a,ns∪{b})
s(b,ns) ← s(b,ns∪{a})

for (each s(v,ns) ∈ S)
if |ns| < 2
S ← S − s(v,ns)

Figure 3.2: Algorithm 1 - Star Structure Indexing

Structure 1: Star (K1,n)

We first index the star structure where a node has multiple neighbors as shown

in Figure 3.1-(a), (b), and (c). All star structures within a graph G = (V,E) are

represented as s(vi, nsi) where vi ∈ V and nsi is the set of all neighbors of vi. In

graph theory, the star structure is utilized in the definition of some other structures

and problems. A star with 3 edges is called a claw, as shown in Figure 3.1-(c). Claws

are notable in the definition of claw-free graphs, graphs that do not have any claw as

an induced subgraph. Additionally, a star is a special kind of tree, and several graph

invariants are defined in terms of stars. Star arboricity is the minimum number of

forests that a graph can be partitioned into such that each tree in each forest is a

star [65], and the star chromatic number of a graph is the minimum number of colors

needed to color its vertices in such a way that every two color classes together form

a subgraph in which all connected components are stars [47]. Moreover, in [106]

Robertson et al. showed that the graphs of branch-width 1 are exactly the graphs in

which each connected component is a star.

We index maximal star structures for each node using the algorithm in Fig-

ure 3.2. The algorithm first builds a star structure s(vi,φ) for each node vi ∈ V without

29

any neighbors. Then, for each edge e(a, b), it appends node a to the neighbor set of

node, b and vice versa. Finally, the algorithm removes the star structures s(vi,nsi)

such that the neighbor set nsi has less than two neighbors. The overall run time

complexity of this algorithms is O(|V |+ |E|).

Structure 2: Complete Bipartite (Km,n)

The second structure we index is the complete bipartite, shown in Figure 3.1-

(d), (e) and (f). A bipartite graph is a graph whose vertices can be divided into two

disjoint sets V1 and V2 such that every edge connects a vertex in V1 to one in V2; that

is, V1 and V2 are independent sets. A complete bipartite graph G = (V1 ∪ V2, E) is

a bipartite graph such that V1 and V2 are two distinct sets and for any two vertices

vi ∈ V1 and vj ∈ V2, then there is an edge between them (i.e., ∃ e∗(vi,vj) ∈ E). The

complete bipartite graph with partitions of size |V 1| = m and |V 2| = n is denoted as

Km,n. Note that, star structure is a special case of a complete bipartite graph where

m = 1. Moreover, finding complete bipartite subgraph Km,n with maximal number

of edges m.n is an NP-complete problem [104].

Complete bipartite structure is ubiquitous in many complex networks. For

example, Thomas et al. examine the structure of protein-protein interaction networks

and showed that the graph of all protein-protein interactions is made up of complete

bipartite structures containing two disjoint sets of nodes in which each node in one

set is connected to every node in the other set. [13]

We index all complete bipartite structures in the graph G using indexed star

structures as in Figure 3.3. In the algorithm, for each star structure s(a,ns) where ns

is the neighbors of the node a, we identify the maximal complete bipartite involving

the node a. For this purpose, we find second hop neighbors of a by iterating over the

30

INPUT: S from Algorithm 1 in Figure 3.2

Let G = (V,E); K ← φ

for (each s(a,ns) ∈ S)
Lcan ← φ
for (each bi ∈ ns) where bi > a
Lcan ← Lcan ∪ ns∗ where (∃ s(bi,ns∗) ∈ S)

Lcan ← Lcan − {a}
Rcan ← ns

for (each vi ∈ Lcan)
Rnew ← Rcan ∩ ns+i where (∃ s(vi,ns+i) ∈ S)

if (|Rnew| ≥ 2)
Lnew ← {a} ∪ {vi}
for (each vj ∈ Lcan)

if (Rnew ⊂ ns#j) where (∃ s(vj ,ns#j) ∈ S)

Lnew ← Lnew ∪ {vj}
else if (|Rnew ∩ ns#j | ≥ 2) where (∃ s(vj ,ns#j) ∈ S)

K ← K ∪ k(Lnew∪{vj}),(Rnew∩ns#j)

K ← K ∪ k(Lnew ,Rnew)

Figure 3.3: Algorithm 2 - Complete Bipartite Structure Indexing

ns set and unifying them under Lcan set that indicates candidates for the left side of

the complete bipartite while the ns set is the candidate set for the right hand side.

Then, we first find a K2,n and then grow it to Km,n. In finding K2,n, we iterate over

each candidate node in the Lcan as pivot node and determine the neighbor intersec-

tion with a. If the intersection set is larger than two, then these nodes belong to the

right hand side. In the second step, we grow the K2,n by finding all nodes in the left

hand side (i.e., Lcan) that has the right hand side nodes (i.e., Rnew) as a neighbor.

Finding K2,3 and larger complete bipartite graphs takes O(|S|.|ns|2) where |S| is the
number of star structures in the graph, and ns is the average node degree in the graph.

31

INPUT: S from Algorithm 1 in Figure

Let G = (V,E); T ← φ; TS ← φ

for (each s(a,ns) ∈ S)
for (each nsi ∈ ns) where nsi > a
if (∃ s(nsi,ns2))
TS ← ns ∩ ns2
for (each tsi ∈ TS) where tsi > nsi
T ← T ∪ t(a,nsi,tsi)

Figure 3.4: Algorithm 3 - Triangle Structure Indexing

Structure 3: Triangle (K3)

Third, we index the triangle structure which is a clique structure of three

nodes as shown in Figure 3.1-(f). Finding the number of triangles in a graph has

become an important task over the last years due to its significant role in analyzing

the density of complex networks. Tsourakakis et al. points to the importance of

triangle counting [123]. Several commonly used complex network metrics such as

the clustering coefficient and the transitivity ratio require the execution of a triangle

counting algorithm.

Additionally, several interesting graph mining applications depend on comput-

ing the number of triangles in the graph [93], [99], [125], [22], [24], [43]. Especially

in social networks, triangle is a well studied subgraph (i.e. motif). There are two

main theories, namely the homophily and the transitivity, according to which trian-

gles are generated in social networks. According to the homophily, people tend to

choose friends that are similar to themselves. According to the transitivity, people

who have common friends tend to become friends themselves [125]. Additionally,

several other studies have showed that triangles play significant roles in many graph

mining applications. For instance, Becchetti et al. showed that triangles can be used

to detect spamming activity [24]. Similarly, Eckman et al. showed how triangles

32

can be used to uncover the hidden thematic structure of the web [43]. Additionally,

triangle counting can benefit the query plan optimization in databases [22]. Thus,

fast triangle counting algorithms are of high practical value.

We index all triangles in the graph by iterating over the star structures as in

Figure 3.4. In the algorithm, for each star structure s(a,ns), and s(nsi,ns∗) where nsi ∈
ns, we take the intersection set TS of the sets ns and ns∗. Thus, for each tsi ∈ TS,

(a, nsi, tsi) constitutes a triangle. Indexing all triangles takes O(|S|.log|S|.|ns|) where
|S| is the number of star structures, and |ns| is the average node degree in the graph.

Note that, processing edges connected to smaller degree nodes first may reduce the

run time even though the time complexity remains the same.

Structure 4: Clique (Kn)

Finally, we index clique structures shown in Figure 3.1-(g) and (h). A clique

in graph G = (V,E) is a subset of the vertex set (i.e., C ⊆ V) such that there are

edges between all node pairs (i.e., ∀(ci, cj) ∈ C, ∃e(ci,cj) ∈ E, when i �= j).

This structure has been observed in many fields. For example, in computational

biology many problems can be solved by finding maximal or all cliques within the

graph [25]. Similarly, Samudrala et al. models protein structure prediction as a

problem of finding cliques in a graph whose vertices represent positions of subunits

of the protein [108]; Cong et al. finds a hierarchical partition of an electronic circuit

into smaller subunits using cliques [36]; and Rhodes et al. uses cliques to describe

chemicals in a chemical database that have a high degree of similarity with a target

structure [105].

We index all maximal clique structures (that has more than three nodes) in

the graph using complete bipartite structures as in Figure 3.5. We first get the set

33

INPUT: K from Algorithm 2 in Figure 3.3

Let G = (V,E); C ← φ

for (each k(m,n) ∈ K)
for (each a ∈ k(m,n))
findCliques({a}, k(m,n) − {a})

FUNCTION findCliques(L1, L2)
if (|L2| = 0) and (|L1| > 3)
C ← C ∪ c(L1)

else
for (each b ∈ L2)
if (∃e(b,v) ∀v ∈ L1)
L∗ ← (L2 ∩ nsi) where (s(b,nsi) ∈ S)
findCliques(L1 ∪ b, L∗)

Figure 3.5: Algorithm 4: Clique Structure Indexing

of nodes from each complete bipartite k(m,n) and look for cliques that are formed by

those nodes. Note that, any clique larger than three nodes in the graph G will be

indexed as multiple bipartite structures. Hence, we do not need to consider all nodes

in the graph when indexing maximal clique structures. The clique search algorithm

works recursively on each node from the k(m,n) as the pivot node in the L1 set and

considers other nodes as candidate nodes in the L2 set. The function, moves each

node from the L2 set to the L1 set if it is connected to all nodes in the L1 and then

recursively tries to grow the structure with remaining nodes as candidates. When

there are no more candidates to consider in L2 set then a clique has been identified.

Note that, this algorithm is not optimal and better solutions for finding all cliques

are proposed in [29, 107].

Finding 4-clique and larger clique structures takes O(|K|.2|km,n|) where |K| is
the number of complete bipartite structures, and |km,n| is the average size of bipartite
structures within the graph.

34

3.4 Evaluation on Internet Topologies

In this section, we use router level Internet topologies to analyze the structural graph

indexing approach. In the remainder of the section, we illustrate how our method

can be applied to the router level Internet Topology to resolve unresponsive routers.

3.4.1 Graph Transformation

In our experiments, we use iPlane datasets [87]. In these datasets, there are two

types of nodes, namely known (i.e., the ones with an IP address) and unknown (i.e.,

unresponsive). When there is an unresponsive router, it will appear as a ‘*’ in the

traceroute output. If multiple path traces pass through an unresponsive router be-

tween routers with known IP address, there will be multiple parallel *-substrings

between these known nodes.

As an example, in Figure 2.5-a, traceroute queries from e to f will return path

traces including *-substrings as (U, ∗1, C) and (U, ∗2, C) respectively. This may then

result in two parallel *-substrings between U and C in the resulting topology map

as shown in Figure 2.5-b. In the example, there is a *-substring that includes only

one unresponsive router. A similar pattern can be observed for *-substrings of larger

lengths in a typical dataset.

A B
*
*

*

A B 1

Figure 3.6: Sample Transformation

35

e

d

f
S U

L

C

A W

1

1

1

2
1 1

Figure 3.7: Transformation of Graph in Figure 2.5-b

In order to resolve this type of unresponsive routers, we need to detect the same

*-substrings (i.e., same length *-substrings with the same known nodes at the end

points) [60]. In our method, we ignore all nodes which don’t have any unresponsive

neighbor, since they do have no effect for the resolution process. While reading the

traces from iPlane database, we identify the unresponsive routers which are in between

two known nodes. We read all *-substrings from the database and construct a new

graph Ḡ = (V̄ , Ē). We represent each *-substring as an edge e(a,b,l) where a is the

first known node, b is the second known node and l is the label of the edge representing

the number of unresponsive nodes between a and b as in Figure 3.6. We add each

e(a, b, l) only once to our new graph Ḡ. We add a and b to V̄ . This process can be

called as initial pruning(IP). Figure 3.7 presents the transformed version of the sample

topology represented in Figure 2.5-b. After this step, we sequentially index star,

complete bipartite, triangle and clique structures in graph Ḡ with SGI algorithm in

order to resolve all unresponsive routers by using the graph based induction technique

presented in [60].

36

3.4.2 Structure Statistics

We present the indexing results for the datasets collected in 2006, 2007, 2008, 2009,

and 2010 in Figures 3.8, 3.9, 3.10, 3.11, and 3.12. In each dataset, there are around

10M unresponsive nodes and 300K known nodes.

Figure 3.8 represents the star structure distribution for these datasets. In the

graphs in this figure, x axis represents the number of leaves of the star structure

while y axis represents the corresponding number of star structures for each number

of leave. The values in the legend represents the weight (i.e. number of unresponsive

routers) of the each edge in the star. According to these graphs, while the number

of structures with 1 unresponsive node has not changed considerably in consecutive

years, there has been a significant increase in the number of structures with 3 and

more unresponsive routers. While there is no star structure with 7 or 8 consecutive

unresponsive routers in 2006 and 2007, we observe such structures in following years.

Figure 3.9 represents the bipartite structure distribution of the 2006 dataset,

while Figure 3.10 represents the 2010 dataset. In the heatmaps, x axis represents the

number of nodes in the left set of the bipartite while y axis represents the number

of nodes in the right set. The values in the palette represents the number of the

complete bipartites for given left and right set sizes. According to these heatmaps,

while the number of set sizes increases the number of bipartite structures found

decreases. Additionally, while the edge weight increases the number of complete

bipartites observed decrease. However, the number of complete bipartites in the

Internet increases year by year. While there is no complete bipartite structure with

4 consecutive unresponsive routers in 2006, we observe such structures in 2010.

Figure 3.11 represents the triangle structure distribution for the years 2006-

2010. While the edge weight increases the number of triangles decreases. However,

37

1

10

100

1000

10000

100000

1 10 100 1000 10000

N
um

be
r o

f S
ta

r S
tr

uc
tu

re
s

Number of neighbors

1

2

3

4

5

6

(a) 2006

1

10

100

1000

10000

100000

1 10 100 1000

N
um

be
r o

f S
ta

r S
tr

uc
tu

re
s

Number of neighbors

1

2

3

4

5

6

(b) 2007

Figure 3.8: Star Structure Distributions

38

1

10

100

1000

10000

100000

1 10 100 1000 10000

N
um

be
r o

f S
ta

r S
tr

uc
tu

re
s

Number of neighbors

1

2

3

4

5

6

7

8

(c) 2008

1

10

100

1000

10000

100000

1 10 100 1000 10000

N
um

be
r o

f S
ta

r S
tr

uc
tu

re
s

Number of neighbors

1

2

3

4

5

6

7

8

(d) 2009

1

10

100

1000

10000

100000

1 10 100 1000 10000

N
um

be
r o

f S
ta

r S
tr

uc
tu

re
s

Number of neighbors

1

2

3

4

5

6

7

8

(e) 2010

Figure 3.8: Star Structure Distributions

39

(a) edge weight=1

(b) edge weight=2

(c) edge weight=3

Figure 3.9: Bipartite Structure Distribution - 2006

40

(a) edge weight=1

(b) edge weight=2

Figure 3.10: Bipartite Structure Distribution - 2010

41

(c) edge weight=3

(d) edge weight=4

Figure 3.10: Bipartite Structure Distribution - 2010

42

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 Total

N
um

be
r o

f T
ria

ng
le

s

Edge Weight

2006 2007 2008 2009 2010

Figure 3.11: Triangle Structure Distribution

there is no any relation between the number of triangles in the Internet year by year.

The highest number of triangles observed in 2007 dataset.

Figure 3.12-(a) represents the clique structure distribution for 2006, while Fig-

ure 3.12-(b) represents the average number of cliques observed between 2006-2010.

While the edge weight increases the number of cliques decreases. Additionally, the

number of cliques in the Internet increases year by year.

All in all, when the length of *-substring increases (i.e. we have more unre-

sponsive nodes between two known node), the number of structures found within the

topology decreases. According to our experiments, while the number of structures

with 1 unresponsive node has not changed considerably in consecutive years, there has

been a significant increase in the number of structures with 3 and more unresponsive

routers.

43

10
0

10
1

10
2

10
0

10
1

10
2

10
3

number of vertices

nu
m

b
er

 o
f
cl

iq
ue

 s
tr
uc

tu
re

s

1 AR
2 AR
3 AR
4 AR

(a) 2006

10
0

10
1

10
2

10
0

10
1

10
2

10
3

number vertices

av
g
.
nu

m
b
er

 o
f
cl

iq
ue

 s
tr
uc

tu
re

s

1 AR
2 AR
3 AR
4 AR

(b) Average

Figure 3.12: Clique Structure Distribution

44
Table 3.1: SGI for Resolving unresponsive Routers in iPlane Data-set

#Unresponsive nodes #Resolved
IP 9,063,317 8,269,462

Triangle 793,855 2,864
Bipartite 790,981 172,218

Star 618,763 466,101
Final 152,662 6,940,449

3.4.3 Resolution Results

Here, we represent the average resolution results for these datasets. We have around

9M unresponsive nodes in initial data. We first resolve the unresponsive nodes be-

tween two known nodes. Then, we use SGI algorithm to resolve unresponsive nodes.

Starting from the maximum clique, we resolve all unresponsive nodes within the clique

and triangle structures. Then, we resolve unresponsive nodes within the complete bi-

partite and star structures. The number of resolved unresponsive nodes at each step

given in Table 3.1. Using SGI, we resolve more than 98 percent of unresponsive nodes.

3.5 Evaluation on a Wikipedia Graph

In this section, we apply the SGI on a Wikipedia graph. In this graph, Wikipedia

pages represented as nodes, and the links between these pages as edges. There are

around 100K nodes and 3M edges in this graph. Figure 3.13 shows the star and

complete bipartite structure distribution of the Wikipedia graph. When compared

to Internet topology datasets above, Wikipedia graph has much more average node

degree. Additionally, the number of complete bipartites is higher than Internet topol-

ogy datasets. SGI found 16.5M triangles in the Wikipedia graph. According to the

difference between the number of triangles in Wikipedia and Internet graph, we can

conclude that the Wikipedia graph is more clustered than the Internet topology.

45

1

10

100

1000

10000

1 10 100 1000

N
um

be
r o

f S
ta

r S
tr

uc
tu

re
s

Number of neighbors
(a) Star Distribution

(b) Complete Bipartite Distribution

Figure 3.13: Wikipedia Graph

46

3.6 Summary

In this chapter, we presented the Structural Graph Indexing (SGI) for efficiently min-

ing complex networks. As indexing feature, we utilize graph structures such as star,

complete bipartite, triangle and clique that frequently appear in protein, chemical

compound, and Internet graphs. SGI lists all substructures matching structure for-

mulations and other graph structures can be identified and added to the SGI. Different

from previous approaches, SGI does not limit the number of nodes in the indexing

structure and provides an alternative tool for graph mining algorithms. In evaluation

of SGI, we performed experiments on genuine Internet topology datasets to resolve

unresponsive routers.

After applying our Structural Graph Indexing (SGI) approach to resolve the

unresponsive routers in the Internet topology collected by iPlane [87], we made two

main observations. First of all, the number of unresponsive nodes resolved during

the clique resolution step is very low despite the high complexity of clique indexing.

Hence, we decided to use triangle resolution instead of clique resolution and then

we added the triangle indexing and resolution modules to our system. Secondly, we

realized that resolving unresponsive routers without identifying the IP alias pairs sig-

nificantly affects the final graph. Therefore, in Cheleby, we perform the unresponsive

router resolution step after identifying the IP alias pairs.

47

Chapter 4

Unresponsive Routers

Internet topology measurement studies utilize traceroute to collect path traces from

the Internet. A router that does not respond to a traceroute probe is referred as an

unresponsive router and is represented by a ‘*’ in the traceroute output. Unresponsive

router resolution refers to the task of identifying the occurrences of ‘*’s that belong to

the same router in the underlying network. This task is an important step in building

representative traceroute-based topology maps and obtaining an optimum solution is

shown to be NP-complete. In this chapter1, we conduct an experimental study to

understand how the responsiveness of routers has changed over the last decade and

how it differs based on the probing mechanism. We then utilize a novel graph data

indexing approach to build an efficient solution to the unresponsive router resolution

problem. The results of our experiments significant improvements in accuracy and

effectiveness over the existing approaches.

1An earlier version of this chapter is currently under review at the IEEE/ACM Transactions on

Networking

Hakan Kardes, M.H. Gunes, Kamil Sarac. Graph Based Induction of Unresponsive Routers in

Internet Topologies.

48

Svp

Lvp

SLvp
Cvp

Kvp

Nvp

Wvp

Avp

Hvp

(a) Internet2 Backbone (grey routers are unresponsive)

Figure 4.1: Sample Network

4.1 Introduction

A router that is unresponsive to measurement probes is represented by a ‘*’ in tracer-

oute output and the same router may be probed multiple times in different traces2.

Without any resolution, each occurrence of ‘*’ needs to be treated as a potentially

different router. Depending on the number of unresponsive routers and the topology

collection scenario, the collected set of path traces may include a large number of

‘*’s. For instance, let us consider the Internet2 backbone presented in Figure 4.1-a

where squares represent the vantage points attached to each router shown as a circle.

Assume that the routers at Washington,D.C. and SaltLake are configured to be

unresponsive and path traces are collected between all vantage points. Under these

2In this dissertation, we use the term unknown node to refer to a ‘*’ in a traceroute output and

unresponsive router to refer to the actual router that is represented by this unknown node (i.e., by

this ‘*’).

49

(b) Induced Topology (traces between all vantage points)

(c) After Initial Pruning (of unresponsive nodes)

Figure 4.1: Sample Network

50

assumptions, the topology that is constructed from the 36 path traces between 9 van-

tage points would be as in Figure 4.1-b (with no resolution). The common approach

of pruning (see Sec. 4.3 for details) as in Figure 4.1-c leaves artificial nodes that needs

to be further processed.

Internet topology measurement data includes a large number of ‘*’s. For in-

stance, the iPlane dataset we use in our evaluations in Section 4.2.1 has almost 98% of

nodes as unknown (78% after the initial pruning). Hence, timely analysis of large scale

data sets, currently tens of millions of traces, requires efficient algorithms. Moreover,

the large volume of unresponsive routers in collected Internet graph significantly af-

fects graph characteristics such as degree distribution, and clustering coefficient of the

graph (see Sec. 4.4.1). In order to build more representative Internet maps, unrespon-

sive routers should be properly resolved. However, the massive volume of unknown

nodes in the collected data set introduces challenges in building efficient solutions.

In this chapter, we first investigate the responsiveness of routers to active net-

work measurements in two directions (i) historical router responsiveness to active

measurements and (ii) current responsiveness to different probe mechanisms. Ex-

panding the earlier work [61] on skitter [94] data sets, we present the prevalence of

unresponsive routers in historical Ark [2] and iPlane [87] measurement data sets. For

today’s practices, we use different types of active probes to observe the responsiveness

of routers to them.

We then enhance the graph based induction (GBI) approach, based on the ear-

lier work [60], to resolve unresponsive routers in traceroute based topology mapping

studies by integrating our novel structural graph indexing [74] approach to efficiently

query constructed topology graphs. In our work, we define an induction approach

from the practical context of the unresponsive router resolution problem and develop

51

an efficient implementation which scales to large Internet topology maps with millions

of routers. We first analyze the nature of unresponsive routers and identify differ-

ent types of unresponsiveness. We observe that unresponsiveness due to ICMP rate

limiting is an important case that is omitted in previous studies. Then, we visually

examine topology maps that are constructed from traceroute data with unresponsive

routers. From this visual study, we identify a number of graph structures that are

formed among unknown nodes and their known neighbors. We then use structural

graph indexing to detect these structures in the graph and reduce the unknown nodes

(i.e., the occurrences of ‘*’s) into their corresponding unresponsive routers.

In our evaluations on synthetic topologies, we observe that GBI has better res-

olution than previously proposed pruning [27] and neighbor matching [46] approaches.

Due to their high algorithmic complexity (see Sec. 2.2.3), we did not compare GBI

with graph minimization [128], dimensionality reduction [15], and spectral embed-

ding [15] approaches. We also showed that proper resolution of IP Aliases beforehand

improves the unresponsive resolution. In addition, we demonstrate the practicality

of our approach on genuine datasets collected by (i) iPlane with 33M traces, 9M un-

responsive and 300K known nodes, (ii) Ark with 22.7M traces, 11.4M unresponsive

and 1.2M known nodes, and (iii) Cheleby [3] with 15M traces, 7.2M unresponsive

and 1.2M known nodes.

The rest of this chapter is organized as follows: Section 4.2 presents an ex-

perimental study to understand the responsiveness of routers to active probing. Sec-

tion 4.3 formally defines the unresponsive router resolution problem along with build-

ing blocks for the proposed algorithms and introduces our graph based induction

approach. Section 4.4 presents our experimental evaluations. Finally, Section 4.5

concludes the chapter.

52

S D I S to D

Direct
Response

Indirect
Response

Source Intermediate Destination

Figure 4.2: Active Probing

4.2 Router Responsiveness Analysis

In this section, we investigate router (un)responsiveness to active probes by enhancing

the earlier work [61] which analyzes router responsiveness till 2008. As in Figure 4.2

active probes are divided into two categories as (i) direct probes where the destination

IP address in the probe packet is the intended destination as in ICMP ping or (ii)

indirect probes where the destination IP address in the probe packet is some other

destination as in traceroute when it probes an intermediate router during a trace.

In both direct and indirect probing, routers might not respond to the probes.

Similar to Gunes et al. [61], we classify unresponsive routers into two categories:

• Permanent unresponsive: A system may be configured to ignore certain

probe packets causing it to be unresponsive with such probing. In addition,

a border router may be configured to filter out (i) certain types of packets

such as unsolicited UDP packets directed to a local host or (ii) outgoing ICMP

responses originating from nodes within its local domain. Border filtering causes

internal nodes to be seen as unresponsive.

• Temporary unresponsive: A system may apply ICMP rate limiting and

become unresponsive if the rate of the incoming probes exceed a preset limit.

Similarly, a system may ignore probe packets when it is congested but respond

53

to them when it is not. Finally, packets may occasionally be dropped or lost due

to routing or overflow. In either case, the router has altering responsiveness.

Note that both can be further classified into two subtypes but an external

observer can not differentiate the subtypes. Moreover, a system may have a private

(i.e., publicly unroutable) IP address that cannot guarantee node uniqueness but can

be marked per AS they originate from.

According to this classification, we mark an unknown node between two known

nodes (say, A and B) as temporarily unresponsive when we observe a parallel trace

with an IP address (say C) between the same pair of nodes (i.e., A and B). However,

if we don’t observe any IP address between A and B, we mark it as permanent

unresponsive.

4.2.1 Historical Data Analysis

In this section, we use traceroute collected historical data sets to study router reaction

to indirect probe messages. We downloaded publicly available historical traceroute

data sets from CAIDA (first 10 collected by skitter [94], and the rest collected by

Ark [2]), and 6 datasets from iPlane [6]. We utilized data sets that were collected in

January of each year by the corresponding infrastructures. CAIDA reports that they

had several updates to destination IP address lists and had a major change in their

topology collection system in mid 2004 where they utilized dynamic destination lists

with increased probing frequency at skitter monitors. In 2008, CAIDA deployed Ark

infrastructure to collect the topology data.

First, we look for a trend in the ratio of unresponsive routers in the collected

data set in Table 4.1. In the table, Completed traces gives the percentage of traces

54

T
ab

le
4.
1:

A
n
al
y
si
s
of

H
is
to
ri
ca
l
R
es
p
on

si
ve
n
es
s

In
it
ia
l

U
n
re
sp
on

si
ve
n
es
s
T
y
p
e

D
at
as
et

Y
ea
r

#
V
an

ta
ge

#
T
ra
ce
s

C
om

p
le
te
d

#
N
o
d
es

U
n
k
n
ow

n
P
er
m
an

en
t

T
em

p
or
ar
y

P
oi
n
ts

T
ra
ce
s

19
99

5
3.
5
M

86
.5

%
0.
2
M

37
.2

%
10
0
%

0.
0
%

20
00

14
14
.8

M
83
.5

%
0.
7
M

45
.1

%
10
0
%

0.
0
%

20
01

17
13
.4

M
73
.6

%
2.
1
M

42
.2

%
10
0
%

0.
0
%

20
02

20
19
.1

M
50
.4

%
1.
5
M

33
.9

%
10
0
%

0.
0
%

S
k
it
te
r

20
03

23
24
.3

M
54
.3

%
1.
9
M

29
.6

%
10
0
%

0.
0
%

(C
A
ID

A
)

20
04

23
22
.9

M
53
.0

%
2.
4
M

39
.1

%
10
0
%

0.
0
%

20
05

22
21
,0

M
46
.4

%
6.
8
M

81
.9

%
96
.9

%
3.
1
%

20
06

19
18
.4

M
37
.2

%
6.
4
M

81
.5

%
96
.5

%
3,
5
%

20
07

18
17
.5

M
30
.6

%
4.
9
M

84
.8

%
95
.6

%
4.
4
%

20
08

11
10
.7

M
23
.2

%
2.
8
M

76
.8

%
92
.8

%
7.
2
%

20
09

31
22
.2

M
7.
4
%

12
.0

M
86
.3

%
96
.7

%
3.
3
%

A
rk

20
10

39
24
.7

M
8.
6
%

10
.8

M
85
.3

%
96
.9

%
3.
1
%

(C
A
ID

A
)

20
11

51
22
.7

M
9.
4
%

12
.6

M
87
.9

%
96
.4

%
3.
6
%

20
06

19
0

16
.6

M
81
.8

%
9.
8
M

97
.5

%
89
.9

%
10
.1

%
20
07

17
9

18
.8

M
66
.8

%
11
.7

M
97
.4

%
90
.1

%
9.
9
%

20
08

19
7

25
.7

M
73
.2

%
17
.8

M
98
.1

%
92
.4

%
7.
6
%

iP
la
n
e

20
09

18
7

25
.2

M
62
.1

%
14
.6

M
97
.9

%
91
.9

%
8.
1
%

20
10

25
2

36
.7

M
53
.5

%
14
.5

M
97
.7

%
91
.0

%
9.
0
%

20
11

23
4

33
.4

M
51
.1

%
15
.5

M
97
.8

%
89
.7

%
10
.3

%

55

that reached the final destination; # Nodes gives the number of nodes within the

data set before IP alias and unresponsive router resolutions; and Unknown gives the

percentage of unknown nodes (where each occurrence of unknown node is counted

separately while unique known nodes are counted) in the original data set. The next

two columns give the classification of unknown nodes as percentage values.

According to skitter and iPlane data sets, the ratio of path traces reaching

their final destination decreases in time. This ratio is very low in traces collected

with Ark compared to skitter. The decrease in reachability and the low reachability

values are mainly caused by the change in the default ICMP behavior by operating

systems, proliferation of firewalls, and the inclusion of a destination from each /24

subnet range that might not correspond to a live system. However, path traces not

reaching their final destinations contribute little useful information and considerably

slow down the probing process. Hence, CAIDA has developed mechanisms to increase

the ratio of traces reaching their final destination.

The ratio of unresponsive routers fluctuates in skitter data but is more stable

in Ark data (i.e. around 86%) and iPlane data (i.e. about 98%). These high ratios

point to the prevalence of unresponsive router resolution to obtain realistic sample

topologies. Another observation from the table is that the ratio of temporarily un-

responsive routers increases over the time for all systems in recent years. Yet, they

were ignored by previous unresponsive router resolution approaches.

Next, we are interested in the length distribution of path segments formed by

consecutive ‘*’s in path traces. We call a path segment in the form of a (IP1, ∗1, ∗2,
. . . , ∗l, IP2) a *-subpath of length l. We are interested in the frequency distribution

of *-subpaths with respect to their length l. Although a *-subpath of length one may

have different interpretations about the cause of router unresponsiveness, occurrence

56

T
ab

le
4.
2:

*-
S
u
b
p
at
h
C
h
ar
ac
te
ri
st
ic
s

U
n
iq
u
e

*-
su
b
p
at
h
le
n
gt
h

D
at
as
et

Y
ea
r

*-
su
b
p
at
h
s

S
am

e
A
S

1
2

3
4

5
>
5

20
05

22
5,
45
6

12
.6

%
15
1,
13
3

63
,6
62

6,
36
0

4,
30
1

-
-

S
k
it
te
r

20
06

20
7,
06
7

11
.6

%
13
7,
82
9

59
,1
71

5,
82
8

4,
23
9

-
-

(C
A
ID

A
)

20
07

30
5,
33
1

14
.4

%
21
2,
26
3

73
,2
63

14
,0
19

5,
77
9

7
-

20
08

23
1,
63
3

14
.0

%
14
8,
18
2

63
,9
44

13
,7
33

5,
77
2

2
-

20
09

31
5,
01
9

30
.9

%
19
4,
88
9

70
,7
28

30
,6
86

18
,3
49

24
2

12
8

A
rk

20
10

37
0,
80
2

28
.6

%
23
9,
21
2

76
,5
40

34
,9
69

19
,9
71

32
2

15
8

(C
A
ID

A
)

20
11

39
3,
57
0

25
.9

%
23
3,
61
3

87
,4
23

51
,2
61

20
,5
43

41
1

29
7

20
06

47
2,
65
6

25
.6

%
33
0,
67
2

10
0,
19
8

40
,5
36

82
5

26
9

15
5

20
07

73
1,
07
7

25
.9

%
51
0,
18
6

21
5,
92
4

2,
94
1

1,
32
7

44
1

24
2

20
08

93
1,
88
0

23
.3

%
53
0,
69
8

21
6,
45
2

11
0,
30
0

71
,0
97

1,
31
3

1,
80
9

iP
la
n
e

20
09

84
0,
13
2

23
.1

%
50
0,
48
8

18
0,
28
3

92
,9
88

64
,8
37

78
1

72
8

20
10

84
4,
71
2

22
.7

%
62
9,
46
8

20
7,
72
5

3,
65
1

1,
78
1

1,
16
3

83
3

20
11

85
1,
40
4

23
.0

%
62
2,
90
0

21
8,
12
8

4,
94
2

2,
57
9

1,
31
2

1,
50
2

57

of long *-subpaths may be an indication of ISP policy of preventing active probing in

its network.

Table 4.2 represents the *-subpath distribution for CAIDA and iPlane datasets.

In the table, we present the number of unique *-subpaths in the original data set.

For uniqueness, we represent a *-subpath of length l as a triplet (IP1, l, IP2) and

avoid counting the duplicate triplets of this form. The data sets prior to 2005 for

CAIDA have only length l = 1 *-subpaths and are not included in the table. Starting

2005, we observe *-subpaths of longer lengths with the majority of *-subpaths being

of length 1 or 2. We partly attribute the behavior of routers to changes in the data

collection process such as the increased probing rate. Longer *-subpaths might also

be due to growth in networks where more hops of an unresponsive AS are traversed

or due to increased use of MPLS tunnels. According to the results for the iPlane data

sets, l = 1 *-subpaths are almost doubled within the last five years. We observe that

both the overall number of unresponsive routers and the longer length *-subpaths

have increased as ISPs have become less cooperative to active probing.

We also look into the percentage of *-subpaths that appear within a single

AS in the Same AS column. For a given *-subpath, say (IP1, l, IP2), we look at the

relation between IP1 and IP2 and map each such IP address to corresponding AS

numbers with AS lookup tool of CYMRU [40]. If the IP addresses share the same

AS number, then these IP addresses belong to the same domain and therefore the

unresponsive nodes in between most likely belong to the same domain. Given that

most *-subpaths are of length 1 or 2 and the probability of two IP addresses being

in different ASes is 0̃.75 (according to Table 4.2), we think that the majority of *-

subpaths originated from routers at domain boundaries or exchange points between

neighboring ASes.

58

T
ab

le
4.
3:

R
es
p
on

si
ve
n
es
s
to

D
ir
ec
t
P
ro
b
es

Y
ea
r
/
D
at
a

T
y
p
e

A
ll

R
ou

te
r

E
n
d
-S
y
st
em

.n
et

.c
om

.e
d
u

.o
rg

.g
ov

IC
M
P

81
.9

%
84
.6

%
77
.9

%
92
.3

%
86
.4

%
88
.9

%
95
.5

%
92
.9

%
20
08

/
R
ou

te
r

T
C
P

67
.3

%
70
.4

%
62
.8

%
76
.7

%
72
.6

%
83
.2

%
77
.3

%
83
.0

%
U
D
P

59
.9

%
64
.7
%

50
.3

%
63
.5

%
61
.7

%
57
.3

%
64
.4

%
62
.8

%

IC
M
P

80
.4

%
-

80
.4

%
84
.9

%
86
.7

%
53
.2

%
83
.6

%
37
.2

%
20
11

/
W
eb

S
it
e

T
C
P

97
.9

%
-

97
.9

%
98
.3

%
97
.8

%
95
.8

%
98
.2

%
96
.9

%
U
D
P

46
.7

%
-

46
.7

%
47
.6

%
50
.9

%
21
.0

%
45
.8

%
14
.4

%

59

 1

 10

 100

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

1 6 11 16 21 26 31 36 41

N
um

be
r o

f u
nr

es
po

ns
iv

e
ro

ut
er

s

Distance to source

1999
2002
2005
2008
2011

(a) Unresponsive Routers

(b) Routers for 2011 CAIDA data set

Figure 4.3: Historic Distance Distribution

60

We are also interested in the position of unresponsive nodes within path traces

and counted the number of unknown nodes at each hop distance from the vantage

point. Figure 4.3-a presents the distance distribution of unknown nodes for five

different years of CAIDA data sets. According to the figure, early data sets (i.e.,

before 2005) contain small number of unknown nodes that were mostly distributed

10 to 20 hops away from the source. On the other hand, recent data sets include

much more unknown nodes majority of which appear 3 to 25 hops away from the

source. The figure also shows a high number of unknown nodes at a distance of 2

from the source for the 2011 data set. A close examination of the corresponding data

set shows that this is due to the existence of a permanently unresponsive router at

a 2 hops distance to one of the vantage points. Figure 4.3-b presents the distance

distribution for known, unknown, and all of the nodes for the 2011 CAIDA data set.

Since the number of unknown nodes is relatively smaller than the number of known

nodes when accounting for each occurrence separately, the distance distribution of all

the nodes is quite similar to distance distribution of known nodes. Moreover, unlike

the distribution of known nodes, there is a decrease in the number of unknown nodes

between distance 1 to 9. Starting from hop distance 10, they start to exhibit a similar

trend.

4.2.2 Responsiveness to Different Probe Mechanisms

In this section, we observe router responsiveness to direct and indirect probe messages

(see Figure 4.2 for distinction). Destination responses may change with different

probe mechanisms and hence the resulting topologies under each probing approach

may vary. For the analysis in this section, we also include the analysis done by Gunes

et al. in 2008 [61] to compare the difference between 2008 and 2011. To analyze

61

responsiveness to these different protocols, we first issued UDP, TCP, and ICMP

based direct probes to several IP addresses and recorded the response (or the lack of

it). For each case, we issued three probes from a host and expected to receive at least

one response to consider the probed node as responsive. In general, UDP probes

are expected to elicit ICMP Port Unreachable messages; TCP probes (TCP SYN

packets) are expected to elicit TCP SYNACK or TCP RST messages; and ICMP

probes (Echo Requests) are expected to elicit ICMP Echo Reply messages. Finally,

we issued another set of ICMP probes with IP Route Record option set but observed

a very small response rate and excluded them from the discussion.

Table 4.3 presents the response rate that we observed during our direct prob-

ing in 2008 and 2011. All column indicates the response rate of all IP addresses

(where each IP is separately counted as whether responsive, i.e., known, or not, i.e.,

unknown). We then group these IP addresses as belonging to routers or end systems

by analyzing whether they appear within path traces. The heuristic approach classi-

fies an IP address as a router if it appears within any path trace, and as end-system

otherwise 3. We also classify end systems based on their top level domain extensions

(only 5 of them are presented) in the following columns.

Initially, we used 537K IP addresses obtained from skitter and iPlane, in

2008 [61]. These IP addresses were collected by running traceroute queries, i.e., they

belong to routers/systems that responded to indirect/direct probe messages from

skitter and/or iPlane systems. However, during our TCP based active probing, we

received several complaints from a national ISP indicating that our probe messages

raised alerts in their monitoring system.

3This approach may incorrectly mark a router as an end-system when it only appears as the last

hop of traces

62

To minimize such complaints, in 2011, we used 537K new IP addresses of the

top visited web sites from http://alexa.com/topsites.

According to the 2008 router data, ICMP based direct probes had the highest

rate of responses followed by TCP and then UDP. The results suggest that TCP

based probes were more welcomed than the UDP ones. However, in 2011, TCP based

direct probes have the highest response rate followed by ICMP and then UDP probes.

This is skewed because we used IP addresses of the web sites which are in general

responsive to TCP probes. In both years, UDP based probes have the lowest response

rate while it decreased considerably from 60% in 2008 to 47% in 2011. The response

ratio of ICMP based probes is similar for both years (i.e., 81.9% for 2008 and 80.4% for

2011). The 2008 router IP data indicates that many routers that respond to indirect

query probes, i.e. traceroute, do not respond to direct query probes. Moreover, in

2011 data, we observe that end systems typically do not respond to UDP probes.

In the next step, we issued DNS queries to obtain the host names corresponding

to these IP addresses. We use the host name extensions to classify our IP addresses

into several top level domains (TLDs) including .gov, .net, .org, .edu, and .com and

look at the responsiveness of each group. Our data set had host names with other

TLDs, e.g., .jp, .fr, .info, which we did not include in the table as they were a smaller

sample and had similar responsiveness. In 2008, the responsiveness of routers in

different TLDs are similar. However, in 2011, ICMP and UDP probes to the .edu and

the .gov extension end systems have very low response rate, while the TCP based

probes have a similar pattern across TLDs.

In the final step, we issued ICMP, TCP, and UDP based traces toward 306K

and 537K of IP addresses in 2008 and 2011, respectively, to observe router respon-

siveness to different indirect probes in Table 4.4. Similar to Table 4.1, we counted

63
Table 4.4: Responsiveness to Indirect Probes

Type Year #Traces Completed #IPs #Nodes Unres.

ICMP
2008 306 K 93.1 % 313 K 1.0 M 68.7 %
2011 537 K 88.8 % 770 K 2.0 M 66.5 %

TCP
2008 306 K 73.4 % 277 K 1.0 M 72.3 %
2011 537 K 96.0 % 697 K 1.1 M 36.6 %

UDP
2008 306 K 45.0 % 210 K 1.5 M 86.0 %
2011 537 K 64.4 % 201 K 1.5 M 86.6 %

each occurrence of unknown node separately while only counted unique known nodes.

In 2008, over 93% of our ICMP based probes reached their final destination whereas

the ratios for TCP and UDP based probes were around 73% and 45%, respectively.

These results suggest that most network operators were more cooperative with ICMP

based queries while more than half of the operators blocked UDP based queries in

their domain. However, in 2011, about 96% of our TCP based probes reached their

final destination while the ratios for ICMP and UDP based probes were around 89%

and 65%, respectively. Note that the results for 2011 is inflated for TCP since the

web sites are normally responsive to TCP packets. Additionally, unresponsiveness

ratios for ICMP and UDP based traceroute are similar for both years with UDP be-

ing the least effective to elicit responses. This is also reflected in the topology size,

i.e., #Nodes.

4.2.3 Summary

In this section, we presented an experimental study to understand the responsiveness

of routers to active probing. In our historical analysis, we observed that responsive-

ness reduced during the last decade. We also observed that network operators are

increasingly rate limiting probe responses. Another observation from our study is

that the destination reachability considerably reduced over the time indicating that

64

systems (i.e., routers and end systems) are increasingly unwilling to respond to direct

probes. We also observed that routers are less willing to respond to direct active

probes as compared to indirect active probes. Finally, our experiments show that the

responsiveness of routers changes with the type of the probes; ICMP based probes

eliciting the highest response rate and UDP based ones eliciting the lowest. Even

though TCP based probes receive responses much better than UDP based ones, this

type of probes are more likely to raise security alerts.

Based on the findings in the measurement study, in our unresponsive router

resolution approach, we addressed the lack of (i) temporary unresponsive router reso-

lution as the ratio of temporarily unresponsive routers have been increasing and (ii)

*-subpath resolution as the length of *-subpaths and the number of longer ones have

been increasing. Neither of these cases are properly addressed by previous resolution

studies while both appear increasingly often in the recent years.

4.3 Graph Based Induction for

Unresponsive Router Resolution

In this section, we present graph based induction (GBI) technique to resolve unre-

sponsive routers that introduce a large number of artificial nodes in traceroute-based

topology maps [60]. We first formulate a number of graph structures that are observed

in traceroute-based sample topologies. First of all, the number of unresponsive nodes

resolved during the clique resolution step is very low despite the high complexity

of clique indexing. Hence, we decided to use triangle resolution instead of clique

resolution and then we added the triangle indexing and resolution modules to our

system. These structures are shown in Figure 4.4-a,-c,-e,-g and the corresponding

65

a b *1 *n . . .

a b
.
.
.

*1 *n
 . . .

*n+1 *2.n
 . . .

*n.(n-1)+1 *n.n . . .

(a) Real topology (b) Observed parallel topology

a c *1

b

a c *3

b

*1 *2

(c) Real topology (d) Observed triangle-like topology

b
e

*1
a

d

c

b
e

*3 a
d

c
*1

*5

*2

*6

*4

(e) Real topology (f) Observed complete bipartite-like topology

d

*1 a c

b

d

*2 a c

b
*1

*3

(g) Real topology (h) Observed star topology

Figure 4.4: Structures (genuine and observed)

66

connectivity relations in the underlying actual network are shown in Figure 4.4-b,-

d,-f,-h, respectively. For instance, when there are m traces through a sequence of n

unresponsive routers as in Figure 4.4-b, we observe m parallel unknown sequences as

in Figure 4.4-a. Similarly, when there are traces between all neighbors of an unre-

sponsive router as in Figure 4.4-d, we observe a clique structure as in Figure 4.4-c

after parallel sequences are resolved. Figure 4.4-e appears when there are traces from

one set, i.e., {a,b}, to the other set, i.e., {c,d,e}, of bipartite graph in Figure 4.4-f.

Finally, Figure 4.4-g will appear if there are traces from a source node to multiple

destinations in Figure 4.4-h.

Multiple network topologies with unresponsive routers can result in the same

observed topology. Yao et al. analyzes this issue and proposes to use the minimal

topology under trace and distance preservation conditions as the underlying topology

for an observed network topology [128]. We, however, assume that the minimal

topology that satisfies the trace preservation condition is the underlying topology

for observed structures in collected Internet topology datasets. In order to solve

the unresponsive router problem, we replace the subgraphs Figures 4.4-a,-c,-e,-g with

the subgraphs in Figures 4.4-b,-d,-f,-h within collected topology datasets. Note that

networks in Figures 4.4-b,-d,-f,-h are the minimum possible underlying networks for

the sampled networks shown in Figures 4.4-a,-c,-e,-g, respectively.

We modify our novel structural graph indexing technique [74] where we search

for structures similar to the identified ones in traceroute-collected topology data and

transform unknown nodes in them into their corresponding routers with graph based

induction approach. In this process, we first start with a router-level topology graph

G = (V,E) that is constructed from a set of traceroute-collected path traces. We

find all *-subpaths u∗
(a,b,l,A) in this graph, and then apply structural graph indexing to

67

efficiently perform queries and graph based induction to resolve unresponsive routers

based on the structures shown in Figure 4.4.

In graph indexing, we index predefined structures in a given network so that

subsequent queries regarding the network graph are more efficient. In our case, we

index star, complete bipartite, and triangle structures in a given graph. An impor-

tant difference of our approach from the previous indexing studies is that we do not

limit the size of candidate subgraphs. We try to index maximal graphs that match

the structure formulation. For instance, a maximal complete-bipartite is a complete-

bipartite that cannot be extended by adding one more vertex from the graph. In

order to reduce computational complexities, we index the structures within the orig-

inal graph in a consecutive manner. That is, we first identify star structures, then

complete-bipartite, and finally triangle structures from the preceding ones as detailed

below.

4.3.1 Structural Graph Indexing

In this section, we present each of the identified structures, their underlying topology,

and the structural graph indexing of these structures for graph based induction.

4.3.1.1 Parallel *-subpath Structures

First common pattern that we observe in traceroute-based topology maps is the oc-

currences of same length *-subpaths with the same known nodes at the ends of each

*-subpath. While collecting path traces from a vantage point, an unresponsive router

may appear as ‘*’ in multiple path traces resulting in multiple parallel *-subpaths

between the same known nodes. As an example in Figure 4.1-a, traceroute queries

68

Let G = (V,E); V ← ∅; E ← ∅; U ← ∅; maxLength← 0;

for (each trace in
⋃
trace(vi, vj))

V ← V ∪ {a, b}; E ← E ∪ {e(a,b)} ∀u(a,b,0,∅) ∈ trace
for (each u∗

(a,b,l,{∗1,∗2,...,∗l}) ∈ trace)

if (¬∃ u∗
(a,b,l,) ∈ U)

V ← V ∪ {a, ∗1, ∗2, ..., ∗l, b}
U ← U ∪ u∗

(a,b,l,{∗1,∗2,...,∗l})
E ← E ∪ {e(a,∗1), e(∗l,b)} ∪ {e(∗i,∗i+1)∀i, 1 ≤ i < l}
if maxLength < l
maxLength ← l

Figure 4.5: Algorithm 5: Finding Parallel *-Subpaths

from Avp to Wvp return path traces including *-subpaths such as (A, ∗1,Wvp). Simi-

larly, traceroutes fromWvp to Avp result in additional *-subpaths such as (Wvp, ∗2, A).
When path traces between all vantage points are collected, we observe 10 parallel *-

subpaths between A and Wvp in the resulting topology map as shown in Figure 4.1-b.

Note that in this example *-subpaths include only one unresponsive router. A similar

pattern can be observed for *-subpaths of longer lengths as in Figure 4.4-a.

Resolution of unresponsive routers in this type of structures requires detection

of similar *-subpaths (i.e., same length *-subpaths with the same known nodes at

their end points). The Algorithm 1 in Figure 4.5 provides a graph search module for

parallel *-subpaths. In the algorithm, we extract all *-subpaths u∗
(a,b,l,{∗1,∗2,...,∗l}) from

the path traces and identify the same length *-subpaths with the same known end

nodes (i.e., a and b) to merge unknown nodes with each other. The algorithm also

builds the initial data structures that we will utilize in the graph indexing to resolve

other structures.

While reading the traces, each u∗
(a,b,l,N) is stored based on the known end nodes

a and b in a hash table. Subsequently read u∗
(c,d,k,P)’s are then compared to the ones

69

(a) Resolution of length 1 *-subpath

(b) Resolution of longer *-subpaths

Figure 4.6: Resolution of Temporarily Unresponsive Routers

with the same hash value in the data structure. This results in a complexity of

O(|U |.log(|U |)) where |U | is the number of *-subpaths.

Another related pattern is caused by routers that apply ICMP rate limiting

or that stay unresponsive when congested, i.e., temporary unresponsiveness. Such a

router may appear as a known node in some path traces and may appear as a ‘*’

in others. For instance, in Figure 4.6-a, an ICMP rate limiting router c may cause

occurrences of related subpaths in the form of (. . . , a, c, b, . . .) and (. . . , a, ∗1, b, . . .)
in different traces, and we resolve ∗1 to c. However, in some cases, there might be a

subpath (. . . , a, d, b, . . .) as well. In such cases, we resolve ∗1 to either c or d only if

one of them is marked as temporarily unresponsive. Additionally, as in Figure 4.6-b,

ICMP rate limiting routers c and d may cause occurrences of related subpaths in

the form of (. . . , a, ∗1, ∗2, b, . . .), (. . . , a, c, ∗3, b, . . .) and (. . . , a, ∗4, d, b, . . .) in different

traceroute outputs. In this case, we resolve ∗1 and ∗4 to c; and ∗2 and ∗3 to d.

The Algorithm 6 in Figure 4.7 resolves the temporarily unresponsive routers.

In the algorithm, for each *-subpath u∗
(a,b,l,{∗1,∗2,...,∗l}), we look for a same length l

70

INPUT: G = (V,E) and U from Algorithm 5;

for (each u∗
(a,b,l,{∗1,∗2,...,∗l}) ∈ U) where l <= 5

if (∃ u(a,b,l,{v1,v2,...,vl}))
set ∗1 ← v1, ∗2 ← v2, ..., ∗l ← vl in G
U ← U − u∗

(a,b,l,A)

Figure 4.7: Algorithm 6: Resolving Temporarily Unresponsive Routers

subpaths between the same end nodes a and b. Finding subpaths for given end nodes

in a naive manner might result in a high time complexity. While building the initial

graph in algorithm Algorithm 5 in Figure 4.5, we also index the neighbors of each

node in our node structure. In order to find the subpaths for given end nodes, we find

�l/2�-hop neighbor set of the left end node and �l/2�-hop neighbor set of the right

end node. If the intersection set of these two sets is not an empty set, we identify the

subpath between the end nodes. The algorithm takes O(|U |.(and)2) time where |U |
is the number of *-subpaths and and is the average node degree of all nodes. Note

that we limit the length of *-subpaths to be processed in this step by 5 as longer *-

subpaths increase the time complexity and the number of such subpaths are relatively

small according to data sets in Table 4.2.

4.3.1.2 Star Structures

After building *-subpath database from path traces, we build an index of the star

structures (e.g., Figure 4.4-g) that will be utilized in resolving unresponsive routers

as in Figure 4.4-h and finding bipartite and triangle substructures. The star structure

typically appears in path traces collected from a single vantage point toward a number

of destinations or from multiple vantage points toward the same destination. The

observed topology looks like the one presented in Figure 4.4-g. We identify this type

71
INPUT: G = (V,E) and U from Algorithm 6;

maxLength from Algorithm 5; S ← ∅;
for (each node v ∈ V)
for (i=1:maxLength)
S ← S ∪ s(v,i,∅,∅)

for (each u∗
(a,b,l,A) ∈ U)

s(a,l,N,M) ← s(a,l,(N∪{b}),(M∪A))

s(b,l,N,M) ← s(b,l,(N∪{a}),(M∪A))

for (each s(v,l,N,M) ∈ S)
if |N | < 2
S ← S − s(v,l,N,M)

Figure 4.8: Algorithm 7 - Star Structure Indexing

of structures by clustering unresponsive neighbors (e.g., ∗v) of nodes (e.g., a, the head
node of *-subpaths in Figure 4.4-g).

We index maximal star structures for each node vi ∈ V using Algorithm 7 in

Figure 4.8. Star structures within a graph G = (V,E) are represented as s(vi,l,Ni,Mi)

where vi is the pivot node, l is the number of unknown nodes between the vi and each

of its l-neighbors, Ni is the set of all l-neighbors of vi, and Mi is the set of all unknown

nodes in this star structure. The algorithm builds on the *-subpaths database U and

produces star structure database S.

The algorithm first builds a star structure s(vi,0,∅,∅) for each known node vi ∈ V .

Then, for each *-subpath u∗
(a,b,l,A), it appends node b to the neighbor set of the star

structure of node a with length l, and vice versa. It also appends the set A to M set

of both nodes’ star structures. After processing all *-subpaths, the algorithm removes

star structures s(v,l,N,M) that have less than two neighbors, i.e. |N | < 2. The overall

run time complexity of the algorithm is O(|V |+ |U |).

72

INPUT: G = (V,E) from Algorithm 6; S from Algorithm 7;

K ← ∅;
for (each s(a,l,N,M) ∈ S)
Lcan ← ∅
for (each bi ∈ N)
Lcan ← Lcan ∪N∗ where (∃ s(bi,l,N∗,M∗) ∈ S)

Lcan ← Lcan − {a}
Rcan ← N

for (each vi ∈ Lcan)
Rnew ← Rcan ∩N+

i where (∃ s(vi,l,N+,M+) ∈ S)
if (|Rnew| ≥ 2)
Lnew ← {a} ∪ {vi}
for (each vj ∈ Lcan)

if (Rnew ⊂ N#
j) where (∃ s(vj ,l,N#,M#) ∈ S)

Lnew ← Lnew ∪ {vj}
Mnew ←Mnew ∪M#

K ← K ∪ k(Lnew ,Rnew,l,Mnew)

Figure 4.9: Algorithm 8 - Complete Bipartite Structure Indexing

4.3.1.3 Complete Bipartite Structures

After building Star structure database S, we index complete bipartite structures

K. A complete bipartite subgraph (e.g, a 2x3 complete bipartite in Figure 4.4-e) is

formed among the known neighbors of an unresponsive router (i.e, ∗1 for Figure 4.4-

f). This type of structure occurs when path traces are between two sets of the

unresponsive nodes’ neighbors (i.e., {a, b} and {c, d, e} for Figure 4.4-e). In this case,

topology database includes *-subpaths (ni, ∗v, nj) among all known neighbors of ∗v.
In general, this structure frequently occurs in paths collected using (k,m)-traces (i.e.,

tracing from a relatively small number of k vantage points to a larger number of m

destinations) that is very common in topology mapping studies.

73

We index all complete bipartite structures using Algorithm 8 in Figure 4.9. We

represent a complete bipartite graph as k(V1,V2,l,M) where V1 and V2 are the two disjoint

sets of neighboring nodes, l is the number of unknown nodes between the nodes vi

and vj for any two nodes vi ∈ V1 and vj ∈ V2, and Mi is the set of all unknown nodes

in this complete bipartite structure. The algorithm builds on the star database S

from Algorithm 7 in Figure 4.8.

In the algorithm, for each star structure s(a,l,N,M), we identify the maximal

complete bipartite involving the node a. For this purpose, we first identify two can-

didate sets of nodes which will constitute the left and right hand side of the bipartite

structure involving the node a. Rcan set represents the candidates for the right side

of the complete bipartite and is also the neighbor set N of this star structure. Lcan

set indicates candidates for the left side of the complete bipartite. This set consists

of all l-neighbors of each node in N . We first find a k(V ∗
1 ,V2,N∗,M∗) where m∗ = 2 and

then grow it to k(V1,V2,N,M) where m ≥ 2. Finding k(V ∗
1 ,V2,N∗,M∗), we iterate over each

candidate node in the Lcan as a pivot node and determine its neighbor intersection

with that of the node a. If the intersection set is larger than two, these nodes belong

to the right hand side. After determining the nodes in the Rcan set, we grow the left

hand side (i.e., Lcan) and hence the k(V ∗
1 ,V2,N∗,M∗) structure by finding all nodes that

has the right hand side nodes (i.e., Rnew) as a neighbor. Overall, finding complete

bipartite graphs takes O(|S|.a2N) where |S| is the number of star structures in the

graph, and aN is the average neighbor set size of all stars.

4.3.1.4 Triangle Structure

Finally, we build indexing of the triangle structures. A triangle is formed between

an unresponsive router ∗v and its known neighbors {n1, n2, n3} when we consider the

74

INPUT: G = (V,E) from Algorithm 6; S from Algorithm 7;

T ← ∅; I ← ∅;
for (each s(a,1,N,M) ∈ S)
for (each Ni ∈ N) where Ni > a
if (∃ s(Ni,1,P,M i))
I ← N ∩ P
for (each Ii ∈ I) where Ii > Ni

T ← T ∪ t({a,Ni,Ii},1,{A1,A2,A3})
where u∗

(a,Ni,1,A1), u
∗
(a,Ii,1,A2), u

∗
(Ni,Ii,1,A3)

Figure 4.10: Algorithm 9 - Triangle Structure Indexing

known neighbors of ∗v. This type of structure occurs when path traces exists between

all three known neighbors of an unknown node, i.e., the topology database includes

all *-subpaths (ni, ∗v, nj) where i, j ∈ [1, 3], i �= j. Figure 4.4-b presents an example

of this case where the data set includes *-subpaths among all known neighbors of

the unknown node as shown in Figure 4.4-a. Note that larger cliques may appear

in collected path traces however in our earlier study we observed their occurrence

frequency to be very low [60]. As searching maximal cliques is NP-hard, in this

study, we limit cliques to 3-cliques, i.e., triangles.

We index all triangles in the graph using Algorithm 9 in Figure 4.10. The

algorithm iterates over the star structures reported by Algorithm 8 in Figure 4.8.

Since we only process *-subpaths of length 3 (i.e., 2 known nodes and an unknown

node) with triangle structure, we consider only the star structures having l = 1. In the

algorithm, for each star structure s(a,1,N,M), and s(Ni,1,N∗,M∗) where Ni ∈ N , we obtain

the intersection set I of the N and N∗ sets. For each Ii ∈ I, t({a,Ni,Ii},1,M) constitutes

a triangle where a, Ni, and Ii are the three known nodes of the triangle, and M is

the set of all unknown nodes in this triangle structure. Indexing all triangles takes

75

O(|S|.aN .log(aN)) where |S| is the number of star structures, and aN is the average

l-neighbor set size of all stars.

4.3.2 Unresponsive Router Resolution

After building graph indexes for star, complete bipartite and triangle structures, we

resolve the corresponding unresponsive routers. During the resolution process, we

first handle the triangle structures, then complete bipartite structures, and finally

the star structures as there is a higher possibility of conflicts within star or complete

bipartite structures. That is, it is more likely to have a star structure that is caused

by multiple unresponsive routers than a triangle structure.

4.3.2.1 Triangle Resolution

We resolve the triangle structures in the graph using the Algorithm 10 in Figure 4.11.

If trace preservation condition is satisfied, we combine unresponsive nodes A of a tri-

angle structure t(a,b,c,l,A) into a single unresponsive router in the constructed map.

Moreover, before the resolution, we sort triangles based on the total number of neigh-

bors and process triangles from the one with the smallest number of neighbors to the

largest. This ordering leaves cliquish structures that are due to multiple neighboring

unresponsive routers to be processed later. In those scenarios, we might have multiple

triangles some of which conflict the trace preservation condition.

4.3.2.2 Complete Bipartite Resolution

Next, we resolve the complete bipartite structures in the graph using the Algorithm 11

in Figure 4.12. We combine unresponsive nodes A of a complete bipartite structure

k(V1,V2,l,A) into a single or a chain of nodes in the constructed map under the trace

76

INPUT: G = (V,E) from Algorithm 6; T from Algorithm 9;

sort (T)

for (each t({a,b,c},l,A) ∈ T)
if (mergeable(A))
merge(∗e ∈ A)

Figure 4.11: Algorithm 10: Resolving Triangle Substructures

INPUT: G = (V,E) from Algorithm 10; K from Algorithm 8;

sort (K)

for (each k(ls,rs,l,A) ∈ K)
if (mergeable(A))
merge(∗e ∈ A)

else
A∗ ← findMergable(A)
merge(∗e ∈ A∗)

Figure 4.12: Algorithm 11: Resolving Complete Bipartite Substructures

INPUT: G = (V,E) from Algorithm 11; S from Algorithm 7;

sort (S)

for (each s(r,l,A) ∈ S)
if (mergeable(A))
merge(∗e ∈ A)

else
A∗ ← findMergable(A)
merge(∗e ∈ A∗)

Figure 4.13: Algorithm 12: Resolving Star Substructures

preservation condition. If the unresponsive nodes in A violate the trace preservation

rule, we find the maximal mergeable subset A∗ of these unresponsive routers. If there

is any, we combine unresponsive nodes in this maximal mergeable subset. Similar to

triangle structures, we first sort complete bipartite structures based on their sizes, i.e.

77

|V1| ∗ |V2|. We then start processing from the smallest complete bipartite structure

to the largest as they have smaller probability of having conflicts.

4.3.2.3 Star Resolution

Finally, we resolve the star structures in the graph using the Algorithm 12 in Fig-

ure 4.13. We combine all unknown nodes A of a star structure s(a, l, N,A), i.e. all

unresponsive neighbors of a node a, into a single node in the topology map under the

trace preservation condition. If the unresponsive nodes in A do not satisfy the trace

preservation rule, we find the maximal mergeable subset A∗ of these unresponsive

routers. If there is any, we combine the unresponsive nodes in this maximal merge-

able subset. In the process, we first sort star structures based on the total number of

unresponsive routers they have. We then start processing from the star structure with

the smallest number of unresponsive routers to the largest. This way, non-conflicting

sets of unresponsive nodes will be processed before the ones that can not be merged

into a single node.

4.4 Evaluations

In this section, we use simulations and genuine data to evaluate accuracy and perfor-

mance of graph based induction (GBI) approach to resolve unresponsive routers.

4.4.1 Simulation-based Evaluations

In our simulations, we use a synthetic topology to compare the accuracy of our ap-

proach with that of initial pruning (IP) [27] and neighbor matching (NM) [70] ap-

proaches. IP is a commonly used technique and corresponds to the Algorithm 5 in

78
Table 4.5: 14% Unresponsive Router Regions for (10,2000) T-S Sample

Avg. Unresponsive Router Ratio Avg. Edit Distance

Initial 60.1% 23,122
IP 6.21% 1,726
NM 3.78% 1,403
GBI 1.83% 718

Figure 4.5. NM is similar to the star resolution step in Figure 4.13. Note that we did

not compare GBI with graph minimization [128], dimensionality reduction [70] and

spectral embedding [15] approaches due to their high complexities (see Section 4.4.3

for details). We also consider the impact of unresponsive router resolution on gener-

ated topologies.

For our comparisons, we use Synthetic transit-stub (T-S) network generated by

GT-ITM topology generator [130]. This network consists of 50,000 nodes and 138,500

links. We utilize it as the underlying actual network. We randomly select a number of

nodes in the network as unresponsive, i.e., we choose the unresponsive routers using

independent Bernoulli trials, and collect a number of (k,m) path traces to reflect

traceroute-collected path traces. In order to asses the effect of unresponsive regions

as reported in Table 4.2, we generated synthetic topologies where 14% of routers were

unresponsive while they followed the *-subpath distribution of 2011 Ark dataset. Note

that in this study, we only consider permanently unresponsive routers as IP and NM

approaches are completely ineffective for temporarily unresponsive routers.

We use Edit distance and unresponsive router ratio as metric to assess the

accuracy of each approach. Table 4.5 presents the results for (10,2000) T-S sample

which indicate GBI performs much better than the other approaches.

79

T
ab

le
4.
6:

G
ra
p
h
B
as
ed

In
d
u
ct
io
n
T
ec
h
n
iq
u
e
on

R
ea
l
D
at
a
S
et
s

#
T
ra
ce
s

#
IP

s
#
U
n
k
.
n
o
d
es

A
lg
.
5

A
lg
.
6

A
lg
.
1
0

A
lg
.
1
1

A
lg
.
1
2

T
o
ta
l
re
so
lv
ed

F
in
a
l
U
n
k
.

iP
la
n
e

3
2
M

3
0
0
K

1
5
,1
8
2
,6
0
4

1
4
,3
2
0
,5
1
0

2
1
2
,4
6
0

3
,2
1
2

1
5
8
,8
6
2

4
0
6
,1
0
1

1
5
,1
0
1
,9
4
4

8
0
,6
6
0

A
rk

2
2
.7
M

1
.2
M

7
,8
6
2
,6
4
9

7
,2
1
3
,7
9
3

1
2
2
,8
2
0

2
,6
8
8

1
1
5
,1
9
4

2
4
4
,0
7
6

7
,6
9
8
,5
7
1

1
6
4
,0
7
8

C
h
el
eb
y

1
5
M

1
.2
M

7
,2
0
7
,8
8
5

6
,1
3
7
,7
5
0

2
5
1
,2
7
9

2
,8
5
8

1
4
3
,8
8
0

4
1
9
,2
0
4

6
,9
5
4
,9
7
1

2
5
2
,9
1
4

80
Table 4.7: Impact of Alias Resolution

No Alias Resolution Perfect Alias Resolution APARv2
2% 14% 2% 14% 2% 14%

Initial 4,212 17,726 3,426 13,419 3,712 15,127
IP 158 1,597 140 1,293 146 1,346
NM 68 1,372 30 1,096 33 1,213
GBI 30 732 21 645 24 658

4.4.2 Impact of Alias Resolution

Internet topology mapping studies mainly involve IP alias resolution and unrespon-

sive router resolution tasks. Each of these tasks might have inaccuracies, i.e. false

positives and/or false negatives. In order to analyze the impact of performing IP

alias resolution before unresponsive router resolution, we measure edit distance val-

ues with and without alias resolution for (10,2000) T-S sample. For this experiment,

we used both an ideal alias resolution where all aliases are resolved and partial resolu-

tion with APARv2 [62,75] that provided 65% to 70% resolution on average. We also

varied the unresponsive router ratio in the topology, in order to analyze the changes

with different unresponsiveness.

Table 4.7 presents the edit distance values for initial and final topologies. Ap-

plying alias resolution before unresponsive router resolution improves the edit distance

values for all approaches. Even though the improvement in edit distance is higher

for IP and NM approaches than GBI approach, GBI produces the best edit distance

results for all cases.

81

4.4.3 Experimental Results

In this section, we use genuine topology data to analyze the practicality of GBI. We

use three data sets collected in February, 2011:

(i) iPlane: 234 vantage points to ∼144K destinations [87];

(ii) Ark: 51 vantage points to ∼9.5M destinations [2]; and

(iii) Cheleby: 400 vantage points to ∼3.5M destinations [75].

After filtering inaccurate and incomplete path traces, we resolve IP aliases

using APARv2 [62, 75]. Table 4.6 presents the results for each step of GBI to re-

solve unresponsive routers in the data set. Algorithm 5 applies the initial pruning

to considerably reduce the number of unknown nodes. Algorithm 6 then identifies

unknown nodes due to temporarily unresponsive routers (i.e., the ones due to ICMP

rate limiting or due to congestion at the router). This step resolves over 27% of the

existing unknown nodes. Note that none of the previous approaches handle this type

of unresponsiveness. We then index star, complete bipartite and triangle structures

using Algorithm 7 , Algorithm 8, and Algorithm 9, respectively. Next, Algorithm 10

addresses the unknown nodes in the triangle structures. Note that due to the (k,m)

nature of the the traces that span from a few sources to a large number of destina-

tions, the number of observed clique structures and the corresponding resolutions is

small. In the following step, Algorithm 11 resolves the unknown nodes in the com-

plete bipartite structures. Finally, Algorithm 12 processes the unknown nodes in star

structures.

Overall, GBI reduces the number of unknown nodes by 99%, 98% and 97%

for iPlane, Ark and Cheleby data sets, respectively (and by 91%, 75% and 76% if

we consider the topology after initial pruning as the starting point). Note that no

resolution process will reduce the number of unknown nodes by 100% when there

82

1

10

100

1000

10000

1 10 100 1000

N
um

be
ro

fn
od

es

Node Degree

Initial

IP

NM

GBI

Figure 4.14: Degree distribution

are permanently unresponsive routers. Moreover, we observe that resolution is better

with denser graphs such as iPlane that focuses traces on a region. Figure 4.14 presents

the degree distribution of the resulting topologies. As shown in the figure initial

topology is considerably different from any of the resolved graphs. Moreover, initial

pruning inflates node degrees.

Finally, we briefly examine the operational overhead of GBI in Table 4.8. We

estimated the number of required operations by using the data structure sizes pre-

sented in Table 4.9. We use these values to compare the run time overhead of GBI

with earlier approaches. Based on the run time of the GBI algorithms, the highest

time complexity is due to the Algorithm 6, i.e., approximately 5.2*107 operations for

the iPlane data.

The NM approach has a time complexity of O(n2) where n is the total number

of nodes in the data set after the initial pruning. For iPlane data, n is approximately

1.15M and hence NM would take 1012 steps. Similarly, the dimensionality reduction

approach of [70] would take 1018 operations while the graph minimization approach

83
Table 4.8: Complexity and Operational Overhead of GBI

Time Complexity
Number Of Operations

iPlane Ark Cheleby
Algorithm 5 O(|U |.log(|U |)) 5.0 * 106 2.2 * 106 6.7 * 106

Algorithm 6 O(|U |.(and)2) 5.2 * 107 1.4 * 106 9.7 * 106

Algorithm 7 O(|V |+ |U |) 0.9 * 106 1.2 * 106 1.2 * 106

Algorithm 8 O(|S|.(aN)2) 1.1 * 107 4.1 * 106 5.6 * 106

Algorithm 9 O(|S|.aN .log(aN)) 1.3 * 106 0.5 * 106 0.7 * 106

Table 4.9: Size of the Data Structures

iPlane Ark Cheleby
|U | 0.9M 0.4M 1.1M
|V | 0.3M 1.2M 1.2M
|S| 219K 93K 148K
|K| 858K 752K 793K
|T | 99K 4.7K 5.3K
and 7.67 3.55 3.11
aN 7.07 6.62 6.11

of [128] would take 1030 operations. Since Almog et al. [15] haven’t provided the

time complexity of their approach, we are not able to compare the computational

overhead of their approach. However, they utilize a distance matrix to resolve the

unknown nodes and the straightforward resolution of a large scale Internet map is not

practical with this approach. Authors partition the map into subgraphs and handle

each separately.

4.5 Summary

In this chapter, in order to asses the extend of unresponsive routers in Internet topol-

ogy mapping studies, we first present an experimental study on the responsiveness of

routers to active probe messages. In our historical analysis, we observe that respon-

siveness reduced during the last decade and regions of unresponsive routers exists.

84

We also observe that network operators are increasingly using rate limiting of active

probes. Moreover, we observe that routers are less willing to respond to direct probes

as compared to indirect probes and the responsiveness of routers changes with the

type of the probes: ICMP based probes having the highest response rate and UDP

based ones having the lowest. Even though TCP based probes receive responses much

better than UDP based ones, this type of probes are more likely to raise security alerts.

In the second part of the chapter, we develop a Graph Based Induction ap-

proach to resolve unresponsive routers. In this approach, based on our novel struc-

tural graph indexing, we index observed subgraphs that contain unknown nodes.

Then, we determine the corresponding minimal underlying structure that satisfies

the trace accuracy condition. Our work improves the state of the art in unrespon-

sive router resolution in terms of both accuracy and efficiency. Regarding accuracy,

GBI addresses all cases of unresponsive routers whereas the previous approaches ig-

nore temporary unresponsiveness. Regarding efficiency, the run time complexity of

our algorithm is significantly less than that of existing algorithms. Our experiments

on three different data sets have shown a significant reduction in the practical run

time overhead of our approach (approximately, 5.2*107 operations) as compared to

the previous approaches (approximately, 1012, 1018, or 1030 operations), in the worst

case.

85

Chapter 5

Cheleby: An Internet Topology

Mapping System

In this chapter1, we present Cheleby, an Internet topology mapping system that pro-

vides insight into the Internet topology by taking daily snapshots of the underlying

networks. The system utilizes efficient algorithms to process large scale data-sets

collected from distributed vantage points and provides accurate topology graphs at

link layer. Incorporating enhanced resolution algorithms, Cheleby provides compre-

hensive topology maps.

1Preliminary versions of this chapter appeared in:

Hakan Kardes, Talha Oz, and Mehmet H. Gunes Cheleby: A Subnet-level Internet Topology Map-

ping System, 4th International Conference on COMmunication Systems and NETworkS (COM-

SNETS), Banglore, India, Jan 3-7, 2012.

Hakan Kardes, and M.H. Gunes. Subnet-level Internet Topology Mapping: Issues and Resolution

Methodologies. Elsevier Computer Networks. (under review)

86

Figure 5.1: Cheleby System Overview

5.1 Introduction

Cheleby topology mapping system, shown in Figure 5.1, runs on a server which ac-

tively manages PlanetLab nodes [8] as its monitors to collect topology information

from geographically diverse vantage points. The server instructs monitors to collect

partial path traces and perform other probing activities. Cheleby then resolves sub-

nets, IP aliases and unresponsive routers within the collected raw data to construct

the network graph corresponding to the sampled network.

In Section 5.2, we present mechanisms to gather information from the Internet

and to obtain accurate samples with minimal traffic overhead. We also present an

overview of the Cheleby topology sampling system and discuss experimental results

with various system parameters. In Section 5.3, we present topology construction

methodology we used in Cheleby. Finally, in Section 5.4, we conclude the chapter.

5.2 Topology Sampling 2

In order to sample the underlying topology of the Internet, we collect a large number

of path traces from geographically diverse vantage points towards all /24 subnets

in the Regional Internet Registries (RIR). An important issue affecting accuracy of

collected path samples is that certain traffic engineering practices for load balancing

2This section is a joint work with Talha Oz.

87

may cause traceroute to return IP addresses that do not correspond to a real end-

to-end path in the Internet. We utilize Paris traceroute, which fixes flow identifiers

so that flow-identifier based load balancing routers will choose the same next hop

for probe packets toward the same destination [20]. Moreover, we perform ICMP

based querying as it elicits more responses than other probing approaches [61]. In

the following, we describe major steps of Cheleby regarding topology sampling.

5.2.1 Destination List Generation

In order to probe active subnetwork ranges, we obtain subnet announcements with

originating AS from http://www.cidr-report.org. The list provides updated ad-

vertisements and actual RIR allocations for each AS3. For each subnet range, we pick

the first allocatable IP address in the range. If the subnet is larger than /24, then

we divide the range into /24 subnets (e.g., A.B.C.0/24) and pick the first allocat-

able IP address as the probing destination (i.e., A.B.C.1). These IP addresses are

then divided into blocks of approximately 1,024 destinations that will be probed by

monitors. At the end of this process, we have 3,460 destination blocks, i.e., 3.54M

destination IP addresses to start with.

Moreover, as probing cycles are completed, we replace non-observed IP ad-

dresses with responsive IP addresses, which have a common subnetwork prefix of /24

or longer, in the earlier data sets. Additionally, we dynamically append newly ob-

served router IP addresses to the destination lists during the topology construction

phase (see Section 5.3.5).

3Note that we may integrate additional data sources such as Route Views

88

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

65
1

70
1

75
1

80
1

85
1

90
1

95
1

10
01

10
51

11
01

11
51

12
01

12
51

13
01

13
51

14
01

14
51

15
01

15
51

16
01

16
51

CD
F
of

ob
se
rv
ed

IP
ad

dr
es
se
s

Round Trip Time (in msec)

Number of Hops Percentage

Observed 213,303,135 92.40%

Unresponsive 17,537,018 7.60%

Figure 5.2: Cumulative Distribution Function for RTT

5.2.2 Response Wait Time

In order to determine time-out time for traceroute probes, we analyzed the response

time of elicited responses for traces towards 3.54M destinations using a time-out of

1.7 seconds. Figure 5.2 presents the cumulative distribution function of the round

trip time (RTT) for probes that elicited an ICMP response. In this experiment, we

elicited a response to 213.3M probes and had 17.5M probes without a response. In

Figure 5.2, we observe that more than 99.95% of responsive nodes had an RTT less

than 0.5 sec. Hence, in subsequent experiments we set the time-out to 0.5 sec since

longer time-outs delay the overall topology collection process.

5.2.3 Task Assignment to Monitors

In order to probe destinations from geographically diverse vantage points, Cheleby

utilizes the PlanetLab nodes around the world. Among ∼1,100 nodes only ∼600 of

89

them were functional during our experiments. As the Paris traceroute did not run

on ∼100 of functional monitors, we could utilize ∼500 nodes during our topology

collection.

Figure 5.3 displays clusters of monitors for 5 and 7 teams. For instance, for 7

teams, shown with green squares, functional PlanetLab nodes are divided into teams

as 1: North-West America, 2: North-Central America, 3: North-East America, 4:

South America, 5: Western Europe, 6: Eastern Europe + Africa + Western Asia,

and 7: Eastern Asia + Australia. Similarly, the distribution for 5 teams is indicated

with blue dashed lines. Ark utilizes a similar approach to divide its 53 monitors into

three teams [2]. The main difference between Cheleby’s and Ark’s task assignment

strategy is that Cheleby utilizes available monitors in dynamic fashion (as described

below) while Ark utilizes dedicated systems.

Cheleby dynamically assigns one of the available monitors from each team to

probe destination blocks. Each destination block is probed by only one monitor at

a time and overall as many times as the number of teams. Each monitor is set to

probe 4 destination blocks in parallel to reduce the overall round completion time.

Each of the 4 monitor processes work independent of others. These processes are

marked as idle, busy, or inactive. All processes in a monitor is inactivated when

one of them returns its data in less than 2 minutes as this indicates a problem with

the probing. Monitors are ranked based on their average task completion times and

Cheleby selects the top idle process from a team to assign a new destination block.

Monitors can be ranked based on other metrics such as the number of unique edges

and/or nodes discovered in previous task but a large/responsive AS probed earlier

may cause biases.

90

Figure 5.3: Team assignment of PlanetLab nodes (Blue lines: 5 teams. Green boxes:
7 teams.)

Probing of a monitor is terminated if the monitor cannot complete its task

within a period of 2 hours. In this case, the monitor’s ranking is reduced and brought

to the idle state. The partially traced destination block is also put to non-probed list

for another trial by a second monitor in the same team. If the new monitor, which

reverses the order of destination IP addresses before probing, is not able to complete

probing in time as well, then the destination block is marked as partially completed

and both of the partial traces are appended to the database.

We performed an experiment to analyze the effect of choosing different number

of teams by varying team sizes. Variations in the number of teams has a direct effect

as seen in Table 5.1, which, for different team configurations, presents: (1) the round

completion time, (2) generated traces, (3) generated probes, (4) probes yielding an

IP address, (5) probes that did not elicit a response, (6) unique IP addresses, (7)

percentage of observed IP addresses compared to combination of IP addresses from

91
Table 5.1: Team Statistics with Different Team Sizes

Teams 3 5 7 9 11
Time (min) 540 630 770 1,220 1,540

Traces 9.5M 15.9M 22.0M 28.7M 35.0M
Probes 151M 249M 347M 452M 552M

Total IPs 95.3M 157M 219M 285M 348M
Total *s 55.7M 92.4M 128M 167M 204M

Unique IPs 1.11M 1.18M 1.21M 1.23M 1.24M
IPs / all 79.3% 84.3% 86.3% 88.8% 90.7%

Per min IPs 2,057 1,874 1,571 1,020 825
Unique Edges 1.42M 1.76M 1.96M 2.06M 2.10M
Edges / all 46.1% 57.1% 63.6% 69.1% 73.1%

Per min Edges 2,636 2,794 2,550 1,747 1,465

all experiments in the table, (8) observed IP addresses per minute of probing, (9)

unique edges, (10) percentage of observed edges compared to union of edges from all

data sets, and (11) observed edges per minute of probing. Additionally, Figure 5.4

presents the changes in the number of observed IP addresses and edges with aggregate

monitor data.

As the number of teams increases, more probes are generated and fewer mon-

itors are deployed per team. Both of these cause longer round completion times.

However, as seen in the unique IPs and unique edges rows, there is a diminishing

benefit with higher number of probes (as reported by [] as well). Even though, us-

ing 11 teams returns the highest number of IPs and edges, the overhead is highest

per observed IP address. An important observation is that the overlap between the

edges is much smaller than the overlap between the IP addresses because the de-

ployed monitors in each case differ. Considering this analysis, we utilized 7 teams

in the remaining experiments as it provides the best balance between coverage and

overhead.

92

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 51 101 151 201 251 301

M
ill
io
ns

Vantage Points

11 team 9 team 7 team 5 team 3 team

a) Number of Known Nodes

0

0.5

1

1.5

2

2.5

1 51 101 151 201 251 301

M
ill
io
ns

Vantage Points
b) Number of Edges

Figure 5.4: Number of Nodes and Edges for different team sizes

Using 7 teams, we performed 8 rounds of data collection to observe team

dynamics. Table 5.2 presents the averages of (1) monitors, (2) incomplete destination

blocks, (3) completed destination blocks, (4) destination blocks that could complete

in the second trial, (5) average block completion times in seconds, and (6) total run

time for each team in hours. Initially, we clustered the monitors around the world

into regions to balance the number of monitors per team. However, teams 5, 6, and

93
Table 5.2: Team Statistics (Average of 8 Data Sets)

Team #1 #2 #3 #4 #5 #6 #7

Monitors 56.63 53.88 55.50 56.75 77.25 73.63 76.25
Incomplete Dest Blocks 7.43 30.28 24.03 35.72 12.85 12.35 12.15
Completed Dest Blocks 3,453 3,430 3,436 3,424 3,447 3,448 3,448
Completed in 2nd Trial 16.2 63.1 40.6 60.4 26.9 23.4 26.1
Avg. Compl. Time (sec) 1,476 1,376 1,586 1,650 1,764 1,764 1,566

Run Time (hours) 8.53 8.18 9.15 9.32 7.32 7.68 6.54

7 were considerably behind others and we increased their monitors by adjusting the

geographic clusters.

As seen in the Table 5.2, on average 19.26 of the 3,460 destination blocks were

not completed in the designated time of 2 hours even after the 2nd trial. Team 4

(South America) had the lowest probe completion with an average of 35.72 incom-

plete destination blocks (i.e., 1.03% of all blocks). On average, 36.67 of blocks were

completed in the 2nd trial, which is included in the overall completion numbers. Team

5 (Western Europe) and Team 6 (Eastern Europe + Africa + Western Asia) were the

slowest with an average of 1,764 seconds to trace a destination block. However, Teams

5, 6, and 7 were the fastest ones in probing all destination blocks due to the higher

number of monitors in these teams. This is also reflected in Figure 5.5, which shows

the destination block probe completion times of each team for a single run. Destina-

tion blocks in the Figure 5.5 are ranked by the average completion times of all teams

for the block from the largest to the lowest (shown with black line). In the figure,

we observe that there is a group of destination blocks that complete probing approx-

imately in 700 seconds independent of team averages. This often happens when the

destination block is in the same region of the probing team.

Figure 5.6 displays completion statistics for a single data set where monitors

for each team are ranked by the number of destination blocks they completed probing.

94

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

 2
50

0
 3

00
0

 3
50

0

Probing Time

D
es

tin
at

io
n

B
lo

ck
 (

ra
nk

ed
 b

y
av

er
ag

e
p
ro

b
in

g
 t
im

e)

Te
am

 1
Te

am
 2

Te
am

 3
Te

am
 4

Te
am

 5
Te

am
 6

Te
am

 7
A
ve

ra
g
e

F
ig
u
re

5.
5:

C
om

p
le
ti
on

T
im

e
p
er

D
es
ti
n
at
io
n
B
lo
ck

(i
n
S
ec
on

d
s)

95

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70 80

N
um

b
er

 o
f
P
ro

b
ed

 D
es

tin
at

io
n

Monitor Rank

1
2
3
4
5
6
7

a) Average Number of Probes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80

A
ve

ra
g
e

P
ro

b
in

g
 T

im
e

Monitor Rank

b) Average Completion Time (sec)

Figure 5.6: Team Completion Statistics

96

As seen in Figure 5.6-a, while most of the monitors completed 40 to 80 destinations

blocks, there were outliers that either outperformed or fall behind others. Moreover,

as seen in Figure 5.6-b, average probe completion times increased in general with lower

ranked monitors. In general, the outliers that were considerably below the average

curve were faulty monitors that either returned responses in few minutes, whose data

was removed and set inactive for certain time, (e.g., Team 2 node at 55) or became

available for part of the data collection (e.g., Team 5 node at 75). On the other

hand, outliers well above the average line received a highly unresponsive destination

block, i.e., AS regions that were not very responsive to probes, causing jumps in the

task completion time. Overall, the dynamic task assignment helped improve round

completion time to less than half of the initial experiments where tasks were randomly

assigned without timeouts and penalties.

In Figures 5.7, 5.8, and 5.9, we analyze the number of newly added known

nodes, unresponsive nodes, and edges in order to show the effect of the number

of vantage points on the completeness of the resulted graph. As the number of

vantage points increases, there is always an increase in the number of newly observed

unresponsive routers. However, we observed just a few new known nodes after the

hundred vantage points. There is an increase in the number of newly observed edges

while the number of vantage points increases. Considerable amount of newly added

edges are the contribution of the newly observed unresponsive routers.

Finally, Figure 5.10 presents the average of the number of unique nodes and

edges observed as data from vantage points and destination blocks are appended to

the graph, respectively. Similar to earlier findings, we observe that addition of more

monitors sub-linearly increases the number of unique IP addresses or edges. On the

other hand, number of unknown nodes increases linearly as the unresponsive routers

97

Figure 5.7: The Number of New Known Nodes After Each Vantage Point

Figure 5.8: The Number of New Unresponsive Nodes After Each Vantage Point

98

Figure 5.9: The Number of New Edges After Each Vantage Point

are not resolved yet and each instance is recorded as a unique node. Finally, addition

of destination blocks almost linearly increases the number of observed IPs and edges

because the destination blocks are towards different ASes.

5.2.4 Probing Overhead Reduction

In Cheleby, we utilize inter-monitor and intra-monitor probe reduction as shown in

Figure 5.11. We reduce intra-monitor redundancy by gathering partial traces to some

destination IP addresses. Once we have a full trace to an IP address in an AS, we

start successive traceroute queries from the hop distance hi of the ingress router (i.e.,

hop distance of the last IP address in the trace that doesn’t belong to the destination

AS). If the first IP of the new trace has not appeared at the same hop distance hj in

any of the earlier full traces to the AS, then we complete the trace. Otherwise, we

utilize the partial trace as the remaining part will most likely overlap with an existing

trace. Analyzing collected traces, we observe that 35.4% of 22.4M traces are partial

traces. This overall saved 66.2M probes that would be generated with full tracing.

99

0

0.5

1

1.5

2

2.5

3

3.5

4

1 51 101 151 201 251 301 351 401 451

M
ill
io
ns

Vantage Points

edges total nodes known nodes unknown nodes

a) Cumulative Monitor Nodes and Edges

0

0.5

1

1.5

2

2.5

3

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1
10

01
11

01
12

01
13

01
14

01
15

01
16

01
17

01
18

01
19

01
20

01
21

01
22

01
23

01
24

01
25

01
26

01
27

01

M
ill
io
ns

Destination Block

nodes edges

b) Cumulative Destination Block Known nodes and Edges

Figure 5.10: Number of Nodes and Edges (average of 8 data sets)

Note that, this number can be improved because we randomly assign IPs to different

destination blocks if an AS has more than 1024 IPs to be traced.

Additionally, to reduce inter-monitor redundant probing, a destination IP is

probed by only one monitor of a team. Since the monitors in the same team are

geographically close to each other, we expect their contribution to identify a new

link/node to be small. Moreover, with additional probing we may identify ingress

100

S

T T

S
S

T

a) Intra-monitor b) Inter-monitor

Figure 5.11: Intra- and Inter-monitor Redundancy Reduction

points of ASes to dynamically establish teams for each destination AS so that we

have exactly one monitor probing through each ingress point of an AS. That is, we

can determine the sets of monitors that probe each ingress point of the AS and then

build individual teams for each AS.

Our probe reduction mechanism is similar to Doubletree [42], which models

Internet paths as trees. Doubletree uses a local stop set to identify branch points for

traces with respect to a source. Our mechanism is similar but instead of starting at a

given or random hop h, we make an informed guess of hi based on the earlier traces.

Doubletree additionally uses a global stop set for traces towards a destination. We do

not implement this but divide monitors into geographic teams and probe a destination

block from one monitor of each team, which effectively reduces redundancies due to

tracing of the same path towards a destination.

5.3 Topology Construction

After collecting topology data, we need to process this raw data to obtain the under-

lying network topology. In Internet topology construction studies, there are several

101

In
iti
al
Pr
un

er
(IP

)
Su
bN

et
In
fe
rr
er

(S
N
I)

An
al
yt
ic
al
IP

Al
ia
sR

es
ol
ve
rv

2
(A
PA

Rv
2)

St
ru
ct
ur
al
Gr
ap
h

In
de
xe
r(
SG

I)
Gr
ap
h
Ba

se
d

In
du

ct
io
n
(G
BI
)

N
et
w
or
k
To
po

lo
gy

Ra
w
To
po

lo
gy

Da
ta

Tr
ac
es

•x
L.
2

S.
2

y
•x

A.
1

W
.1

z
•y

S.
1

L.
1

x
•y

S.
1
–
U
.1

C.
1

z
•z

C.
2

x
•z

C.
2

U
.2

S.
3

y

U
K

C
N

L
H

A
W

S

x

y

z

F
ig
u
re

5.
12
:
T
op

ol
og
y
C
on

st
ru
ct
io
n

102

challenges, namely, unknown router resolution, identification of IP aliases and un-

derlying subnets. As we mentioned in Chapter 2,there are several research groups

working on these problems. Despite several approaches proposing solutions for one

of the these issues, no study considers all these challenges together and proposes an

approach to overcome these issues altogether. In Cheleby, first we analyze all of these

issues and the relation between them. After our initial experiments on iPlane topol-

ogy datasets, we found out that in order to resolve unresponsive routers within the

Internet topology we first need to identify the IP alias pairs in the topology. More-

over, to reduce the computational complexity, we should infer the underlying subnets

before identifying the alias pairs. Therefore, we (1) filter faulty traces, (2) infer un-

derlying physical subnets among IP addresses, (3) resolve IP addresses belonging to

the same router, and (4) resolve unresponsive routers as shown in Figure 5.12.

The accuracy and the completeness of these tasks may significantly affect the

accuracy of the resulting topology maps [58, 118]. Moreover, when handling these

tasks, one needs to make decisions based on the observations to infer the underlying

topology. As the earlier decisions effect the later ones, obtaining the most likely

topology under various conditions has been shown to be NP-hard [14]. Finally, these

resolution tasks especially are challenging when large scale topologies of millions of

nodes are processed. In this section, we analyze each of these tasks and present the

algorithms that we utilized to handle them efficiently even in very large topologies

consisting around 2.5M nodes and about 5M edges.

5.3.1 Initial Pruning

In this step we filter faulty traces, resolve the unresponsive routers in between the

same known routers, and constitute our data structures from the raw data.

103

As path traces contain anomalies such as routing loops, we first prune raw

path traces. The pruning breaks path traces with a loop (e.g., IPA, IPB, IPC , IPD,

IPE, IPC , IPF , IPG) into three pieces based on the repeated IP address (i.e., IPC)

and utilize the first part (i.e., IPA, IPB, IPC) and the last part (i.e., IPC , IPF , IPG)

of the trace in the remainder of processing. In collected path traces, 772K (%3.45) of

path traces contain routing loops among which 143K has multiple loops. Moreover,

we observed border firewalls that filter ICMP packets from/to a network domain and

occasionally respond with their IP address. However, the hop distance of these IP

addresses are not consistent. Hence, we filter any IP address that appears at the end

of trace after 3 unresponsive nodes.

Then, we build initial network graph by parsing filtered path traces. During

parsing, we resolve unknown nodes that are between the same set of known nodes.

In order to resolve this type of unresponsive router, we need to detect the same

*-substrings (i.e., same length *-substrings with the same known nodes at the end

points). While reading the traces from the raw data, we identify the unresponsive

routers between two known nodes. We read all *-substrings from the database and

construct a new graph Ḡ = (V̄ , Ē). We represent each *-substring as an edge e(a,b,l)

where a is the first known node, b is the second known node and l is the label of

the edge representing the number of unresponsive nodes between a and b as in Fig-

ure 5.13. We add each e(a, b, l) only once to our new graph Ḡ. In the successive

resolution tasks, we use the graph Ḡ. Performing this unresponsive router resolution

step during graph construction reduces the number of unknown nodes by %78.71 on

average. Additionally, we add all observed unique known and unresponsive routers

to V̄ and we constitute a neighbor set for each router.

104

Figure 5.13: Sample Transformation

Table 5.3: Topology Data (in millions)

Data Set 1 2 3 4 5 6 7 8

All Traces 22.39 22.42 22.42 22.40 22.42 22.41 22.42 22.03
Partial Traces 8.02 8.12 8.05 7.86 7.67 7.98 7.91 7.80
Saved Probes 65.23 66.14 67.68 66.32 63.98 67.90 66.19 65.98

Unknown Nodes 4.93 4.81 4.90 4.88 4.95 4.94 4.95 4.92
Known Nodes 1.18 1.18 1.19 1.17 1.20 1.17 1.19 1.17

This process can be called initial pruning (IP). After this step, we sequentially

infer subnets, resolve IP alias pairs, and identify the unresponsive routers by first

indexing star, complete bipartite, and triangle structures with the SGI algorithm

presented in Section 3.1, and then resolve unresponsive routers within these structures

with our graph based induction algorithms.

Table 5.3 presents the statistics of (1) all traces, (2) partial traces, (3) saved

probes by using partial traces, (4) Unknown nodes, i.e., ’*’, and (5) Known nodes,

i.e., IP addresses, for the analyzed data sets.

105

IP1
IP2
IP3
IP4
IP5
IP6
IP7
IP8
IP9

/25

/29

/26

/30

/31

/27

/22

Figure 5.14: Subnet Resolution

5.3.2 Subnet Inference

The first task after building an initial network graph is the identification of the under-

lying physical subnets, i.e., link level connectivity, among IP addresses in the collected

topology [59]. The goal in subnet resolution is to identify multiple links that appear to

be separate and combine them to represent their corresponding single hop connection

medium (i.e., multi-access link). Subnet resolution also finds missing links between

IP addresses that fall in the same subnet range but were not observed in path traces.

The successful inclusion of subnet relations among the routers yields topology maps

that are closer, at the link layer, to the sampled segments of the Internet.

Cheleby, enhances the subnet resolution approach presented in [59] by utilizing

only the distance preservation condition but not the trace preservation condition

to reduce the computational complexity. SubNet Inferrer module (SNI) observes

distances of all IP addresses per vantage point and determines IP address ranges

that have similar distances to all vantage points. First, it clusters IP addresses into

106
Table 5.4: Average Subnet Statistics for 8 Data Sets

Subnet Size /24 /25 /26 /27 /28 /29 /30 /31

Count 0.38 4.25 34.13 485 6,381 20,602 11,202 2,960
Completeness 27.7% 24.5% 23.3% 23.3% 24.8% 36.0% 100% 100%

All IPs 26 131 492 3,383 22,110 44,500 22,403 5,920

candidate subnets up to a given maximal size (e.g. /22). Then, it break them

down as necessary as in Figure 5.14 by doing distance analysis on candidate subnets.

Similar to [121], we only allow one IP address being closer to each of the vantage

points. As the number of vantage points is increased, the distance condition can

more accurately filter false subnets without relying on the trace accuracy condition.

Furthermore, TraceNET tool enhances traceroute by identifying subnets between a

source and a given destination but it focuses on single path traces [119].

Table 5.4 presents statistics of identified subnets and the completeness values

of the subnets that had 20% of their IP addresses present in the data set. This

number is less than expected as only 99K of collected 1.2M IP addresses appear in

a subnet. The main reason for this is because we did not explore other IP addresses

of candidate subnets. Thus, we included a probing function into the SNI that probes

subnets that have less than half of their IP addresses present in the data set (explained

in Section 5.3.5).

5.3.3 IP Alias Resolution

After inferring underlying subnets, Cheleby resolves IP aliases. Since routers have

multiple interfaces with different IP addresses, different path traces may include

routers with different IP addresses. Hence, we need to identify and group IP ad-

dresses belonging to the same router. Without IP alias resolution, the resulting

topology map may be significantly different from the actual topology [58].

107

Same subnet

Equal or Alias

Known subnet

Figure 5.15: Analytical and Probe-based Alias Resolver v2 (APARv2)

Gunes et al. presented the Analytic and Probe-based Alias Resolver (APAR)

in [62]. Given a set of path traces, the analytical component utilizes the common

IP address assignment scheme (see RFC 2050) to infer IP aliases. It uses inferred

subnets to align symmetric segments of different path traces and identifies alias pairs

among involved IP addresses. Path asymmetry is a commonly observed characteristic

in the Internet. However, APAR does not require complete path symmetry and relies

on symmetric path segments to resolve aliases.

We developed APARv2,an enhanced version of APAR by eliminating path

queries as shown in Figure 5.15,i.e., the most significant improvement of APARv2

over APAR is reduction in required storage of path traces. In APARv2, we process

all subnet IP address pairs vp and vr and determine candidate alias pairs. Then,

we verify whether our candidate alias pair (i.e., vp and Prev(vr)) has a common

neighbor (i.e., Prev(Prev(vr)) and Next(vp)) as an alias or as in another subnet

relation (i.e., Prev(vr) and Next(vp)). If common neighbor condition is satisfied,

we analyze whether our candidate alias pair appeared in the same trace or not. In

order to ensure the accuracy condition without storing all path traces, we store the

conflict sets, i.e., set of traces an IP address appeared in, for each known node. These

changes help us eliminate the need to keep complete path traces in memory for alias

resolution.

Table 5.5 presents average alias resolution statistics for collected datasets. Uti-

lizing APARv2 on collected data, we identified 23,266 alias sets that include 75,019

108
Table 5.5: Alias Resolution Averages

Alias Sets IPs in Alias Sets
23,266 75,019

aliased IP addresses on average. However, this corresponds to only ∼7% of observed

IP addresses. This value was especially low as we did not include IP-mates (i.e.,

/30 or /31 pair of the observed IP address) and we had a low subnet coverage as

these subnets help in alias identification. Hence, we (1) improve subnet coverage

with probing candidate subnet IP addresses, (2) integrate IP-mate probing compo-

nent into APARv2, and (3) implemented probing based mercator and ally approaches

to complement APARv2 as described in Section 5.3.5.

5.3.4 Unresponsive Router Resolution

Unresponsive routers are routers that are passive to measurement probes and are rep-

resented by a ‘*’ in a traceroute output. Since a router may appear as a ‘*’ in multiple

traceroute outputs, we need to identify ‘*’s (i.e., unresponsive nodes) that belong to

the same router. Even a small number of unresponsive routers may significantly dis-

tort the constructed topology [60]. Moreover, the mere volume of unresponsive nodes

in the collected data set introduces additional challenges in building an efficient so-

lution.

In Cheleby, we utilize a Graph Based Induction (GBI) technique that we de-

tailed in the previous section to resolve unresponsive routers. Graph based induction

is a technique to obtain information from a graph in data mining field [90]. We first

analyze the nature of unresponsive routers and identify different types of unrespon-

siveness. Examining a number of topology maps that are constructed from traceroute

data with unresponsive routers, we identify a number of graph structures (i.e., paral-

109

lel, star, complete-bipartite, and triangle) that are formed among unresponsive nodes

and their known neighbors. We then develop efficient algorithms to detect these

structures in the graph and reduce the unresponsive nodes (i.e., the occurrences of

‘*’s) into their corresponding unresponsive routers.

Moreover, we enhance the graph based induction technique with our structural

graph indexing (SGI) [74] approach. Graph indexing is a technique to enhance graph

processing time in very large graphs when there are many queries to look for in the

underlying topology. Similarly, the structural graph indexing indexes a given set of

substructures, i.e., star, complete-bipartite, and triangle in our case, in the sampled

graph so that subsequent queries become faster. Graph indexing significantly reduces

processing time of the graph based induction to resolve unresponsive routers in the

Cheleby system. SGI indexes maximal graphs that match the structure formulation

within the original graph in a consecutive manner. SGI first identifies star structures,

then complete-bipartite, triangle and finally clique structures from the preceding ones.

In our experiments, we realized that the number of cliques with more than three nodes

is minimal and hence we removed clique indexing from Cheleby. After indexing the

structures, Cheleby resolves corresponding unresponsive routers using GBI obeying

the trace preservation condition.

Table 5.6 presents statistics for unresponsive router resolution steps. As indi-

cated in Section 5.3.1, initial pruning resolves considerable number of unknown nodes.

Then using indexing, we perform induction on the remaining ones to reduce the num-

ber of final unresponsive routers to 250K. This yields topologies where 17.24% of the

routers are unresponsive, which agrees with our earlier observations regarding router

responsiveness [61].

110
Table 5.6: Unresponsive Router Resolution (Average of 8 data sets)

Initial I. Pruner Rate Lim. Triangle Bipartite Star Final *s

7,207,885 6,137,750 51,279 2,858 143,880 619,204 252,915

Figure 5.16 presents the number of unresponsive router substrings with differ-

ent lengths. For example, an unresponsive router substring with length 3 is a sub-trace

of (a,*,*,*,b). As we expect, while the length of unresponsive routers increases, the

number of unresponsive routers with that length increases.

Figure 5.17 presents the initial and final number of unresponsive routers. Ac-

cording to this figure, there are around 7M unresponsive routers in the raw data,

while after the resolution this number is just around 250K, i.e., around 96% of the

unresponsive nodes in the raw data is resolved. Additionally, in the final data %17.24

of the routers are unresponsive, which agrees with earlier observations [61].

Figure 5.18 presents the initial and final number of unresponsive routers for

different unresponsive router lengths. According to this figure, while the substring

length increases, the ratio of resolved unresponsive routers in this substring decreases.

This is because in bipartite, and triangle resolution steps, we can just resolve the un-

responsive router substrings with length 1. Thus, in longer substrings, the resolution

ratio is lower.

Figure 5.19 shows the percentage of resolved unresponsive routers after each

resolution step. In the star resolution step, we can resolve unresponsive router with

any length. Hence, according to the table, the number of resolved unresponsive

routers is the most in star resolution step. Since the number of triangle structures is

low in datasets, the number of resolved unresponsive routers in the triangle step is

small.

111

Figure 5.16: Number of Unresponsive Routers with Different Lengths

Figure 5.17: Initial vs. Final Unresponsive Routers

112

Figure 5.18: Initial vs. Final Unresponsive Routers according to UR length

Figure 5.19: Percentages of Resolved Unresponsive Routers after Each Step

113
Table 5.7: Improved Subnet Statistics

Subnet Size /24 /25 /26 /27 /28 /29 /30 /31

Count 4 36 184 1,294 8,836 93,110 20,543 37,468
Completeness 26.3% 30.0% 28.3% 27.7% 28.0% 39.3% 100% 100%

All IPs 268 1,359 3,228 10,767 34,587 219,745 41,086 74,936

5.3.5 Increasing Graph Density

Realizing that many subnets had low completeness, we increased the probe destination

coverage. For this, we determined non-observed IP addresses of candidate subnets

that had at least 10% completeness. For instance, in a data-set there were 651.8K

IP addresses missing from the identified candidate subnets. Moreover, we looked at

/30 and /31 mate of observed IP addresses and they produced 535.2K and 93.1K

IP addresses, respectively. Next, to ensure the existence of these IP addresses, we

performed a reverse DNS lookup and probed them with a ping. If either of these tests

were positive, we added them to the destination IP lists.

After these changes, we obtained a better resolution and a more complete

topology. As seen in table 5.7, the number of observed subnets and their completeness

significantly improved. In the final topology, the number of IP addresses observed in a

subnet is about 400K, which is four times of the initial 99K. Additionally, Figure 5.20

presents the subnet size distribution of all observed subnets before and after increasing

graph density.

Improvements in the subnet coverage and inclusion of IP-mates considerably

improved alias IPs identified with APARv2 as seen in Table 5.8. The number of

alias sets increased from 23K to 38K and the number of IP addresses in an alias set

increased from 75K to 128K. Additionally, we implemented probing based mercator

and ally approaches to complement APARv2. For mercator, we sent a probe to

114

1

10

100

1000

10000

100000

1 10 100

nu
m
be

ro
fs
ub

ne
ts

number of routers

a) Initial

1

10

100

1000

10000

100000

1000000

1 10 100

nu
m
be

ro
fS
ub

ne
ts

number of Routers

b) After Increasing Graph Density

Figure 5.20: Cheleby Subnet Distribution

115
Table 5.8: Improved Alias Resolution Statistics

Resolver Alias Sets Aliased IPs

APARv2 38,012 128,495
Ally (path traces) 32,860 65,720
Ally (common neighbor) 32,595 65,190
Ally (subnet) 25,436 50,872
Ally (combined) 55,027 110,054
Mercator 305 610

Combined 82,962 216,628

all observed IP addresses and recorded the response. If the response was from an

IP address different from the queried one, then we marked them as aliases. This

approach produced the least number of aliases, i.e. only 610 IP addresses were added

to an alias set.

Moreover, we utilized ally on candidate alias IP address pairs. For this, we

identified candidates using three methods. (1) We identified path traces that had

multiple IP addresses at a given hop distance. Then, we marked 70K IP address pairs

at the same hop as candidate aliases to be probed with ally. (2) In the final graph,

we identified IP addresses that had the same common neighbors, i.e., IP addresses

whose neighbor intersection was more than one node. This produced 2M pairs of

IP addresses as candidates to be probed. (3) We used subnets as pivot points to

determine candidate aliases. For each subnet (e.g., consider subnet in Figure 2.3-a),

we marked each subnet IP address (e.g., A, B, C and D) with the other IP addresses’

neighboring IP addresses (i.e., A with the neighbors of {B, C, D}; B with the neighbors

of {A, C, D}; C with the neighbors of {A, B, D}; and D with the neighbors of {A, B,
C}). Subnet based candidate generation produced 3M candidate pairs to be probed.

Probing these pairs with ally we identified aliases for 66K, 65K, and 51K IP addresses,

respectively. Our results regarding traces with multiple IPs at a hop indicate that

116

majority of these IP addresses are actually aliases but not due to the load balancing.

That is, among 70K IP addresses that appeared at the same hop 66K were actually

aliases. After merging the resolved alias sets, we obtain 83K alias sets that contain

217K IP addresses, which is more than three times of the initial resolution results.

5.4 Summary

In this chapter, we present Cheleby, Internet topology mapping system that provides

sample network topologies at the subnet layer. Cheleby is an assembly of state-

of-the-art topology collection and construction techniques, i.e., target list generation,

probe redundancy reduction, unbiased accurate data collection, subnet inference, alias

resolution, and unresponsive router resolution, into a single system. The proposed

Cheleby will enable research community to conduct topography analysis and study

large-scale characteristics of the Internet as we publicly offer the resulting data sets.

117

Chapter 6

Internet Topology Mapping

Systems

Several research groups have developed mapping systems to build Internet topology

maps. Archipelago measurement infrastructure of CAIDA [2, 35, 85], the DIMES

project [4, 110], and the iPlane infrastructure [6, 87] continuously provide sampled

Internet topologies in order to facilitate topology measurement studies. Additionally,

several other groups have developed various tools or systems [42, 51, 81, 91, 92, 103,

117, 122, 124].

In the rest of this chapter, we present major Internet topology mapping systems

and several topological characteristics of topology maps provided by these systems.

6.1 Ark

Archipelago [2] is a successor of the skitter measurement infrastructure [94] that

started probing the Internet in 1998. A major step from Skitter to Ark is the coor-

118

dination of monitors using Marinda tuple-space, which utilizes a distributed memory

space and pattern matching techniques [2]. Ark focuses on generating annotated In-

ternet maps and currently utilizes 53 dedicated monitors around the world to trace

every observed /24 subnetwork. Monitors are divided into 3 teams to trace towards

9.1M destination IP addresses using scamper [10] and generate approximately 100

probes per second. Ark started collecting IPv6 topology utilizing some of the moni-

tors since September 2010.

Ark utilizes midar [80], kapar [78], and iffinder [5] tools to resolve IP aliases [79].

They publicly provide two different router interface lists. For the first list, they use

iffinder, midar and kapar tools to resolve IP aliases. For the second list, they do the

alias resolution on a map by just utilizing the iffinder and midar tools. Figure 6.1-a

shows the interface distribution of the routers for the first list, while Figure 6.1-b

represents the interface distribution of the routers for the second list. Additionally,

Figure 6.2 presents the node degree distribution for topology map provided by Ark.

6.2 Dimes

Similar to SETI@home crowd sourcing approach [17], Distributed Internet Measure-

ments and Simulations (DIMES) [110] utilizes home computers to collect path traces

around the world. Currently, around 20K agents around the world contribute as van-

tage points to probe destinations from a rich set of locations and capture peripheral

Internet topology. DIMES focuses on PoP level topology mapping and annotating the

links with the delay and loss statistics. Finally, DIMES only implements Mercator

method in resolving IP aliases.

119

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000

nu
m
be

ro
fI
nt
er
fa
ce
s

number of Routers

a) Using kapar, midar, and iffinder)

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000

nu
m
be

ro
fI
nt
er
fa
ce
s

number of Routers

b) Using midar, ad iffinder

Figure 6.1: Ark Router Interface Distribution

120

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000

nu
m
be

ro
fr
ou

te
rs

node degree

Figure 6.2: Ark Node Degree Distribution

6.3 iPlane

iPlane [6] aims at providing Internet links annotated with the latency, bandwidth,

capacity and loss rate for improved overlay network deployment. iPlane performs

path traces from 200 PlanetLab monitors towards 100K destinations to construct a

backbone topology that can be used as landmarks for the overlay networks. Moreover,

the geo-location of routers is identified using the undns [114] and sarangworld [9] tools.

Finally, iPlane utilizes Mercator and Ally in resolving IP aliases.

iPlane provides a list of IP aliases in its website [7]. Figure 6.3-a presents

the interface distribution of the routers for a topology map collected by iPlane in-

frastructure while Figure 6.3-b represents the node degree distribution for the same

topology.

121

1

10

100

1000

10000

100000

1 10 100 1000

nu
m
be

ro
fI
nt
er
fa
ce
s

number of Routers

a) Router Interface Distribution)

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000

nu
m
be

ro
fr
ou

te
rs

node degree

b) Node Degree Distribution

Figure 6.3: iPlane characteristics

122

6.4 Cheleby

As mentioned above, there are several systems providing the raw router-level Internet

topology data, but there is no system providing the up-to-date constructed topologies.

This is simply because of the fact that the literature on topology construction is fairly

limited compared to the studies in topology collection and topology analysis. More-

over, topology construction is not a straightforward process requiring considerable

computations.

Inaccuracies in the topology sampling and construction processes may signifi-

cantly affect the accuracy of the observations or results obtained in the measurement

study [16, 27, 53, 58, 84, 118]. However, currently deployed topology mapping systems

do not complete all topology construction tasks. In particular, they provide alias

pairs for some data sets but ignore unresponsive routers and subnets of observed IP

addresses. Addition of subnet relations and resolving unresponsive routers in the final

graph would considerably improve the accuracy of sample topologies.

On the other hand, Cheleby first dynamically probes observed subnetworks

using a team of PlanetLab nodes around the world to obtain comprehensive topol-

ogy data. Then, it utilizes efficient algorithms for resolving subnets, IP aliases, and

unresponsive routers in collected data sets to build accurate subnet-level topologies.

Incorporating enhanced resolution algorithms, Cheleby provides comprehensive topol-

ogy maps. Unlike previous approaches, Cheleby provides both the raw and the con-

structed Internet topology data.

Figure 6.4-a presents the interface distribution of the routers for a topology

map collected by Cheleby infrastructure while Figure 6.4-b represents the node degree

distribution for the same topology.

123

1

10

100

1000

10000

100000

1 10 100 1000

nu
m
be

ro
fI
nt
er
fa
ce
s

number of Routers

a) Router Interface Distribution)

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000

nu
m
be

ro
fr
ou

te
rs

node degree

b) Node Degree Distribution

Figure 6.4: Cheleby characteristics

124
Table 6.1: Internet Topology Mapping Systems

Ark [2] DIMES [4] iPlane [6] Cheleby [3]
Monitors 53 19K 200 500
Dest. IP 9.1M 100K 3.5M
Traces 27.1M 3.6M 33.8M 22M
Probes 993M 15M 472M 658M
IPs 1.3M 0.3M 1.2M
Edges 2.3M 1.2M 2.9M
Alias Sets 79.6K 12.1K 83K
Aliased IPs 271K 33.2 217K
Data Type Router/AS Router/PoP/AS PoP/AS Subnet-level

Table 6.1 presents major Internet topology mapping systems and their charac-

teristics including the number of: (1) deployed monitors, (2) destination IP addresses,

(3) collected traces, (4) generated probes, (5) observed IP addresses, (6) observed

edges without topology construction, (7) alias sets, (8) IP addresses that appeared in

an alias set, and (9) provided data type1. Note that, iPlane sends a single probe per

hop during path tracing while other systems send three. Using three probes per hop

helps the mapping system identify the load balancing routers and carefully infer the

links between hops.

1As DIMES does not release raw traces we could not obtain some of its statistics.

125

Chapter 7

Conclusions

Due to the tremendous growth in Internet’s importance, many groups, organizations,

and governments have become interested in understanding various characteristics of

the Internet for commercial, social, and technical reasons. Network research com-

munity depends on such Internet mapping systems to understand characteristics of

the Internet and develop better protocols and services. Government agencies are

interested in Internet measurements to protect and improve the national cyber in-

frastructure. Moreover, new network paradigms such as overlay networks require

knowledge of the underlying topology.

In this dissertation, we first present the Structural Graph Indexing (SGI) for

efficiently mining complex networks. As indexing feature, we utilize graph structures

such as star, complete bipartite, triangle and clique that frequently appear in pro-

tein, chemical compound, and Internet graphs. SGI lists all substructures matching

structure formulations and new structures can be identified and added to the SGI.

Different from previous approaches, SGI does not limit the number of nodes in the in-

dexes and provides an alternative tool for querying large graphs. In evaluation of the

126

SGI, we perform experiments on genuine Internet topology and Wikipedia datasets

to demonstrate the viability of this algorithm for large datasets.

In order to assess the extent of unresponsive routers in Internet topology map-

ping studies, we first present an experimental study on the responsiveness of routers

to active probe messages. In our historical analysis, we observed that responsiveness

reduced during the last decade. We also observed that network operators are increas-

ingly rate limiting ICMP responses. Another observation from our study is that the

destination reachability considerably reduced over the time indicating that systems

(i.e., routers and end systems) are increasingly unwilling to respond to direct probes.

We also observed that routers are less willing to respond to direct active probes as

compared to indirect active probes. Finally, our experiments showed that the respon-

siveness of routers changes with the type of the probes; ICMP based probes eliciting

the highest response rate and UDP based ones eliciting the lowest. Even though TCP

based probes receive responses better than UDP based ones, they are more likely to

raise security alerts.

We then enhance the Graph Based Induction (GBI) unresponsive router reso-

lution approach by incorporating our SGI technique and utilizing the findings from

our measurement study. In SGI, we index observed subgraphs that contain unknown

nodes and determine the corresponding minimal underlying structure that satisfies the

trace accuracy condition. We also show that proper resolution of IP aliases improves

the unresponsive resolution. Our work improves the state of the art in unrespon-

sive router resolution in terms of accuracy and efficiency. Regarding accuracy, GBI

addresses the lack of (i) temporary unresponsive router resolution as the number of

temporarily unresponsive routers have been increasing and (ii) *-subpath resolution

as the length of *-subpaths and the number of longer ones have been increasing.

127

Neither of these cases are properly addressed by previous resolution studies while

both appear increasingly often in the recent years. Regarding efficiency, the run time

complexity of our algorithm is significantly less than that of the existing algorithms.

Our experiments on three different data sets have shown a significant reduction in

the practical run time overhead of SGI (approximately, 5.2*107 operations) as com-

pared to the previous approaches (approximately, 1012, 1018, or 1030 operations), in

the worst case.

Finally, we present Cheleby Internet topology mapping system that provides

sample network topologies at the subnet layer (available at cheleby.cse.unr.edu).

Cheleby assembles state-of-the-art topology collection and construction techniques,

i.e., target list generation, probe redundancy reduction, unbiased accurate data collec-

tion, subnet inference, alias resolution, and unresponsive router resolution. Cheleby

will enable research community to conduct topography analysis and study large-scale

characteristics of the Internet as we publicly provide the resulting data sets.

Overall, the Cheleby Internet mapping system helps to (i) provide a finer grade

Internet topologies at subnet level, (ii) better understand the characteristics of the

Internet topology, (iii) capture the dynamics of Internet backbone, (iv) fine-tune

existing services such as content distribution or bottleneck identification, (v) and

guide the development of the next generation Internet.

128

Bibliography

[1] ally tool. http://www.cs.washington.edu/research/networking/rocketfuel/.

[2] Archipelago Measurement Infrastructure (Ark).
http://www.caida.org/projects/ark.

[3] Cheleby: An Internet Topology Mapping System. http://cheleby.cse.unr.edu/.

[4] Dimes Project. http://www.netdimes.org.

[5] iffinder tool. http://www.caida.org/tools/measurement/iffinder/.

[6] iPlane. http://iplane.cs.washington.edu/.

[7] iPlane Alias Cluster List. http://iplane.cs.washington.edu/data/alias lists.txt.

[8] PlanetLab Project. http://www.planet-lab.org.

[9] Sarangworld project. http://www.sarangworld.com/TRACEROUTE/.

[10] Scamper. http://www.wand.net.nz/scamper/.

[11] Route selection in cisco routers. Technical Report Doc-
ument ID: 8651, Cisco, January 2008. available at
http://www.cisco.com/en/US/tech/tk365/technologies tech
note09186a0080094823.shtml.

[12] Configuring a load-balancing scheme. Technical report, Cisco, Oc-
tober 2011. available at http://www.cisco.com/en/US/docs/ios-
xml/ios/ipswitch cef/configuration/15-0m/isw-cef-load-balancing.pdf.

[13] N. M. A. Thomas, R. Cannings and C. Cannings. On the structure of protein-
protein interaction networks. Biochem. Soc. Trans., 31:1491 – 1496, 2003.

[14] H. B. Acharya and M. G. Gouda. A theory of network tracing. In 11th Interna-
tional Symposium on Stabilization, Safety, and Security of Distributed Systems,
pages 62–74, Berlin, Heidelberg, 2009. Springer-Verlag.

129

[15] A. Almog, J. Goldberger, and Y. Shavitt. Unifying unknown nodes in the
internet graph using semisupervised spectral clustering. In Proceedings of the
2008 IEEE International Conference on Data Mining Workshops, pages 174–
183, Washington, DC, USA, 2008. IEEE Computer Society.

[16] L. Amini, A. Shaikh, and H. Schulzrinne. Issues with inferring Internet topolog-
ical attributes. In Proceedings of SPIE ITCom, Boston, MA, USA, July/August
2002.

[17] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
Seti@home: an experiment in public-resource computing. Commun. ACM,
45(11):56–61, 2002.

[18] M. Antic and A. Smiljanic. Routing with load balancing: increasing the guaran-
teed node traffics. Communications Letters, IEEE, 13(6):450 –452, june 2009.

[19] G. Antichi, A. Di Pietro, D. Ficara, S. Giordano, G. Procissi, and F. Vi-
tucci. Network topology discovery through self-constrained decisions. In Global
Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, pages 1 –6,
nov. 2009.

[20] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy,
C. Magnien, and R. Teixeira. Avoiding traceroute anomalies with Paris tracer-
oute. In Proceedings of IMC, Rio de Janeiro, Brazil, October 2006.

[21] B. Augustin, F. Friedman, and R. Teixeira. Measuring loadbalanced paths in
the Internet. In Proceedings of IMC, San Diego, CA, October 2007.

[22] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algo-
rithms, with an application to counting triangles in graphs. In Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algorithms, SODA
’02, pages 623–632, Philadelphia, PA, USA, 2002. Society for Industrial and
Applied Mathematics.

[23] P. Barford, A. Bestavros, J. Byers, and M. Crovella. On the marginal utility of
network topology measurements. In ACM Internet Measurements Workshop,
San Francisco, CA, USA, November 2001.

[24] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient algorithms for large-
scale local triangle counting. ACM Trans. Knowl. Discov. Data, 4(3):13:1–13:28,
Oct. 2010.

[25] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns,
1999.

130

[26] A. Bender, R. Sherwood, and N. Spring. Fixing ally’s growing pains with
velocity modeling. In 8th ACM SIGCOMM IMC, pages 337–342, New York,
NY, USA, 2008. ACM.

[27] S. Bilir, K. Sarac, and T. Korkmaz. Intersection characteristics of end-to-
end Internet paths and trees. In IEEE International Conference on Network
Protocols (ICNP), Boston, MA, USA, November 2005.

[28] A. Broido and K. Claffy. Internet topology: Connectivity of IP graphs. In
Proceedings of SPIE ITCom Conference, Denver, CO, USA, August 2001.

[29] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Commun. ACM, 16(9):575–577, 1973.

[30] H. Chang, S. Jamin, and W. Willinger. Inferring as-level Internet topology from
router-level path traces. In Proceedings of SPIE ITCom, Denver, CO, August
2001.

[31] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. The
origin of power laws in Internet topologies revisited. In Proceedings of IEEE
INFOCOM, New York, NY, USA, June 2002.

[32] L. Cheng, N. Hutchinson, and M. Ito. Realnet: A topology generator based on
real internet topology. In Advanced Information Networking and Applications -
Workshops, 2008. AINAW 2008. 22nd International Conference on, pages 526
–532, 25-28 2008.

[33] B. Cheswick, H. Burch, and S. Branigan. Mapping and visualizing the Internet.
In ACM USENIX, San Diego, CA, USA, June 2000.

[34] C.-W. Chung, J.-K. Min, and K. Shim. Apex: an adaptive path index for xml
data. In SIGMOD Conference, pages 121–132, 2002.

[35] K. Claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov. Internet map-
ping: From art to science. Conference For Homeland Security, Cybersecurity
Applications & Technology, 0:205–211, 2009.

[36] J. Cong and M. Smith. A parallel bottom-up clustering algorithm with appli-
cations to circuit partitioning in vlsi design. In DAC ’93: Proceedings of the
30th international Design Automation Conference, pages 755–760, New York,
NY, USA, 1993. ACM.

[37] D. Cook and L. Holder. Mining graph data. John Wiley & Sons, 2006.

131

[38] B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon.
A fast index for semistructured data. In VLDB, pages 341–350, 2001.

[39] A. Coyle, M. Kraetzl, O. Maennel, and M. Roughan. On the predictive power
of shortest-path weight inference. In IMC ’08: Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, pages 305–310, New York,
NY, USA, 2008. ACM.

[40] CYMRU. http://www.team-cymru.org/services/ip-to-asn.html.

[41] B. Donnet, B. Huffaker, T. Friedman, and K. Claffy. Increasing the coverage
of a cooperative internet topology discovery algorithm. In Proceedings of IFIP
NETWORKING, Atlanta, GA, USA, May 2007.

[42] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Efficient algorithms for
large-scale topology discovery. In Proceedings of ACM/SIGMETRICS, pages
327–338, New York, NY, USA, 2005. ACM Press.

[43] J.-P. Eckmann and E. Moses. Curvature of co-links uncovers hidden thematic
layers in the world wide web. Proceedings of the National Academy of Sciences
of the United States of America, 99(9):5825–5829, Apr. 2002.

[44] B. Eriksson, G. Dasarathy, P. Barford, and R. Nowak. Toward the practical use
of network tomography for internet topology discovery. In INFOCOM, 2010
Proceedings IEEE, pages 1 –9, 14-19 2010.

[45] D. Fay, H. Haddadi, A. Thomason, A. Moore, R. Mortier, A. Jamakovic, S. Uh-
lig, and M. Rio. Weighted spectral distribution for internet topology analysis:
Theory and applications. Networking, IEEE/ACM Transactions on, 18(1):164
–176, feb. 2010.

[46] D. Feldman and Y. Shavitt. An optimal median calculation algorithm for es-
timating Internet link delays from active measurements. In IEEE E2EMON,
Munich, Germany, May 2007.

[47] G. Fertin, A. Raspaud, and B. A. Reed. On star coloring of graphs. In Pro-
ceedings of the 27th International Workshop on Graph-Theoretic Concepts in
Computer Science, WG ’01, pages 140–153, London, UK, UK, 2001. Springer-
Verlag.

[48] S. Garcia-Jimenez, E. Magana, D. Morato, and M. Izal. Techniques for better
alias resolution in internet topology discovery. In Integrated Network Manage-
ment, 2009. IM ’09. IFIP/IEEE International Symposium on, pages 513 –520,
1-5 2009.

132

[49] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

[50] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. The flattening internet topology:
natural evolution, unsightly barnacles or contrived collapse? In PAM’08: Pro-
ceedings of the 9th international conference on Passive and active network mea-
surement, pages 1–10, Berlin, Heidelberg, 2008. Springer-Verlag.

[51] R. Govindan and H. Tangmunarunkit. Heuristics for Internet map discovery.
In IEEE INFOCOM, Tel Aviv, ISRAEL, March 2000.

[52] J. Guillaume and M. Latapy. Relevance of massively distributed explorations of
the Internet topology: Simulation results. In Proceedings of IEEE INFOCOM,
Miami, FL, USA, March 2005.

[53] M. Gunes, S. Bilir, K. Sarac, and T. Korkmaz. A measurement study on
overhead distribution of value-added Internet services. Computer Networks,
51(14):4153–4173, 2007.

[54] M. Gunes and K. Sarac. Analytical IP alias resolution. In IEEE International
Conference on Communications (ICC), Istanbul, TURKEY, June 2006.

[55] M. Gunes and K. Sarac. Quantifying the impact of alias resolution on
traceroute-based sample network topologies. Technical report, University of
Texas at Dallas, September 2006.

[56] M. Gunes and K. Sarac. Resolving IP aliases in building traceroute-based
Internet maps. Technical report, University of Texas at Dallas, December 2006.

[57] M. Gunes and K. Sarac. Impact of alias resolution on traceroute-based sample
network topologies. In Passive and Active Measurement Conference (PAM),
Louvain-la-neuve, BELGIUM, April 2007.

[58] M. Gunes and K. Sarac. Importance of IP alias resolution in sampling Internet
topologies. In IEEE Global Internet (GI), Anchorage, AK, May 2007.

[59] M. Gunes and K. Sarac. Inferring subnets in router-level topology collection
studies. In ACM SIGCOMM Internet Measurement Conference (IMC), San
Diego, CA, October 2007.

[60] M. Gunes and K. Sarac. Resolving anonymous routers in Internet topology
measurement studies. In Proceedings of IEEE INFOCOM, Phoenix, AZ, USA,
April 2008.

133

[61] M. H. Gunes and K. Sarac. Analyzing router responsiveness to active measure-
ment probes. In Proceedings of the 10th International Conference on Passive
and Active Network Measurement, PAM ’09, pages 23–32, Berlin, Heidelberg,
2009. Springer-Verlag.

[62] M. H. Gunes and K. Sarac. Resolving ip aliases in building traceroute-based
internet maps. IEEE/ACM Trans. Netw., 17:1738–1751, December 2009.

[63] H. Haddadi, D. Fay, S. Uhlig, A. Moore, R. Mortier, and A. Jamakovic. Mixing
biases: Structural changes in the AS topology evolution. In TMA ’10: Pro-
ceedings of the Second International Workshop on Traffic Measurements and
Analysis. Springer, April 2010.

[64] H. Haddadi, M. Rio, G. Iannaccone, A. Moore, and R. Mortier. Network topolo-
gies: inference, modeling, and generation. Communications Surveys Tutorials,
IEEE, 10(2):48 –69, second 2008.

[65] S. L. Hakimi, J. Mitchem, and E. Schmeichel. Star arboricity of graphs. Discrete
Math., 149(1-3):93–98, Feb. 1996.

[66] Y. He, G. Siganos, M. Faloutsos, and S. Krishnamurthy. Lord of the links: A
framework for discovering missing links in the internet topology. Networking,
IEEE/ACM Transactions on, 17(2):391 –404, april 2009.

[67] V. Jacobson. Traceroute. Lawrence Berkeley Laboratory (LBL), February 1989.
Available from ftp://ee.lbl.gov/traceroute.tar.Z.

[68] C. A. James, D. Weininger, and J. Delany. Daylight theory manual - daylight
4.91, Apr. 2005.

[69] X. Jin, W. Tu, and S.-H. Chan. Scalable and efficient end-to-end network
topology inference. Parallel and Distributed Systems, IEEE Transactions on,
19(6):837 –850, june 2008.

[70] X. Jin, W.-P. K. Yiu, S.-H. G. Chan, and Y. Wang. Network topology in-
ference based on end-to-end measurements. IEEE Journal on Selected Areas
in Communications special issue on Sampling the Internet, 24(12):2182–2195,
Dec. 2006.

[71] D. Johnson, D. Gebhardt, and J. Lepreau. Towards a high quality path-oriented
network measurement and storage system. In PAM’08: Proceedings of the 9th
international conference on Passive and active network measurement, pages
102–111, Berlin, Heidelberg, 2008. Springer-Verlag.

134

[72] S. Kandula and R. Mahajan. Sampling biases in network path measurements
and what to do about it. In Proceedings of the 9th ACM SIGCOMM Internet
Measurement Conference, pages 156–169, New York, NY, USA, 2009.

[73] H. Kardes, M. Gunes, and T. Oz. Cheleby: A subnet-level internet topology
mapping system. In Communication Systems and Networks (COMSNETS),
2012 Fourth International Conference on, pages 1 –10, jan. 2012.

[74] H. Kardes and M. H. Gunes. Structural graph indexing for mining complex
networks. In Proceedings of the 2010 IEEE 30th International Conference on
Distributed Computing Systems Workshops, ICDCSW ’10, pages 99–104, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

[75] H. Kardes, M. H. Gunes, and T. Oz. Cheleby: A subnet-level internet topology
mapping system. In COMSNETS, pages 1–10, 2012.

[76] E. Katz-Bassett, H. Madhyastha, J. John, A. Krishnamurthy, D. Wetherall, and
T. Anderson. Studying black holes in the Internet with hubble. In Proceedings
of USENIX Symposium on Networked Systems Design and Implementation, San
Fransicso, CA, USA, April 2008.

[77] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity
for indexing paths in graph-structured data. In Proceedings of the 18th Interna-
tional Conference on Data Engineering, ICDE ’02, pages 129–140, Washington,
DC, USA, 2002. IEEE Computer Society.

[78] K. Keys. Ip alias resolution techniques - version 1.1. Technical report, Cooper-
ative Association for Internet Data Analysis - CAIDA, Dec 2008. (2009-01-19).

[79] K. Keys. Internet-scale IP alias resolution techniques. SIGCOMM Comput.
Commun. Rev., 40:50–55, January 2010.

[80] K. Keys, Y. Hyun, M. Luckie, and K. Claffy. Internet-scale ipv4 alias resolution
with midar: System architecture. Technical report, Cooperative Association for
Internet Data Analysis - CAIDA, May 2011.

[81] S. Kim and K. Harfoush. Efficient estimation of more detailed Internet IP
maps. In IEEE International Conference on Communications (ICC), Glasgow,
Scotland, June 2007.

[82] M. Kwon and S. Fahmy. Topology-aware overlay networks for group commu-
nication. In NOSSDAV ’02: Proceedings of the 12th international workshop
on Network and operating systems support for digital audio and video, pages
127–136, New York, NY, USA, 2002. ACM.

135

[83] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jaha-
nian. Internet inter-domain traffic. In S. Kalyanaraman, V. N. Padmanab-
han, K. K. Ramakrishnan, R. Shorey, and G. M. Voelker, editors, Proceedings
of the ACM SIGCOMM 2010 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, New Delhi, India,
August 30 -September 3, 2010, pages 75–86. ACM, 2010.

[84] A. Lakhina, J. Byers, M. Crovella, and P. Xie. Sampling biases in IP topology
measurements. In IEEE INFOCOM, San Francisco, CA, USA, March 2003.

[85] M. Luckie, Y. Hyun, and B. Huffaker. Traceroute probe method and forward ip
path inference. In 8th ACM SIGCOMM IMC, pages 311–324, New York, NY,
USA, 2008. ACM.

[86] M. Luckie, Y. Hyun, and B. Huffaker. Traceroute Probe Method and Forward
IP Path Inference. In Internet Measurement Conference (IMC), pages 311–324,
Vouliagmeni, Greece, Oct 2008. Internet Measurement Conference (IMC).

[87] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishna-
murthy, and A. Venkataramani. iPlane: An information plane for distributed
services. In OSDI, November 2006.

[88] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, k. c. claffy, and
A. Vahdat. The internet as-level topology: three data sources and one definitive
metric. SIGCOMM Comput. Commun. Rev., 36(1):17–26, 2006.

[89] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring link weights
using end-to-end measurements. In IMW ’02: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, pages 231–236, New York, NY,
USA, 2002. ACM.

[90] T. Matsuda, H. Motoda, and T. Washio. Graph-based induction and its appli-
cations. Advanced Engineering Informatics, 16(2):135–1434, April 2002.

[91] A. McGregor, H.-W. Braun, and J. Brown. The NLANR network analysis
infrastructure. IEEE Communications Magazine, 38(5):122–128, May 2000.

[92] T. McGregor, S. Alcock, and D. Karrenberg. The RIPE NCC Internet Mea-
surement Data Repository. In 11th PAM, April 2010.

[93] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily
in social networks. Annual Review of Sociology, 27(1):415–444, 2001.

136

[94] D. McRobb, K. Claffy, and T. Monk. Skitter: CAIDA’s macro-
scopic Internet topology discovery and tracking tool, 1999. Available from
http://www.caida.org/tools/skitter/.

[95] T. Milo and D. Suciu. Index structures for path expressions. In ICDT, volume
1540 of Lecture Notes in Computer Science, pages 277–295. Springer, 1999.

[96] K. Naidu, D. Panigrahi, and R. Rastogi. Detecting anomalies using end-to-end
path measurements. In INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, pages 1849 –1857, 13-18 2008.

[97] A. Nakao, L. Peterson, and A. Bavier. A routing underlay for overlay networks.
In Proceedings of ACM SIGCOMM, pages 11–18, Karlsruhe, Germany, August
2003.

[98] M. Newman. Networks: An Introduction. Oxford University Press, Inc., New
York, NY, USA, 2010.

[99] M. E. J. Newman. The structure and function of complex networks. SIAM
REVIEW, 45:167–256, 2003.

[100] J. Ni, H. Xie, S. Tatikonda, and Y. Yang. Efficient and dynamic routing topol-
ogy inference from end-to-end measurements. Networking, IEEE/ACM Trans-
actions on, 18(1):123 –135, feb. 2010.

[101] J. Pansiot and D. Grad. On routes and multicast trees in the Internet. ACM
Computer Communication Review, 28(1), January 1998.

[102] R. Pastor-Satorras and A. Vespignani. Evolution and Structure of the Internet.
Cambridge University Press, 2004.

[103] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An architecture for large-
scale Internet measurement. IEEE Communications, August 1998.

[104] R. Peeters. The maximum edge biclique problem is np-complete. Discrete
Applied Mathematics, 131(3):651 – 654, 2003.

[105] N. Rhodes, P. Willett, A. Calvet, J. B. Dunbar, and C. Humblet. Clip: similarity
searching of 3d databases using clique detection. J Chem Inf Comput Sci.,
43(2):443 – 448, 2003.

[106] N. Robertson and P. D. Seymour. Graph minors: X. obstructions to tree-
decomposition. J. Comb. Theory Ser. B, 52(2):153–190, June 1991.

[107] J. M. Robson. Algorithms for maximum independent sets. Journal of Algo-
rithms, 7(3):425 – 440, 1986.

137

[108] R. Samudrala and J. Moult. A graph-theoretic algorithm for comparative mod-
eling of protein structure. Journal of Molecular Biology, 279(1):287 – 302, 1998.

[109] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of
tree and graph searching. In In Symposium on Principles of Database Systems,
pages 39–52, 2002.

[110] Y. Shavitt and E. Shir. DIMES: Let the Internet measure itself. SIGCOMM
Comput. Commun. Rev., 35(5):71–74, 2005.

[111] Y. Shavitt and U. Weinsberg. Quantifying the importance of vantage points
distribution in internet topology measurements. In IEEE INFOCOM 2009,
pages 792 –800, 19-25 2009.

[112] R. Sherwood, A. Bender, and N. Spring. Discarte: a disjunctive internet car-
tographer. In Proceedings of the ACM SIGCOMM 2008, pages 303–314, New
York, NY, USA, 2008. ACM.

[113] R. Sherwood and N. Spring. Touring the Internet in a TCP sidecar. In Pro-
ceedings of the ACM/SIGCOMM on Internet Measurement Conference, pages
339–344, New York, NY, USA, 2006. ACM Press.

[114] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topolo-
gies using rocketfuel. IEEE/ACM Transactions on Networking, 12(1):2–16, Feb
2004.

[115] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topolo-
gies using rocketfuel. IEEE/ACM Transactions on Networking, 12(1):2–16,
February 2004.

[116] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public internet
measurement facility. In Proceedings of USENIX Symposium on Internet Tech-
nologies and Systems, March 2003.

[117] N. Spring, D. Wetherall, and T. Anderson. Reverse engineering the internet.
SIGCOMM Comput. Commun. Rev., 34(1):3–8, 2004.

[118] R. Teixeira, K. Marzullo, S. Savage, and G. Voelker. In search of path diversity
in ISP networks. In Proceedings of the USENIX/ACM Internet Measurement
Conference, Miami, FL, USA, October 2003.

[119] M. E. Tozal and K. Sarac. Tracenet: an internet topology data collector. In
Proceedings of the 10th Annual conference on Internet measurement, IMC ’10,
pages 356–368, New York, NY, USA, 2010. ACM.

138

[120] M. E. Tozal and K. Sarac. Palmtree: An ip alias resolution algorithm with
linear probing complexity. Computer Communications, 34(5):658 – 669, 2011.
Special Issue: Complex Networks.

[121] M. E. Tozal and K. Sarac. Subnet level network topology mapping. In Proceed-
ings of the 30th IEEE International Performance Computing and Communica-
tions Conference, IPCCC ’11, 2011.

[122] S. Triukose, Z. Wen, A. Derewecki, and M. Rabinovich. Dipzoom: An open
ecosystem for network measurements. In Proceedings of IEEE INFOCOM, An-
chorage, AK, USA, May 2007.

[123] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion: count-
ing triangles in massive graphs with a coin. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining,
KDD ’09, pages 837–846, New York, NY, USA, 2009. ACM.

[124] University of Oregon. Route views project. http://www.routeviews.org.

[125] S. Wasserman and K. Faust. Social network analysis: Methods and applications.
Cambridge Univ Pr, 1994.

[126] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar. An integrated experimental environment for
distributed systems and networks. pages 255–270, Boston, MA, Dec. 2002.

[127] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based
approach. In Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’04, pages 335–346, New York, NY, USA,
2004. ACM.

[128] B. Yao, R. Viswanathan, F. Chang, and D. Waddington. Topology inference in
the presence of anonymous routers. In IEEE INFOCOM, San Francisco, CA,
USA, March 2003.

[129] K. Yoshida, Y. Kikuchi, M. Yamamoto, Y. Fujii, K. Nagami, I. Nakagawa, and
H. Esaki. Inferring pop-level isp topology through end-to-end delay measure-
ment. In PAM ’09: Proceedings of the 10th International Conference on Pas-
sive and Active Network Measurement, pages 35–44, Berlin, Heidelberg, 2009.
Springer-Verlag.

[130] E. W. Zegura, K. L. Calvert, and M. J. Donahoo. A quantitative compari-
son of graph-based models for Internet topology. IEEE/ACM Transactions on
Networking, 5(6):770–783, 1997.

139

[131] Y. Zhao, Y. Chen, and D. Bindel. Towards unbiased end-to-end network diag-
nosis. Networking, IEEE/ACM Transactions on, 17(6):1724 –1737, dec. 2009.

	1
	2
	hkardes-sub

