2,830 research outputs found

    Multi-Source Multi-View Clustering via Discrepancy Penalty

    Full text link
    With the advance of technology, entities can be observed in multiple views. Multiple views containing different types of features can be used for clustering. Although multi-view clustering has been successfully applied in many applications, the previous methods usually assume the complete instance mapping between different views. In many real-world applications, information can be gathered from multiple sources, while each source can contain multiple views, which are more cohesive for learning. The views under the same source are usually fully mapped, but they can be very heterogeneous. Moreover, the mappings between different sources are usually incomplete and partially observed, which makes it more difficult to integrate all the views across different sources. In this paper, we propose MMC (Multi-source Multi-view Clustering), which is a framework based on collective spectral clustering with a discrepancy penalty across sources, to tackle these challenges. MMC has several advantages compared with other existing methods. First, MMC can deal with incomplete mapping between sources. Second, it considers the disagreements between sources while treating views in the same source as a cohesive set. Third, MMC also tries to infer the instance similarities across sources to enhance the clustering performance. Extensive experiments conducted on real-world data demonstrate the effectiveness of the proposed approach

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Estimating networks of sustainable development goals

    Get PDF
    An increasing number of researchers and practitioners advocate for a systemic understanding of the Sustainable Development Goals (SDGs) through interdependency networks. Ironically, the burgeoning network-estimation literature seems neglected by this community. We provide an introduction to the most suitable estimation methods for SDG networks. Building a dataset with 87 development indicators in four countries over 20 years, we perform a comparative study of these methods. We find important differences in the estimated network structures as well as in synergies and trade-offs between SDGs. Finally, we provide some guidelines on the potentials and limitations of estimating SDG networks for policy advice

    Nonparametric inference of interaction laws in systems of agents from trajectory data

    Full text link
    Inferring the laws of interaction between particles and agents in complex dynamical systems from observational data is a fundamental challenge in a wide variety of disciplines. We propose a non-parametric statistical learning approach to estimate the governing laws of distance-based interactions, with no reference or assumption about their analytical form, from data consisting trajectories of interacting agents. We demonstrate the effectiveness of our learning approach both by providing theoretical guarantees, and by testing the approach on a variety of prototypical systems in various disciplines. These systems include homogeneous and heterogeneous agents systems, ranging from particle systems in fundamental physics to agent-based systems modeling opinion dynamics under the social influence, prey-predator dynamics, flocking and swarming, and phototaxis in cell dynamics

    Protein sectors: statistical coupling analysis versus conservation

    Full text link
    Statistical coupling analysis (SCA) is a method for analyzing multiple sequence alignments that was used to identify groups of coevolving residues termed "sectors". The method applies spectral analysis to a matrix obtained by combining correlation information with sequence conservation. It has been asserted that the protein sectors identified by SCA are functionally significant, with different sectors controlling different biochemical properties of the protein. Here we reconsider the available experimental data and note that it involves almost exclusively proteins with a single sector. We show that in this case sequence conservation is the dominating factor in SCA, and can alone be used to make statistically equivalent functional predictions. Therefore, we suggest shifting the experimental focus to proteins for which SCA identifies several sectors. Correlations in protein alignments, which have been shown to be informative in a number of independent studies, would then be less dominated by sequence conservation.Comment: 36 pages, 17 figure

    Novel Methods for Analyzing and Visualizing Phylogenetic Placements

    Get PDF
    Die DNS (englisch: DNA) bildet die vererbbare Grundlage allen bekannten Lebens auf dem Planeten. Entsprechend wichtig ist ihre "EntschlĂŒsselung" fĂŒr die Biologie im Allgemeinen, und fĂŒr die Erforschung der evolutionĂ€ren ZusammenhĂ€nge verschiedener biologischer Artern im Besonderen. In den letzten Jahrzehnten hat eine rasante technologische Entwicklung im Bereich der DNS-Sequenzierung stattgefunden, die auch auf absehbare Zeit noch nicht zum Stillstand kommen wird. Die biologische Forschung hat daher den Bedarf an computer-gestĂŒtzten Methoden erkannt, sowohl in Bezug auf die Speicherung und Verarbeitung der immensen Datenmengen, die bei der Sequenzierung anfallen, als auch in Bezug auf deren Analyse und Visualisierung. Eine grundlegene Fragestellung ist dabei die nach dem Stammbaum des Lebens, der die evolutionĂ€re Verwandtschaft der Arten beschreibt. Diese Wissenschaft wird Phylogenetik, und die resultierenden Strukturen phylogenetische BĂ€ume genannt. HĂ€ufig basieren diese BĂ€ume auf dem Vergleich von DNS-Sequenzen der Arten, mit der Idee, dass Arten mit Ă€hnlicher DNS auch im Baum nah beieinander liegen. Die Berechnung eines solchen Baumes aus DNS-Daten kann als Optimierungsproblem formuliert werden, das durch die stetig wachsende Menge an Daten fĂŒr die Informatik eine Herausforderung darstellt. Aktuell beschĂ€ftigt sich die Mikrobiologie zum Beispiel mit der Erkundung und Erforschung von Proben (Samples), die aus Meereswasser, dem Erdreich, dem menschlichen Körper, und Ă€hnlichen Umgebungen gewonnen wurden: Welche mikrobischen Arten, Bakterien und andere Einzeller, bewohnen diese Umgebungen und Proben? Das zugehörige Forschungsfeld ist die Meta-Genetik. Einen verlĂ€sslichen Stammbaum fĂŒr die aber-millionen an Sequenzen aus solchen Proben zu errechnen ist praktisch unmöglich. Eine Alternative bietet die phylogenetische Platzierung der Sequenzen auf einem gegebenen Referenz-Baum von bekannten Arten (so genanntes phylogenetisches Placement): Hierbei wird ein Stammbaum aus Referenz-Sequenzen bekannter Arten gewĂ€hlt, der möglichst viel der in den Proben zu erwartenden Artenvielfalt abdeckt, und dann fĂŒr jede Sequenz aus den Proben die nĂ€chste Verwandtschaft innerhalb des Baumes bestimmt. Dies resultiert in einer Zuordnung von Sequenzen auf die Positionen verwandter Arten im Referenz-Baum. Diese Zuordnung kann auch als Verteilung der Sequenzen auf dem Baum verstanden werden: In dieser Interpretation kann man beispielsweise erkennen, welche Arten (und deren Verwandtschaft) besonders hĂ€ufig in den Proben vertreten sind. Diese Arbeit beschĂ€ftigt sich mit neuen Methoden zur Vor- und Nachbereitung, Analyse, und Visualisierung rund um den Kernbereich des phylogenetischen Placements von DNS-Sequenzen. ZunĂ€chst stellen wir eine Methode vor, die einen geeigneten Referenz-Baum fĂŒr die Platzierung liefern kann. Die Methode heißt PhAT (Phylogenetic Automatic (Reference) Trees), und nutzt Datenbanken bekannter DNS-Sequenzen, um geeigenete Referenz-Sequenzen fĂŒr den Baum zu bestimmen. Die durch PhAT produzierten BĂ€ume sind beispielsweise dann interessant, wenn die in den Proben zu erwartende Artenvielfalt noch nicht bekannt ist: In diesem Fall kann ein breiter Baum, der viele der bekannten Arten abdeckt, helfen, neue, unbekannte Arten zu entdecken. Im gleichen Kapitel stellen wir außerdem zwei Behilfs-Methoden vor, um den Prozess und die Berechnungen der Placements von großen DatensĂ€tzen zu beschleunigen und zu ermöglichen. Zum einen stellen wir Multilevel-Placement vor, mit dem besonders große Referenz-BĂ€ume in kleinere, geschachtelte BĂ€ume aufgeteilt werden können, um so schnellere und detalliertere Platzierungen vornehmen können, als auf einem einzelnen großen Baum möglich wĂ€ren. Zum anderen beschreiben wir eine Pipeline, die durch geschickte Lastverteilung und Vermeidung von Duplikaten den Prozess weiter beschleunigen kann. Dies eignet sich insbesondere fĂŒr große DatensĂ€tze von zu platzierenden Sequenzen, und hat die Berechnungen erst ermöglicht, die wir zum testen der im weiteren vorgestellten Methoden benötigt haben. Im Anschluss stellen wir zwei Methoden vor, um die Placement-Ergebnisse verschiedener Proben miteinander zu vergleichen. Die Methoden, Edge Dispersion und Edge Correlation, visualisieren den Referenz-Baum derart, dass die in Bezug auf die Proben interessanten und relevanten Regionen des Baumes sichtbar werden. Edge Dispersion zeigt dabei Regionen, in denen sich die HĂ€ufigkeit der in den Proben vorhandenen mikrobischen Arten besonders stark zwischen den einzelnen Proben unterscheided. Dies kann als erste Erkundung von neuen DatensĂ€tzen dienen, und gibt Aufschluss ĂŒber die Varianz der HĂ€ufigkeit bestimmter Arten. Edge Correlation hingegen bezieht zusĂ€tzlich Meta-Daten mit ein, die zu den Proben gesammelt wurden. Dadurch können beispielsweise AbhĂ€ngigkeiten zwischen HĂ€ufigkeiten von Arten und Faktoren wie dem pH-Wert des Bodens oder dem Nitrat-Gehalt des Wassers, aus dem die Proben stammen, aufgezeigt werden. Es hat damit Ă€hnlichkeiten zu einer bestehenden Methode names Edge PCA, die ebenfalls relevante Regionen des Baumen identifizieren kann, allerdings die vorhandenen Meta-Daten nur indirekt einbeziehen kann. Eine weitere Fragestellung ist die Gruppierung (Clustering) von Proben anhand von Gemeinsamkeiten, wie beispielweise einer Ă€hnlichen Verteilungen der Sequenzen auf dem Referenz-Baum. Anhand geeigneter Distanz-Maße wie der Kantorovich-Rubinstein-Distanz (KR-Distanz) können Ă€hnlichkeiten zwischen Proben quantifiziert werden, und somit ein Clustering erstellt werden. FĂŒr große DatensĂ€tze mit hunderten und tausenden von einzlnen Proben stoßen bestehende Methoden fĂŒr diesen Einsatzzweck, wie zum Beispiel das so genannte Squash Clustering, an ihre Grenzen. Wir haben daher die kk-means-Methode derart erweitert, dass sie fĂŒr Placement-Daten genutzt werden kann. Dazu prĂ€sentieren wir zwei Methoden, Phylogenetic kk-means und Imbalance kk-means, die verschiedene Distanzmaße zwischen Proben (KR-Distanz, und ein weiteres geeignetes Maß) nutzen, um BĂ€ume mit Ă€hnlichen Verteilungen von platzierten Sequenzen zu gruppieren. Sie betrachten jede Probe als einen Datenpunkt, und nutzen die zugrunde liegende Struktur des Referenz-Baumes fĂŒr die Berechnungen. Mit diesen Methoden können auch DatensĂ€tze mit zehntausenden Proben verarbeitet werden, und Clusterings und Ă€hnlichkeiten von Proben erkannt und visualisiert werden. Wir haben außerdem ein Konzept namens Balances fĂŒr Placement-Daten adaptiert, welches ursprĂŒnglich fĂŒr so genannte OTU-Sequenzen (Operational Taxonomic Units) entwickelt wurde. Balances erlauben eine Beschreibung des Referenz-Baumes und der darauf platzierten Sequenzen, die ganze Gruppen von Referenz-Arten zusammenfasst, statt jede Art einzeln in die Berechnungen einfließen zu lassen. Diese Beschreibung der Daten bietet verschiedene Vorteile fĂŒr die darauf basierenden Analysen, wie zum Beispiel eine Robustheit gegenĂŒber der exakten Wahl der Referenz-Sequenzen, und einer anschaulichen Beschreibung und Visualisierung der Ergebnisse. Insbesondere aus mathematischer Sicht sind Balances fĂŒr die Analyse interessant, da sie problematische Artefakte aufgrund der kompositionellen Natur meta-genetischer Daten beheben. Im Zuge dieser Arbeit dienen Balances hauptsĂ€chlich als Zwischenschritt zur Daten-ReprĂ€sentation. Eine Anwendung von Balances ist die so genannte Phylofactorization. Diese recht neue Methode teilt einen gegebenen Baum derart in Sub-BĂ€ume ein, dass jeder Sub-Baum eine Gruppe von Arten darstellt, die in Bezug auf gegebene Meta-Daten pro Probe relevant sind. Dadurch können beispielsweise Gruppen identifiziert werden, deren evolutionĂ€re Merkmale sich in AbhĂ€ngigkeit von Meta-Daten wie pH-Wert angepasst haben im Vergleich zu anderen Gruppen. Dies ist Ă€hnlich zur oben genannten Edge Correlation, aber kann zum einen durch geschickte mathematische AnsĂ€tze (insbesondere der Nutzung von Generalized Linear Models) mehrere Meta-Daten gleichzeitig einbeziehen, und zum anderen auch verschachtelte Gruppen finden. Die zugrunde liegenden Ideen dieser Methoden bieten einen großen Spielraum sowohl fĂŒr Analysen von Daten, als auch fĂŒr Weiterentwicklungen und ErgĂ€nzungen fĂŒr verwandte Fragestellungen. Wir haben diese Methode fĂŒr Placement-Daten adaptiert und erweitert, und stellen diese Variante, genannt Placement-Factorization, vor. Im Zuge dieser Adaption haben wir außerdem verschiedene ergĂ€nzende Berechnungen und Visalisierungen entwickelt, die auch fĂŒr die ursprĂŒngliche Phylofactorization nĂŒtzlich sind. Alle genannten neuen Methoden wurden ausfĂŒhrlich getestet in Bezug auf ihre Eignung zur Erforschung von mikrobiologischen ZusammenhĂ€ngen. Wir haben dazu verschiedene bekannte DatzensĂ€tze von DNS-Sequenzen aus Wasser- und Bodenproben, sowie Proben des menschlichen Mikrobioms, verwendet und diese auf geeigneten Referenz-BĂ€umen platziert. Anhand dieser Daten haben wir zum einen die PlausibilitĂ€t der durch unsere Analysen erzielten Ergebnisse geprĂŒft, als auch Vergleiche der Ergebnisse mit Ă€hnlichen, etablierten Methoden vorgenommen. SĂ€mtliche Analysen, Visualisierungen, und Vergleiche werden in den jeweils entsprechenden Kapiteln vorgestellt, und die Ergebnisse dargestellt. Alle Tests zeigen, dass unsere Methoden auf den getesteten DatensĂ€tzen zu Resultaten fĂŒhren, die konsistent mit anderen Analysen sind, und geeignet sind, um neue biologische Erkenntnisse zu gewinnen. SĂ€mtliche hier vorgestellten Methoden sind in unserer Software-Bibliothek genesis implementiert, die wir im Zuge dieser Arbeit entwickelt haben. Die Bibliothek ist in modernem C++11 geschrieben, hat einen modularen und funktions-orientierten Aufbau, ist auf Speichernutzung und Rechengeschwindigkeit optimiert, und nutzt vorhandene Multi-Prozessor-Umgebungen. Sie eignet sich daher sowohl fĂŒr schnelle Tests von Prototypen, als auch zur Entwicklung von Analyse-Software fĂŒr Endanwender. Wir haben genesis bereits erfolgreich in vielen unserer Projekte eingesetzt. Insbesondere bieten wir sĂ€mtliche hier prĂ€sentierten Methoden ĂŒber unser Software-Tool gappa an, das intern auf genesis basiert. Das Tool stellt einen einfachen Kommandozeilen-Zugriff auf die vorhandenen Analysemethoden bereit, und bietet ausreichend Optionen fĂŒr die Analysen der meisten End-Anwender. Im abschließenden Kapitel wagen wir einen Ausblick in weitere Forschungsmöglichkeiten im Bereich der Methoden-Entwicklung fĂŒr meta-genetische Fragestellungen im Allgemeinen, und der placement-basierten Methoden im Speziellen. Wir benennen verschiedene Herausforderungen in Bezug auf die Nutzbarkeit solcher Methoden fĂŒr Anwender und ihrer Skalierbarkeit fĂŒr immer grĂ¶ĂŸer werdende DatensĂ€tze. Außerdem schlagen wir verschiedene weitergehende AnsĂ€tze vor, die zum Beispiel auf neuronalen Netzwerken und Deep Learning basieren könnten. Mit aktuellen DatensĂ€tzen wĂ€ren solche Methoden nicht robust trainierbar; durch das in Zukuft zu erwartenden Wachstum an Daten kann dies allerdings bald in den Bereich des Möglichen kommen. Schließlich identifizierenden wir einige tiefer gehende Forschungsfragen aus der Biologie und Medizin, bei deren Beantwortung unsere Methoden in Zukunft helfen können
    • 

    corecore