1,957 research outputs found

    BIM semantic-enrichment for built heritage representation

    Get PDF
    In the built heritage context, BIM has shown difficulties in representing and managing the large and complex knowledge related to non-geometrical aspects of the heritage. Within this scope, this paper focuses on a domain-specific semantic-enrichment of BIM methodology, aimed at fulfilling semantic representation requirements of built heritage through Semantic Web technologies. To develop this semantic-enriched BIM approach, this research relies on the integration of a BIM environment with a knowledge base created through information ontologies. The result is knowledge base system - and a prototypal platform - that enhances semantic representation capabilities of BIM application to architectural heritage processes. It solves the issue of knowledge formalization in cultural heritage informative models, favouring a deeper comprehension and interpretation of all the building aspects. Its open structure allows future research to customize, scale and adapt the knowledge base different typologies of artefacts and heritage activities

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    A semantically-enriched goal-oriented requirements engineering framework for systems of systems using the i* framework applied to cancer care

    Get PDF
    In recent years, monolithic systems are being composed into bigger systems as Systems of Systems (SoSs). This evolution of SoS raises several software engineering key challenges, such as the management of emerging inconsistent goals and requirements, which may occur among the various Constituent Systems (CSs) themselves, as well as between the entire SoS and the participating CSs. Another significant challenge is that Systems of Systems Engineering (SoSE) involves more stakeholders than traditional systems engineering, i.e. stakeholders at the SoS-level and the CS-level, where each CS has its own needs and objectives which establish a complex stakeholder environment. To respond to these challenges, this research is aimed at investigating the implications of applying a goal-oriented requirements engineering approach in identifying, modelling and managing emerging goals and their conflicts in SoS context. The key artefact of this research is the development of a Semantically-Enriched Goal-Oriented Requirements Engineering Framework for Systems of Systems using the i* framework, namely the OntoSoS.GORE framework.The OntoSoS.GORE is a three-layered framework designed, developed, demonstrated and then evaluated through following multiple iterations of the Design Science Research Methodology (DSRM) phases, to accomplish the following main objectives: (1) identifying and modelling the SoS global goals and the CSs local goals at different levels of an SoS using the i* framework, in which a new process to extract i* modelling elements from existing user documentation is proposed; (2) maintaining the consistency and integrity of SoS goals at multiple levels through developing a semantic Goals Referential Integrity (sGRI) model in SoS context which consists of an SoSGRI model and an ontology-based model; and (3) managing any conflicts that may occur amongst goals at both the SoS-level and the CS-level, by developing and applying a new goal conflict management approach in SoS context, which consists of two main processes: goal conflict detection and goal conflict resolution.The research framework has been instantiated and validated by applying a real Cancer Care case study at King Hussein Cancer Center (KHCC), Amman, Jordan. Results revealed the effectiveness of applying the framework compared to the current approach applied at KHCC, in terms of addressing higher consistency, completeness and correctness with regard to goal management and conflict management in SoS context. Moreover, the framework provides automation of the processes of following the satisfaction of goals and goals’ conflict management at multiple SoS levels, instead of the manual approach applied currently at KHCC. This automation is accomplished through developing a strategic goal-oriented management tool that is anticipated to be delivered and utilised at KHCC, as well as applying it to other SoS organisations as a proposed solution for goal and conflict management. Another contribution to the Cancer Care and SoS domains is developing a reference i* goal-oriented model for access to Cancer Care which provides a wider system engineering perspective and offers an accessible level of abstraction about Cancer Care goals and their dependencies for stakeholders and domain experts. The reference model provides standardisation of common generic concepts about the domain, in which other Cancer Care organisations can considerably reuse to facilitate the process of capturing and specifying goals and requirements for their practice and validating choices among alternative designs

    An ontology for specifying and tracing requirements engineering artifacts and Test Artifacts

    Get PDF
    Nowadays, modern software development processes follow an iterative approach, which makes possible to start the testing of a system at early stages. This approach requires recording the requirements artifacts that specify the functionality or characteristics required by the system, and the test cases that are derived from each requirement artifact. Frequently, software development organizations employ supporting tools to create and maintain these artifacts. There exist numerous tools for supporting requirements specification activities, as well as the definition and execution of test cases. These separate tools have their own databases and metamodels. The lack of integration between these tools leads to difficulties in tracing related artifacts and obtaining useful knowledge to manage the developing process. It is necessary to understand without ambiguities the concepts used by the different tools to allow them to interoperate. This paper proposes an ontology that defines and integrates the concepts included by the metamodels of different Requirements Engineering and Testing Management supporting tools. The formalization of these concepts and their relationships in an ontology language prevents ambiguity of the concepts and permit to the tools involved to interoperate with each other, to achieve semantic consistency and the tracing of artifacts. The proposed ontology used in conjunction with a reasoner provides capabilities to infer traces that are not explicit, which makes it possible to easily maintain artifacts and associations between them. The approach facilitates backward tracing from test cases to use cases and functional requirements artifacts, obtain knowledge about the causes of a defect or a poor specification, and enable impact analysis.Fil: Roldán, María Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vegetti, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Gonnet, Silvio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Marciszack, Marcelo Martín. Universidad Tecnológica Nacional. Facultad Regional Córdoba; ArgentinaFil: Leone, Horacio Pascual. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin

    The conceptual design of SeamFrame

    Get PDF
    This project deliverable provides the underlying architecture of a concept for linking models and databases and it provides the design of SeamFrame, delivering its architecture to provide an integration framework for models and simulation algorithms, supported by procedures for data handling and spatial representation, quality control, output visualization and documentatio

    Dynamic Context Modeling for Agile Case Management

    No full text
    International audienceCase Management processes are characterized by their high unpredictability and, thus, cannot be handled following traditional process- or activity-centered approaches. Adaptive Case Management paradigm proposes an alternative data-centered approach for management such processes. In this paper, we elaborate on this approach and explore the role of context data in Case Management. We use the state-oriented representation of the process that allows us to incorporate the contextual information in a systematic and transparent way, leading towards agile case management

    Combining ontological and temporal formalisms for composite activity modelling and recognition in smart homes

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Activity recognition is essential in providing activity assistance for users in smart homes. While significant progress has been made for single-user single-activity recognition, it still remains a challenge to carry out real-time progressive composite activity recognition. This paper introduces a hybrid ontological and temporal approach to composite activity modelling and recognition by extending existing ontology-based knowledge-driven approach. The compelling feature of the approach is that it combines ontological and temporal knowledge representation formalisms to provide powerful representation capabilities for activity modelling. The paper describes in detail ontological activity modelling which establishes relationships between activities and their involved entities, and temporal activity modelling which defines relationships between constituent activities of a composite activity. As an essential part of the model, the paper also presents methods for developing temporal entailment rules to support the interpretation and inference of composite activities. In addition, this paper outlines an integrated architecture for composite activity recognition and elaborated a unified activity recognition algorithm which can support the recognition of simple and composite activities. The approach has been implemented in a feature-rich prototype system upon which testing and evaluation have been conducted. Initial experimental results have shown average recognition accuracy of 100% and 88.26% for simple and composite activities, respectively
    corecore