1,723 research outputs found

    Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN) with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM), facilitates the inference. Identifying NMs defined by specific transcription factors (TF) establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO) information.</p> <p>Results</p> <p>The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM) classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1) Gene set enrichment analysis (GSEA) to evaluate the clustering results; (2) Leave-one-out cross-validation (LOOCV) to ensure that the SVM classifiers assign TFs to NM categories with high confidence; (3) Binding site enrichment analysis (BSEA) to determine enrichment of the gene clusters for the cognate binding sites of their predicted TFs; (4) Comparison with previously reported results in the literatures to confirm the inferred regulations.</p> <p>Conclusion</p> <p>The major contribution of this study is the development of a computational framework to assist the inference of TRN by integrating heterogeneous data from multiple sources and by decomposing a TRN into NM-based modules. The inference capability of the proposed framework is verified statistically (<it>e.g</it>., LOOCV) and biologically (<it>e.g</it>., GSEA, BSEA, and literature validation). The proposed framework is useful for inferring small NM-based modules of TF-target gene relationships that can serve as a basis for generating new testable hypotheses.</p

    MICFuzzy : a maximal information content based fuzzy approach for reconstructing genetic networks

    Get PDF
    In systems biology, the accurate reconstruction of Gene Regulatory Networks (GRNs) is crucial since these networks can facilitate the solving of complex biological problems. Amongst the plethora of methods available for GRN reconstruction, information theory and fuzzy concepts-based methods have abiding popularity. However, most of these methods are not only complex, incurring a high computational burden, but they may also produce a high number of false positives, leading to inaccurate inferred networks. In this paper, we propose a novel hybrid fuzzy GRN inference model called MICFuzzy which involves the aggregation of the effects of Maximal Information Coefficient (MIC). This model has an information theory-based pre-processing stage, the output of which is applied as an input to the novel fuzzy model. In this preprocessing stage, the MIC component filters relevant genes for each target gene to significantly reduce the computational burden of the fuzzy model when selecting the regulatory genes from these filtered gene lists. The novel fuzzy model uses the regulatory effect of the identified activator-repressor gene pairs to determine target gene expression levels. This approach facilitates accurate network inference by generating a high number of true regulatory interactions while significantly reducing false regulatory predictions. The performance of MICFuzzy was evaluated using DREAM3 and DREAM4 challenge data, and the SOS real gene expression dataset. MICFuzzy outperformed the other state-of-the-art methods in terms of F-score, Matthews Correlation Coefficient, Structural Accuracy, and SS_mean, and outperformed most of them in terms of efficiency. MICFuzzy also had improved efficiency compared with the classical fuzzy model since the design of MICFuzzy leads to a reduction in combinatorial computation. Copyright: © 2023 Nakulugamuwa Gamage et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Maximal information component analysis: a novel non-linear network analysis method.

    Get PDF
    BackgroundNetwork construction and analysis algorithms provide scientists with the ability to sift through high-throughput biological outputs, such as transcription microarrays, for small groups of genes (modules) that are relevant for further research. Most of these algorithms ignore the important role of non-linear interactions in the data, and the ability for genes to operate in multiple functional groups at once, despite clear evidence for both of these phenomena in observed biological systems.ResultsWe have created a novel co-expression network analysis algorithm that incorporates both of these principles by combining the information-theoretic association measure of the maximal information coefficient (MIC) with an Interaction Component Model. We evaluate the performance of this approach on two datasets collected from a large panel of mice, one from macrophages and the other from liver by comparing the two measures based on a measure of module entropy, Gene Ontology (GO) enrichment, and scale-free topology (SFT) fit. Our algorithm outperforms a widely used co-expression analysis method, weighted gene co-expression network analysis (WGCNA), in the macrophage data, while returning comparable results in the liver dataset when using these criteria. We demonstrate that the macrophage data has more non-linear interactions than the liver dataset, which may explain the increased performance of our method, termed Maximal Information Component Analysis (MICA) in that case.ConclusionsIn making our network algorithm more accurately reflect known biological principles, we are able to generate modules with improved relevance, particularly in networks with confounding factors such as gene by environment interactions
    • …
    corecore