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Abstract

In systems biology, the accurate reconstruction of Gene Regulatory Networks (GRNs) is

crucial since these networks can facilitate the solving of complex biological problems.

Amongst the plethora of methods available for GRN reconstruction, information theory and

fuzzy concepts-based methods have abiding popularity. However, most of these methods

are not only complex, incurring a high computational burden, but they may also produce a

high number of false positives, leading to inaccurate inferred networks. In this paper, we pro-

pose a novel hybrid fuzzy GRN inference model called MICFuzzy which involves the aggre-

gation of the effects of Maximal Information Coefficient (MIC). This model has an

information theory-based pre-processing stage, the output of which is applied as an input to

the novel fuzzy model. In this preprocessing stage, the MIC component filters relevant

genes for each target gene to significantly reduce the computational burden of the fuzzy

model when selecting the regulatory genes from these filtered gene lists. The novel fuzzy

model uses the regulatory effect of the identified activator-repressor gene pairs to determine

target gene expression levels. This approach facilitates accurate network inference by gen-

erating a high number of true regulatory interactions while significantly reducing false regula-

tory predictions. The performance of MICFuzzy was evaluated using DREAM3 and

DREAM4 challenge data, and the SOS real gene expression dataset. MICFuzzy outper-

formed the other state-of-the-art methods in terms of F-score, Matthews Correlation Coeffi-

cient, Structural Accuracy, and SS_mean, and outperformed most of them in terms of

efficiency. MICFuzzy also had improved efficiency compared with the classical fuzzy model

since the design of MICFuzzy leads to a reduction in combinatorial computation.

Introduction

A major challenge in systems biology is the accurate inference of gene regulatory networks

(GRNs), which are used for investigating a range of complex biological processes. The develop-

ment of microarray and sequencing technologies has produced large amounts of gene expres-

sion data for the reconstruction and analysis of GRNs. During gene expression, target genes
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are controlled by their regulators [1] and these regulatory interactions are inferred using a

plethora of reverse engineering approaches. Among these approaches, Boolean modelling, a

simple and efficient modelling approach, can capture both the structure and dynamics of a

regulatory network [2, 3]. However, these models require the use of a data discretization

method which leads to information loss. Due to this requirement, the results produced by

most of the Boolean Network models for GRN inference are near-optimal [2, 3].

Bayesian network modelling is more sophisticated than Boolean modelling and is used to

implement high performing reverse engineering approaches [4–8]. Perrin’s method, based on

dynamic Bayesian networks is well-suited to the inference of gene regulatory interactions from

gene expression data and their derivatives. However, this approach is limited to the inference

of small-scale GRNs [4]. Bayesian Network inference with Java Objects (Banjo), is a software

package that has been used for both Bayesian and Dynamic Bayesian network inference. Simi-

lar to Perrin’s approach, Banjo requires a high computational time, since it uses heuristic

search strategies in model learning [5]. Morshed et al. [6] implemented a Bayesian network

model to capture both instantaneous and time-delayed interactions that occur concurrently,

but the evolutionary search employed requires high computational time [6]. Unlike other

Bayesian models, GlobalMIT uses mutual information test (MIT), an information theoretic-

based scoring metric as a model learning technique rather than time-consuming local search

strategies. However, this approach is poorly scalable since the complex nature of Bayesian

modelling makes it computationally intensive when inferring large-scale networks [7].

Differential equations (DE) [28], are a deterministic modeling technique used in Computa-

tional Biology that has the ability to model the dynamic behavior of GRNs. These models

incur a high computational burden when learning model parameters with the use of optimiza-

tion techniques, and are not suited to the reconstruction of large-scale networks [9–11].

Machine learning-based methods such as regression-based approaches have been used for effi-

cient and accurate network inference [12, 13]. Gene networks inference using projection and

lagged regression (GNIPLR) [14] uses both projection and lagged regression strategies to accu-

rately infer GRNs from time series and non-time series data. LassoCV+RidgeCV [12] is

another regression-based model which uses an improved version of both regression methods,

incorporating cross-validation to increase model stability and produce accurate results. Both

GNIPLR and LassoCV+RidgeCV outperform other existing high-performing regression-

based inference methods. However, these regression methods are limited to capturing linear

dependencies.

Given pros and cons of the above-mentioned approaches, information theory-based meth-

ods have gained increasing attention in recent years [3, 15, 16] because of their ability to effec-

tively capture associations between genes from high dimensional gene expression data with

limited sample size [17]. Foremost among these methods are those using Mutual Information

(MI) to quantify not only linear dependencies between the target and the regulatory genes, but

also complex non-linear dependencies [16, 18]. Context likelihood of relatedness (CLR) [19]

and MRNET [20] are existing information theory-based methods that use MI to determine

transcriptional regulatory interactions. CLR produces accurate GRNs by eliminating false

interactions using MI score-based background correction. MRNET uses a pair-wise mutual

information evaluation method, Min-Redundancy and Max-Relevance for inferring regulatory

interactions. NARROMI [21] and CMI2NI [22] are other novel MI-based methods for GRN

inference. NARROMI, a combination of the ordinary differential equation-based recursive

optimization (RO) method and the information theory-based mutual information (MI)

method, is an effective method which outperforms most existing methods in terms of accuracy

and false positive rates. In this approach, the least relevant regulators for each target are first

removed using MI by evaluating pairwise correlations. Then indirect regulators are identified
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using recursive optimization, which further improved the overall model accuracy [21].

CMI2NI uses a novel association measure, conditional mutual inclusive information (CMI2)

which helps to identify direct regulations while eliminating indirect regulations. The main

drawback of CMI2 is that its efficiency is negatively impacted by the use of a random method

to identify conditional genes [22].

Some recently developed methods combine information theoretic concepts with other tech-

niques to eliminate model specific issues. KFGRNI is such a method, using Conditional

Mutual Information (CMI) based approach to fine-tune a list of genes, selected by the ensem-

ble Kalman filter and regression approach [23]. This method further improves model accuracy

by removing false regulations. KFLR [24] uses MI and CMI in the preprocessing stage to elimi-

nate noisy regulations, followed by a Kalman filter-based model averaging approach (a hybrid

framework of Bayesian model averaging and linear regression methods) to infer possible regu-

lators. However, both MI and CMI-based inferencing methods cannot discover important

non-linear correlations such as sinusoids [15, 21]. MI is well suited for use on discrete or cate-

gorical data [18], but has known limitations when applied to continuous data, as is found in

gene expression datasets.

To overcome these limitations of MI, the Maximal Information Coefficient (MIC) which

has been designated “correlation for the 21st century” [25, 26], was introduced to capture func-

tional and non-functional associations between continuous variables. MIC has produced

impressive performances by detecting strengths and patterns of dependencies in high-dimen-

sional datasets with limited sample size, making it a promising tool for GRN inference [27].

MIC is also known to be able to identify a wide range of interesting associations, making it

valuable for the evaluation of the regulatory associations between genes. Compared to other

available correlation measures, which are limited in their application to discretized data, MIC

is well suited to continuous data, such as microarray gene expression data [18]. As demon-

strated in [28], MIC is also noise resistant which makes it well suited to GRN inference since

real gene expression data usually contains high amounts of noise. Therefore, recently devel-

oped GRN inference methods (i.e., MRNETB) [29, 30] have incorporated MIC to improve the

performance of existing methods such as CLR and MRNET. Recently MICRAT has been

developed, using MIC to infer GRNs as an undirected graph that represents interactions

between genes from time series gene expression data. Then the direction of these interactions

is determined using a combination of conditional relative average entropy and time course

mutual information of pairs of genes [15]. However, these models produce a high number of

false regulatory predictions while inferring a high number of true regulations and have no abil-

ity to identify the activating or inhibiting effect of regulatory genes.

Due to their ability to deal with uncertain and imprecise information fuzzy concept-based

models for GRN inference [31–36] have been extensively investigated in the last decade [36].

Fuzzy logic, a knowledge-based problem-solving approach, consists of three main stages: fuzzi-

fication, inference, and defuzzification. When applying fuzzy logic to GRN inference, a typical

classical fuzzy model reported by Woolf and Wang [31] has been implemented. In this

approach, the expression levels of activator and repressor genes are mapped to the set of linguis-

tic values High, Medium, and Low, based on fuzzy membership functions. In the inference

stage, the paired activator and repressor genes are used to predict the expression value of a target

gene using fuzzy rules after applying these pairs to the decision matrix. At points where their

predictions overlap, a fuzzy score for the predicted target variable is generated [31]. These gen-

erated scores from each GRN fuzzy rule are aggregated using an accumulation method to obtain

the final fuzzy value [36, 37]. In defuzzification, these fuzzy predicted gene expression values are

transformed back to crisp gene expression values based on the membership functions of the tar-

get gene. Either the centroid defuzzification or the center of gravity (COG) method is used as a
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defuzzification technique in the GRN inference context [36, 38]. Later implementations of clas-

sical fuzzy models included several enhancements of each step [36].

Variations of classical fuzzy models, incorporating changes in gene expression levels, activa-

tor-repression interactions, or pre-processing methods, have also been reported [32, 36, 39].

In the rest of this paper, it may be noted that any reference to the “classical model” implies the

initial version of the classical fuzzy model reported by Woolf and Wang [31]. The main draw-

back of all classical fuzzy models, compared to other methods, is their high computational bur-

den. Hybrid fuzzy models combining classical fuzzy models with other methods, have been

found to be effective in improving the performance of classical fuzzy models [36]. A hybrid

fuzzy model introduced by Sokhansanj and Fitch [40], applied Union Rule Configuration

(URC) together with fuzzy logic to avoid the combinatorial explosion issue in fuzzy rules.

Another hybrid model by Poblete and colleagues [41], combines fuzzy inference systems with

ODEs to produce an accurate model by reducing the need of prior knowledge. However, this

approach is limited to the inference of small-scale networks. In addition to classical fuzzy mod-

els, fuzzy logic-based tools have been introduced, such as fuzzy cognitive maps (FCM), a pow-

erful intelligent tool for GRN inference. LASSO-FCM, a least absolute shrinkage and selection

operator-based FCM [33], compressed sensing-based FCM (CF-FCM) [34], and Kalman filter

and compressed sensing-based FCM (KFCSFCM) [35] are recently developed accurate meth-

ods. However, these methods have known limitations in model learning [36].

In this research, we developed a novel hybrid fuzzy model, which combines a novel fuzzy

model with the key feature of the information theory-based approach. This hybrid fuzzy

model, called MICFuzzy, exploits the effectiveness of the MIC [42] for pre-processing and as a

measure of the strengths of regulatory relationships between genes. To the best of our knowl-

edge, the combination of MIC measure with a fuzzy GRN model is novel, and has not been

investigated earlier. In MICFuzzy, MIC is used to evaluate gene dependencies and identify the

most informative regulatory genes for each target gene, while eliminating genes with a lower

probability of being a regulatory gene from the high-dimensional gene space. This pre-pro-

cessing reduces the computational burden by pruning the possible number of activator and

repressor gene pairs to be considered in the fuzzy model. In the fuzzy segment of the hybrid

model, the regulatory genes for each target gene are identified from the list of filtered genes by

inferring the activator-repressor gene pairs which can most closely approximate the target

gene expression level. Rather than considering only the effect of the input gene expression val-

ues of the activator and repressor pairs when predicting the target gene expression levels, in

the proposed model, a novel metric called regulatory relationship strength (RRS) is used.

Unlike other classical fuzzy models, which are commonly limited to selecting only one activa-

tor and repressor gene pair, the MICFuzzy model allows the selection of more than one suit-

able gene pair. This model is also capable of identifying the regulatory relationship type

(activator or repressor) between genes. The results of the MICFuzzy model obtained using the

DREAM3 and DREAM4 datasets [43–45], along with the real word SOS gene repair dataset

[46], demonstrated its superiority compared to other state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 deals with the methodology and the

steps used in building our proposed hybrid model. In Section 3, we discuss the results obtained

from the experiment and the comparison of the performance of our model with other state-of-

the-art methods. Finally, we conclude the paper in Section 4.

Methods

This section presents a concise overview of our proposed model, MICFuzzy (Fig 1), a novel

framework for GRN inference. In MICFuzzy, the GRN inference problem is first divided into
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n sub-problems, where n is the number of genes in the network. The proposed model is

applied to each sub-problem to identify the potential regulators for each target gene, using

time series gene expression data. The MICFuzzy model has two main stages. In the pre-pro-

cessing stage, an information theory-based approach identifies the list of the most promising

regulators for each target gene from the high-dimensional gene space. Then, the novel fuzzy

model selects the best regulator gene list for each target gene, reducing false predictions while

accurately identifying activator and repressor regulatory genes. The pseudo-code for the MIC-

Fuzzy algorithm is given in S1 Fig.

Information theory-based approach: The pre-processing stage

An information theory-based approach is used to filter the relevant genes for each target gene.

This stage helps to reduce the computational burden of the fuzzy model used in the next stage.

In this stage, we first evaluate the pair-wise MIC of every other gene corresponding to the tar-

get gene under consideration. The MIC is a metric which can capture simple to complex

dependencies in both functional and non-functional relationships. It has two properties: gen-

erality and approximate equitability. Generality permits the detection of both functional and

non-functional relationships from data with a sufficient sample size, while equitability gives

similar scores for equally noisy relationships, regardless of the type of the relationship [25].

Since MIC has the demonstrated ability to deal with the noise in gene expression data it is

highly suitable to use as a preprocessing method [28]. The maximal information coefficient of

a set of two-variable (X and Y) data pairs, D can be defined as follows:

MIC Dð Þ ¼ max
XY<BðnÞ

I∗ðD;X;YÞ
log

2
ðminðX;YÞÞ

� �

ð1Þ

where, D consists of pair of values<x,y>, x 2 X, y 2 Y in a sample of size n. The grid size is

XY< B(n), where the function of sample size, B(n) = n0.6 is the default setting to achieve high

performance. The term, I*(D, x, y) is the maximum mutual information taken over an x and y
pair. We use log2(min(x, y)) to normalize the maximum mutual information [15, 25]. MIC has

Fig 1. Schematic diagram of the proposed hybrid fuzzy model. The proposed model introduces two main

components: an information theory-based approach and a fuzzy model. In the fuzzy model, the dashed box indicates

the steps by which the regulatory genes are selected.

https://doi.org/10.1371/journal.pone.0288174.g001
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been reported [25, 29] to perform effectively in measuring the strength of association in two-

variable relationships.

Based on Eq (1), in GRN inference, X is the candidate gene and Y is the target gene. When

evaluating the MIC between each gene pair, the gene expression value of X (x) at time point t
and gene expression value of Y(y) at time point t+1 is considered. Then, based on a user-

defined threshold MIC value, highly correlated genes are identified as the selected gene set for

each target gene. The model allows the user to decide the MIC threshold empirically in a spe-

cific problem context. In this study, the threshold value was computed as the average of the

MIC values corresponding to a target gene, to reduce the experimental burden. In the next

stage, the selected gene list and the evaluated MIC scores are input to the novel fuzzy model to

further enhance the accuracy of the selection of the regulatory genes.

Novel fuzzy model

We improved upon the classical model [31] by considering the regulatory effect, Eq (2), to

determine the expression level of the target gene. The regulatory effect consists of two factors:

the gene expression levels of regulatory genes (activator-repressor pairs) and the strength of

the regulatory relationship between an activator or repressor gene and the target gene:

Regulatory effect ¼ Regulatory Relationship Strength∗Gene expression level ð2Þ

In the classical fuzzy model, only the expression levels of regulatory genes are considered

when predicting the expression level of the target gene [36]. In our study, the MIC score of a

gene corresponding to a target gene is considered, to reflect the strength of the regulatory rela-

tionship. The evaluated regulatory effect is normalized using min-max normalization, with the

values scaled between 0 and 1. This normalized regulatory effect is fuzzified into three discrete

levels, Low, Medium, or High (Fig 2). For example, if the normalized regulatory effect of an

activator or repressor is 0.4, then the fuzzified membership values will be Low = 0.2,

Medium = 0.8, and High = 0 (Fig 2).

After forming activator-repressor pairs from the filtered gene set, using the set of heuristic

fuzzy rules that we have defined based on the existing expert knowledge and the activator/

repressor regulatory rule described in [31, 47], the expression level of the target gene is pre-

dicted. The target gene expression has five different discrete levels (Fig 3). For example, refer-

ring to Fig 4, we have a fuzzy rule:

“If an activator’s regulatory effect isHigh AND the repressor’s regulatory effect is Low then
the target gene expression level will be Very High”

The discrete levels for both input and output variables are decided based on previously

reported research [47] which demonstrated these discrete levels are more accurate than those

in classical model. In this step, the bounded sum technique is used to combine the results from

each fuzzy rule [37]. Finally, the fuzzified output obtained for the target gene is defuzzied back

to a crisp value using the centroid defuzzification method. This process is continued until the

target gene expression level has been estimated for each activator-repressor gene pair for all

available timepoints in the dataset.

Selection of regulatory genes. After the predicted gene expression value of a target gene

for each time point is obtained, this predicted value is compared with the actual expression

value of the target gene for each time point to evaluate the Mean Squared Error (MSE) as
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Fig 3. Fuzzy membership function of target gene expression level. There are six discrete levels: VL = Very Low, L = Low,

Med = Medium, H = High, and VH = Very High.

https://doi.org/10.1371/journal.pone.0288174.g003

Fig 2. Fuzzy membership function of the regulatory effect of repressors and activators. It has three discrete levels:

Low, Medium, and High.

https://doi.org/10.1371/journal.pone.0288174.g002

PLOS ONE A maximal information content based fuzzy approach for reconstructing genetic networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0288174 July 7, 2023 7 / 22

https://doi.org/10.1371/journal.pone.0288174.g003
https://doi.org/10.1371/journal.pone.0288174.g002
https://doi.org/10.1371/journal.pone.0288174


follows:

MSE ¼
1

T

XT

t¼2
ðYt � Ŷ tÞ

2
ð3Þ

where T is the total number of observations (time points) in the dataset, and Yt and Ŷt are the

experimental and the corresponding predicted target gene expression values, respectively.

A second performance metric, variance, has been used to measure the acceptability of the

predicted results. Statistical variance is measured based on the number of rules fired by a triplet

when finding the target gene expression level. If all fuzzy rules are evenly fired by a gene triplet

over all time points, then we consider the variance of this triplet to be low, and the predicted

target gene expression level from the considered repressor and activator pair to be acceptable.

Based on these two metrics, the final residual score (RS) is evaluated as follows:

Residual Score ¼ MSE∗Variance ð4Þ

The best set of activator-repressor pairs for each target gene is selected based on the RS

value. To be the best pair, the RS should be the lowest. The evaluated RS scores of activator-

repressor pairs for a candidate target gene are normalized to a value between 0 and 1 (NRS in

Algorithm in S1 Fig) to decide the common threshold level of RS for each target gene. Here,

we have assumed that one gene can act as either a repressor or an activator for a candidate

Fig 4. Fuzzy decision rule matrix to predict the expression level of a target gene based on the regulatory effect of

activator and repressor gene pairs.

https://doi.org/10.1371/journal.pone.0288174.g004

PLOS ONE A maximal information content based fuzzy approach for reconstructing genetic networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0288174 July 7, 2023 8 / 22

https://doi.org/10.1371/journal.pone.0288174.g004
https://doi.org/10.1371/journal.pone.0288174


target gene in a given problem context [10]. Finally, based on the RS threshold thus defined,

the genes in the activator-repressor pairs with lower RS than the defined threshold are selected

as the best set of regulatory genes for a target gene (Algorithm in S1 Fig). After selecting a suit-

able regulatory gene list for each target gene (each sub-problem) the overall network structure

can be obtained.

Results and discussion

To evaluate the proposed model, experiments were first carried out on the simulated datasets

of small and medium-scale networks used in the DREAM3 and DREAM4 in silico challenges

for gene network inference [43–45]. We used the 10- and 50-gene networks from the

DREAM3 challenge. From the DREAM4 challenge, 10- and 100-gene network sub-challenges

were addressed. For each of these sub-challenges, there are five different networks, referred to

here as Net1, Net2, Net3, Net4, and Net5. In both the DREAM3 and DREAM4 challenges

there are 21 time points for each time series. However, the majority of existing fuzzy-based

reverse engineering approaches consider only the last 11 points in each time series, from

which the perturbation has been removed [33, 34]. We considered all time points in each net-

work in each sub-challenge when inferring the GRNs, including the effect of perturbations.

The proposed approach was also studied using a real gene expression dataset, the well-studied

SOS DNA repair network of Escherichia coli. This network contains eight genes: uvrD, lexA,

umuD, recA, uvrA, uvrY, ruvA, and polB. The SOS DNA dataset was obtained from four dif-

ferent experiments under various UV light conditions, with the gene expression measured at

50 time points evenly spaced at six-minute intervals [46].

We evaluated the performance of MICFuzzy under different conditions, with and without

the effect of regulatory relationship strength, and compared the results with the individual per-

formance of the information theory-based approach (pre-processing stage). The accuracy of

network inference using MICFuzzy was also compared with the state-of-the-art methods,

MICRAT, NARROMI, CMI2NI, LASSO-FCM, CF-FCM, and KFCSFCM, and the improve-

ment in efficiency was mainly compared with the classical model. The performance of MIC-

Fuzzy on the SOS dataset was compared with that of MICRAT and other well-known state-of-

the-art methods [15].

The inferred network topology was evaluated using popular performance metrics, including

Precision, True Positive Rate/Recall/Sensitivity, False Positive Rate, Specificity, F-score,

SS_mean, Matthews correlation coefficient (MCC), and Structural Accuracy. F-score, Struc-

tural Accuracy, and MCC are the most reliable measures, as demonstrated in [15, 48], which

produce high values if there is a balance in producing good results in all four categories (True

Positive, False Positive, True Negative, and False Negative). Therefore, in this research, we

used F-score, Structural Accuracy, and MCC as performance evaluation measurements. In

addition, SS_mean, a sensitivity specificity-based measure, was also used, since the results of

most of the fuzzy concepts-based models for GRN inference are reported in terms of SS_mean

[33–35, 49].

Experimental setup and parameter settings

MICFuzzy, implemented in Python, uses the minepy Python library [50] to evaluate the MIC

between each gene pair in the pre-processing stage. The minepy library has identical perfor-

mance on biological datasets as its original java implementation (mine.jar) [51] using the

default settings published in [25]. We also applied the Scikit-fuzzy library [52], to build the

fuzzy control system. MICFuzzy also utilised NumPy, SciPy, pandas, statistics, and Matplotlib
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scientific libraries. The steps of the implementation of MICFuzzy and its libraries are explained

in S1 Fig.

The hybrid fuzzy model consists of several parameters which must be fine-tuned to obtain

high structural accuracy: a high number of true regulations and a low number of false predic-

tions. In the first stage of the hybrid model, we need to define the MIC threshold, while in the

fuzzy model, the normalized RS threshold must be defined. To reduce the experimental bur-

den, we used the average of measured values for both the MIC threshold and the RS threshold.

Thus, for the three 10-gene networks, Net1, Net4, and Net5 of DREAM3, the MIC threshold

was set to 0.3, while for Net2 the threshold was set to 0.29, and for Net3 to 0.25. The normal-

ized RS thresholds for Net1, Net2, Net3, Net4, and Net5 were set to 0.03, 0.09, 0.03, 0.02, and

0.03, respectively. For the 50-gene network, the MIC threshold was set to 0.4 for all five net-

works, and rather than using a RS threshold, in this context we selected the first 10 activator

and repressor pairs with low normalized RS values. For the 10-gene network from the

DREAM4 challenge, the MIC thresholds for Net1 to Net5 were set to 0.35, 0.39, 0.3, 0.3, and

0.4, respectively, while the normalized RS thresholds were set to 0.05, 0.35, 0.09, 0.13, and 0.05,

respectively. For the 100-gene network, the MIC threshold was set to 0.5 for all five networks,

and rather than using a RS threshold, in this context we selected the first 20 activator and

repressor pairs with low normalized RS values. When inferring the SOS DNA network, the

MIC threshold, and RS threshold were set to 0.37 and 0.18 respectively.

Experiments on DREAM3 and DREAM4 datasets

Experiments on the performance of the information theory-based approach identified a high

number of true regulations while producing a relatively high number of false positives

(Table 1) in all network inference problems. For example, for the DREAM3 10-gene Net2, and

the DREAM4 10-gene Net5 inference problems, the information theory-based approach iden-

tified all the true regulations, giving a true positive rate of 1.0, while producing false positive

rates of 0.48 and 0.51, respectively (Table 1). These results indicate that, as a preprocessing

method, the information theory-based approach contributed to improving the overall perfor-

mance of the MICFuzzy by inferring a high number of true positives at the initial stage.

Integration of regulatory relationship strength. The overall improvement in perfor-

mance produced by the MICFuzzy model was tested under two conditions: with and without

the effect of regulatory relationship strength. The results, shown in Table 1 show that in

10-gene, 50-gene and 100-gene inference problems the proposed fuzzy model considerably

reduced the number of false positives inferred by the information theory-based approach.

However, without the effect of the regulatory relationship strength, this reduction was also

accompanied by a detrimental reduction in the number of true regulations identified. By

incorporating the regulatory relationship strength into the regulatory effect for the fuzzy

model, we observed a further reduction in the false regulatory predictions, and the results

retained a considerable number of identified important true regulations from the pre-process-

ing stage, prioritizing highly correlated genes for the 10-gene, 50-gene and 100-gene networks

(Table 1). In the 10-gene Net2 inference problem of the DREAM4 challenge, MICFuzzy, in

both conditions, with and without the inclusion of regulatory relationship strength, performed

similarly. These results occurred because each gene in the filtered gene set from the informa-

tion theory-based approach had a similar regulatory relationship strength (MIC value), and

the target gene expression was highly dependent on input gene expression levels. However, in

all of the other networks of both the DREAM3 and DREAM4 challenges, the MICFuzzy incor-

porating regulatory relationship strength outperformed the model without regulatory relation-

ship strength in terms of F-score, MCC, and Structural Accuracy (Table 1). This result further
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Table 1. Comparison of True Positive Rate, False Positive Rate, F-score, Matthews correlation coefficient, and Structural Accuracy produced by the Information

theory-based approach, and MICFuzzy with and without the inclusion of regulatory relationship strength.

Dataset Method TPR FPR F-score MCC Structural Accuracy

DREAM3 10-Gene Net 1 Information theory-based approach 0.81 0.39 0.35 0.28 0.63

MICFuzzy (without RRS) 0.36 0.24 0.24 0.09 0.71

MICFuzzy (with RRS) 0.64 0.23 0.39 0.30 0.76

Net 2 Information theory-based approach 1.00 0.48 0.46 0.39 0.60

MICFuzzy (without RRS) 0.40 0.24 0.31 0.13 0.70

MICFuzzy (with RRS) 0.60 0.16 0.50 0.39 0.80

Net 3 Information theory-based approach 0.60 0.41 0.25 0.12 0.59

MICFuzzy (without RRS) 0.40 0.19 0.28 0.16 0.76

MICFuzzy (with RRS) 0.60 0.12 0.45 0.38 0.85

Net 4 Information theory-based approach 0.88 0.74 0.46 0.15 0.43

MICFuzzy (without RRS) 0.40 0.39 0.33 0.01 0.56

MICFuzzy (with RRS) 0.64 0.28 0.54 0.34 0.70

Net 5 Information theory-based approach 0.77 0.56 0.44 0.19 0.52

MICFuzzy (without RRS) 0.50 0.25 0.44 0.23 0.68

MICFuzzy (with RRS) 0.55 0.18 0.52 0.36 0.76

DREAM3 50-Gene Net 1 Information theory-based approach 0.45 0.15 0.12 0.13 0.84

MICFuzzy (without RRS) 0.24 0.04 0.19 0.17 0.94

MICFuzzy (with RRS) 0.39 0.04 0.28 0.27 0.95

Net 2 Information theory-based approach 0.40 0.08 0.22 0.21 0.91

MICFuzzy (without RRS) 0.24 0.07 0.15 0.12 0.91

MICFuzzy (with RRS) 0.35 0.05 0.26 0.24 0.93

Net 3 Information theory-based approach 0.37 0.12 0.14 0.13 0.86

MICFuzzy (without RRS) 0.21 0.03 0.21 0.19 0.95

MICFuzzy (with RRS) 0.37 0.03 0.33 0.31 0.96

Net 4 Information theory-based approach 0.45 0.25 0.18 0.12 0.73

MICFuzzy (without RRS) 0.30 0.10 0.22 0.16 0.86

MICFuzzy (with RRS) 0.39 0.09 0.30 0.24 0.88

Net 5 Information theory-based approach 0.45 0.28 0.18 0.10 0.71

MICFuzzy (without RRS) 0.33 0.12 0.23 0.16 0.84

MICFuzzy (with RRS) 0.44 0.11 0.32 0.26 0.86

DREAM4 10-Gene Net 1 Information theory-based approach 0.67 0.25 0.46 0.33 0.73

MICFuzzy (without RRS) 0.33 0.13 0.33 0.20 0.78

MICFuzzy (with RRS) 0.53 0.08 0.55 0.47 0.86

Net 2 Information theory-based approach 0.50 0.19 0.42 0.28 0.76

MICFuzzy (without RRS) 0.50 0.12 0.49 0.37 0.81

MICFuzzy (with RRS) 0.50 0.11 0.50 0.39 0.82

Net 3 Information theory-based approach 0.80 0.59 0.34 0.16 0.48

MICFuzzy (without RRS) 0.27 0.12 0.29 0.16 0.78

MICFuzzy (with RRS) 0.47 0.05 0.54 0.47 0.87

Net 4 Information theory-based approach 0.85 0.43 0.39 0.29 0.61

MICFuzzy (without RRS) 0.46 0.10 0.44 0.35 0.83

MICFuzzy (with RRS) 0.85 0.09 0.71 0.66 0.90

Net 5 Information theory-based approach 1.00 0.51 0.38 0.34 0.56

MICFuzzy (without RRS) 0.42 0.09 0.42 0.33 0.84

MICFuzzy (with RRS) 0.67 0.09 0.59 0.53 0.88

(Continued)
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demonstrated the ability of MICFuzzy to obtain a high number of true predictions while

reducing the number of false regulatory predictions.

Comparison of MICFuzzy performance with other existing models. Since MICFuzzy is

based on concepts from both information theory and fuzzy logic, a comparison of our model

was carried out on models based on information theory (CMI2NI, MICRAT and NARROMI),

and with models based on fuzzy concepts (LASSO-FCM, CF-FCM, and KFCSFCM). We eval-

uated our model based on Average F-score, Average MCC, and Average Structural Accuracy

for all five networks in the DREAM4 10-gene and 100-gene datasets, since MICRAT has used

these measures for performance evaluation and thus, direct comparison is possible. As shown

in Figs 5 and 6, for Average Structural Accuracy, while MICFuzzy showed a slight improve-

ment over MICRAT (Figs 5C and 6C), it showed considerable improvement over NARROMI

in 10-gene and 100-gene datasets. Our proposed model outperformed MICRAT and NAR-

ROMI substantially in both 10-gene and 100-gene datasets with respect to Average F-score

(Figs 5A and 6A) and Average MCC (Figs 5B and 6B) because of its ability to identify a high

number of true regulations and reduce the number of false predictions.

Compared with fuzzy concepts-based models, with respect to SS_mean, our model outper-

formed LASSO-FCM, CF-FCM, and KFCSFCM in inferring all five 10-gene networks in both

challenges and 100-gene networks in the DREAM4 challenge (Table 2). In inferring the

DREAM3 50-gene Net3, MICFuzzy outperformed other methods and was on par with

KFCSFCM due to a similar SS_mean of 0.54. However, for the inference of the Net1, Net2,

Net4, and Net5 networks, the MICFuzzy model outperformed CMI2NI, LASSO-FCM,

CF-FCM, and KFCSFCM. Although the CMI2NI method, as an information theory based

method, produced a higher performance than FCM-based models in the DREAM3 10-gene

Net1, Net4, and the DREAM4 10-gene Net1, Net5 network inference its performance was infe-

rior compared to that of the proposed model. In terms of SS_mean, while both the LAS-

SO-FCM and CF-FCM models are accurate and recent FCM models [36], MICFuzzy

produced superior performance (Table 2).

Table 1. (Continued)

Dataset Method TPR FPR F-score MCC Structural Accuracy

DREAM4 100-Gene Net 1 Information theory-based approach 0.65 0.30 0.07 0.10 0.70

MICFuzzy (without RRS) 0.38 0.06 0.16 0.17 0.93

MICFuzzy (with RRS) 0.56 0.05 0.26 0.28 0.95

Net 2 Information theory-based approach 0.66 0.34 0.09 0.11 0.66

MICFuzzy (without RRS) 0.43 0.09 0.17 0.18 0.90

MICFuzzy (with RRS) 0.64 0.04 0.31 0.33 0.96

Net 3 Information theory-based approach 0.63 0.36 0.07 0.08 0.64

MICFuzzy (without RRS) 0.49 0.09 0.15 0.17 0.90

MICFuzzy (with RRS) 0.62 0.05 0.31 0.33 0.95

Net 4 Information theory-based approach 0.70 0.40 0.07 0.09 0.61

MICFuzzy (without RRS) 0.40 0.08 0.15 0.15 0.90

MICFuzzy (with RRS) 0.62 0.05 0.31 0.33 0.95

Net 5 Information theory-based approach 0.80 0.40 0.07 0.11 0.60

MICFuzzy (without RRS) 0.52 0.09 0.17 0.19 0.91

MICFuzzy (with RRS) 0.70 0.06 0.30 0.34 0.95

The networks considered were the 10- and 50-gene networks of DREAM3 and the 10- and 100-gene networks of DREAM4 challenge.
aRRS: regulatory relationship strength.

https://doi.org/10.1371/journal.pone.0288174.t001
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Impact of pre-processing on computational time. The main drawback of the classical

model is that it requires considerable computational time to select relevant activator-repressor

pairs from all possible gene pairs in the search space [31]. Following the classical model, several

methods were developed [36] to reduce computational time by utilizing clustering methods to

reduce the number of gene pairs. Most of these techniques have improved the performance of

the classical model [31] by reducing the required computational time by up to 50% [36, 39]. In

addition, fuzzy logic-based tools for GRN modelling, such as FCM requires the use of model

learning algorithms such as evolutionary algorithms, which are highly computationally expen-

sive [49]. The time complexity of CS-FCM is O(n3MI) as reported in [34], where n is the num-

ber of nodes (genes) in FCM, M is the number of iterations for data sequences, and I is the

number of iterations required for CS-FCM for optimal results. Based on the design of LAS-

SO-FCM, and KFCSFCM, each method requires approximately the same computational time

as CS-FCM, as demonstrated in experiments [33–35]. Thus, the required time complexity of

these considered FCM-based methods can be simplified as O(n3MI). In [31] the time complex-

ity of the classical model is given as O(n3) which is< O(n3MI). Thus, the classical model is

computationally faster than the above-considered FCM-based methods, LASSO-FCM,

CF-FCM, and KFCSFCM. The time complexities of the CMI2NI, NARROMI, and MICRAT

methods are difficult to compare. However, CMI2NI and NARROMI are computationally

intensive as demonstrated in [21, 53] respectively and the time complexity of these methods

can be varied depending on the problem.

In MICFuzzy, at pre-processing stage, the information-theory-based approach uses MIC

which has been demonstrated to be less computationally intensive [25]. Hence the time com-

plexity of the information-theory-based approach is O(n2), which is the maximum required

time for MIC with default settings [54]. The time complexity of the proposed fuzzy model is O
(nanrn) where na is the number of activators selected and nr is the number of repressors

selected. The upper bound of na = n-1 and nr = n-2, therefore the time complexity of the pro-

posed fuzzy model is O(n3). Then the overall time complexity of MICFuzzy is O(n2 + n3) or O
(n3). In practice, na<< n and nr<< n, therefore O(nanrn)<< O(n3) which indicates that

MICFuzzy is more efficient than the classical model. This is one of the contributions of our

work: reducing na and nr, using a preprocessing technique, to improve the efficiency of GRN

inference.

In this section, we further demonstrated the above-mentioned efficiency improvements of

MICFuzzy over the classical model with respect to computational time based on our experi-

ments. Using the MIC-based information theory-based approach as a pre-processing method,

in MICFuzzy, the required combinatorial computation was significantly reduced compared

with that for the classical model in all DREAM3 and DREAM4 inference problems. This

reduction led to an improvement in the efficiency of the proposed model by reducing the

required computational time (Fig 7). Based on the experiments, this improvement was more

than 55% in all five networks in each sub-challenge, except for the DREAM3 10-gene Net4,

which was nearly 40% (Fig 7A). In 50-gene network inference, the reduction of combinatorial

computation was more than 60% in all five networks, and for Net2 it was 90.4% (Fig 7B) while

outperforming other methods in accuracy also in terms of SS_mean (Table 2) by obtaining a

high number of true positives. In 100-gene networks, the improvement in the efficiency was

significant obtaining more than 84% in all five networks (Fig 7D) while maintaining high

Fig 5. Comparison of Average F-score, Average MCC and Average Structural Accuracy of MICRAT, NARROMI,

and MICFuzzy for inferring DREAM4 10-gene networks. Results of (a) Average F-score (b) Average MCC and (c)

Average Structural Accuracy.

https://doi.org/10.1371/journal.pone.0288174.g005
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model accuracy (Table 1). Based on these results, it is clear that MICFuzzy is applicable to

large-scale network (> 100-gene) inference problems, which will be considered in our future

work.

Experiments with a real-world dataset

The performance of MICFuzzy was tested on an eight-gene network extracted from the SOS

DNA repair network in Escherichia coli. The exact ground truth for this network is not known,

and it is therefore not possible to evaluate the performance of inference algorithms based on

the standard performance metrics. Instead, the performance of MICFuzzy was evaluated based

on the nine known regulatory interactions reported amongst the eight genes [4, 6, 15] (Fig 8).

On SOS DNA repair network, the performance of the MICFuzzy model was compared

with the other well-known state-of-the-art methods MICRAT, GLOBALMIT, PERRIN, MOR-

SHAD and BANJO. For comparison purposes, we followed the same approach as taken in the

MICRAT model; the datasets of all four experiments were combined. The MICFuzzy model

correctly inferred six regulations, the same number as the MICRAT model. Among the nine

known regulations, MICFuzzy identified the regulation type, activation or inhibition of three

regulations correctly (Fig 9A) and produced eight false regulations (Fig 9B). MICRAT has no

ability to infer regulation types, the interactions between genes which are regulating each

other, and has missing information on the number of false regulations identified [15]. Both the

MICFuzzy and MICRAT models ignore the presence of self-regulations, but in our future

Fig 6. Comparison of Average F-score, Average MCC and Average Structural Accuracy of MICRAT, NARROMI,

and MICFuzzy for inferring DREAM4 100-gene networks. Results of (a) Average F-score (b) Average MCC and (c)

Average Structural Accuracy.

https://doi.org/10.1371/journal.pone.0288174.g006

Table 2. Comparison of proposed model with other fuzzy models for inferring DREAM3 and DREAM4 networks.

Dataset Method SS_mean

Net 1 Net 2 Net 3 Net 4 Net 5

DREAM3 10-Gene CMI2NI 0.56 0.32 0.42 0.60 0.40

LASSO-FCM 0.04 0.02 0.16 0.37 0.26

CF-FCM 0.51 0.48 0.61 0.47 0.44

KFCSFCM 0.54 0.44 0.59 0.47 0.46

MICFuzzy 0.69 0.70 0.71 0.68 0.66

DREAM3 50-Gene CMI2NI 0.34 0.31 0.17 0.21 0.14

LASSO-FCM 0.27 0.31 0.38 0.38 0.34

CF-FCM 0.47 0.45 0.45 0.41 0.44

KFCSFCM 0.51 0.51 0.54 0.49 0.55

MICFuzzy 0.55 0.52 0.54 0.55 0.60

DREAM4 10-Gene CMI2NI 0.54 0.31 0.48 0.54 0.64

LASSO-FCM 0.07 0.11 0.09 0.15 0.04

CF-FCM 0.39 0.46 0.48 0.61 0.46

KFCSFCM 0.51 0.53 0.60 0.76 0.59

MICFuzzy 0.68 0.66 0.63 0.80 0.72

DREAM4 100-Gene CMI2NI 0.50 0.26 0.46 0.40 0.44

LASSO-FCM 0.09 0.10 0.10 0.09 0.09

CF-FCM 0.69 0.52 0.56 0.61 0.57

KFCSFCM 0.61 0.56 0.56 0.57 0.59

MICFuzzy 0.70 0.76 0.71 0.74 0.80

https://doi.org/10.1371/journal.pone.0288174.t002
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Fig 7. Reduction of combinatorial computation of the MICFuzzy model compared to the combinatorial

computation required for the classical model in inferring DREAM networks. Inferring results of (a) DREAM3

10-gene, (b) DREAM3 50-gene (c) DREAM4 10-gene and (d) DREAM4 100-gene networks.

https://doi.org/10.1371/journal.pone.0288174.g007

Fig 8. The bacterial E. coli SOS DNA repair target network.

https://doi.org/10.1371/journal.pone.0288174.g008
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work, self-regulations will be considered. As shown in Table 3, amongst the considered

methods, Perrin was the only method that correctly inferred the self-regulation, lexA! lexA.

However, by inferring six correct regulations MICFuzzy outperformed Perrin, BANJO, Glo-

balMIT, and Morshed, which inferred only four, two, five, and four regulations, respectively

(Table 3).

Other than the known true regulations, some incorrect regulations were identified by our

model, and were justified as novel regulations by reference to the literature [4]. For example,

the regulation, uvrA! lexA (Fig 9B) which was inferred by our method was also identified in

[4]. Another regulation, uvrA! recA has been reported as a novel regulation [4, 5, 7]. These

observations further demonstrate the ability of our proposed model to recover novel regula-

tions while identifying a comparatively high number of known regulations.

Conclusions

Most of the existing classical fuzzy models and other fuzzy frameworks are limited in their

ability to improve the accuracy and efficiency of GRN inference. Our novel hybrid fuzzy

Fig 9. Structure of SOS DNA repair network reconstructed by MICFuzzy. (a) Target network with all true regulations. Black lines

indicate true regulations which are not predicted by MICFuzzy and blue lines indicate regulations correctly inferred by MICFuzzy

with identified regulation type. (b) Both true and false regulations are inferred by MICFuzzy. Blue lines indicate regulations correctly

inferred by MICFuzzy and red dashed lines indicate false predictions. In this figure, arrows and barred lines represent positive and

negative interactions respectively.

https://doi.org/10.1371/journal.pone.0288174.g009

Table 3. Comparison of true regulations inferred by MICFuzzy with other methods in the SOS DNA repair network.

Regulation Perrin [4] BANJO [5] GlobalMIT [7] Morshed [6] MICRAT [15] MICFuzzy

lexA! uvrD y y

lexA! lexA y

lexA! umuD y y y y

lexA! recA y y y y y

lexA! uvrA y y y y y y

lexA! uvrY y y y

lexA! ruvA

lexA! polB y y y

recA! lexA y y y

‘y’–correctly inferred regulation

https://doi.org/10.1371/journal.pone.0288174.t003
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model, MICFuzzy provides improved performance and not only infers a large number of true

regulatory predictions than existing approaches but also significantly reduces the number of

false regulatory predictions. The improvements produced by the proposed hybrid fuzzy

model, MICFuzzy are derived from its two main stages, an information theory-based pre-pro-

cessing stage, and a subsequent fuzzy model, which determines the most suitable regulatory

genes from the filtered list obtained from the pre-processing stage. The information theory-

based approach is based on a computationally efficient method, MIC, to evaluate gene-gene

dependencies, and eliminates irrelevant genes while inferring important regulations. This

stage reduces the computational requirements of the fuzzy model. The novel fuzzy model pre-

dicts the target gene expression values by considering not only the input gene expression level

but also the regulatory relationship strength, which further helps to prioritize highly relevant

true regulators while reducing the number of false regulations. Based on the experimental

results obtained from the DREAM3 and DREAM4 simulated datasets, along with the real SOS

gene dataset, we observed that the information theory-based approach infers a high number of

true regulations while the second stage of the fuzzy model has the ability to reduce the number

of false predictions while retaining a high number of true regulations, thereby making MIC-

Fuzzy superior to other state-of-art methods. The algorithm was applied to microarray gene

expression data and can be further enhanced to work with sequencing data (single-cell RNA

sequencing) in future developments.
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