1,186 research outputs found

    Development of multi-functional streetscape green infrastructure using a performance index approach

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments – Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen street vegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure

    Biogeochemical Modelling vs. Tree-Ring Measurements - Comparison of Growth Dynamic Estimates at Two Distinct Oak Forests in Croatia

    Get PDF
    Background and Purpose: Biogeochemical process‑based models use a mathematical representation of physical processes with the aim of simulating and predicting past or future state of ecosystems (e.g. forests). Such models, usually executed as computer programs, rely on environmental variables as drivers, hence they can be used in studies of expected changes in environmental conditions. Process‑based models are continuously developed and improved with new scientific findings and newly available datasets. In the case of forests, long-term tree chronologies, either from monitoring or from tree-ring data, offer valuable means for testing modelling results. Information from different tree cores can cover a wide range of ecological and meteorological conditions and as such provide satisfactory temporal and spatial resolution to be used for model testing and improvement. Materials and Methods: In our research, we used tree-ring data as a ground truth to test the performance of Biome-BGCMuSo (BBGCMuSo) model in two distinct pedunculate oak forest areas, Kupa River Basin (called Pokupsko Basin) and Spačva River Basin, corresponding to a wetter and a drier site, respectively. Comparison of growth estimates from two different data sources was performed by estimating the dynamics of standardized basal area increment (BAI) from tree-ring data and standardized net primary productivity of stem wood (NPPw) from BBGCMuSo model. The estimated growth dynamics during 2000-2014 were discussed regarding the site-specific conditions and the observed meteorology. Results: The results showed similar growth dynamic obtained from the model at both investigated locations, although growth estimates from tree-ring data revealed differences between wetter and drier environment. This indicates higher model sensitivity to meteorology (positive temperature anomalies and negative precipitation anomalies during vegetation period) than to site-specific conditions (groundwater, soil type). At both locations, Pokupsko and Spačva, BBGCMuSo showed poor predictive power in capturing the dynamics obtained from tree‑ring data. Conclusions: BBGCMuSo model, similar to other process-based models, is primarily driven by meteorology, although site-specific conditions are an important factor affecting lowland oak forests’ growth dynamics. When possible, groundwater information should be included in the modelling of lowland oak forests in order to obtain better predictions. The observed discrepancies between measured and modelled data indicate that fixed carbon allocation, currently implemented in the model, fails in predicting growth dynamics of NPP. Dynamic carbon allocation routine should be implemented in the model to better capture tree stress response and growth dynamics

    Reflections on Gravettian firewood procurement near the Pavlov Hills, Czech Republic

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThis paper draws attention to firewood as a natural resource that was gathered, processed and consumed on a daily basis by Palaeolithic groups. Using Gravettian occupation of the Pavlovsk� Hills as a case study (dated to around 30,000 years BP), we investigate firewood availability using archaeological, palaeoenvironmental and ecological data, including making inferences from charcoal in Pavlovian hearths. The collated evidence suggests that while dead wood was likely readily available in woodland areas where humans had not recently foraged, longer term occupations - or repeated occupation of the same area by different groups - would have quickly exhausted naturally occurring supplies. Once depleted, the deadwood pool may have taken several generations (~40-120 years) to recover enough to provide fuel for another base camp occupation. Such exhaustion of deadwood supplies is well attested ethnographically. Thus, we argue that Pavlovian groups likely managed firewood supplies using methods similar to those used by recent hunter-gatherers: through planned geographic mobility and by deliberately killing trees years in advance of when wood was required, so leaving time for the wood to dry out. Such management of fuel resources was, we argue, critical to human expansion into these cold, hitherto marginal, ecologies of the Upper Palaeolithic.AJEP is grateful to The Leverhulme Trust that funded this research, which was undertaken as part of the project Seasonality, Mobility and Storage in Palaeolithic hunting societies (RPG-2013-318)

    Development of multi-functional streetscape green infrastructure using a performance index approach

    Get PDF
    This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments – Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen street vegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure

    Biogeochemical Modelling vs. Tree-Ring Measurements - Comparison of Growth Dynamic Estimates at Two Distinct Oak Forests in Croatia

    Full text link

    Development of multi-functional streetscape green infrastructure using a performance index approach

    No full text
    This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments - Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen streetvegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure

    Ecological-Hydrological Feedback in Forested Wetlands

    Get PDF
    In forested wetlands, the biotic and abiotic consequences of water level variability is not well understood. The effects of flooding on carbon and water exchanges are important knowledge gaps where progress could benefit management of natural resources and predicting of changes in surface geophysical cycles. Two specific needs are a better understanding of (1) wetland tree responses to hydrologic variations, and (2) the effects of the forest and associated tree stressors on surface energy and water fluxes. Objectives were to determine effects of flooding on evaporation rates and energy dynamics, tree water use and growth responses to river-floodplain connectivity and water level variability, and interactions between tree-level and site-level effects of flooding. Energy-balance measurements in the understory of a permanently flooded swamp showed nearly all energy was partitioned to latent heat, yielding evaporation rates of 0.9-2.0 mm day-1 among months assessed; the seasonal pattern of canopy senescence superimposed upon the pattern of heat storage in the floodwater resulted in highest evaporation rates in October and November, out of phase with above-canopy solar forcing. Evaporation from open water was similar to that from floating vegetation. Tree sapflow measurements in a floodplain forest showed increased transpiration in response to a late season flood pulse at a more flooded site, while, concurrently, transpiration declined at a drier site. The more flood tolerant species (Quercus lyrata) benefited more from flooding than did the less tolerant species (Celtis laevigata), but neither species showed flood stress. To examine radial growth responses to water levels in forested wetlands, a model (VSL-Wet) was developed and calibrated across six baldcypress chronologies. Best model fits were obtained with parameters that suggest permanently flooded trees may benefit from deeper flooding. Last, measurements across differently flooded sites showed that more flooded sites had sparser forests but with higher growth efficiency trees, demonstrating the need to consider tree-level responses separate from stand-level patterns. Consistent with common assumptions, this work shows that abiotic and biotic parameters of forested wetlands, including carbon and water fluxes, are influenced by hydrologic variations; however, consequences of hydrologic influences are not universal across scales

    Analyses of the structure and function of lower Colorado River riparian plant communities

    Full text link
    Throughout western North America, riparian ecosystem function has been transformed by anthropogenic influences on riverine environments. Modified flood frequencies, durations or intensities, depressed floodplain water tables, and increased rhizosphere salinities contribute to change in communities formerly dominated by alluvial forest taxa. In addition, the invasion of a naturalized arborescent shrub, Tamarix ramosissima, potentially alters competitive hierarchies and disturbance regimes in riparian ecosystems. To evaluate southwestern riparian community structure and function, comparison of ecophysiological characteristics of dominant woody taxa with site physical parameters was undertaken in riparian ecosystems that are relatively pristine (Bill Williams River) and highly perturbed (lower Colorado River). Analyses of leaf elements and tissue water relations parameters indicated that Tamarix was halophytic, apparently using Na to adjust osmotically to moisture or salinity stress. Tamarix leaf litter accumulation may also contribute to episodic fires, a form of disturbance that appears to be new in southwestern riparian ecosystems. Post-fire soil salinization and hydraulic efficiency in resprouting burned Tamarix individuals provided evidence for fire adaptation in this species relative to native woody taxa. The shrub, Tessaria sericea, appeared to share certain of these traits with Tamarix, apparently contributing to its success in colonizing perturbed floodplain habitats. Stable isotopic analyses of moisture sources and xylem water showed that Tamarix may be facultatively phreatophytic while the formerly dominant alluvial forest taxa, Salix gooddingii and Populus fremontii, are obligate phreatophytes. Leaf tissue carbon isotopic discrimination provided evidence for high water use efficiency in Tamarix relative to the other three taxa evaluated. Experimental removal of Tamarix from stands where Salix was codominant resulted in morphological change, less negative water potentials and higher leaf conductance in Salix, all evidence for interspecific competition. The persistence of Salix but not Populus on the Colorado River may occur due to lower osmotic potentials and higher cell elasticity in the former species. A high proportion of senescent Populus in Colorado River riparian vegetation plots provided an indication that this species is approaching local extinction in this ecosystem. Ordination analyses provided evidence for riparian community structure along gradients of moisture, salinity, disturbance from fire, and community maturity

    The nitrogen and phosphorus nutrition of white ash (F̲ṟa̲x̲i̲ṉu̲s̲ A̲m̲e̲ṟi̲c̲a̲ṉa̲ L.)

    Get PDF
    The research reported here is the first endeavor to evaluate the adequacy of Cumberland Plateau and Highland Rim soils in middle Tennessee and northern Alabama for the satisfactory growth and development of white ash. It is part of a research program of the U. S. Forest Service aimed at determining site capability and species adaptability for the Plateau and Rim and providing silvicultural recommendations for the rehabilitation of forest lands. In the first of two experiments seedlings were grown in pots of soil with N and P additions. Mixed Al and A2 horizons from two representative forest soils (Hartsells and Bodine) were tested. The study was a split plot with three replications of each soil (major plots). Minor plots consisted of a complete factorial arrangement of four levels each of N as NH4No3 (0, 168, 336, 504 kg/ha) and four levels of Pas TSP (0, 112, 224, 336 kg/ha). After one growing season growth and N, P, K, Ca, and Mg in the leaves of four seedings per pot were evaluated by ANOVA. Nitrogen and P main effects and their interactions were analyzed by generating linear, quadratic, and cubic components. Seedling biomass and foliar composition were correlated
    corecore