584 research outputs found

    Multiobjective optimization in bioinformatics and computational biology

    Get PDF

    Scientific discovery as a combinatorial optimisation problem: How best to navigate the landscape of possible experiments?

    Get PDF
    A considerable number of areas of bioscience, including gene and drug discovery, metabolic engineering for the biotechnological improvement of organisms, and the processes of natural and directed evolution, are best viewed in terms of a ‘landscape’ representing a large search space of possible solutions or experiments populated by a considerably smaller number of actual solutions that then emerge. This is what makes these problems ‘hard’, but as such these are to be seen as combinatorial optimisation problems that are best attacked by heuristic methods known from that field. Such landscapes, which may also represent or include multiple objectives, are effectively modelled in silico, with modern active learning algorithms such as those based on Darwinian evolution providing guidance, using existing knowledge, as to what is the ‘best’ experiment to do next. An awareness, and the application, of these methods can thereby enhance the scientific discovery process considerably. This analysis fits comfortably with an emerging epistemology that sees scientific reasoning, the search for solutions, and scientific discovery as Bayesian processes

    Inference of Biochemical S-Systems via Mixed-Variable Multiobjective Evolutionary Optimization

    Get PDF
    Inference of the biochemical systems (BSs) via experimental data is important for understanding how biochemical components in vivo interact with each other. However, it is not a trivial task because BSs usually function with complex and nonlinear dynamics. As a popular ordinary equation (ODE) model, the S-System describes the dynamical properties of BSs by incorporating the power rule of biochemical reactions but behaves as a challenge because it has a lot of parameters to be confirmed. This work is dedicated to proposing a general method for inference of S-Systems by experimental data, using a biobjective optimization (BOO) model and a specially mixed-variable multiobjective evolutionary algorithm (mv-MOEA). Regarding that BSs are sparse in common sense, we introduce binary variables indicating network connections to eliminate the difficulty of threshold presetting and take data fitting error and the 0 -norm as two objectives to be minimized in the BOO model. Then, a selection procedure that automatically runs tradeoff between two objectives is employed to choose final inference results from the obtained nondominated solutions of the mv-MOEA. Inference results of the investigated networks demonstrate that our method can identify their dynamical properties well, although the automatic selection procedure sometimes ignores some weak connections in BSs

    Inference of Biochemical S-Systems via Mixed-Variable Multiobjective Evolutionary Optimization

    Get PDF
    Inference of the biochemical systems (BSs) via experimental data is important for understanding how biochemical components in vivo interact with each other. However, it is not a trivial task because BSs usually function with complex and nonlinear dynamics. As a popular ordinary equation (ODE) model, the S-System describes the dynamical properties of BSs by incorporating the power rule of biochemical reactions but behaves as a challenge because it has a lot of parameters to be confirmed. This work is dedicated to proposing a general method for inference of S-Systems by experimental data, using a biobjective optimization (BOO) model and a specially mixed-variable multiobjective evolutionary algorithm (mv-MOEA). Regarding that BSs are sparse in common sense, we introduce binary variables indicating network connections to eliminate the difficulty of threshold presetting and take data fitting error and the L0-norm as two objectives to be minimized in the BOO model. Then, a selection procedure that automatically runs tradeoff between two objectives is employed to choose final inference results from the obtained nondominated solutions of the mv-MOEA. Inference results of the investigated networks demonstrate that our method can identify their dynamical properties well, although the automatic selection procedure sometimes ignores some weak connections in BSs

    Design Principles of Biological Oscillators through Optimization: Forward and Reverse Analysis

    Get PDF
    26 páginas, 10 figuras, 1 tabla.-- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedFrom cyanobacteria to human, sustained oscillations coordinate important biological functions. Although much has been learned concerning the sophisticated molecular mechanisms underlying biological oscillators, design principles linking structure and functional behavior are not yet fully understood. Here we explore design principles of biological oscillators from a multiobjective optimization perspective, taking into account the trade-offs between conflicting performance goals or demands. We develop a comprehensive tool for automated design of oscillators, based on multicriteria global optimization that allows two modes: (i) the automatic design (forward problem) and (ii) the inference of design principles (reverse analysis problem). From the perspective of synthetic biology, the forward mode allows the solution of design problems that mimic some of the desirable properties appearing in natural oscillators. The reverse analysis mode facilitates a systematic exploration of the design space based on Pareto optimality concepts. The method is illustrated with two case studies: the automatic design of synthetic oscillators from a library of biological parts, and the exploration of design principles in 3-gene oscillatory systemsThis work was supported by MINECO (and the European Regional Development Fund) project ªSYNBIOFACTORYº (grant number DPI2014-55276-C5-2-R).Peer reviewe

    A computational framework for gene regulatory network inference that combines multiple methods and datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reverse engineering in systems biology entails inference of gene regulatory networks from observational data. This data typically include gene expression measurements of wild type and mutant cells in response to a given stimulus. It has been shown that when more than one type of experiment is used in the network inference process the accuracy is higher. Therefore the development of generally applicable and effective methodologies that embed multiple sources of information in a single computational framework is a worthwhile objective.</p> <p>Results</p> <p>This paper presents a new method for network inference, which uses multi-objective optimisation (MOO) to integrate multiple inference methods and experiments. We illustrate the potential of the methodology by combining ODE and correlation-based network inference procedures as well as time course and gene inactivation experiments. Here we show that our methodology is effective for a wide spectrum of data sets and method integration strategies.</p> <p>Conclusions</p> <p>The approach we present in this paper is flexible and can be used in any scenario that benefits from integration of multiple sources of information and modelling procedures in the inference process. Moreover, the application of this method to two case studies representative of bacteria and vertebrate systems has shown potential in identifying key regulators of important biological processes.</p

    Multiobjective Identification of a Feedback Synthetic Gene Circuit

    Full text link
    © 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Kinetic (i.e., dynamic) semimechanistic models based on the first principles are particularly important in systems and synthetic biology since they can explain and predict the functional behavior that emerges from the time-varying concentrations in cellular components. However, gene circuit models are nonlinear higher order ones and have a large number of parameters. In addition, experimental measurements are often scarce, and enough signal excitability for identification cannot always be achieved. These characteristics render the identification problem ill-posed, so most gene circuit models present incomplete parameter identifiability. Thus, parameter identification of typical biological models still appears as an open problem, where ensemble modeling approaches and multiobjective optimization arise as natural options. We address the problem of identifying the stochastic model of a closed-loop synthetic genetic circuit designed to minimize the gene expression noise. The model results from the feedback interaction between two subsystems. Besides incomplete parameter identifiability, the closed-loop dynamics cannot be directly identified due to the lack of enough input signal excitability. We apply a two-stage approach. First, the open-loop averaged time-course experimental data are used to identify a reduced-order stochastic model of the system direct chain. Then, closed-loop steady-state stochastic distributions are used to identify the remaining parameters in the feedback configuration. In both cases, multiobjective optimization is used to address the parameter identifiability, providing sets of parameters valid for different state-space regions. The methodology gives good identification results, provides clear guidelines on the effect of the parameters under different scenarios, and it is particularly useful for easily combining time-course population averaged and steady-state single-cell distribution experimental data.This work was supported by the European Union and Spanish Government, MINECO/AEI/FEDER under Grant DPI2017-82896-C2-1-R. The work of Y. Boada was supported by the Universitat Politecnica de Valencia under Grant FPI/2013-3242.Boada-Acosta, YF.; Vignoni, A.; Picó, J. (2020). Multiobjective Identification of a Feedback Synthetic Gene Circuit. IEEE Transactions on Control Systems Technology. 28(1):208-223. https://doi.org/10.1109/TCST.2018.2885694S20822328
    corecore