48,802 research outputs found

    Learning how to act: making good decisions with machine learning

    Get PDF
    This thesis is about machine learning and statistical approaches to decision making. How can we learn from data to anticipate the consequence of, and optimally select, interventions or actions? Problems such as deciding which medication to prescribe to patients, who should be released on bail, and how much to charge for insurance are ubiquitous, and have far reaching impacts on our lives. There are two fundamental approaches to learning how to act: reinforcement learning, in which an agent directly intervenes in a system and learns from the outcome, and observational causal inference, whereby we seek to infer the outcome of an intervention from observing the system. The goal of this thesis to connect and unify these key approaches. I introduce causal bandit problems: a synthesis that combines causal graphical models, which were developed for observational causal inference, with multi-armed bandit problems, which are a subset of reinforcement learning problems that are simple enough to admit formal analysis. I show that knowledge of the causal structure allows us to transfer information learned about the outcome of one action to predict the outcome of an alternate action, yielding a novel form of structure between bandit arms that cannot be exploited by existing algorithms. I propose an algorithm for causal bandit problems and prove bounds on the simple regret demonstrating it is close to mini-max optimal and better than algorithms that do not use the additional causal information

    von Neumann-Morgenstern and Savage Theorems for Causal Decision Making

    Full text link
    Causal thinking and decision making under uncertainty are fundamental aspects of intelligent reasoning. Decision making under uncertainty has been well studied when information is considered at the associative (probabilistic) level. The classical Theorems of von Neumann-Morgenstern and Savage provide a formal criterion for rational choice using purely associative information. Causal inference often yields uncertainty about the exact causal structure, so we consider what kinds of decisions are possible in those conditions. In this work, we consider decision problems in which available actions and consequences are causally connected. After recalling a previous causal decision making result, which relies on a known causal model, we consider the case in which the causal mechanism that controls some environment is unknown to a rational decision maker. In this setting we state and prove a causal version of Savage's Theorem, which we then use to develop a notion of causal games with its respective causal Nash equilibrium. These results highlight the importance of causal models in decision making and the variety of potential applications.Comment: Submitted to Journal of Causal Inferenc

    Agent-Based Models and Simulations in Economics and Social Sciences: from conceptual exploration to distinct ways of experimenting

    Get PDF
    Now that complex Agent-Based Models and computer simulations spread over economics and social sciences - as in most sciences of complex systems -, epistemological puzzles (re)emerge. We introduce new epistemological tools so as to show to what precise extent each author is right when he focuses on some empirical, instrumental or conceptual significance of his model or simulation. By distinguishing between models and simulations, between types of models, between types of computer simulations and between types of empiricity, section 2 gives conceptual tools to explain the rationale of the diverse epistemological positions presented in section 1. Finally, we claim that a careful attention to the real multiplicity of denotational powers of symbols at stake and then to the implicit routes of references operated by models and computer simulations is necessary to determine, in each case, the proper epistemic status and credibility of a given model and/or simulation

    Multi-agent knowledge integration mechanism using particle swarm optimization

    Get PDF
    This is the post-print version of the final paper published in Technological Forecasting and Social Change. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Unstructured group decision-making is burdened with several central difficulties: unifying the knowledge of multiple experts in an unbiased manner and computational inefficiencies. In addition, a proper means of storing such unified knowledge for later use has not yet been established. Storage difficulties stem from of the integration of the logic underlying multiple experts' decision-making processes and the structured quantification of the impact of each opinion on the final product. To address these difficulties, this paper proposes a novel approach called the multiple agent-based knowledge integration mechanism (MAKIM), in which a fuzzy cognitive map (FCM) is used as a knowledge representation and storage vehicle. In this approach, we use particle swarm optimization (PSO) to adjust causal relationships and causality coefficients from the perspective of global optimization. Once an optimized FCM is constructed an agent based model (ABM) is applied to the inference of the FCM to solve real world problem. The final aggregate knowledge is stored in FCM form and is used to produce proper inference results for other target problems. To test the validity of our approach, we applied MAKIM to a real-world group decision-making problem, an IT project risk assessment, and found MAKIM to be statistically robust.Ministry of Education, Science and Technology (Korea

    KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development

    Get PDF
    Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents(especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar
    corecore