37 research outputs found

    Interior-point methods for PDE-constrained optimization

    Get PDF
    In applied sciences PDEs model an extensive variety of phenomena. Typically the final goal of simulations is a system which is optimal in a certain sense. For instance optimal control problems identify a control to steer a system towards a desired state. Inverse problems seek PDE parameters which are most consistent with measurements. In these optimization problems PDEs appear as equality constraints. PDE-constrained optimization problems are large-scale and often nonconvex. Their numerical solution leads to large ill-conditioned linear systems. In many practical problems inequality constraints implement technical limitations or prior knowledge. In this thesis interior-point (IP) methods are considered to solve nonconvex large-scale PDE-constrained optimization problems with inequality constraints. To cope with enormous fill-in of direct linear solvers, inexact search directions are allowed in an inexact interior-point (IIP) method. This thesis builds upon the IIP method proposed in [Curtis, Schenk, Wächter, SIAM Journal on Scientific Computing, 2010]. SMART tests cope with the lack of inertia information to control Hessian modification and also specify termination tests for the iterative linear solver. The original IIP method needs to solve two sparse large-scale linear systems in each optimization step. This is improved to only a single linear system solution in most optimization steps. Within this improved IIP framework, two iterative linear solvers are evaluated: A general purpose algebraic multilevel incomplete L D L^T preconditioned SQMR method is applied to PDE-constrained optimization problems for optimal server room cooling in three space dimensions and to compute an ambient temperature for optimal cooling. The results show robustness and efficiency of the IIP method when compared with the exact IP method. These advantages are even more evident for a reduced-space preconditioned (RSP) GMRES solver which takes advantage of the linear system's structure. This RSP-IIP method is studied on the basis of distributed and boundary control problems originating from superconductivity and from two-dimensional and three-dimensional parameter estimation problems in groundwater modeling. The numerical results exhibit the improved efficiency especially for multiple PDE constraints. An inverse medium problem for the Helmholtz equation with pointwise box constraints is solved by IP methods. The ill-posedness of the problem is explored numerically and different regularization strategies are compared. The impact of box constraints and the importance of Hessian modification on the optimization algorithm is demonstrated. A real world seismic imaging problem is solved successfully by the RSP-IIP method

    Splitting methods with variable metric for KL functions

    Full text link
    We study the convergence of general abstract descent methods applied to a lower semicontinuous nonconvex function f that satisfies the Kurdyka-Lojasiewicz inequality in a Hilbert space. We prove that any precompact sequence converges to a critical point of f and obtain new convergence rates both for the values and the iterates. The analysis covers alternating versions of the forward-backward method with variable metric and relative errors. As an example, a nonsmooth and nonconvex version of the Levenberg-Marquardt algorithm is detailled

    Iterative Methods for the Elasticity Imaging Inverse Problem

    Get PDF
    Cancers of the soft tissue reign among the deadliest diseases throughout the world and effective treatments for such cancers rely on early and accurate detection of tumors within the interior of the body. One such diagnostic tool, known as elasticity imaging or elastography, uses measurements of tissue displacement to reconstruct the variable elasticity between healthy and unhealthy tissue inside the body. This gives rise to a challenging parameter identification inverse problem, that of identifying the Lamé parameter μ in a system of partial differential equations in linear elasticity. Due to the near incompressibility of human tissue, however, common techniques for solving the direct and inverse problems are rendered ineffective due to a phenomenon known as the “locking effect”. Alternative methods, such as mixed finite element methods, must be applied to overcome this complication. Using these methods, this work reposes the problem as a generalized saddle point problem along with a presentation of several optimization formulations, including the modified output least squares (MOLS), energy output least squares (EOLS), and equation error (EE) frameworks, for solving the elasticity imaging inverse problem. Subsequently, numerous iterative optimization methods, including gradient, extragradient, and proximal point methods, are explored and applied to solve the related optimization problem. Implementations of all of the iterative techniques under consideration are applied to all of the developed optimization frameworks using a representative numerical example in elasticity imaging. A thorough analysis and comparison of the methods is subsequently presented
    corecore