2,233 research outputs found

    Inexact Model: A Framework for Optimization and Variational Inequalities

    Get PDF
    In this paper we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems and variational inequalities. This framework allows to obtain many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows to construct new methods, which we illustrate by constructing a universal method for variational inequalities with composite structure. This method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem smoothness. We also generalize our framework for strongly convex objectives and strongly monotone variational inequalities.Comment: 41 page

    A Family of Subgradient-Based Methods for Convex Optimization Problems in a Unifying Framework

    Full text link
    We propose a new family of subgradient- and gradient-based methods which converges with optimal complexity for convex optimization problems whose feasible region is simple enough. This includes cases where the objective function is non-smooth, smooth, have composite/saddle structure, or are given by an inexact oracle model. We unified the way of constructing the subproblems which are necessary to be solved at each iteration of these methods. This permitted us to analyze the convergence of these methods in a unified way compared to previous results which required different approaches for each method/algorithm. Our contribution rely on two well-known methods in non-smooth convex optimization: the mirror-descent method by Nemirovski-Yudin and the dual-averaging method by Nesterov. Therefore, our family of methods includes them and many other methods as particular cases. For instance, the proposed family of classical gradient methods and its accelerations generalize Devolder et al.'s, Nesterov's primal/dual gradient methods, and Tseng's accelerated proximal gradient methods. Also our family of methods can partially become special cases of other universal methods, too. As an additional contribution, the novel extended mirror-descent method removes the compactness assumption of the feasible region and the fixation of the total number of iterations which is required by the original mirror-descent method in order to attain the optimal complexity.Comment: 31 pages. v3: Major revision. Research Report B-477, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, February 201

    Inexact model: A framework for optimization and variational inequalities

    Get PDF
    In this paper we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems and variational inequalities. This framework allows to obtain many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows to construct new methods, which we illustrate by constructing a universal method for variational inequalities with composite structure. This method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem smoothness. We also generalize our framework for strongly convex objectives and strongly monotone variational inequalities

    Optimal decentralized distributed algorithms for stochastic convex optimization

    Get PDF
    We consider stochastic convex optimization problems with affine constraints and develop several methods using either primal or dual approach to solve it. In the primal case we use special penalization technique to make the initial problem more convenient for using optimization methods. We propose algorithms to solve it based on Similar Triangles Method with Inexact Proximal Step for the convex smooth and strongly convex smooth objective functions and methods based on Gradient Sliding algorithm to solve the same problems in the non-smooth case. We prove the convergence guarantees in smooth convex case with deterministic first-order oracle. We propose and analyze three novel methods to handle stochastic convex optimization problems with affine constraints: SPDSTM, R-RRMA-AC-SA and SSTM_sc. All methods use stochastic dual oracle. SPDSTM is the stochastic primal-dual modification of STM and it is applied for the dual problem when the primal functional is strongly convex and Lipschitz continuous on some ball. R-RRMA-AC-SA is an accelerated stochastic method based on the restarts of RRMA-AC-SA and SSTM_sc is just stochastic STM for strongly convex problems. Both methods are applied to the dual problem when the primal functional is strongly convex, smooth and Lipschitz continuous on some ball and use stochastic dual first-order oracle. We develop convergence analysis for these methods for the unbiased and biased oracles respectively. Finally, we apply all aforementioned results and approaches to solve decentralized distributed optimization problem and discuss optimality of the obtained results in terms of communication rounds and number of oracle calls per node

    Inexact relative smoothness and strong convexity for optimization and variational inequalities by inexact model

    Get PDF
    In this paper we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems and variational inequalities. This framework allows to obtain many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, Bregman proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows to construct new methods, which we illustrate by constructing a universal conditional gradient method and universal method for variational inequalities with composite structure. These method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem smoothness. As a particular case of our general framework, we introduce relative smoothness for operators and propose an algorithm for VIs with such operator. We also generalize our framework for relatively strongly convex objectives and strongly monotone variational inequalities

    Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization

    Get PDF
    We consider the problem of optimizing the sum of a smooth convex function and a non-smooth convex function using proximal-gradient methods, where an error is present in the calculation of the gradient of the smooth term or in the proximity operator with respect to the non-smooth term. We show that both the basic proximal-gradient method and the accelerated proximal-gradient method achieve the same convergence rate as in the error-free case, provided that the errors decrease at appropriate rates.Using these rates, we perform as well as or better than a carefully chosen fixed error level on a set of structured sparsity problems.Comment: Neural Information Processing Systems (2011
    corecore