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Inexact model: A framework for optimization and variational
inequalities

Fedor Stonyakin, Alexander Gasnikov, Alexander Tyurin, Dmitry Pasechnyuk, Artem Agafonov, Pavel
Dvurechensky, Darina Dvinskikh, Victorya Piskunova

Abstract

In this paper we propose a general algorithmic framework for first-order methods in optimiza-
tion in a broad sense, including minimization problems, saddle-point problems and variational
inequalities. This framework allows to obtain many known methods as a special case, the list
including accelerated gradient method, composite optimization methods, level-set methods, prox-
imal methods. The idea of the framework is based on constructing an inexact model of the main
problem component, i.e. objective function in optimization or operator in variational inequalities.
Besides reproducing known results, our framework allows to construct new methods, which we
illustrate by constructing a universal method for variational inequalities with composite structure.
This method works for smooth and non-smooth problems with optimal complexity without a priori
knowledge of the problem smoothness. We also generalize our framework for strongly convex
objectives and strongly monotone variational inequalities.

1 Introduction

Let us consider the following convex optimization problem

min
x∈Q

f(x), (1)

where f is a convex function and Q is a convex subset of finite-dimensional vector space E. Most of
minimization methods for such problems are constructed using some model of the objective f at the
current iterate xk. This can be a quadratic model based on the L-smoothness of the gradient

f(xk) + 〈∇f(xk), y − xk〉+
L

2
‖y − xk‖2

2. (2)

The step of gradient method is obtained by the minimization of this model [35]. More general models
are constructed based on regularized second-order Taylor expansion [37] or other Taylor-like models
[9] or objective surrogates [25]. Another example is the conditional gradient method [15], where a
linear model of the objective is minimized on every iteration. Adaptive choice of the parameter of the
model with provably small computational overhead was first proposed in [37] and applied to first-order
methods in [32, 33, 11]. Recently, first-order optimization methods were generalized to the so-called
relative smoothness framework [2, 24, 38], where 1

2
‖xk − y‖2

2 in the quadratic model (2) for the
objective is replaced with general Bregman divergence.

The literature on first-order methods [8, 10] considers also gradient methods with inexact information,
relaxing the model (2) to

fδ(xk) + 〈∇fδ(xk), y − xk〉+
L

2
‖y − xk‖2

2 + δ,
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F. Stonyakin et al. 2

with (fδ,∇fδ) called inexact oracle and this model being an upper bound for the objective.

One of the goals of this paper is to describe and analyze first-order optimization methods which use a
very general inexact model of the objective function. This model includes as a particular case inexact
oracle model and relative smoothness framework, and allows to obtain many optimization methods as
a particular case, including conditional gradient method [15] and proximal gradient method [7]. First
attempts to propose this generalization were made in [43, 16] for non-accelerated methods, yet without
proofs, and in [17] for accelerated methods, yet without relative smoothness paradigm. In this paper
we make a review of these results for completeness and extend them to more general cases, including
proofs, adaptivity to the parameter L, extension for strongly convex case and relative smoothness. As
an application of our general framework, we also develop a universal conditional gradient method,
providing a parameter-free generalization of the results of [34]. We believe that our model is flexible
enough to be extended for problems with primal-dual structure [31, 28], e.g. for problems with linear
constraints [12], and also for random block-coordinate descent [14].

Optimization problem (1) is tightly connected with variational inequality (VI)

Find x∗ ∈ Q s.t. 〈g(x∗), x∗ − x〉 ≤ 0, ∀x ∈ Q,

where g(x) = ∇f(x). This problem is also equivalent to finding saddle-point of a function

min
u∈Q1

max
v∈Q2

f(u, v)

for x = (u, v) and g(x) = (∇uf(u, v),−∇vf(u, v)). This motivates the second, more novel part
of this paper, which consists in generalization of the inexact model of the objective function to an in-
exact model for an operator in variational inequality. In particular, we extend the relative smoothness
paradigm to variational inequalities with monotone and strongly monotone operators and provide a
generalization of Mirror-Prox method [27], its adaptive version [18] and universal version [13] to varia-
tional inequalities with such general inexact model of the operator. As a partucular case, our approach
allows to partially reproduce the results of [6]. We also apply the general framework for variational
inequalities to saddle-point problems.

In general, we present a unified view on inexact models for convex optimization problems, variational
inequalities, and saddle-point problems.

The structure of the paper is the following. In Section 2 we consider minimization problems and inexact
model of the objective function. We consider adaptive gradient method (GM) and adaptive fast gradient
method (FGM). FGM has better convergence rate, yet it is not adapted to the relative smoothness
paradigm. In section 2.4, we construct universal conditional gradient (Frank–Wolfe) method using FGM
with inexact projection.

In Section 3, we present inexact (δ, L, µ)-model which is compatible with relative smoothness paradigm.
We obtain convergence rates of adaptive and non-adaptive GM for this case. We especially consider
the case of m-strong convexity of the model, which is motivated by composite optimization problems
[32] with strongly convex composite term. We also illustrate the definition of inexact (δ, L, µ)-model
by several examples.

In Section 4 we generalize inexact (δ, L)-model and (δ, L, µ)-model to variational inequalities and
saddle-point problems. In the former case, we construct an adaptive generalization (Algorithm 5) of
the Mirror-Prox algorithm for variational inequalities and saddle-point problems with such inexact mod-
els. In the case of (δ, L, µ)-model the proposed algorithm is accelerated by the restart technique to
have linear rate of convergence. We especially consider the case of m-strong convexity of the model.
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Inexact model: A framework for optimization and variational inequalities 3

The natural motivation for such a formulation are composite saddle problems, and mixed variational
inequalities with a m-strongly convex composite.

In the Appendix we give some numerical experiments to compare adaptive and non-adaptive versions
of gradient method with (δ, L, µ)-model and to compare Algorithms 5 and 6.

The contribution of this paper is follows:

1 Using FGM with inexact model we construct a universal conditional gradient (Frank–Wolfe)
method.

2 We present (δ, L, µ)-model for optimization problems. Also, we derive convergence rates for
non-adaptive and adaptive GM for optimization problems with (δ, L, µ)-model. Specially we
consider the case of m-strong convexity of such model.

3 We propose generalizations of (δ, L)-model and (δ, L, µ)-model for variational inequalities and
saddle-point problems. Specially we consider the case of m-strong convexity of such model.
We obtain convergence rates for adaptive versions of Mirror-Prox algorithm for problems with
inexact model.

2 Inexact Model for Minimization

2.1 Definitions and Examples

We start with the general notation. Let E be a finite-dimensional real vector space and E∗ be its dual.
We denote the value of a linear function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖ be some norm on
E, ‖ · ‖∗ be its dual, defined by ‖g‖∗ = max

x

{
〈g, x〉, ‖x‖ ≤ 1

}
. We use ∇f(x) to denote any

(sub)gradient of a function f at a point x ∈ domf .

Definition 1. Suppose that for a given point y ∈ Q and for all x ∈ Q the inequality

0 ≤ f(x)− (fδ(y) + ψδ(x, y)) ≤ LV [y](x) + δ

holds for some ψδ(x, y), fδ(y) ∈ [f(y) − δ; f(y)], L, δ > 0 and V [y](x) = d(x) − d(y) −
〈∇d(y), x− y〉, where d(x) is convex function on Q . Let ψδ(x, y) be convex for x ∈ Q and satisfy
ψδ(x, x) = 0 for all x ∈ Q. Then we say that ψδ(x, y) is (δ, L)-model of the function f at a given
point y with respect to (w.r.t.) V [y](x).

Remark 1. Function V [y](x), defined above as V [y](x) = d(x)− d(y)− 〈∇d(y), x− y〉 is often
called Bregman divergence [4]. But typically it should be added the (1-SC) assumption in definition:
d(x) is 1-strongly convex on Q w.r.t. ‖ · ‖-norm. Note that in Definition 1 we do not need such as-
sumption. But sometimes we also use the definition of V [y](x) in the description of algorithms below
and corresponding theorems of convergences rates separately. If additionally the condition (1-SC) is
required we write it explicitly.

Remark 2. We change ‘w.r.t V [y](x)’ to ‘w.r.t. ‖ · ‖-norm’ in Definition 1 if we use 1
2
‖x− y‖2 instead

of V [y](x).

Definition 2. For a convex optimization problem

Ψ(x)→ min
x∈Q

,
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F. Stonyakin et al. 4

we denote by Arg minδ̃x∈Q Ψ(x) a set of x̃:

∃h ∈ ∂Ψ(x̃): ∀x ∈ Q →〈h, x− x̃〉 ≥ −δ̃.

Let us denote by argminδ̃x∈Q Ψ(x) some element of Arg minδ̃x∈Q Ψ(x).

Remark 3. We can show that if x̃ ∈ Arg minδ̃x∈Q Ψ(x), then Ψ(x̃) − Ψ(x∗) ≤ δ. Indeed, we have

Ψ(x∗) ≥ Ψ(x̃) + 〈h, x∗ − x̃〉 ≥ Ψ(x̃)− δ̃. The converse statement is not always true. However, for
some general cases we can resolve the problem (see [17] and Example 3).

Example 3. Let us show an example, how we can resolve the problem in Remark 3. Note, that if Ψ(x)
is µ-strongly convex; has L-Lipschitz continuous gradient in ‖ · ‖ norm (To say more precisely

L = max
‖h‖≤1,x∈[x̃,x∗]

〈h,∇2Ψ(x)h〉.

and R = maxx,y∈Q ‖x− y‖, then Ψ(x̃)−Ψ(x∗) ≤ ε̃ entails that [43]

δ̃ ≤ (LR + ‖∇Ψ(x∗)‖∗)
√

2ε̃/µ, (3)

where x∗ = argminx∈Q Ψ(x). If one can guarantee that ∇Ψ(x∗) = 0, then (3) can be improved

δ̃ ≤ R
√

2Lε̃.

Let us recall some examples in which the concept of (δ, L)-model of objective function is useful. For
the following optimization problems and methods: smooth optimization problem, composite (acceler-
ated) gradient methods [3, 32], level (accelerated) gradient method [23], min-min problem, Proximal
method [7], universal method [33] refer to [17]. In section 2.4 we consider (δ, L)–model for univer-
sal Frank–Wolfe method. As far as we know, this is the first attempt to combine Frank–Wolfe method
[19, 20] and universal method [33].

2.2 Gradient Method with Inexact Model

In this section we consider a simple non-accelerated method for optimization problems with (δ, L)-
model. This method is a variant of the standard gradient method [41] with adaptive Lipschitz constant
tuning of the gradient of the objective function.

We assume that at each iteration k, the method has access to (δ, L̄k+1)-model of f w.r.t V [y](x)
(see Definition 1 and Remark 2). In general, we consider that constant L̄k+1 may vary from iteration
to iteration, we only assume that we can find some constant L̄k+1 such that (δ, L̄k+1)-model exists at
k–step of Algorithm 1 and we do not use L̄k+1 in Algorithm 1 explicitly.

Theorem 4. Let V [x0](x∗) ≤ R2, where x0 is the starting point, and x∗ is the nearest minimum point
to the point x0 in the sense of Bregman divergence (see Remark 1). We assume that L̄k+1 ≤ L for
all k ≥ 0. Then, for the sequence, generated by Algorithm 1 the following holds

f(x̄N)− f(x∗) ≤
2LR2

N
+ δ̃ + 2δ.

The theorem is proved in [43].

Remark 4. Despite the adaptive structure of Algorithm 1 as in [33] it can be shown that in average
the algorithm up to logarithmic terms requires two computations of function and one computation of
(δ, L)-model per iteration.
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Inexact model: A framework for optimization and variational inequalities 5

Algorithm 1 Gradient method with an oracle using the (δ, L)-model

1: Input: x0 is the starting point, L0 > 0 and δ, δ̃ > 0.
2: Set α0 := 0, A0 := α0

3: for k ≥ 0 do
4: Find the smallest ik ≥ 0 such that

fδ(xk+1) ≤ fδ(xk) + ψδ(xk+1, xk) + Lk+1V [xk](xk+1) + δ,

where Lk+1 = 2ik−1Lk, αk+1 := 1
Lk+1

, Ak+1 := Ak + αk+1.

φk+1(x) = ψδ(x, xk) + Lk+1V [xk](x), xk+1 := argmin
x∈Q

δ̃φk+1(x). (4)

5: end for
Ensure: x̄N = 1

AN

∑N−1
k=0 αk+1xk+1

2.3 Fast Gradient Method with Inexact Model

In this section we consider accelerated method for problems with (δ, L)-model. The method is close
to accelerated mirror-descent type of methods by [44, 22, 11]. On each iteration, the inexact model is
used to make a mirror-descent-type of step. In this section, we assume that the (δ, L)-model of f is
given w.r.t. ‖ · ‖-norm and V [u](x) satisfies (1-SC) condition w.r.t. this norm (see Remarks 1, 2). As
in section 2.2 we assume that we can find some constant L̄k+1 such that (δk, L̄k+1)-model of f w.r.t.
‖ · ‖-norm exists at k–step (k = 0, .., N − 1) of Algorithm 2. Unlike Algorithm 1, we have sequences

{δ̃k}k≥0 and {δk}k≥0 for input instead of constants in Algorithm 2.

Theorem 5. Let V [x0](x∗) ≤ R2, where x0 is the starting point and x∗ is the nearest minimum point
to x0 in the sense of Bregman divergence. Then, for the sequence, generated by Algorithm 2,

f(xN)− f∗ ≤
R2

AN
+

2
∑N−1

k=0 Ak+1δk
AN

+

∑N−1
k=0 δ̃k
AN

.

The theorem is proved in [17].

Remark 5. Despite the adaptive structure of Algorithm 2 as in [33] it can be shown that in average
the algorithm up to logarithmic terms requires four computations of function and two computations of
(δ, L)-model per iteration.

Remark 6. For the case when we know that L̄k+1 ≤ L for all k ≥ 0 (or in other words, (δk, L)-model

exists for all k ≥ 0), L0 ≤ L, δk = δ and δ̃k = δ̃ for all k ≥ 0, we can show that AN ≥ (N+1)2

8L
(see

[17]) and

f(xN)− f∗ ≤
8LR2

(N + 1)2
+ 2Nδ +

8Lδ̃

N + 1
.

2.4 Universal conditional gradient (Frank–Wolfe) method

Let us show an example of (δ, L)–model conception. We use Algorithm 2 as a proxy method for
universal Frank–Wolfe method. In order to construct universal Frank–Wolfe method let us introduce
the following constraints to the optimization problem (1):

DOI 10.20347/WIAS.PREPRINT.2679 Berlin 2020



F. Stonyakin et al. 6

Algorithm 2 Fast gradient method with oracle using (δ, L)-model

1: Input: x0 is the starting point, {δ̃k}k≥0, {δk}k≥0 and L0 > 0.
2: Set y0 := x0, u0 := x0, α0 := 0, A0 := α0

3: for k ≥ 0 do
4: Find the smallest ik ≥ 0 such that

fδk(xk+1) ≤ fδk(yk+1) + ψδk(xk+1, yk+1) +
Lk+1

2
‖xk+1 − yk+1‖2 + δk,

where Lk+1 = 2ik−1Lk, αk+1 is the largest root of

Ak+1 = Lk+1α
2
k+1, Ak+1 := Ak + αk+1.

yk+1 :=
αk+1uk + Akxk

Ak+1

.

φk+1(x) = αk+1ψδk(x, yk+1) + V [uk](x), uk+1 := argmin
x∈Q

δ̃kφk+1(x).

xk+1 :=
αk+1uk+1 + Akxk

Ak+1

.

5: end for
Ensure: xN

1 The set Q is bounded w.r.t V [y](x):

∃RQ ∈ R : ∀x, y ∈ Q V [y](x) ≤ R2
Q.

2 The function f(x) has Holder continues subgradients:

‖∇f(x)−∇f(y)‖∗ ≤ Lν ‖x− y‖ν ∀x, y ∈ Q.

From this we can get an inequality (see [33]):

0 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ L(δ)

2
‖x− y‖2 + δ ∀x, y ∈ Q,

where

L(δ) = Lν

[
Lν
2δ

1− ν
1 + ν

] 1−ν
1+ν

and δ > 0 is a free parameter.

First, let us take δk = ε αk+1

4Ak+1
. With this choice of δk and the fact that the objective function has Holder

continues subgradient as in Theorem 3 from [33] we can get the following inequality for AN :

AN ≥
N

1+3ν
1+ν ε

1−ν
1+ν

2
3+5ν
1+ν L

2
1+ν
ν

. (5)

It it shown in [17] that in order to construct the classical Frank–Wolfe method instead of an auxiliary
problem φk+1(x) = αk+1ψδk(x, yk+1) + V [uk](x) in Algorithm 2 (see also section 3, [17]) we can

DOI 10.20347/WIAS.PREPRINT.2679 Berlin 2020



Inexact model: A framework for optimization and variational inequalities 7

take an auxiliary problem φ̃k+1(x) = αk+1ψδk(x, yk+1). Let us look at this substitution from the view

of δ̃k–precision from Definition 2:

uk+1 =

(
argmin
x∈Q

δ̃kφk+1(x)
def
= argmin

x∈Q
φ̃k+1(x)

)
.

Note that in the classical Frank–Wolfe method ψδk(x, yk+1) = 〈∇f(yk+1), x−yk+1〉. However, here
we assume that ψδk(x, yk+1) can have a more general representation (see Definition 1). As in [17]
we can show that an error in sense of Definition 2 would not be greater than 2R2

Q. Therefore, we can

take δ̃k = 2R2
Q. From Theorem 5 we can get the following inequality:

f(xN)− f(x∗) ≤
R2

AN
+
ε

2
+

2R2
QN

AN
≤

3R2
QN

AN
+
ε

2
.

Using (5) we can finally get the following upper bound for the number of steps in order to get ε-solution:

N ≤ inf
ν∈(0,1]

2
3+4ν
ν

(
LνR

1+ν
Q

ε

) 1
ν

 .
This inequality for ν = 1 has the same convergence rate as in the classical Frank–Wolfe method,
however, universal Frank–Wolfe method can work with any function that has Holder continuous sub-
gradients with constant ν > 0.

3 The Concept of (δ, L, µ)-model. The Case of Strongly Convex
Objective and Strongly Convex Model

Now we consider the case of a strongly convex objective. The following assumption allows us to prove
a linear rate of convergence for non-adaptive and adaptive versions of Algorithm 1.

Definition 6. Let function ψδ(x, y) be convex in x ∈ Q and satisfy ψδ(x, x) = 0 for all x ∈ Q. We
say that ψδ(x, y) is a (δ, L, µ)-model of the function f at a given point y with respect to V [y](x) iff,
for all x ∈ Q, the inequality

µV [y](x) 6 f(x)− (fδ(y) + ψδ(x, y)) 6 LV [y](x) + δ.

Note that we allow L to depend on δ. We refer to this case as strongly convex case.

Remark 7. Let us remind that if d(x− y) ≤ Cn ‖x− y‖2 for Cn = O(log n) (where n is dimension
of vectors fromQ), then V [y](x) ≤ Cn ‖x− y‖2. This assumption is true for many standard proximal
setups. In this case the condition of (µCn)-strong convexity

µCn ‖x− y‖2 + fδ(y) + ψδ(x, y) 6 f(x)

entails right relative strong convexity:

µV [y](x) + fδ(y) + ψδ(x, y) 6 f(x).

DOI 10.20347/WIAS.PREPRINT.2679 Berlin 2020
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In this subsection we describe a gradient-type method for problems with (δ, L)-model of the objective.
This algorithm is a natural extension of gradient method, see [16, 43, 17].

We consider the case of m-strogly convex models ψ. One example of the m-strong convexity of the
function ψδ(x, y) appears in composite optimization:

f(x)
def
= g(x) + h(x)→ min

x∈Q
,

where g(x) is µ-strongly convex and smooth function with L-Lipschitz gradient, h(x) is convex func-
tion of simple structure. As a ψδ(x, y) function for composite optimization problem, we take

ψδ(x, y) = 〈∇g(x), y − x〉+ h(x)− h(y).

Notice that, ψδ(x, y) is strongly convex in y when h(x) is strongly convex. An example of such a
problem with strongly convex model is the following minimization problem [32]:

f(x) =
1

2
‖Ax− b‖2

2 + µ
n∑
k=1

xk lnxk → min
x∈Sn(1)

.

Another example of an optimization problem that allows for (δ, L, µ)-model with strong convexity of
the function ψδ(x, y arises in Y. Nesterov’s electoral model [36] [42]. In this model, voters (data points)
select a party (cluster) iteratively by minimizing the following function:

fµ1,µ2(x = (z, p)) = g(x) + µ1

n∑
k=1

zk ln zk +
µ2

2
‖p‖2

2 → min
z∈Sn(1),p∈Rm+

.

Algorithm 3 Gradient method with (δ, L)-model of the objective.

1: Input: x0 is the starting point, L > 0 and δ, δ̃ > 0.
2: for k ≥ 0 do
3:

φk+1(x) := ψδ(x, xk) + LV [xk](x), xk+1 := arg min
x∈Q

δ̃φk+1(x).

4: end for
Ensure: x̄N = 1

N

∑N−1
k=0 xk+1

Thus, we have the following result

Theorem 7. Assume for f ψδ(x, y) is a m-strongly convex (δ, L, µ)-model w.r.t. V [y](x). Then, after
of k iterations of Algorithm 3, we have:

f(yk+1)− f(x∗) ≤ (m+ L)(x∗) exp

(
(−k + 1)

µ+m

L+m

)
V [x0] + δ + δ̃.,

V [xk+1](x∗) ≤
δ + δ̃

m+ µ
+

(
L− µ
L+m

)k+1

V [x0](x∗).

In other words, if function satisfies right relative strong convexity and relative smoothness, then after
performing O

(
log(1

ε
)
)

iterations we can achieve an accuracy of ε accurate to term O(δ + δ̃).

The proof of Theorem 3.2 is in the Appendix B.

Let us consider some adaptive version of Algorithm 3, which is applicable to possibly unknown con-
stant L.

DOI 10.20347/WIAS.PREPRINT.2679 Berlin 2020



Inexact model: A framework for optimization and variational inequalities 9

Algorithm 4 Adaptive gradient method with an oracle using the (δ, L, µ)-model

1: Input: x0 is the starting point, µ > 0 L0 ≥ 2µ and δ.
2: Set S0 := 0
3: for k ≥ 0 do
4: Find the smallest ik ≥ 0 such that

fδ(xk+1) ≤ fδ(xk) + ψδ(xk+1, xk) + Lk+1V [xk](xk+1) + δ, (6)

where Lk+1 = 2ik−1Lk for Lk ≥ 2µ and Lk+1 = 2ikLk for Lk < 2µ,
αk+1 := 1

Lk+1
, Sk+1 := Sk + αk+1.

φk+1(x) := ψδ(x, xk) + Lk+1V [xk](x), xk+1 := arg min
x∈Q

δ̃φk+1(x).

5: end for
Ensure: x̄N = 1

SN

∑N−1
k=0

xk+1

Lk+1

Remark 8. The advantage of Algorithm 4 is that there is no need to know the true value of the Lipschitz
constant L. However, this may increase the cost of the iteration due to repeating steps of type (4). At
the same time the procedure of choosing Lk+1 in Algorithm 1 allow us to show that the number of
steps of type (4) is less than 2N + log2

2L
L0

.

To obtain the rate of convergence of Algorithm 4 we need to introduce the averaging parameter L̂:

1− µ

L̂
= k+1

√(
1− µ

Lk+1

)(
1− µ

Lk

)
. . .

(
1− µ

L1

)
. (7)

Assume m-strong convexity of the function ψδ(x, y). The following result holds:

Theorem 8. Assume that m-strongly convex by x functional ψδ(x, y) is a (δ, L, µ)-model w.r.t.
V [y](x) for f . Then, after of k iterations of Algorithm 4, we have

f(xk+1)− f(x∗) 6
(2L+m)2

(µ+m)2

(
1−

(
1− µ+m

2L+m

)k+1
)

(2δ + δ̃)+

+ (2L+m)

(
1− µ+m

m+ L̂

)k+1

V [x0](x∗).

For convex ψδ (m = 0) we have the following inequalities:

V [xk+1](x∗) ≤
2L(2δ + δ̃)

µ2

(
1−

(
1− µ

2L

)k+1
)

+

(
1− µ

L̂

)k+1

V [x0](x∗),

f(xk+1)− f(x∗) 6
4L2(2δ + δ̃)

µ2

(
1−

(
1− µ

2L

)k+1
)

+ 2L

(
1− µ

L̂

)k+1

V [x0](x∗).

To prove Theorem 8 we need the following lemma:
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F. Stonyakin et al. 10

Lemma 1. Let ψ(x) be a m-strongly convex function and

y = argmin
x∈Q

δ̃{ψ(x) + βV [z](x)},

where β ≥ 0. Then

ψ(x) + βV [z](x) ≥ ψ(y) + βV [z](y) + (β +m)V [y](x)− δ̃, ∀x ∈ Q.

Proof. By Definition 2:

∃g ∈ ∂ψ(y), 〈g + β∇yV [z](y), x− y〉 ≥ −δ̃, ∀x ∈ Q.

Then inequality

ψ(x)− ψ(y) ≥ 〈g, x− y〉+mV [y](x) ≥ 〈β∇yV [z](y), y − x〉 − δ̃ +mV [y](x)

and equality

〈∇yV [z](y), y − x〉 = 〈∇d(y)−∇d(z), y − x〉 = d(y)− d(z)− 〈∇d(z), y − z〉+
+d(x)− d(y)− 〈∇d(y), x− y〉 − d(x) + d(z) + 〈∇d(z), x− z〉 =

= V [z](y) + V [y](x)− V [z](x)

complete the proof.

Now we ready to prove the Theorem 8.

Proof. After k iterations of Algorithm 4 using lemma 1, we have

(Lk+1+m)V [xk+1](x) ≤ δ̃+ψδ(x, xk)−ψδ(xk+1, xk)+Lk+1V [xk](x)−Lk+1V [xk](xk+1). (8)

Considering (6) w.r.t. V [x](y) we obtain:

−Lk+1V [xk](xk+1) ≤ δ − fδ(xk+1) + fδ(xk) + ψδ(xk+1, xk),

or
−Lk+1V [xk](xk+1) ≤ 2δ − f(xk+1) + fδ(xk) + ψδ(xk+1, xk),

Now (8) means

(Lk+1 +m)V [xk+1](x) ≤ δ̃ + 2δ − f(xk+1) + fδ(xk) + ψδ(x, xk) + (Lk+1 − µ)V [xk](x).

Let x = x∗.Therefore we obtain

V [xk+1](x∗) ≤ V [xk+1](x) +
f(xk+1 − f(x∗)

Lk+1 +m
≤ 2δ + δ̃

Lk+1 +m
+

+
Lk+1 − µ
Lk+1 +m

V [xk](x∗) ≤ (2δ + δ̃)

(
1

Lk+1 +m
+

1

Lk

Lk+1 − µ
Lk+1 +m

)
+

+
Lk+1 − µ
Lk+1 +m

V [xk−1](x∗) ≤ . . . ≤ (2δ + δ̃)

(
1

Lk+1 +m
+

1

Lk +m

Lk+1 − µ
Lk+1 +m

+ . . .+

+
1

L1

L2 − µ
L2 +m

. . .
Lk+1 − µ
Lk+1 +m

)
+
Lk+1 − µ
Lk+1 +m

Lk − µ
Lk +m

. . .
L1 − µ
L1 +m

V [x0](x∗).
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Inexact model: A framework for optimization and variational inequalities 11

Because L0 ≤ 2L, then Lk+1 ≤ 2L. In Algorithm 1 we also assume that Lk+1 ≥ µ. So we have:

1

2L
≤ 1

Lk+1

≤ 1

µ
.

Then we obtain
Lk+1 − µ
Lk+1 +m

= 1− m+ µ

Lk+1 +m
≤ 1− m+ µ

2L+m
.

Using the averaging parameter L̂

1− m+ µ

L̂+m
= k

√
1

L1

L2 − µ
L2 +m

. . .
Lk − µ
Lk +m

we have

V [xk+1](x∗) ≤
(

1− m+ µ

m+ L̂

)k+1

V [x0](x∗) + (2δ + δ̃)
1

µ+m

k∑
i=0

(
1− m+ µ

2L+m

)i
=

= (1− m+ µ

m+ L̂
)k+1V [x0](x∗) +

2L+m

(m+ µ)2

[
1−

(
1− µ+m

(2L+m)2

)]
(2δ + δ̃).

So we finally obtain

f(xk+1)− f(x∗) 6
(2L+m)2

(µ+m)2

(
1−

(
1− µ+m

2L+m

)k+1
)

(2δ + δ̃)+

+ (2L+m)

(
1− µ+m

m+ L̂

)k+1

V [x0](x∗).

Let us consider the case of a strongly convex functional f and show how to accelerate the work of
Algorithms 1 and 4 using the restart technique. Let us assume that

ψδ(x, x∗) ≥ 0 ∀x ∈ Q.

Note the this assumption is natural, e.g. ψδ(x, y) := 〈∇f(y), x − y〉 ∀x, y ∈ Q. We also modify
the concept of relative µ-strongly convexity in the following way

Definition 9. Say that the function f is a left relative µ-strongly convex if the following inequality

µV [x](y) ≤ f(x)− f(y)− ψδ(x, y).

holds.

Note that concepts of right and left relative strongly convexity from Definitions 6 and 9 are equivalent
in the case of assumption from Remark 7 (V [x](y) ≤ Cn‖x− y‖2 for each x, y ∈ Q).
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F. Stonyakin et al. 12

Theorem 10. Let f be a left relative µ-strongly convex function and ψδ(x, y) is a (δ, L)-model w.r.t.
V [y](x). Then, using the restarts of Algorithm 1, we obtain the estimate

V [x̄Np ](x∗) ≤ ε+
2δ̃

µ
+

4δ

µ

for a given ε > 0. The total number for iterations of Algorithm 1 not exceeding

N =

⌈
log2

R2

ε

⌉
·
⌈

4L

µ

⌉
. (9)

Proof. By Definition 9 and Theorem 4 we have

µV [x̄N1 ](x∗) ≤ f(x̄N1)− f(x∗) ≤
2LV [x0](x∗)

N1

+ δ̃ + 2δ.

Further, due to the following inequality

V [x̄N1 ](x∗) ≤
2LV [x0](x∗)

µN1

+
δ̃

µ
+

2δ

µ
(10)

let’s choose the smallest number of steps N1:

V [x̄N1 ](x∗) ≤
1

2
V [x0](x∗) +

δ̃

µ
+

2δ

µ
.

Similarly, after the 2nd restart (N2 operations)

V [x̄N2 ](x∗) ≤
1

2
V [x̄N1 ](x∗) +

δ̃

µ
+

2δ

µ
≤ 1

4
V [x0](x∗) +

(
δ̃

µ
+

2δ

µ

)(
1 +

1

2

)
.

After the p-th restart (Np operations)

V [x̄Np ](x∗) ≤
1

2p
V [x0](x∗) +

(
δ̃

µ
+

2δ

µ

)(
1 +

1

2
+ ...+

1

2p−1

)
<

<
1

2p
V [x0](x∗) +

2δ̃

µ
+

4δ

µ
.

Choose p such that

1

2p
V [x0](x∗) ≤ ε

After p =
⌈
log2

R2

ε

⌉
restarts we have

V [x̄Np ](x∗) ≤ ε+
2δ̃

µ
+

4δ

µ
.

The number of iterations Nk (k = 1, p) on the k-th restart of Algorithm 1 is estimated from (10):

2L

µNk

≤ 1

2
, Nk ≥

4L

µ
.

So, we can put Nk =

⌈
4L

µ

⌉
and (9) holds.
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Inexact model: A framework for optimization and variational inequalities 13

We show that using the restart technique can also accelerate the work of non-adaptive version of
Algorithm 4 (Lk+1 = L) for (δ, L)-model ψδ(x, y) w.r.t. norm ‖ · ‖ and relative µ-strogly convex
function f in sense Definition 9:

µV [x](y) + f(y) + ψδ(x, y)− δ ≤ f(x) ≤ f(y) + ψδ(x, y) +
L

2
‖x− y‖2 + δ.

for each x, y ∈ Q. By Theorem 5:

f(xN)− f(x∗) 6
8LV [x0](x∗)

(N + 1)2
+

8Lδ̃

N + 1
+ 2Nδ. (11)

Consider the case of relatively µ-strongly convex function f . We will use the restart technique to obtain
the method for strongly convex functions. By (11) and Definition 9:

µV [xN1 ](x∗) ≤ f(xN1)− f(x∗) ≤
8LV [x0](x∗)

N2
+

8Lδ̃

N
+ 2Nδ. (12)

Let’s choose N1 so that the following inequality holds:

8Lδ̃

N1

+ 2N1δ ≤
LV [x0](x∗)

N2
1

. (13)

We restart method as

V [xN1 ](x∗) ≤
V [x0](x∗)

2
.

From (12):

9L

µN2
1

≤ 1

2
, N1 ≥ 3

√
2
L

µ

Let’s choose

N1 =

⌈
3

√
2L

µ

⌉
. (14)

Then afterN1 iterations we restart method. Similarly, we restart afterN2 iterations, such that V [xN2 ](x∗) ≤
V [xN1

](x∗)

2
. We obtain

N2 =

⌈
3

√
2L

µ

⌉
.

So, after p-th restart the total number of iterations:

M = p ·

⌈
3

√
2L

µ

⌉
.

Now let’s consider how many iterations is needed to achieve accuracy ε = f(xNp) − f(x∗). From
(11) and (14) we take

p =

⌈
log2

µR2

ε

⌉
and total number of iterations:

M =

⌈
log2

µR2

ε

⌉
·

⌈
3

√
2L

µ

⌉
.
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We need to choose our errors as δ = O( εL
µN3

k
) and δ̃ = O( ε

µNk
) to satisfy (13). Indeed, from (13)

using Nk =

⌈
3

√
2L

µ

⌉
we can deduce the following inequality:

ε ≥ 12µ

L

 9√
2
δ

⌈√
L

µ

⌉3

+
√

2δ̃

⌈√
L

µ

⌉ .

One can see that such a choice of δ and δ̃ as above satisfies that inequality.

4 Inexact Model for Variational Inequalities

In this section, we go beyond minimization problems and propose an abstract inexact model counter-
part for variational inequalities. Using this model we propose a new universal method for variational

inequalities with complexity O
(

infν∈[0,1]

(
1
ε

) 2
1+ν

)
, where ε is the desired accuracy of the solution.

According to the lower bounds in [39], this algorithm is optimal for ν = 0 and ν = 1. Based on the
model for VI and functions, we extend (δ, L)-model for saddle-point problems (see Definition 16). We
are also motivated by mixed variational inequalities [21, 1] and composite saddle-point problems [6].

We consider the problem of finding the solution x∗ ∈ Q for VI in the following abstract form

ψ(x, x∗) > 0 ∀x ∈ Q (15)

for some convex compact set Q ⊂ Rn and some function ψ : Q × Q → R. Assuming the abstract
monotony of the function ψ

ψ(x, y) + ψ(y, x) 6 0 ∀x, y ∈ Q, (16)

any solution (15) will is a solution of the following inequality

max
x∈Q

ψ(x∗, x) 6 0 ∀x ∈ Q. (17)

In the general case, we make an assumption about the existence of a solution x∗ of the problem (15).
As a particular case, if for some operator g : Q→ Rn we set ψ(x, y) = 〈g(y), x− y〉 ∀x, y ∈ Q,
then (15) and (17) are equivalent, respectively, to a standard strong and weak variational inequality
with the operator g.

Example 11. For some operator g : Q→ Rn and a convex functional h : Q→ Rn choice

ψ(x, y) = 〈g(y), x− y〉+ h(y)− h(x)

leads to a mixed variational inequality from [21, 1]

〈g(y), y − x〉+ h(x)− h(y) 6 0,

which in the case of the monotonicity of the operator g implies

〈g(x), y − x〉+ h(x)− h(y) 6 0.
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Inexact model: A framework for optimization and variational inequalities 15

We propose an adaptive proximal method for the problems (15) and (17). We start with a concept of
(δ, L)-model for such problems.

Definition 12. We say that functional ψ has (δ, L)-model ψδ(x, y) for some fixed values L > 0 at
δ > 0 at a given point y w.r.t. V [y](x) if the following properties hold for each x, y, z ∈ Q:

(i) |ψ(x, y)− ψδ(x, y)| ≤ δ;

(ii) ψδ(x, y) convex in the first variable;

(iii) ψδ(x, x) = 0;

(iv) (abstract δ-monotonicity)
ψδ(x, y) + ψδ(y, x) ≤ δ; (18)

(v) (generalized relative smoothness)

ψδ(x, y) 6 ψδ(x, z) + ψδ(z, y) + LV [z](x) + LV [y](z) + δ. (19)

Remark 9. Similarly to Definition 1 above, in general case, we do not need the (1-SC) assumption in
Definition 12 for V [y](x). In some situations we assume that (1-SC) assumption holds (see Examples
13, 14 and Section 5).

Remark 10. In Definition 12 we change ‘w.r.t V [y](x)’ to ‘w.r.t. ‖ ·‖-norm if we use 1
2
‖x−y‖2 instead

of V [y](x).

Note that for δ = 0 the following analogue of (28) for some fixed a, b > 0

ψ(x, y) 6 ψ(x, z) + ψ(z, y) + a‖z − y‖2 + b‖x− z‖2 ∀x, y, z ∈ Q (20)

was introduced in [26]. Condition (20) is used in many works on equilibrium programming. Our ap-
proach allows us to work with non-Euclidean set-up without (1-SC) assumption and inexactness δ,
that is important for the ideology of universal methods [33] (see Example 14 below).

One can directly verify that if ψδ(x, y) is (δ/3, L)-model of the function f at a given point y w.r.t.
V [y](x) then ψδ(x, y) is (δ, L)-model in the sense of Definition 12 w.r.t. V [y](x).

Let us consider some examples.

Example 13. Variational Inequalities with monotone Lipshitz continuous operator. Consider vari-
ational inequality of finding x ∈ Q such that 〈g(y), x− y〉 ≤ 0, ∀y ∈ Q, the operator g : Q → Rn

is monotone and Lipschitz continuous, i.e. ‖g(x)− g(y)‖∗ ≤ L ‖x− y‖ , ∀x, y ∈ Q. In this case
ψδ(x, y) := 〈g(y), x− y〉 is a (δ, L)-model in a sense of Definition 12 w.r.t. ‖ · ‖-norm (∀x, y ∈ Q).

Example 14. Variational Inequalities with monotone Holder continuous operator. Assume that
for monotone operator g there exists ν ∈ [0, 1] such that

‖g(x)− g(y)‖∗ ≤ Lν ‖x− y‖ν , ∀x, y ∈ Q.

Then we have: 〈g(z)− g(y), z − x〉 ≤ ‖g(z)− g(y)‖∗‖z − x‖ ≤

≤ Lν‖z − y‖ν‖z − x‖ ≤
L(δ)

2
||z − x||2 +

L(δ)

2
||z − y||2 + δ (21)
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F. Stonyakin et al. 16

for

L(δ) =

(
1

2δ

) 1−ν
1+ν

L
2

1+ν
ν (22)

and uncontrolled parameter δ > 0. In this case the following function

ψδ(x, y) := 〈g(y), x− y〉 ∀x, y ∈ Q.

is (δ, L)-model w.r.t. ‖ · ‖-norm.

Note that for the previous two examples in Algorithm 5 and Theorem 15 we need V [z](x) to satisfy
(1-SC) condition.

Next, we introduce our novel adaptive method (Algorithm 5) for abstract variational inequalities with
inexact (δ, L)-model w.r.t. V [y](x). If V [y](x) satisfies (1-SC) condition then we can consider inexact
(δ, L)-model w.r.t. ‖ · ‖-norm. This method adapts to the local values of L and similarly to [33] allows
us to construct universal method for variational inequalities. Applying the following adaptive Algorithm
5 to VI with Holder interpolation (21) for δ = ε

2
and L = L

(
ε
2

)
leads us to universal method for VI.

Algorithm 5 Generalized Mirror Prox for VI

Require: accuracy ε > 0, oracle error δ > 0, initial guess L0 > 0, prox set-up: d(x), V [z](x).
1: Set k = 0, z0 = arg minu∈Q d(u).
2: for k = 0, 1, ... do
3: Find the smallest ik ≥ 0 such that

ψδ(zk+1, zk) ≤ ψδ(zk+1, wk) + ψδ(wk, zk) + Lk+1(V [zk](wk) + V [wk](zk+1)) + δ, (23)

where Lk+1 = 2ik−1Lk and

wk = argmin
x∈Q

{ψδ(x, zk) + Lk+1V [zk](x)} .

zk+1 = argmin
x∈Q

{ψδ(x,wk) + Lk+1V [zk](x)} .

4: end for
Ensure: ŵN = 1∑N−1

k=0
1

Lk+1

∑N−1
k=0

1
Lk+1

wk.

For a given accuracy ε we can consider the following stopping criterion for Algorithm 5:

SN :=
N−1∑
k=0

1

Lk+1

>
V [x0](x∗)

ε
.

Let us formulate the following result. Note that we consider the case of m-strong convexity of model
ψδ(x, y). Clearly, the case m = 0 means convexity of ψδ(x, y) ∈ X . Note that for m > 0 we can
prove that our method converges by argument.

Theorem 15. Assume that ψδ(x, y) is a m-strongly convex function by x for some m > 0. Then for
Algorithm 5 the following inequalities hold:

m

2
‖ŵN − x‖2 − 1

SN

N−1∑
k=0

ψδ(x,wk)

Lk+1

≤ V [z0](x)

SN
+ δ + 2δ̃.
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Inexact model: A framework for optimization and variational inequalities 17

It means that:

max
u∈Q

ψ(ŵN , u) ≤ 2Lmaxu∈Q V [z0](u)

N
+ 3δ + 2δ̃

and for exact solution x∗ of considered problem

‖ŵN − x∗‖2 ≤ 4LV [z0](x∗)

mN
+

4δ + 4δ̃

m
.

Note that the method works no more than⌈
2Lmaxu∈Q V [z0](u)

ε

⌉
iterations.

Proof. After (k + 1)-th iteration (k = 0, 1, 2 . . .) we have for each u ∈ Q:

m‖u−wk‖2 +ψδ(wk, zk) 6 ψδ(u, zk) +Lk+1V [zk](u)−Lk+1V [wk](u)−Lk+1V [zk](wk) + δ̃

and m‖u− zk+1‖2 + ψδ(zk+1, wk) ≤

≤ ψδ(u,wk) + Lk+1V [zk](u)− Lk+1V [zk+1](u)− Lk+1V [zk](zk+1) + δ̃.

The first inequality means that

m‖zk+1−wk‖2+ψδ(wk, zk) 6 ψδ(zk+1, zk)+Lk+1V [zk](zk+1)−Lk+1V [wk](zk+1)−Lk+1V [zk](wk)+δ̃.

Taking into account (23) and obvious inequality 2(a2 + b2) ≥ (a+ b)2, we obtain for all u ∈ Q

m

2
‖wk − u‖2 − ψδ(u,wk) ≤ Lk+1V [zk](u)− Lk+1V [zk+1](u) + δ + 2δ̃.

So, the following inequality

N−1∑
k=0

m

2Lk+1

‖wk − x∗‖2 −
N−1∑
k=0

ψδ(u,wk)

Lk+1

≤ V [z0](u)− V [zN ](u) + SN(δ + 2δ̃)

holds. By virtue of (28) and the choice of L0 6 2L, it is guaranteed that

Lk+1 6 2L ∀k = 0, N − 1.

and for u = x∗ from convexity of function ϕ(y) = ‖y − x∗‖2 we have

m

2
‖ŵN − u‖2 + max

u∈Q
ψ(ŵN , u) 6

m

2
‖ŵN − x∗‖2 + max

u∈Q
ψδ(ŵN , u) + δ 6

6
m

2
‖ŵN − x∗‖2 − 1

SN

N−1∑
k=0

ψδ(u,wk)

Lk+1

+ 2δ 6

6
2Lmaxu∈Q V [z0](u)

N
+ 3δ + 2δ̃.
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Remark 11. To obtain precision ε+ 3δ Algorithm 5 works no more than⌈
2Lmaxu∈Q V [z0](u)

ε

⌉
(24)

iterations. Note that estimate (24) is optimal for variational inequalities and saddle-point problems [39].

For universal method to obtain precision ε we can choose δ = ε
2

and L = L
(
ε
2

)
according to (21)

and (22) and the estimate (24) reduces to⌈
2 inf
ν∈[0,1]

(
2Lν
ε

) 2
1+ν

·max
u∈Q

V [z0](u)

⌉
.

Thus, the introduced concept of the (δ, L)-model for variational inequalities allows us to extend the
previously proposed universal method for VI to a wider class of problems, including mixed variational
inequalities [21, 1] and composite saddle-point problems [6].

Now we extend (δ, L)-model for saddle-point problems. The solution of variational inequalities reduces
the so-called saddle points problems, in which for a convex in u and concave in v functional f(u, v) :
Rn1+n2 → R (u ∈ Q1 ⊂ Rn1 and v ∈ Q2 ⊂ Rn2) needs to be found such that:

f(u∗, v) 6 f(u∗, v∗) 6 f(u, v∗) (25)

for arbitrary u ∈ Q1 and v ∈ Q2. Let Q = Q1 × Q2 ⊂ Rn1+n2 . For x = (u, v) ∈ Q, we assume
that ||x|| =

√
||u||21 + ||v||22 (|| · ||1 and || · ||2 are the norms in the spaces Rn1 and Rn2). We agree

to denote x = (ux, vx), y = (uy, vy) ∈ Q.

It is well known that for a sufficiently smooth function f with respect to u and v the problem (25)
reduces to VI with an operator g(x) = (f ′u(ux, vx), −f ′v(ux, vx)).

For saddle-point problems we propose some adaptation of the concept of the (δ, L)-model for abstract
variational inequality (w.r.t. V [y](x) or ‖ · ‖).

Definition 16. We say that the function ψδ(x, y) (ψδ : Rn1+n2 × Rn1×n2 → R) is a (δ, L)-model
w.r.t. V [y](x) for the saddle-point problem (25) if the following properties hold for each x, y, z ∈ Q:

(i) ψδ(x, y) convex in the first variable;

(ii) ψδ(x, x) = 0;

(iii) (abstract δ-monotonicity)
ψδ(x, y) + ψδ(y, x) ≤ δ;

(iv) (generalized relative smoothness)

ψδ(x, y) 6 ψδ(x, z) + ψδ(z, y) + LV [z](x) + LV [y](z) + δ (26)

for some fixed values L > 0, δ > 0;

(v)
f(uy, vx)− f(ux, vy) 6 −ψδ(x, y) + δ.
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Example 17. The proposed concept of the (δ, L)-model for saddle-point problems is quite applicable,
for example, for composite saddle point problems of the form considered in the popular article [6]:

f(u, v) = f̃(u, v) + h(u)− ϕ(v)

for some convex in u and concave in v subdifferentiable functions f̃ , as well as convex functions h
and ϕ. In this case, you can put

ψδ(x, y) = 〈g̃(y), x− y〉+ h(ux) + ϕ(vx)− h(uy)− ϕ(vy),

where

g̃(y) =

(
f̃ ′u(uy, vy)

−f̃ ′v(uy, vy)

)
.

Theorem 15 implies

Theorem 18. If for the saddle problem (25) there is a (δ, L)-model ψδ(x, y) w.r.t. V [y](x), then after
stopping the algorithm we get a point

ŷN = (uŷN , vŷN ) := (ûN , v̂N) :=
1

SN

N−1∑
k=0

yk
Lk+1

,

for which the inequality is true:

max
v∈Q2

f(ûN , v)− min
u∈Q1

f(u, v̂N) 6
2Lmax(u,v)∈Q V [u0, v0](u, v)

N
+ 2δ̃ + 2δ.

If ψδ(x, y) is a m-strongly convex in x for m > 0 then for exact solution x∗ = (u∗, v∗) we have:

‖(ûN , v̂N)− (u∗, v∗)‖2 6
4Lmax(u,v)∈Q V [u0, v0](u, v)

mN
+

4δ̃ + 4δ

m
.

Remark 12. The property of m-strong convexity for ψδ ∈ X is true for composite saddle point with
m-strongly convex h.

5 Modelling for Strongly Monotone VI

In this section similarly with the concept of (δ, L, µ)-model in optimization we consider inexact model
for VI with more strong version of (18).

Definition 19. We say that functional ψ has (δ, L, µ)-model ψδ(x, y) at a given point y w.r.t. V [y](x)
if the following properties hold for each x, y, z ∈ Q:

(i) |ψ(x, y)− ψδ(x, y)| ≤ δ;

(ii) ψδ(x, y) convex in the first variable;

(iii) ψδ(x, y) continuous in x and y;

(iii) ψδ(x, x) = 0;
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(iv) (µ-strong δ-monotonicity)

ψδ(x, y) + ψδ(y, x) + µ‖x− y‖2 ≤ δ; (27)

(v) (generalized relative smoothness)

ψδ(x, y) 6 ψδ(x, z) + ψδ(z, y) + LV [z](x) + LV [y](z) + δ (28)

for some fixed values L > 0, δ > 0.

Now we propose method with linear rate of convergence for VI with (δ, L, µ)-model. We slightly modify
the assumptions on prox-function d(x). Namely, we assume that 0 = argminx∈Q d(x) and that d is
bounded on the unit ball in the chosen norm ‖ · ‖, that is

d(x) ≤ Ω

2
, ∀x ∈ Q : ‖x‖ ≤ 1, (29)

where Ω is some known constant. Note that for standard proximal setups, Ω = O(ln dimE). Finally,
we assume that we are given a starting point x0 ∈ Q and a number R0 > 0 such that ‖x0− x∗‖2 ≤
R2

0, where x∗ is the solution to abstract VI. The procedure of restating of Algorithm 5 restating is
applicable for abstract strongly monotone variational inequalities.

Algorithm 6 Restarted Generalized Mirror Prox

Require: accuracy ε > 0, µ > 0, Ω s.t. d(x) ≤ Ω
2
∀x ∈ Q : ‖x‖ ≤ 1; x0, R0 s.t.‖x0−x∗‖2 ≤ R2

0.

1: Set p = 0, d0(x) = d
(
x−x0
R0

)
.

2: repeat
3: Set xp+1 as the output of Algorithm 5 after Np iterations of Algorithm 5 with accuracy µε/2,

prox-function dp(·) and stopping criterion
∑Np−1

k=0
1

Lk+1
≥ Ω

µ
.

4: Set R2
p+1 = R2

0 · 2−(p+1) + (1−2−p)ε
2

.

5: Set dp+1(x)← d
(
x−xp+1

Rp+1

)
.

6: Set p = p+ 1.

7: until p > log2
2R2

0

ε

Ensure: xp+1.

Theorem 20. Assume that ψδ is a (δ, L, µ)-model for ψ. Also assume that the prox function d(x)
satisfies (29) and the starting point x0 ∈ Q and a number R0 > 0 are such that ‖x0 − x∗‖2 ≤ R2

0,
where x∗ is the solution to (17). Then, for p ≥ 0

‖xp − x∗‖2 ≤ R2
0 · 2−p +

ε

2
+

2δ

µ
+

2δ̃

µ

and the point xp returned by natural analogue of Algorithm 6 with restarts of Algorithm 5 satisfies
‖xp − x∗‖2 ≤ ε. The total number of iterations of the inner Algorithm 5 does not exceed⌈

2LΩ

µ
· log2

2R2
0

ε

⌉
, (30)

where Ω is satisfied to (29).
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Proof. We show by induction that, for p ≥ 0,

‖xp − x∗‖2 ≤ R2
0 · 2−p +

(
1− 2−p

)(ε
2

+
2δ

µ
+

2δ̃

µ

)
,

which leads to the statement of the Theorem. For p = 0 this inequality holds by the Theorem assump-
tion. Assuming that it holds for some p ≥ 0, our goal is to prove it for p + 1 considering the outer
iteration p + 1. Observe that the function dp(x) defined in Algorithm 6 is 1-strongly convex w.r.t. the
norm ‖ · ‖/Rp.

This means that, at each step k of inner Algorithm 5, LNp changes to LNp · R2
p. Using the definition

of dp(·) and (29), we have, since xp = argminx∈Q dp(x)

Vp[xp](x∗) = dp(x∗)− dp(xp)− 〈∇dp(xp), x∗ − xp〉 ≤ dp(x∗) ≤
Ω

2
.

Denote by

SNp :=

Np−1∑
k=0

1

Lk+1

.

Thus, by Theorem 15, taking u = x∗, we obtain

− 1

SNp

Np−1∑
k=0

ψδ(x∗, wk)

Lk+1

+ 2δ ≤
R2
pVp[xp](x∗)

SNp
+
µε

4
≤

ΩR2
p

2SNp
+
µε

4
+ 2δ̃.

Since the operator ψ is continuous and abstract monotone, we can assume that the solution to weak
VI (15) is also a strong solution and

−ψ(wk, x∗) ≤ 0, k = 0, ..., Np − 1

and by Definition 19 (i)
−ψδ(ωk, x∗) ≤ δ, k = 0, . . . , Np − 1

This and (27) gives, that for each k = 0, ..., Np − 1,

−ψδ(x∗, wk) ≥ δ − ψδ(x∗, wk)− ψδ(wk, x∗) ≥ µ‖wk − x∗‖2.

−ψδ(x∗, ωk) ≥ δ − ψδ(x∗, ωk)− ψδ(ωk, x∗) ≥ µ‖ωk − x∗‖2

Thus, by convexity of the squared norm, we obtain

µ‖xp+1 − x∗‖2 = µ

∥∥∥∥∥ 1

SNp

Np−1∑
k=0

wk
Lk+1

− x∗

∥∥∥∥∥
2

≤ µ

SNp

1

Lk+1

Np−1∑
k=0

‖wk − x∗‖2

≤ − 1

SNp

Np−1∑
k=0

ψδ(x∗, wk)

Lk+1

≤
ΩR2

p

2SNp
+
µε

4
+ 2δ + 2δ̃.

Using the stopping criterion SNp ≥ Ω
µ

, we obtain

‖xp+1 − x∗‖2 ≤
R2
p

2
+
ε

4
+

2δ + 2δ̃

µ
=

1

2

(
R2

0 · 2−p +
(1− 2−p)ε

2

)
+
ε

4
+

2δ + 2δ̃

µ
=

= R2
0 · 2−(p+1) + (1− 2−p)ε

(
ε

2
+

2δ + 2δ̃

µ

)
,

which finishes the induction proof.
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Remark 13. If for some m > 0 ψδ(x, y) is a m-strong convex functional in x then (31) can be
exchanged by ⌈

2LΩ

m+ µ
· log2

2R2
0

ε

⌉
. (31)
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A Model examples

In this section we present more examples of a (δ, L)-model of objective f .

DOI 10.20347/WIAS.PREPRINT.2679 Berlin 2020



Inexact model: A framework for optimization and variational inequalities 25

Example 21. Convex optimization problem with Lipschitz continuous gradient, [30]

If convex function f has Lipschitz continuous gradient:

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ , ∀x, y ∈ Q.

then

0 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ L

2
‖x− y‖2 ∀x, y ∈ Q.

In this case
ψδ(x, y) := 〈∇f(y), x− y〉 ∀x, y ∈ Q

is (0, L)-model of f with fδ(y) = f(y) at a given point y w.r.t. ‖ · ‖-norm.

Example 22. Composite optimization, [3, 32]

Let us consider composite convex optimization problem:

f(x) := g(x) + h(x)→ min
x∈Q

,

where g is a smooth convex function and the gradient of g is Lipschitz continuous with parameter L.
Function h is a simple convex function. One can show

0 ≤ f(x)− f(y)− 〈∇g(y), x− y〉 − h(x) + h(y) ≤ L

2
‖x− y‖2 , ∀x, y ∈ Q.

Therefore
ψδ(x, y) = 〈∇g(y), x− y〉+ h(x)− h(y),

is (0, L)-model of f with fδ(y) = f(y) at a given point y w.r.t. ‖ · ‖-norm.

Example 23. Superposition of functions, [29]

Let us consider the following optimization problem [23]:

f(x) := g(g1(x), . . . , gm(x))→ min
x∈Q

where each function gk(x) is a smooth convex function with Lk-Lipschitz gradient w.r.t. ‖ · ‖-norm
for all k. Function g(x) is a M -Lipschitz convex function w.r.t 1-norm, non-decreasing in each of its
arguments. From these assumptions we have ([5, 23]) that function f(x) is also convex function and
the following inequality holds (see [23]):

0 ≤ f(x)− g(g1(y) + 〈∇g1(y), x− y〉, . . . , gm(y) + 〈∇gm(y), x− y〉) ≤

≤M

∑m
i=1 Li
2

‖x− y‖2 ∀x, y ∈ Q.

Also

0 ≤ f(x)− f(y)− g(g1(y) + 〈∇g1(y), x− y〉, . . . , gm(y) + 〈∇gm(y), x− y〉) + f(y) ≤

≤M

∑m
i=1 Li
2

‖x− y‖2 ∀x, y ∈ Q.

Therefore

ψδ(x, y) = g(g1(y) + 〈∇g1(y), x− y〉, . . . , gm(y) + 〈∇gm(y), x− y〉)− f(y),

is (0,M · (
∑m

i=1 Li))-model of f with fδ(y) = f(y) at a given point y w.r.t. ‖ · ‖-norm.
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Example 24. Proximal method, [7]

Let us consider optimization problem (1), where f is an arbitrary convex function (not necessarily
smooth). Then for arbitrary L ≥ 0

ψδ(x, y) = f(x)− f(y)

is (0, L)-model of f with fδ(y) = f(y) at a given point y w.r.t V [y](x), see Definition 1 and Remark 1.
Gradient method (see1 Algorithm 1) with the proposed model is equivalent to the proximal method with
general Bregman divergence instead of Euclidean one [40]. In particular, based on this model (with
Bregman divergence to be Kullback–Leibler divergence) and Algorithm 1 we propose in [43] proximal
Sinkhorn’s algorithm for Wasserstein distance calculation problem.

Example 25. Min-min problem

Consider optimization problem:

f(x) := min
z∈Q

F (z, x)→ min
x∈Rn

.

Set Q is convex and bounded. Function F is smooth and convex w.r.t. all variables. Moreover,

‖∇F (z′, x′)−∇F (z, x)‖2 ≤ L ‖(z′, x′)− (z, x)‖2 , ∀z, z
′ ∈ Q, x, x′ ∈ Rn.

If we can find a point z̃δ(y) ∈ Q such that

〈∇zF (z̃δ(y), y), z − z̃δ(y)〉 ≥ −δ, ∀z ∈ Q,

then F (z̃δ(y), y)− f(y) ≤ δ and

ψδ(x, y) = 〈∇zF (z̃δ(y), y), x− y〉

is (6δ, 2L)-model of f with fδ(y) = F (z̃δ(y), y)− 2δ at a given point y w.r.t 2-norm.

Example 26. Saddle point problem, [8]

Let us consider

f(x) = max
z∈Q

[〈x, b− Az〉 − φ(z)]→ min
x∈Rn

,

where φ(z) is a µ-strong convex function w.r.t. p-norm (1 ≤ p ≤ 2). Then f is a smooth convex
function and the gradient of f is Lipschitz continuous with parameter

L =
1

µ
max
‖z‖p≤1

‖Az‖2
2 .

If zδ(y) ∈ Q is a solution of auxiliary max-problem in the following sense

max
z∈Q

[〈y, b− Az〉 − φ(z)]− [〈y, b− Azδ(y)〉 − φ(zδ(y))] ≤ δ,

then

ψδ(x, y) = 〈b− Azδ(y), x− y〉

is (δ, 2L)-model of f with
fδ(y) = 〈y, b− Azδ(y)〉 − φ(zδ(y))

at the point y w.r.t 2-norm.
1To say more precisely if we deal with proximal model (see also Remark ?? and Examples ??, ??) it is worth to use

non adaptive algorithm, with fixed L.
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Example 27. Augmented Lagrangians, [8]

Let us consider

φ(z) +
µ

2
‖Az − b‖2

2 → min
Az=b, z∈Q

.

and it’s dual problem

f(x) = max
z∈Q

(
〈x, b− Az〉 − φ(z)− µ

2
‖Az − b‖2

2

)
︸ ︷︷ ︸

Λ(x,z)

→ min
x∈Rn

.

If zδ(y) is a solution of auxiliary max-problem in the following sense

max
z∈Q
〈∇zΛ(y, zδ(y)), z − zδ(y)〉 ≤ δ,

then

ψδ(x, y) = 〈b− Azδ(y), x− y〉

is (δ, µ−1)-model of f with

fδ(y) = 〈y, b− Azδ(y)〉 − φ(zδ(y))− µ

2
‖Azδ(y)− b‖2

2

at the point y w.r.t 2-norm.

Example 28. Moreau envelope of target function, [8]

Let us consider optimization problem:

fL(x) := min
z∈Q

{
f(z) +

L

2
‖z − x‖2

2

}
︸ ︷︷ ︸

Λ(x,z)

→ min
x∈Rn

.

Assume that function f is a convex function and

max
z∈Q

{
Λ(y, zL(y))− Λ(y, z) +

L

2
‖y − zL(y)‖2

2

}
≤ δ.

Then

ψδ(x, y) = 〈L(y − zL(y)), x− y〉

is (δ, L)-model of f with

fδ(y) = f(zL(y)) +
L

2
‖zL(y)− y‖2

2 − δ

at the point y w.r.t 2-norm.
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B Analysis of Algorithm 3 in the case of (δ, L, µ)-model

Theorem 29. Let ψδ(x, y) be a (δ, L, µ)-model for f w.r.t. V [y](x) and yk = argmini=1,...,k(f(xi)).
Then, after k iterations of Algorithm 3, we have

V [xk+1](x∗) ≤
δ + δ̃

µ
+
(

1− µ

L

)k+1

V [x0](x∗).

and

f(yk+1)− f(x∗) ≤ (m+ L) exp

(
−m+ µ

m+ L
(k + 1)

)
V (x∗, x0) + δ + δ̃.

Proof. Clearly, f(x∗) ≤ f(xk+1) and

(L+m)V [xk+1](x∗) ≤ δ̃ + δ + (L− µ)V [xk](x∗),

i.e.

V [xk+1](x∗) ≤
1

L+m
(δ + δ̃) +

(
L− µ
L+m

)
V [xk](x∗).

Further,

V [xk+1](x∗) ≤
1

L+m
(δ + δ̃) +

(
L− µ
L+m

)(
1

L+m
(δ + δ̃) +

(
L− µ
L+m

)
V [xk−1](x∗)

)
≤ . . . ≤

≤ 1

L+m
(δ̃ + δ)

(
1 +

(
L− µ
L+m

)
+ . . .+

(
L− µ
L+m

)k)
+

(
L− µ
L+m

)k+1

V [x0](x∗).

Therefore, taking into account the following fact

k∑
i=0

(
L− µ
L+m

)i
<

1

1−
(
L−µ
L+m

) =
L+m

µ+m
,

we obtain

V [xk+1](x∗) ≤
δ + δ̃

m+ µ
+

(
L− µ
L+m

)k+1

V [x0](x∗).

Now we consider the question on convergence by function:

V [xk+1](x∗) ≤
(
f(x∗)− f(xk+1) + δ + δ̃

) 1

L+m
+

(
L− µ
L+m

)
V [xk](x∗) ≤

≤
(
f(x∗)− f(xk+1) + δ + δ̃

) 1

L+m
+

+

(
L− µ
L+m

)((
f(x∗)− f(xk) + δ + δ̃

) 1

L+m
+

(
L− µ
L+m

)
V [xk−1](x∗)

)
≤

≤ . . . ≤
(
L− µ
L+m

)k+1

V [x0](x∗) +
1

L+m

k∑
i=0

(
L− µ
L+m

)i (
f(x∗)− f (xk+1−i) + δ + δ̃

)
.

Therefore, we have

1

L+m

k∑
i=0

(
L− µ
L+m

)i
(f(xk+1−i)−f(x∗)) ≤

(
L− µ
L+m

)k+1

V [x0](x∗)+
1

L

k∑
i=0

(
−mu
L+m

)i
(δ+δ̃).
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Denote by yk = argmini=1,...,k(f(xi)). Then, taking into account

1

m+ L

k∑
i=0

(
L− µ
m+ L

)i
=

1

m+ L

((
L−µ
m+L

)k+1 − 1
)

L−µ
m+L
− 1

=
1−

(
L−µ
m+L

)k+1

m+ µ
,

we obtain

f(yk+1)− f(x∗) 6 (m+ µ)

(
L−µ
m+L

)k+1

1−
(
L−µ
m+L

)k+1
V (x∗, x0) + δ + δ̃ 6

6 (m+ L) exp

(
−m+ µ

m+ L
(k + 1)

)
V (x∗, x0) + δ + δ̃.

C Some Numerical Tests for Algorithms 1 and 4

We consider two numerical examples for Algorithms 1 and 4 for minimizing µ-strongly convex ob-
jective function of N variables on a unit ball B1(0) with center at zero with respect to the standard
Euclidean norm. It is clear that such functions admit (δ, L, µ)-model of the standard form ψδ(x, y) =
〈∇f(y), x − y〉 for the case of Lipschitz-continuous gradient ∇f . In the first of the considered ex-
amples, it is easy to estimate L and µ, and the ratio µ

L
is not very small, which ensures a completely

acceptable rate of convergence of the non-adaptive method (see Table 1 below). In the second exam-
ple, the objective is ill-conditioned meaning that the ratio µ

L
so small that the computer considers the

value 1− µ
L

to be equal to 1 and Theorem 29 for the non-adaptive algorithm does not allow to estimate
the rate of convergence at all. In this case, the use of adaptive Algorithm 4 leads to noticeable results
(see the Table 2 below).

Example 30. Given a matrix A of size 2000 × 2000 and a vector b ∈ R2000 with coordinates rep-
resented by random integers from the interval [−1000, 1000]. The matrix A is a diagonal matrix in
which the main diagonal is represented by random integers from the interval [1, 1000], as well as 100
randomly selected elements of this matrix are replaced by integers from the interval [1, 1000].

Consider the problem of solving the matrix equation, which, in the case of solvability, is equivalent to
the problem of minimizing the convex functional f(x) = ‖Ax−b‖2

2. This function is µ-strongly convex
and has L -Lipschitz gradient, where µ is the smallest positive eigenvalue of the matrix ATA, L is
the largest eigenvalue of ATA (AT is the matrix transposed to A). Start point x0 = (0.2, . . . , 0.2)

selected. The values
(
1− µ

L

)k
and (7) are compared, which determine the quality of the solution

for the 4 algorithm and its non-adaptive version. The results are presented in the table ref tab1. As
you can see, with the same number of iterations and comparable time costs, the adaptive method
guarantees a slightly better solution quality.

Average results (for different matrices) of 10 experiments of the comparison of the work of algorithm
4 and its non-adaptive version are presented in the comparative Table 1, where K is the number of
iterations of these algorithms. Time presented in seconds.

Example 31. We consider operator

g(x1, x2, . . . , xn) =
(
ex1+

x2
10e3 , ex2+

x3
10e3 , . . . , exn+

x1
10e3

)
,
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Table 1: Results for Example 30.

Adaptive Non-adaptive
K Time, s Estimate Time, s Estimate

100 5.2 0.99996 28.9 0.33332
200 10.2 0.99993 52.3 0.33332
300 15.5 0.99989 75.4 0.33332
400 20.7 0.99986 98.9 0.33332
500 25.9 0.99982 122.4 0.33332

Table 2: Results for Example 31.

Algorithm 5 Algorithm 6
ε Time, s Iterations Time, s Iterations

1/2 209.0 3 386.0 6
1/4 205.7 3 454.0 7
1/6 278.3 4 516.0 8
1/8 272.3 4 529.0 8
1/10 335.7 5 597.0 9

initial point x0 = (x1, x2, . . . , xn) ∈ Q (Q = B1(0) = {x ∈ Rn | ‖x‖2 6 1}, x1, x2, . . . , xn —
random numbers from the interval (0, 1)), L0 = ‖g(1,0,0,...,0)−g(0,1,0,...,0)‖√

2
and µ = 9

10
exp(−

√
2) for

standard Euclidean norm in Rn. Average results (for different initial points) of 10 experiments of the
comparison of the work of algorithms 5 and 6 for n = 10000 are presented in the comparative tables
2 and 3. Time presented in seconds.

Thus, with ε 6 1
10

the algorithm 5 works faster than algorithm 5, however, for higher accuracy, the sit-
uation changes (see table 3). Experiments were performed using CPython 3.7 software on a computer
with a 3-core AMD Athlon II X3 450 processor with a clock frequency of 3.2 GHz. The computer’s RAM
was 8 GB.

D Analysis of Algorithm in the case of ψδ(x, y) is m-strongly
convex function

Let us denote

qk
def
=
Lk − µ
Lk +m

≤ q
def
=

2L− µ
2L+m

Table 3: Results for Example 31.

Algorithm 5 Algorithm 6
ε Time, s Iterations Time, s Iterations

5 · 10−4 923 13 1318 16
10−4 2501 26 1716 19

5 · 10−5 > 3600 — 2244 20
10−5 > 3600 — 2456 22
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and

Qk
j

def
=

k∏
i=j

qi.

for all k ≥ 0.

Theorem 32. We denote yk+1 = argmini=1,...,k+1 f(xi).

1

1

2
‖xk+1 − x∗‖2 ≤ V [xk+1](x∗)

≤ Qk+1
1 V [x0](x∗) + (δ̃ + 2δ)

k+1∑
i=1

Qk+1
i+1

Li +m

2

f(yk+1)− f(x∗) ≤
Qk+1

1∑k+1
i=1

Qk+1
i+1

Li+m

V [x0](x∗) + δ̃ + 2δ

≤ min

[
(Lk+1 +m)Qk+1

1 V [x0](x∗),
1∑k+1

i=1
1

Li+m

V [x0](x∗)

]
+ δ̃ + 2δ

≤ min

[
(2L+m)qk+1V [x0](x∗),

2L+m

k + 1
V [x0](x∗)

]
+ δ̃ + 2δ.

3

f(x̄N)− f(x∗) +
m

2
‖x̄N − x∗‖2 ≤ V [x0](x∗)

AN
+ δ̃ + 2δ

≤ 2LV [x0](x∗)

N
+ δ̃ + 2δ.

and for case when m > 0:

1

2
‖x̄N − x∗‖2 ≤ V [x0](x∗)

mAN
+
δ̃ + 2δ

m

≤ 2LV [x0](x∗)

mN
+
δ̃ + 2δ

m

Proof. 1

f(xk+1) ≤ fδ(xk+1) + δ

≤ fδ(xk) + ψδ(xk+1, xk) + Lk+1V [xk](xk+1) + 2δ

≤ fδ(xk) + ψδ(x, xk) + Lk+1V [xk](x)− (Lk+1 +m)V [xk+1](x) + δ̃ + 2δ

≤ f(x) + (Lk+1 − µ)V [xk](x)− (Lk+1 +m)V [xk+1](x) + δ̃ + 2δ.

Let us take x = x∗, then f(x∗) ≤ f(xk+1) and

(Lk+1 +m)V [xk+1](x∗) ≤ (Lk+1 − µ)V [xk](x∗) + δ̃ + 2δ.
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Thus, we have that

V [xk+1](x∗) ≤ qk+1V [xk](x∗) +
δ̃ + 2δ

Lk+1 +m

≤ Qk+1
1 V [x0](x∗) + (δ̃ + 2δ)

k+1∑
i=1

Qk+1
i+1

Li +m
.

2

V [xk+1](x∗) ≤
1

Lk+1 +m
(f(x∗)− f(xk+1) + δ̃ + 2δ) + qk+1V [xk](x∗)

≤
k+1∑
i=1

(
Qk+1
i+1

Li +m
(f(x∗)− f(xi) + δ̃ + 2δ)

)
+Qk+1

1 V [x0](x∗).

Using that V [xk+1](x∗) ≥ 0 and yk+1 definition we have

Qk+1
1 V [x0](x∗) ≥

k+1∑
i=1

(
Qk+1
i+1

Li +m
(f(xi)− f(x∗)− δ̃ − 2δ)

)

≥ (f(yk+1)− f(x∗))
k+1∑
i=1

Qk+1
i+1

Li +m
− (δ̃ + 2δ)

k+1∑
i=1

Qk+1
i+1

Li +m
.

Let us divide inequality by
∑k+1

i=1

Qk+1
i+1

Li+m
:

f(yk+1)− f(x∗) ≤
Qk+1

1∑k+1
i=1

Qk+1
i+1

Li+m

V [x0](x∗) + δ̃ + 2δ.

Notice that
∑k+1

i=1

Qk+1
i+1

Li+m
≥ 1

Lk+1+m
and Qk+1

i ≥ Qk+1
1 for all i ≥ 1, this gives us the following

ineqaulity

f(yk+1)− f(x∗) ≤ min

[
(Lk+1 +m)Qk+1

1 V [x0](x∗),
1∑k+1

i=1
1

Li+m

V [x0](x∗)

]
+ δ̃ + 2δ.

3

f(xk+1)− f(x∗) + (Lk+1 +m)V [xk+1](x∗) ≤ (Lk+1 − µ)V [xk](x∗) + δ̃ + 2δ

≤ Lk+1V [xk](x∗) + δ̃ + 2δ.

After dividing both parts by Lk+1 we have:

1

Lk+1

(f(xk+1)− f(x∗)) +

(
1 +

m

Lk+1

)
V [xk+1](x∗) +

δ̃ + 2δ

Lk+1

≤ V [xk](x∗) +
δ̃ + 2δ

Lk+1

.

Let us telescope the last inequality for k from 0 to N and use 1–strong convexity of V :

N∑
k=0

1

Lk+1

(f(xk+1)− f(x∗)) +
N∑
k=0

m

2Lk+1

‖xi − x∗‖2

≤ V [x0](x∗)− V [xN ](x∗) + (δ̃ + 2δ)AN .
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Now we divide both parts byAN . Using the fact that V [xN ](x∗) ≥ 0 and convexity we can get:

f(x̄N)− f(x∗) +
m

2
‖x̄N − x∗‖2 ≤ V [x0](x∗)

AN
+ δ̃ + 2δ.
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