743 research outputs found

    Deeply-Integrated Feature Tracking for Embedded Navigation

    Get PDF
    The Air Force Institute of Technology (AFIT) is investigating techniques to improve aircraft navigation using low-cost imaging and inertial sensors. Stationary features tracked within the image are used to improve the inertial navigation estimate. These features are tracked using a correspondence search between frames. Previous research investigated aiding these correspondence searches using inertial measurements (i.e., stochastic projection). While this research demonstrated the benefits of further sensor integration, it still relied on robust feature descriptors (e.g., SIFT or SURF) to obtain a reliable correspondence match in the presence of rotation and scale changes. Unfortunately, these robust feature extraction algorithms are computationally intensive and require significant resources for real-time operation. Simpler feature extraction algorithms are much more efficient, but their feature descriptors are not invariant to scale, rotation, or affine warping which limits matching performance during arbitrary motion. This research uses inertial measurements to predict not only the location of the feature in the next image but also the feature descriptor, resulting in robust correspondence matching with low computational overhead. This novel technique, called deeply-integrated feature tracking, is exercised using real imagery. The term deep integration is derived from the fact inertial information is used to aid the image processing. The navigation experiments presented demonstrate the performance of the new algorithm in relation to the previous work. Further experiments also investigate a monocular camera setup necessary for actual flight testing. Results show that the new algorithm is 12 times faster than its predecessor while still producing an accurate trajectory. Thirty-percent more features were initialized using the new tracker over the previous algorithm. However, low-level aiding techniques successfully reduced the number of features initialized indicating a more robust tracking solution through deep integration

    An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor

    Full text link
    This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization -- one of the main problems affecting other packages in underwater domain -- by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Ground-VIO: Monocular Visual-Inertial Odometry with Online Calibration of Camera-Ground Geometric Parameters

    Full text link
    Monocular visual-inertial odometry (VIO) is a low-cost solution to provide high-accuracy, low-drifting pose estimation. However, it has been meeting challenges in vehicular scenarios due to limited dynamics and lack of stable features. In this paper, we propose Ground-VIO, which utilizes ground features and the specific camera-ground geometry to enhance monocular VIO performance in realistic road environments. In the method, the camera-ground geometry is modeled with vehicle-centered parameters and integrated into an optimization-based VIO framework. These parameters could be calibrated online and simultaneously improve the odometry accuracy by providing stable scale-awareness. Besides, a specially designed visual front-end is developed to stably extract and track ground features via the inverse perspective mapping (IPM) technique. Both simulation tests and real-world experiments are conducted to verify the effectiveness of the proposed method. The results show that our implementation could dramatically improve monocular VIO accuracy in vehicular scenarios, achieving comparable or even better performance than state-of-art stereo VIO solutions. The system could also be used for the auto-calibration of IPM which is widely used in vehicle perception. A toolkit for ground feature processing, together with the experimental datasets, would be made open-source (https://github.com/GREAT-WHU/gv_tools)

    Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities

    Full text link
    Visual-Inertial Odometry (VIO) algorithms typically rely on a point cloud representation of the scene that does not model the topology of the environment. A 3D mesh instead offers a richer, yet lightweight, model. Nevertheless, building a 3D mesh out of the sparse and noisy 3D landmarks triangulated by a VIO algorithm often results in a mesh that does not fit the real scene. In order to regularize the mesh, previous approaches decouple state estimation from the 3D mesh regularization step, and either limit the 3D mesh to the current frame or let the mesh grow indefinitely. We propose instead to tightly couple mesh regularization and state estimation by detecting and enforcing structural regularities in a novel factor-graph formulation. We also propose to incrementally build the mesh by restricting its extent to the time-horizon of the VIO optimization; the resulting 3D mesh covers a larger portion of the scene than a per-frame approach while its memory usage and computational complexity remain bounded. We show that our approach successfully regularizes the mesh, while improving localization accuracy, when structural regularities are present, and remains operational in scenes without regularities.Comment: 7 pages, 5 figures, ICRA accepte

    Kinematics Based Visual Localization for Skid-Steering Robots: Algorithm and Theory

    Full text link
    To build commercial robots, skid-steering mechanical design is of increased popularity due to its manufacturing simplicity and unique mechanism. However, these also cause significant challenges on software and algorithm design, especially for pose estimation (i.e., determining the robot's rotation and position), which is the prerequisite of autonomous navigation. While the general localization algorithms have been extensively studied in research communities, there are still fundamental problems that need to be resolved for localizing skid-steering robots that change their orientation with a skid. To tackle this problem, we propose a probabilistic sliding-window estimator dedicated to skid-steering robots, using measurements from a monocular camera, the wheel encoders, and optionally an inertial measurement unit (IMU). Specifically, we explicitly model the kinematics of skid-steering robots by both track instantaneous centers of rotation (ICRs) and correction factors, which are capable of compensating for the complexity of track-to-terrain interaction, the imperfectness of mechanical design, terrain conditions and smoothness, and so on. To prevent performance reduction in robots' lifelong missions, the time- and location- varying kinematic parameters are estimated online along with pose estimation states in a tightly-coupled manner. More importantly, we conduct in-depth observability analysis for different sensors and design configurations in this paper, which provides us with theoretical tools in making the correct choice when building real commercial robots. In our experiments, we validate the proposed method by both simulation tests and real-world experiments, which demonstrate that our method outperforms competing methods by wide margins.Comment: 18 pages in tota

    Homography-Based State Estimation for Autonomous Exploration in Unknown Environments

    Get PDF
    This thesis presents the development of vision-based state estimation algorithms to enable a quadcopter UAV to navigate and explore a previously unknown GPS denied environment. These state estimation algorithms are based on tracked Speeded-Up Robust Features (SURF) points and the homography relationship that relates the camera motion to the locations of tracked planar feature points in the image plane. An extended Kalman filter implementation is developed to perform sensor fusion using measurements from an onboard inertial measurement unit (accelerometers and rate gyros) with vision-based measurements derived from the homography relationship. Therefore, the measurement update in the filter requires the processing of images from a monocular camera to detect and track planar feature points followed by the computation of homography parameters. The state estimation algorithms are designed to be independent of GPS since GPS can be unreliable or unavailable in many operational environments of interest such as urban environments. The state estimation algorithms are implemented using simulated data from a quadcopter UAV and then tested using post processed video and IMU data from flights of an autonomous quadcopter. The homography-based state estimation algorithm was effective, but accumulates drift errors over time due to the relativistic homography measurement of position
    • …
    corecore