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ABSTRACT

Chavez Armijos, Andres S. MSAE, Embry-Riddle Aeronautical University, May 2018.

Homography-Based State Estimation for Autonomous Exploration in Unknown Environ-

ments.

This thesis presents the development of vision-based state estimation algorithms to
enable a quadcopter UAV to navigate and explore a previously unknown GPS denied
environment. These state estimation algorithms are based on tracked Speeded-Up Robust
Features (SURF) points and the homography relationship that relates the camera motion
to the locations of tracked planar feature points in the image plane. An extended Kalman
filter implementation is developed to perform sensor fusion using measurements from
an onboard inertial measurement unit (accelerometers and rate gyros) with vision-based
measurements derived from the homography relationship. Therefore, the measurement
update in the filter requires the processing of images from a monocular camera to detect
and track planar feature points followed by the computation of homography parameters.
The state estimation algorithms are designed to be independent of GPS since GPS can
be unreliable or unavailable in many operational environments of interest such as urban
environments. The state estimation algorithms are implemented using simulated data from a
quadcopter UAV and then tested using post processed video and IMU data from flights of an
autonomous quadcopter. The homography-based state estimation algorithm was effective,
but accumulates drift errors over time due to the relativistic homography measurement of
position.
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1. Introduction

1.1 Problem Statement

Recent efforts have been made towards the development of new unmanned autonomous

systems (UAS) capable of performing missions in environments that are difficult for humans

to access. Therefore, such systems can be seen in several applications ranging from space

exploration, mineral rock sampling, agricultural irrigation, and surveillance and reconnais-

sance for military applications. The success of such applications relies on the development

and implementation of more complex and intelligent systems capable of making decisions

autonomously. Most successful onboard systems are based on the usage of inertial measure-

ment units (IMUs) combined with GPS to achieve data pose recovery and estimation for

autonomous navigation. However, in many environments of interest, one of the most critical

issues for autonomous navigation is the unavailability of GPS signal measurements capable

of providing a global localization. Moreover, not only must the system function without

GPS, but it might also need to detect the presence of a multitude of obstacles including

buildings, vehicles, pedestrians, trees, and power lines by generating terrain maps and

creating a flight plan.

To generate a non-GPS dependent estimation, several sets of vision-based algorithms

have been designed. However, the estimation of certain states tends to drift with time, given

that no absolute measurement has been provided, due to the integration of errors with respect
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to time. Therefore, the success of such algorithms depends on how accurately the system

generates the estimation before the drift is significant or a GPS measurement is recovered.

Several vision-based techniques have been proposed in the past by using information about

the light intensity, terrain elevation, landmark geometry, or target locations. However, such

algorithms rely on previous knowledge about the environment where the vehicle navigation

is going to occur.

For cases where no prior information is available, one can use the inter-frame relationship

of random feature points to reconstruct the pose of the vehicle based on projection models

from which the attitude and translation are extracted. A common projection model used for

this estimation is called the epipolar geometry, from which the homography relationship is

also derived (Ma et al., 2004; Brockers et al., 2011; Mondragón et al., 2010). However, the

main problem with these algorithms is that the estimates tend to drift away from the real

solution due to their relativistic nature (i.e., epipolar geometry and homography provide

information about the frame-to-frame camera motion). A common approach used to address

this problem is the broad class of simultaneous localization and mapping (SLAM) algorithms

where registration methods, such as constructing image mosaics, are used in conjunction

with visual odometry and inertial navigation systems (INS). Therefore, a map based on the

estimation of the tracked features can be generated to relate this map with the attitude and

the pose of the vehicle (Indelman et al., 2010; Caballero et al., 2007). However, traditional

SLAM algorithms are limited by their computational cost, which could limit their viability

for space applications.
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1.2 Purpose

With the objective of addressing the need for a reliable navigation system that does not

depend on GPS measurements, this thesis focuses on the development of vision-based state

estimation algorithms based on the planar homography relationship. With this approach,

image processing algorithms are first applied to track planar features in image frames

collected by an onboard monocular camera. The homography relationship is then applied to

provide vision-based pose reconstruction measurements, which correspond to the frame-

to-frame rotation matrix, the unit vector of frame-to-frame translation, and the unit normal

vector to the feature point plane.

An extended Kalman filter (EKF) implementation is developed as a sensor fusion

algorithm that uses accelerometer and rate gyro data from an onboard inertial measurement

unit (IMU) in the state propagation step and homography-based measurements, barometer,

and magnetometer data in the measurement update step. Additionally, using the estimated

states, a homography relationship is reconstructed.

Finally, a hybrid-based approach is proposed using the homography measurement and

known tracked landmarks as an absolute measurement for mitigating drift accumulation.

The implementation of these algorithms aims to accomplish the main objectives of this

thesis:
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1. Design a vision based nonlinear state estimator, based on tracked features and

planar homography, for the autonomous navigation of a flight vehicle in unknown

environments.

2. Investigate the limitations of the proposed algorithm and possible solutions for the

mitigation of such limitations without significantly adding to the computational cost

of the algorithm.

3. Demonstrate autonomous navigation under GPS denied environments with the usage

of inertial and vision measurements.

While it is true that a successful implementation of a vision-based approach for navi-

gation requires a consideration of hardware design and optimization, this thesis is focused

on the algorithmic side of the problem statement. Therefore, the research presented is

oriented towards the study of the sensor fusion, but not on the platform-dependent control

of the vehicle. The design of the control algorithm strategies can be found in different

implementations such as in (Garcia Herrera, 2017) or (Perez Rocha et al., 2016).
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2. Literature Review

Aerial multi-rotor vehicles are vehicles for which propulsion is generated by a set of

propellers configured in different symmetries. One of the most typical configurations is the

X4 configuration, commonly known as quadrotors due to the number of pitch-rotors that are

mounted on the vehicle. This type of vehicle is omnidirectional and has almost no constraints

in its motion. The quadrotor was first introduced in 1922 by Dr. George de Botherzat and

Ivan Jerome. However, its mechanical complexity, unresponsiveness, and inherent instability

made the vehicle a hard to control platform where the pilot workload was significant

(Hoffmann et al., 2004). Therefore, the complete development and further popularization of

quadrotors did not occur until the last few decades with the introduction of micro electro

mechanical systems (MEMS), gyroscopic stabilization, and digital microcontrollers, that

enabled for the miniaturization of the platforms and the development of autonomy for the

vehicles (Garcia Herrera, 2017).

The autonomous navigation of micro aerial vehicles (MAV) problem emerged as an

important research topic in recent years. MAVs can provide access to environments where no

humans can enter, thus minimizing or voiding human risk because MAVs have considerable

3D maneuverability and portability. The special capabilities of autonomous vehicles provide

an ideal solution for search and rescue, asteroid mining, or simple reconnaissance. However,
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the success of any autonomous vehicle mission depends on the ability to navigate the scene

by sensing the environment using active or passive sensors.

Although a consistent definition for navigation has not been agreed upon, some pundits

have defined navigation as a system composed of one or several methods to provide position

and velocity of an object with respect to a given reference frame or point. However, it is

important to define the difference between positioning and localization. Positioning refers

to the quantitative determination of the position of a vehicle with respect to a coordinate

system or a map, whereas localization is often referred to as a method for the qualitative

determination of position, thus constraining the position of the vehicle to an area (Groves,

2008). Different methods for localization and positioning are usually used interchangeably

depending on the application. This chapter presents an overview of some common algorithms

used for the autonomous navigation and attitude estimation of MAVs using either inertial,

remote sensing, or vision-based measurements.

2.1 Dead Reckoning (DR)

Dead Reckoning (DR) refers to the process of computing the current position of an

object based on the measurement of the change of position or the integration of a given or

estimated velocity with respect to time. The DR process can be accomplished by different

means. For example, for the estimation of the attitude, a separate solution is usually used

depending on the movement constraints of the vehicle. For 2D navigation, a magnetometer

heading is usually sufficient. However, when the vehicle undergoes a 3D translation, it is

required to measure the three axis angles using gyroscopes. For pedestrian dead reckoning,
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the process is accomplished by counting paces using a pedometer or accelerometers. For

vehicles with 3-DoF, the DR process can be accomplished by the usage of an odometer

that uses measurements of the distance travelled by the vehicle using the count of rotations

of the wheels. The successful implementation of a DR solution onto a system depends on

the accuracy and precision of the sensors used since it is an algorithm that depends on the

size of the time step that is used for the integration (Groves, 2008). Therefore, the main

challenge in DR is the accumulation of possible drift due to measurement noise that could

lead to errors of 10% or more of the distance travelled, depending on the sensors used.DR

is a process where the error grows with time because DR navigation usually involves the

integration of several inertial measurements. The application of Bayesian filtering methods

are sometimes used for drift reduction (Diamant & Jin, 2014). A description of the DR

accumulation of error process is shown in Figure 2.1.

Figure 2.1: Dead Reckoning Drift Accumulation Process (Groves, 2008)
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2.1.1 Inertial Navigation System (INS)

An inertial navigation system (INS) is also commonly referred to as an inertial measure-

ment unit (IMU), and it is a complete DR system that is usually composed of three mutually

orthogonal accelerometers, three-axis gyroscopes, and sometimes a set of three mutually

orthogonal magnetometers as shown in Figure 2.2. The measurements are usually processed

by a microcontroller that generates a DR solution for position, orientation, and velocity

(Groves, 2008).

The inertial solution for position and velocity is computed using Newtonian mechanics

to calculate the motion of the vehicle by measuring the external forces on the vehicle that

cause an acceleration and excluding the effects of gravity. For attitude determination, the

gyroscopes are used as a way of sensing the rotational velocity of the vehicle given by the

gyroscopic effect. The rotational rates are then used in conjunction with the direction cosine

matrix (DCM) to relate the vehicle body reference frame to the inertial reference coordinate

system using numerical integration. This process is also called a strapdown navigation

system (Titterton & Weston, 2004).

2.2 Signal-Based Navigation

Signal-based navigation is comprised of a set of different passive sensors that are used

in conjunction with onboard systems. Such systems are usually based on the triangulation

of the signal being sent and received by a set of transmitters and an onboard receiver
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Figure 2.2: Strapdown Inertial Navigation System Diagram (Titterton & Weston, 2004)

respectively. The two main categories within signal-based navigation are radio navigation

and satellite navigation, usually known as the Global Positioning System (GPS).

2.2.1 Radio Navigation

Signal-based navigation started in the form of radio navigation in the 1920s with the

transmission of low- and medium-frequency signals with marker beacons running at 75MHz

that allowed researchers to delineate airways (Groves, 2013). The main purpose of radio

navigation is the determination of the position of an object. Nowadays the radio navigation is

composed of more complex techniques that involve wireless local area network (WLAN) or

ultrawideband communications. Five of the most common basic radio navigation techniques

still in use include: radio direction finding, bearing, passive ranging, hyperbolic ranging,

and Doppler signal positioning (Groves, 2008).
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Radio Direction

Radio direction systems work by the determination of the direction by tuning in a

broadcasted radio station with a rotatable directional antenna linked to a degree indicator to

obtain a bearing (Groves, 2008). Additionally, a second measurement of the same type can

be used as means of triangulation for position determination as shown in Figure 2.3. This is

a typical system found in commercial aircraft and maritime vessels because the broadcasting

signal generators are usually found near airports or harbors. The main difference between

radio direction and bearing is the fact that the reference station emits a signal that varies with

the direction of transmission, allowing the vehicle to compute the elevation to the reference

station without the usage of a directional antenna attached to the vehicle (Groves, 2008).

Figure 2.3: Radio Direction Triangulation (Indutiveload, 2008)
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Passive Ranging

For passive ranging systems, the computation is done by measuring the time of arrival

of the signal being broadcasted from the reference station. A range from the transmitter

can be deduced by the usage of a timing signal. The output of such systems is 2D tracking

information that can contain bearing and elevation rate (de Visser et al., 2006). Therefore, it

is necessary that the clocks of the receiver and transmitters are synchronized (Groves, 2008).

Hyperbolic Ranging

The basis for hyperbolic ranging systems is the estimation of the location of a transmitting

source using the intersection of the hyperboloids that describe the difference in distance

measurements of at least three reference stations. The distance difference is computed by

measuring the time of arrival difference between the three or more signals sent (Polturi,

2007). A graphical description of the process is shown in Figure 2.4.

Figure 2.4: Hyperbolic Ranging Position Localization (Polturi, 2007)
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Doppler Positioning

The most used radio navigation method is Doppler-based positioning. This method uses

a transmitter that moves along a predetermined trajectory while a receiver is measuring the

Doppler shift of the signal being received (Groves, 2008). When the transmitter approaches

the receiver, the transmitted signal bounces with an increment in the frequency. This bounce

can be modelled as

ω
′ =

(
1− vrel cos(θ)

vprop

)
ω (2.1)

where ω′ represents the received frequency, ω the transmitted frequency, vrel is the relative

velocity, vprop decribes the speed propagation of the wave, and θ is the angle between the

relative velocity and the wave propagation direction. Using the frequency shift representation,

it is possible to compute the translation of an object as shown in Figure 2.5 (Lehtinen, 2001).

Figure 2.5: Frequency shift of a moving object (Lehtinen, 2001)
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The main problem with the usage of radio-based positioning at low to medium frequen-

cies is the coverage of large areas since these frequencies can only transmit signals within

line-of-sight because of the effect that atmospheric conditions produce. (Titterton & Weston,

2004).

2.2.2 Satellite Navigation

Global navigation satellite systems are a constellation of typically 20 to 30 satellites

that fly in three to six different orbital planes close to medium earth orbits (MEO) as

shown in Figure 2.6(a) (Bevly & Cobb., 2010). The main objective of these systems is to

generate a differential signal of at least four satellites that can be acquired using a receiver

at any location. The system generates a three-dimensional position fix using the satellite

broadcasted microwave signals and calibrates its clock bias using passive ranging methods.

This method can provide accuracy of a few meters with the ability to increase its precision

and accuracy by using carrier-phase positioning techniques or differential GPS (Groves,

2008). Additionally, GNSS measurements can be fused with IMU measurements using

Kalman Filters (KF) or other Gaussian filtering techniques to generate a more precise

solution as shown in Figure 2.6(b). However, the main problem with this type of systems is

the sensitivity to interference and occlusion generated by structures.
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(a) GNSS Satellite Constellation (Bevly & Cobb.,

2010)

(b) GNSS with INS integration diagram (Bevly &

Cobb., 2010)

Figure 2.6: GNSS Positioning Description

2.3 Vision-Based Navigation (VBN)

Vision-based navigation (VBN) techniques use optical sensors to extract information

about the environment, so they can be post-processed with computer vision algorithms to

provide a positioning or localization solution. These systems have become popular lately,

especially during the last decade, due to the economic viability of its hardware and software.

The main advantage of vision-based navigation techniques is the versatility that these

methods provide. Therefore, vision-based techniques are not only used for localization, but

also for mapping, collision avoidance, and path planning. However, the main disadvantages

of these algorithms is the low reliability and low updating rate when compared with INS

systems. Therefore, VBN systems are commonly used in conjunction with other navigation
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systems, such as GNSS and INS, to improve accuracy (Sabatini R, 2013). These algorithms

can be classified into two categories, algorithms with a priori information, also called model-

based approaches, and those without previous information, also named appearance-based

approaches (Zhao et al., 2013; Sabatini R, 2013).

2.3.1 Algorithms with Model-Based Approach (MBA)

VBN systems with model-based approach are systems that use previously stored infor-

mation as a source for orientation or visual scaling using either 2D or 3D correspondences.

MBA methods can use previous information about the environment other than knowing the

geometry of the objects being tracked, but also information such as light intensity, terrain

elevation, target positioning, or even reference maps that could be used to generate an

absolute estimate for localization. This approach is commonly referred to as environmental

feature matching. One of the main characteristics of this class of algorithms is that there is

usually some preprocessing involved. Environmental feature matching can fail to provide a

navigation solution when the information about features or the environment fail to match

the database. Some MBA vision-based approaches are listed below:

Vision Bearing

This system is based on proprioceptive geometry or location data of an artificial landmark.

Knowing the geometry of the landmark makes the camera the equivalent of a bearing sensor

(Caballero et al., 2009). The pose is usually recovered by solving the well-known structure
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from motion problem in which the attitude and position of the vehicle are recovered using

camera projection models that include the camera intrinsic and extrinsic parameters. A

straightforward approach of these systems is to identify detectors based on the appearance,

color, and shapes of an object captured by the camera and then use a comparison with

templates included in an internal library (Lin et al., 2009). An example of this method was

developed by DeAngelo & Horn (2016) where a landmark detection system was developed

using information from previously taken aerial images. In this example, the computer was

trained to recognize visible features of the aerial images, such as roads. These detectors

were used in conjunction with close aircraft region location estimation that was used to

recognize the landmark detectors for a precise localization computation of the flying vehicle.

A general system diagram for a vision bearing navigation approach is shown in Figure 2.7

where the vision bearing system is used as a position fixing method.

Figure 2.7: Vision bearing system (Groves, 2013)
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Map Matching

The idea of map matching is to use a map database in conjunction with a feature

matching algorithm given a set of information that can be in the form of prelocalization.

Therefore, this algorithm is commonly used with georeferenced images and INS solutions.

Map matching compares the input position solution from the rest of the navigation system

with roads, houses, or scenery in the environment that can be used as a reference localization

with respect to the database map (Zhao et al., 2012). A visual representation of feature

extraction, templating, and matching is shown in Figure 2.8. In order to generate these

correspondences, algorithms such as Canny edge detectors or Progressive Probabilistic

Hough Transforms are used to extract the features of the environment (Kuemmerle et al.,

2011). In (Dogruer et al., 2008) satellite images from Google Earth were segmented into

separate regions to distinguish common urban features such as roads and buildings. Then

a Monte-Carlo Localization was used in conjunction with the segmented map images to

generate an estimate of position.

For digital road matching, the comparison is done by means of coordinate fixing from

GNSS together with a road link identification. In this system, the map database is represented

in the form of grids and nodes. The main objective is to pinpoint the location of the vehicle

to a node or connection based on fuzzy logic, probabilistic theory, or Bayesian inference

(Groves, 2013). However, this system is mainly suited for ground vehicles only in urban or

known environments.
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Figure 2.8: Map feature comparison (Pink, 2008)

Terrain-Referenced Navigation (TRN)

Terrain-Referenced Navigation (TRN) uses terrain pattern matching in comparison with

a terrain database. The comparison is done using terrain height measurements as shown

in Figure 2.9. Therefore, this system is also referred to as terrain-contour matching. The

methods for obtaining the position from the measurements can be classified as sequential and

batch processing. For sequential processing, an EKF is usually used for error estimation with

measurements coming from radar altimeters. For the case of Batch processing, the terrain

contour is generated using 5 to 16 terrain height measurements so a location signature in the

form of a footprint can be generated, followed by a correlation process using a probability

distribution that relates geolocalized images with the position of the vehicle.

In 2012 (D. Lee et al., 2012) used a digital terrain database with a monocular camera.

The UAV position estimation was computed using a radar altimeter to recover the depth

perception lost by the monocular camera. The measurements were integrated using a point-
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mass filter. Additionally, the INS was replaced by the usage of vision-based odometry

(homography decomposition).

Figure 2.9: Vision-based Terrain-Referenced Navigation (D. Lee et al., 2012)

2.3.2 Algorithms with Appearance-Based Approach (ABA)

Appearance-based vision navigation systems are designed to recollect as much informa-

tion as possible from the image so an estimation of the followed path and attitude can be

computed. This is accomplished by relating previous frames with the current one. Therefore,

it can be inferred that the environment is represented in the form of key images taken at

various locations using visual sensors (Sabatini R, 2013). The information recollected from

each frame is stored in a database as a series of small- feature descriptors that can be used for

matching in subsequent images. The main advantage of ABA over MBA is that ABA usually

does not need any kind of preprocessing. Consequently, this class of algorithms can be used



20

in virtually any unknown environment. However, the main problem with ABA approaches

is that they are usually computationally expensive and they carry a larger uncertainty than

with MBA approaches. A few approaches for ABA are listed as follow:

Vision-Based Odometry (VO)

Visual odometry is a form of dead reckoning that indirectly measures the translation

and orientation of the vehicle by relating camera images. The translation and orientation

measurements are done by using projection models between vectorial subspaces represented

as camera frames at two instances of time (homography matrix) or camera projection model

for the current time (camera fundamental matrix). The geometry used for the generation of

the projection models is referred to as the epipolar geometry or two-view geometry. The

epipolar geometry is the intrinsic projective geometry between two views and is independent

of scene structure, thus it can be imagined as the projection of a point in 3D space onto two

sequential images as represented in Figure 2.10. The epipolar geometry just depends on

the internal parameters of the camera and relative pose. However, the projective epipolar

geometry can be reconstructed using either the 4-points or 8-points algorithms (Choi et al.,

2015). The projection model between two frames can be represented as


xc

c f
(+)

yc
c f

(+)

1

= H


xc

c f
(−)

yc
c f

(−)

1

 (2.2)
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where
(

xc
c f

(+),yc
c f

(+),1
)

homogeneous coordinates represent the position of a 3D projected

point onto the image frame in camera coordinates. The subscripts (+) and (−) denotes the

previous and current frames respectively. The H matrix is the projective matrix that maps

the points from the previous to the current frame. This is called the homography matrix and

encodes information about interframe relative rotation and translation that can be used to

generate a DR solution for attitude and position estimation (Groves, 2013). The accuracy

of visual odometry with monocular vision is bounded to approximately 2% of the distance

traveled by the vehicle (Hide et al., 2010).

Figure 2.10: Two-View Projective Epipolar Geometry Representation (Ma et al., 2004)

Optical Flow

Optical flow egomotion can be also classified as a visual odometry algorithm. This

algorithm computes the apparent motion of objects, surfaces, or edges between two con-

secutive frames caused by the relative displacement between an object and the camera. It



22

is usually represented as a vector field that represents the differential displacement of the

tracked object as a function of time. Therefore, one of the most popular computer vision

algorithms for the computation of optical flow is Lucas-Kanade method due to its differential

behavior (Bradski, 2000). However, the vector field representation can also be energy-based

or phase-based. An example of differential and energy field representation is shown in

Figure 2.11.

Figure 2.11: Optical Flow Differential and Energy-Based Potential Field Representation

(Roberts et al., 2009)

Optical flow methods can be computed by analyzing the pixel intensity given as a

function of the location (x,y) in the pixel frame and time t in the following manner

I(x,y, t) = I(x+dx,y+dy, t +dt) (2.3)
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from which the potential field differentiation can be computed by a Taylor series approxima-

tion as follow

fxu+ fyv+ f t = 0 (2.4)

where f x and f y are image pixel gradients. Consequently, f x and f y represent gradients

with respect to time as represented below

fx =
∂ f
∂x

fy =
∂ f
∂y

u =
dx
dt

v =
dy
dt

(2.5)

(Bradski, 2000)

However, in order to generate a suitable measurement, this algorithm depends on a series

of assumptions that ensures that the optical flow principle can be formulated. This algorithm

assumes that the environment does not change, or changes smoothly. Additionally, the

displacement between frames of the tracked object is small compared to the size of the

image (Garcia Herrera, 2017).

The gradients associated with the image optical flow can be used to relate the angular

velocity of the vehicle and the translational motion with the optical flow. Despite the direct

measurement of the vehicle’s translation and rotation, the visual measurement solution tends

to drift with time due to its relativistic nature. Therefore, it is necessary to fuse the optical

flow solution with inertial measurements to recover the scale ambiguity, caused by the loss

of depth perception, and to correct the drift.
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Simultaneous Localization and Mapping (SLAM)

As its names suggest, SLAM is regarded as an estimation problem in which the location

and pose of the vehicle are estimated using all previous sensor readings and all previous

sensor actions. In the SLAM framework, it is often assumed that the localization process

obeys a Markov approximation assumption. This means that the world is assumed to be

static, noise is independent, and that no approximation errors during modeling are made.

Additionally, the mapping part of the algorithm also includes an estimation component.

The map estimation consists of n landmarks that are independent of GPS measurements,

making this algorithm a suitable solution for position and heading drift. In addition, this

algorithm can be used in known or unknown environments. For known environments, the

pose uncertainty can be constrained so the observation of landmarks can be used for a

bounded precise pose estimation. For unknown environments, the uncertainty can increase

arbitrarily due to the summation of errors in the odometry. To tackle this problem, SLAM

algorithms detect and store a position where the vehicle has previously been before so a

landmark matching can be performed. The main objective is to bound the error to certain

limits (Nütcher, 2001).

In order to generate a translational and rotational measurement, SLAM algorithms are

commonly used with visual odometry solutions using either monocular cameras, stereo

vision systems, or light detection and ranging (LiDAR) sensors. The advantage of using

stereo vision systems or LiDAR sensors over monocular vision is that depth perception is
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provided. Therefore, it provides a complete solution to the SLAM problem. However, the

complexity of the algorithm increases on the computational side.

The most common approach for SLAM uses an extended Kalman filter (EKF) since

the filter is capable of integrating all landmark position measurements in the form of a

covariance matrix that can be related to the states of the vehicle. The covariance relationship

used by the SLAM EKF is shown in Figure 2.12. For linear measurement models, the EKF

yields a maximum likelihood estimation, whereas for nonlinear models, a point linearization

is computed. However, when the vehicle moves through unmapped areas, the uncertainty of

the point around which the model is linearized can be too high. Therefore it is important to

generate closed loops when generating a SLAM solution (Frese & Hirzinger, 2001).

Figure 2.12: Relationship Between Process Information Matrix and Covariance Matrix in

SLAM EKF (Frese & Hirzinger, 2001)
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3. Projective Geometry

3.1 Geometric Primitives

A point X = (X ,Y,Z) ∈ R3 in the 3D Euclidean space, representing the local coordinates

of a feature in the scene, can be represented as a projection onto the camera plane as shown

in Figure 3.1. Specifically, this projection is a 2D representation in the camera coordinate

frame. This camera projection is usually denoted as x = (x,y) ∈ P2, where P2 represents

2D space. This point representation can be expressed in terms of homogeneous coordinates

where the overall scaling is irrelevant. In this manner, any pair of values representing a point

in homogeneous coordinates can be represented as x = (kx,ky,k), where k is any non-zero

value that contains scaling information about the points (Szeliski, 2010). Thus the vector x

can be expressed as:

Figure 3.1: 3D Point Projection Representation (Stolfi, 2009)
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xh = k(x,y,1) = kx (3.1)

Similar to the 2D case, points that belong to the R3 space can also be represented in

homogeneous coordinates where a fourth term is added to represent the scale of the point.

Thus, a vector X ∈ R3 can be expressed in homogeneous coordinates as:

Xh = k(X ,Y,1) = kX (3.2)

In order to represent the vector X on the 2D projective space, it is necessary to map

the space R3 to P2. This is done using the projective matrix, which in the computer vision

world is usually modeled as the pinhole model. Using the pinhole camera model, a point in

3D homogeneous coordinates can be projected to the image plane. The projective pinhole

camera model can be expressed as:

xh = Kintr

[
R T
0 1

]
Xh (3.3)

where R and T represent the rotation and translation of the camera in the world coordinate

frame respectively. Additionally, Kintr represents the intrinsic camera matrix that contains

information about the image plane, scaling factors, radial distortion, and pixel center (Zhang,

2002).
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3.2 Homography Relationship

Consider a 2D plane in the 3D space and a camera looking at a set of feature points P at

two different frames. The projections of P onto frames 1 and 2 are represented as Xi ∈ R2

and X ′i ∈ R2 respectively, as shown in Figure 3.2. It is possible to relate the projection Xi to

X ′i using a proportional relation as shown by Eq. 3.4.

Figure 3.2: Planar Homography Relationship (Ma et al., 2004)

X ′i =∼ HXi (3.4)

From Eq. 3.4 it can be deduced that a mapping from R2 is projective if and only if there

exists a non-singular matrix H of size 3×3 such that for any point X in the plane R2 there

exists a mapped correspondence of the form HXi. It should be noticed from Eq. 3.4 that

H can be multiplied by any scalar without altering the projective transformation. Thus it

can be inferred that the projective homography matrix only has 8-DoF despite having 9

elements, or in other words, the homorgaphy matrix has a scale ambiguiy associated with it.
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This means that there exist 8 unique unknowns parameters for which the system needs to be

solved (Dubrofsky, 2009; Ma et al., 2004; Hartley & Zisserman, 2003).

3.2.1 Direct Linear Transformation (DLT)

It can be demonstrated that, in order to compute the homography matrix, a set of at least

4 coplanar tracked feature points is required (Ma et al., 2004). Given at least 4 coplanar

points, the homography relationship can be used to project the set of points from frame 1

to frame 2. The homography relationship contains information about the frame-to-frame

camera rotation, the unit vector of camera translation, and the unit vector normal to the

feature point plane. Given a static feature point P that has been tracked in two image frames,

the 3×3 homography matrix H relates the measurement of P in frame 1 to its measured

location in frame 2 as follows:


x2

y2

1
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1

 (3.5)

where (xn,yn,1) is the homogeneous representation of the coordinates of the point P in the

frames 1 and 2 respectively.

If Eq. 3.5 is written for all the tracked planar feature points, it can be written in the form:

Aih = 0 (3.6)

where h ∈ R9×1 is the vector form of the stacked columns of the homography matrix

H ∈ R3×3 and Ai is a matrix composed of feature point measurements in frames 1 and 2
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defined in Eq. 3.7. Eq. 3.6 can then be solved for the homography matrix parameters. This

is called the direct linear transformation (DLT) (Ma et al., 2004).

Ai =

−x1 −y1 −1 0 0 0 x2x1 x2y1 x2

0 0 0 −x1 −y1 −1 y2x1 y2y1 y2

 (3.7)

At least 4 correspondences are required to compute the null space as the solution for

the 8-DoF of the matrix H. However, when more than 4 correspondences are used, the

system becomes over-constrained. In order to solve for the homography parameters, it is

necessary to compute the singular value decomposition (SVD) of A so the null space can be

computed. However, the main problem with SVD in DLT is that the algorithm is dependent

on the origin and scale of the image coordinate system, making the algorithm numerically

unstable. In order to address this problem, it is necessary to generate a similarity transform

T that maps the set of points Xi ∈ R2 to a new set X̂i with centroid at the origin and average

Euclidean distance of
√

2 in frames 1 and 2 respectively. After the computation of the

similarity transform T , the SVD can be used to compute the homography matrix Ĥ (Hartley

& Zisserman, 2003). It is then necessary to map the homography back using the similarity

transform as shown below

H = (T )−1ĤT (3.8)

In order to eliminate the scale ambiguity, it is recommended to normalize the homography

matrix H dividing all of the elements of the matrix by its last element H33, which corresponds

to the smallest singular value of A. This way a constraint on the vector h is enforced so that

the algebraic distance is minimized (Dubrofsky, 2009).
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3.2.2 Nonlinear Homography

When the measurement points used for the computation of the homography matrix

contain noise, the problem for the homography computation turns into an optimization

problem that minimizes the reprojection error using the distance error (d) as the cost

function. This error distance is used to generate the Maximum Likelihood estimation (MLE)

of Ĥ given n > 4 image point correspondences {Xi↔ X ′i }. However, the cost function can

take different forms as discussed below.

Geometric Distance

The idea of the geometric distance is to measure the Euclidean distance (d) between the

reprojection of the points Xi in frame 1 using the estimated homography matrix Ĥ and the

correspondence X ′i as follows

∑
i

d(X ′i , ĤXi)
2 (3.9)

Similarly, the geometric distance can be computed in both directions. This is called sym-

metric transfer error and it measures the reprojection errors forward and backward. This is

calculated as:

∑
i

{
d
(
X ′i , ĤXi

)2
+d
(
Xi, Ĥ−1X ′i

)2
}

(3.10)

In order to generate an iterative solution for the MLE, it is necessary to compute an initial

estimate, usually based on the DLT, that can ensure convergence. However, the stability of

the optimization process is not ensured (Dubrofsky, 2009).
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Reprojection Error

The reprojection error cost function is used as a measure of error distance between

the projected feature correspondence using the estimated Ĥ matrix. The error distance is

computed for each of the features. This method aims to generate an optimal estimation of

Ĥ and the correspondences
{

X̂i↔ X̂ ′i
}

such that Eq. 3.11 is minimized (Dubrofsky, 2009)

(Hartley & Zisserman, 2003).

∑
i

{
d(Xi, X̂i)

2 +d(X ′i , X̂
′
i )

2} (3.11)

given that

X̂ ′i = ĤX̂i

The main problem with this approach is that the computational cost of the algorithm increases

due to the calculation of the geometric distance in two directions.

Sampson Approximation

The main objective of the Sampson approximation is to generate an optimal estimation

of the reprojection error using only 9 parameters corresponding to each of the entries of the

H matrix. This is accomplished by representing the point correspondence (Xi↔ X ′i ) ∈ R2

as a 4D point (Xi ∈ R4). This defines the error cost function a representation of an algebraic

curve VH that passes through the points Xi. The function to minimize then becomes

∑
i
‖Xi− X̂i‖2 (3.12)
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where the vector X̂i represents the estimated closest point to Xi on VH using a Taylor series

expansion (Dubrofsky, 2009). In practice, this approximation gives precise results given

that the errors are small compared to the measurements (Hartley & Zisserman, 2003).

3.2.3 Robust Homography

The computation of the homography matrix H so far has been assumed that the only

error present in the computation comes from errors in the measurement such as pixel noise

in the cameras, which is assumed to follow a Gaussian distribution. However, the feature

matching algorithms almost never yield a set of matching correspondences with 100%

reliability. That means that there is usually a set of outliers that have been computed as a

matching correspondence and are outside the Gaussian distribution. Such mismatches are

capable of generating a disturbed homography solution with high values of reprojection

error. Therefore, the goal is to generate a robust homography by determining the set of

inliers using the presented correspondences and then estimating the optimal homography

using the computed inliers. The process is done by using an algorithm called Random

Sample Consensus (RANSAC).

The idea of RANSAC is to uniformly select a random subset of the data sample and esti-

mate the model parameters. Then the algorithm determines the samples that are constrained

within an error tolerance (inliers). If the number of inliers is high enough (minimum four

inliers for homography), the algorithm proceeds to generate a final model of the consensus.

If after a number of iterations, the minimum number of inliers has not been found, the

algorithm returns the model which has the smallest average error among the iterations. For
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the specific case of homography computation, the tolerance error is computed by using the

reprojection error model from Eq. 3.11. Additionally, a Least Mean Square (LMS) algorithm

is commonly used in conjunction with RANSAC as described by Hartley & Zisserman

(2003), since it requires no expected initialization error. Thus the algorithm to compute a

robust homography is as follows:

Algorithm 3.1: Homography robust estimation pseudocode (Brown, n.d.)
Input: n > 4 point correspondences {Xi↔ X ′i } ∈ R2

Output: Ĥ between Frame 1 and 2

1 Initialization: Compute an initial estimate of Ĥ using DLT ;

2 nBest = 0;

3 for i = 0; i≤MaxNumIter; i++ do

4 Select random subset of data points Si;

5 Compute nonlinear homography Ĥi;

6 Compute inliers (Sinliers) given Ĥi using reprojection error;

7 if size(Sinliers) > nBest then

8 Ĥ = Ĥi;

9 nBest = size(Sinliers);
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3.2.4 Homography Decomposition

Given a set of 3D points P ∈ R3 projected on two subsequent images {X1,X2} one can

compute the coordinate transformation of Xi→ X ′i by rotating and translating the points Xi

to the pose of X ′i by

X ′i = R2
1Xi +T 2

2→1

where Xi and X ′i represent the the coordinates of P relative to frames 1 and 2 respectively,

R2
1 is the rotation matrix from camera frame 1 to camera frame 2, and T 2

2→1 is the translation

vector of the camera from frame 2 to frame 1, expressed in the camera 2 frame. However, if

the the set of points P are in the same plane, one can deduce the following equation:

X ′i =
(

R2
1 +

1
d

T 2
2→1NT

)
Xi

where
N
d

represents the unit vector normal to the feature point plane in camera frame 1.

Additionally, it can be inferred that R2
1 +

1
d

T 2
2→1NT is just a constant giving the same result

as from Eq. 3.6. Therefore, the homography matrix can be defined as follows:

H = R2
1 +

1
d

T 2
2→1NT (3.13)

From Eq. 3.13 it is possible to observe that the homography matrix contains information

about the translation and rotation of the camera between camera frames 1 and 2 respectively,

as shown in Figure 3.2. However, since the points Xi and X ′i are defined up to a scale

factor due to their projective nature, R2
1 and T 2

2→1 are defined up to a scale factor. The scale

ambiuity implies that one can only determine the unit vector of translation. In addition,

given a homography matrix between two images, one can decompose the matrix H to extract
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the inter-frame rotation and unit vector of translation from the H matrix by using the SVD

as follows

H =UΣV T

Σ = diag(λ1,λ2,λ3)

where λn represents each of the singular values that contain information about the camera

motion. When the three singular values are distinct to each other, the decomposition yields

four possible mathematical solutions from which just two are physically possible because

they represent the motion in front of the camera. The computation of rotation and translation

from the singular values is shown below.

R2
1 =U

 α 0 β

0 1 0
−sβ 0 sα

 V T (3.14)

T 2
2→1 =

1
ω

(
−βu1 +

(
λ3

λ2
− sα

)
u3

)
(3.15)

N = ω(δv1 + v3) (3.16)

where ω represents a scaling factor so that ‖N‖= 1, and

δ = ±

√
λ2

1−λ2
2

λ2
2−λ2

3

α =
λ1 + sλ3δ2

λ2 (1+δ2)

β = ±
√

1−α2

s = det(U)det(V )

Caballero et al. (2009)
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4. Simulation

The quadcopter simulation model used in this thesis was based on the Hector Quadrotor

simulation package for the Robot Operating System (ROS) developed by Meyer et al.

(2012). In order to test the vision algorithm, the simulation includes a virtual environment

made in Gazebo for image rendering and model visualization. A basic explanation of

the quadcopter dynamic model is given in this section. Additionally, a description of the

simulation environment development with Gazebo and Matlab is provided. Moreover, a

second simulation model developed in Simulink by Hartman et al. (2014) was used for the

generation of Monte Carlo and visual odometry simulations for the rapid assessment of

algorithm performance.

4.1 Quadcopter Dynamic Model

The quadrotor model, as its name suggests, consists of four rotors attached to four

different arms attached to a rigid body. Thus the control of the vehicle is achieved by

generating a differential thrust and moment generated by each of the rotors. Since the

quadrotor can be described as a rigid body, the dynamics of the vehicle can be derived from
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the rigid body equations of motion by the computation of the sum of forces and moments

that are acting on the vehicle.

~̇PN =~V N (4.1)

m~̇V N = mg~e3 +RN
B
~F (4.2)

Jm~̇Ω
B =−~ω× Jm~Ω+~τ (4.3)

where RN
B is the rotation matrix that transforms a vector from the body B to the navigation

N coordinate frame, ~Ω denotes the angular velocity vector of the body with respect to

the navigation frame, Jm and m denote the constant inertia matrix and mass of the rigid

body respectively, ~e3 represent a vector of the form [0,0,1]T , and ~PN and ~V N represent the

position and velocity of the body. In addition, the terms ~F and~τ respectively denote the

forces and torques applied to the body by the aerodynamics of the rotors (Mahony et al.,

2012). A representation of the directions of the applied forces and moments is shown in

Figure 4.1.

Figure 4.1: Representation of Applied Forces and Torques on the Vehicle (Mahony et al.,

2012)
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The vertical force (thrust) produced by each of the rotors is modeled using momentum

theory as

Ti =CT ρair Ari ri
2
ω̄

2
i (4.4)

where the subindex i represents each of the motors, Ari represents the disk area of each rotor,

ri denotes the rotor radius, ω̄i denotes the angular velocity of each rotor, and ρair denote

the air coefficient given by the standard atmosphere model. Additionally, the coefficient CT

represents the constant thrust coefficient which is dependent on the geometry and profile of

the rotor. However, the model can be simplified by grouping the constant values into a single

thrust coefficient cT which should be greater than zero and can be computed experimentally.

For the number of propellers n = 4, the thrust model is given as:

Ti =CT ω̄
2
i (4.5)

The corresponding summation of forces is given by:

F∑ =
n

∑
i=1
|Ti|=CT

(
n

∑
i=1

ω̄
2
i

)
(4.6)

Similarly, the rotation of the blades generates an effect on the yaw due to the force of

the propeller. The torque generated by the motor is given by:

τQ =CQ ω̄
2
i (4.7)

where τQ denote the torque generated by the motor and CQ denote the torque coefficient

relationship between the motor and the blade (Mahony et al., 2012).

In order to generate a net moment equal to zero, it is necessary to generate counteracting

torques by orientating the direction of rotation of the motors in a corresponding clockwise
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(σ =+1) and a counterclockwise (σ =−1) manner. That means that two rotors will have

a clockwise rotation and the two remaining rotors a counterclockwise rotation, as shown

in Figure 4.1. The moments acting on the quadrotor depend on the arm distance di of each

rotor to the center of mass of the vehicle. The total sum of moments~τ = {τφ,τθ,τψ} is

described as :

τφ =CT

n

∑
i=1

(
di ω̄

2
i
)

(4.8)

τθ =−CT

n

∑
i=1

(
di ω̄

2
i
)

(4.9)

τψ =CQ

n

∑
i=1

(
σiω̄

2
i
)

(4.10)

The sum of forces and moments applied to the vehicle can be summarized in a matrix form

as 

F∑

τφ

τθ

τψ





cT cT cT cT

0 dcT 0 dcT

−dcT 0 dcT 0

−cQ cQ −cQ cQ





ω̄2
1

ω̄2
2

ω̄2
3

ω̄2
4


(4.11)

The matrix described in Eq. 4.11 represents the basic forces and moments that are

applied to the body. However, there exist other aerodynamic effects that can affect the model.

These effects include blade flapping and aerodynamic induced drag (Mahony et al., 2012).

The resultant motion of the vehicle is given by solving Eqs. 4.1 to 4.3 using any numerical

integration method for differential equations, such as Runge-Kutta.
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4.2 Sensor Modeling

In order to generate an estimation of the quadcopter states, since the states cannot be

directly measured, it is necessary to generate a simulated signal of different sensors that

can make the quadcopter states observable. Most of the sensing signals, such as the inertial

measurements, are derivatives from the dynamic model itself. However, some other signals

are dependent on inputs from the dynamic model and also from the simulation environment.

The basic models of each sensor are described in this section.

4.2.1 Inertial Measurements

Each of the inertial measurements (accelerometers, gyroscope, magnetometer, barom-

eter) are modeled using an error model described by a first-order Markov process. It is

assumed that the state at the next time period is only reliant on the current state of the system

and that the noises on each sensor are uncorrelated from the other sensors. The error model

of a signal y is thus given as a function of time as:

y(t) = ŷ(t)+b+ηy (4.12)

where ŷ(t) represents the true value, b is the current bias and ηy is an additive zero-mean

white Gaussian noise. In addition, the bias term can either be constant or be subject to a

random walk model given as:

ḃ(t) =
1
T

b+ηb (4.13)

where the term T represents a time constant that describes the random drift and ηb denotes

an additive zero-mean white Gaussian noise (Meyer et al., 2012).



42

Inertial Measurement Unit (IMU)

The inertial measurement unit is the sensor that measures the accelerations and angular

rates of the vehicle. These signals are referenced with respect to the body reference frame.

The IMU model is based on the error model described in Eq. 4.12.

Magnetometer Sensor

The magnetometer sensor that measures the corresponding magnetic field that is acting

on the vehicle. The collection of magnetic field information serves as a heading feedback.

It is important to remark that the magnetic field magnitude depends on the longitude and

latitude coordinates of the body. Therefore, the magnetic field measurements are based on

the world magnetic model 2015 (Maus et al., 2015).

Barometer Sensor

A barometer measures the atmospheric pressure to determine the altitude as an absolute

measurement independent of terrain elevations or irregularities. This sensor is based on the

International Standard Atmosphere (ISA) which describes the pressure, temperature and

density of the earth on a sunny nominal day. This model is referenced from the sea level

altitude (Meyer et al., 2012).
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4.2.2 Camera Model

The basic model of a camera can be approximated by a pinhole projective model, also

known as the pinhole camera model, which represents the camera geometric model with a

parametrization of the intrinsic and extrinsic camera parameters explained in Section 3.1.

The pinhole model projects the points in space onto the camera or image plane. The center

of projection corresponds to the origin of an Euclidean coordinate system called camera

center (Hartley & Zisserman, 2003). The image plane in this model is represented by the

focal length as represented in Figure 4.2. Thus by consideration of similar triangles, one can

quickly assess the model projection as follows.

Figure 4.2: Pinhole Camera Model (Hartley & Zisserman, 2003)

P = KintR[I|C̄] =

 fx 0 cx

0 fy cy

0 0 1

[R −RC̄
]

(4.14)

where the intrinsic matrix Kint is composed of the focal lengths ( fx, fy) and the principal

points or camera center (cx, cy). Additionally, the term R represent the rotation of the

camera to the world frame, and C̄ represents the coordinates of the camera center in the
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world coordinates (Hartley & Zisserman, 2003). The projection of a 3D world point X̂ in

homogeneous coordinates onto the image plane is given by

~xcam = KintR[I|C̄]X̂ +ηx,y (4.15)

where the term ηx,y denotes a zero mean Gaussian noise in the x and y direction in the image

plane. The intrinsic parameter matrix used for the simulation is given as:

Kint =

374.6706 0 320.5
0 374.67 180.5
0 0 1



4.3 Simulation Architecture

Given the ROS simulation model from Meyer & Kohbrecher (2014), the idea is to

generate an environment that can be visualized in Gazebo and monitored from Matlab

for testing the estimation algorithms and commanding the position of the vehicle. The

architecture of this system is summarized in Figure 4.3. Additionally, a detailed tree graph

of the ROS topics being published and managed by the ROS master node is shown in

Figure 4.4.
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Figure 4.3: Simulation Architecture Diagram

Figure 4.4: Simulation ROS Topic Tree Graph

As it can be seen from Figure 4.3, the system is managed by a central ROS master server

that is in charge of the ROS topics shown in Figure 4.4. The Matlab node is in charge of

the generation of the commanded velocity that is fed into the quadcopter node to control
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the vehicle. The Matlab node also contains the estimation of the filters. Additionally, an

environment within Gazebo was created using standard objects from the model library in

Gazebo. A snapshot of the environment is shown in Figure 4.5.

Figure 4.5: Gazebo Environment Visualization
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5. Vision-Based State Estimation

In this chapter, a solution for the estimation of the states cor esponding to a 6-DoF vehicle

is presented based on the homography measurement. In this approach, a vision only

measurement is presented given the computation of the homography matrix H explained

in Chapter 3. This approach is known as the dead reckoning solution or the homography

visual odometry method. Due to the loss of depth perception, an altitude sensor is used as

a source for scaling the measurement. Additionally, the homography matrix measurement

is integrated with inertial measurements. This is described in Section 5.2 as a temporary

solution for the characteristic drift present in a dead reckoning solution. Finally, some

simulation results are presented together with an analysis of the performance of each

algorithm using a Monte Carlo Simulation.

The following coordinate systems are used for the development of the estimation filter:

1. Navigation (Earth-Referenced) Frame N: Local north-east-down frame in which the

XN and YN axes are aligned with the north and east magnetic poles of the earth

respectively, and the ZN axis is pointed downward.

2. Body-Fixed Frame B: Body-fixed reference frame in which the origin is located at the

center of mass of the vehicle, the body-x axis points towards the front of the vehicle,

the body-y axis points out the right side of the vehicle, and the body-z axis is pointed

downward relative to the vehicle.
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3. Camera-Fixed Frame C: Camera-fixed reference frame that is aligned with the axes

of the camera. For simplicity and without loss of generality, in this document, the

camera-fixed reference frame is assumed to be located at the center of mass of the

vehicle at a fixed angle ϑ with respect to the horizontal plane of the vehicle, and a

fixed angle γ with respect to the vertical plane of the vehicle.

5.1 Homography-Based Visual Odometry

Consider a quadcopter carrying a monocular camera located at the center of mass of the

vehicle looking straight downward, as shown in Figure 5.1. The pose of the vehicle can

be estimated by computing the homography matrix between camera measurements at two

instances of time and then extracting the information about the motion between the frames.

The homography relationship is ideal for the landing scenario since quadcopters usually

require a planar landing surface. Therefore, the homography matrix can be used to extract

the pose information by means of vision only measurements. In this case, the feature points

seen by the camera are the corners features of the landing pad.

As a first step, it is important to be able to robustly track feature points in the images.

Algorithms such as the Kanade-Lucas-Tomasi (KLT) or Harris corner detectors, features

from accelerated segment test (FAST), or Speeded-Up Robust Features (SURF) can be

used to detect and track feature points. However, it is important to filter outliers before the

computation of the homography matrix. After removing outliers, the previously described

DLT can be used to compute an initial estimation of the homography matrix. After computing
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Figure 5.1: Two-Frame Homography Over a Planar Set of Points

the estimation, it is necessary to generate a robust homography estimation using the steps

described in Algorithm 3.1.

Once the homography matrix has been computed, the rotation and translation information

of the camera can be extracted using the decomposition methods described in Section 3.2.4.

However, when the homography matrix is decomposed, the algorithm returns four possible

solutions. Two solutions can be eliminated by imposing the positive depth constraint shown

below

Nz > 0

The positive depth constraint means that solutions with negative plane normals are dis-

carded based on the third component of the normal solutions that the homography provides.

However, after applying the positive depth constraint, there are still two different possible

solutions, known as the possible physical solutions, that need to be analyzed. In order to
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disambiguate this solution, one can use previous information about the normal or compare

each of the extracted normals with a second set of normals using the homography about the

same frame at another instant of time.

5.1.1 Previous Normal Comparison

Given the decomposition of the homography matrix H, from frame 1 to frame 2, a

set of two solutions containing the two physical solutions for translation and rotation are

represented as

S1 =


R2

11

T 2
2→11

N1


S2 =


R2

12

T 2
2→12

N2


(5.1)

It is important to recall that the normal that is extracted from the homography decompo-

sition is the unit vector normal of the feature plane resolved in the camera reference frame,

which in this case is aligned with the body reference frame. Therefore, if the last GPS

measurement is available or if the quadcopter is at a horizontal position relative to the ground

such that the N vector is Nquad = (0,0,1)T , one can use this information to disambiguate

the set of solutions from Eq. 5.1 by comparing the normals N1 and N2 with the normal Nquad

since the real solution normal should coincide with the normal of the quadcopter. However,

the normal from the decomposed homography will be corrupted by noise from the camera
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measurements. Therefore, one of the solutions will not always exactly coincide with the

normal of the quadcopter. For this reason, the following metric is used:

Ŝi =


δ1 = ‖N1−Nquad‖ ∈ S1

δ2 = ‖N2−Nquad‖ ∈ S2

(5.2)

where δi represents the norm of the difference between the normal Ni and the real normal

provided by the initial quadcopter measurement. The real solution is extracted from the

solution set Ŝi as follows

S = min{δ1,δ2} (5.3)

Once the difference has been computed, the selected solution corresponds to the lowest

difference δn as explained in Eq. 5.3. This will provide the first inter-frame rotation and

translation estimate. In order to propagate the solution, it is possible to rotate the normal

given the camera inter-frame rotation as

Nquad(k) = R2
1Nquad(k−1) (5.4)

where Nquad(k) represents the propagated normal of the quadcopter, Nquad(k−1) represents

the previous normal solution, and R2
1 denotes the disambiguated rotation solution.

5.1.2 Multiple Homography Comparison

For cases in which a first measurement or estimation of the normal of the quadcopter

at time t = 0 is not available, it is possible to generate a disambiguation by comparing

several decomposed normals coming from the decomposition of the homography matrix

of a third frame with respect to the first one. A representation of this case is provided in
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Figure 5.2, where a second homography with respect to the first frame is computed just

for disambiguation purposes. This approach represents a modification of the one taken in

(Caballero et al., 2009).

Figure 5.2: Three-Frame Homography Over a Planar Set of Points

Decomposing the homography matrices H1→2 and H1→3 yields a set of four solutions

from which just two are used for the posterior pose reconstruction. This means that from the

set of solutions coming from the matrix H1→3, just the computed normals are used. The set

described in Eq. 5.1 still holds for this method. Then we have that the metrics defined for

this comparison are given with respect to the set of normals described in Eq.5.5 as follows

N13i = {N131,N132} (5.5)
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In order to disambiguate the solution, the following comparison is made to generate the

solution set Ŝi

Ŝi =



δ11 = ‖N1−N131‖ ∈ S1

δ12 = ‖N1−N132‖ ∈ S1

δ21 = ‖N2−N131‖ ∈ S2

δ22 = ‖N2−N132‖ ∈ S2

(5.6)

Similar to Eq: 5.3, the solution set Ŝi is used in Eq. 5.7 to extract the disambiguated solution.

S = min{δ11,δ12,δ21,δ22} (5.7)

where δi j denotes the norm of the difference between the normals from the homography

H1→2 and the set of normals N13i computed from H1→3. Then the solution is given by the

minimum value of δi j .

It should be noted that this comparison can be made using at least two homographies

with respect to the frame under analysis. However, for real-time implementations, this

method represents an increment in the delay of the measurements which should be taken into

account when the estimate is used as a feedback signal for camera servo control applications.

5.1.3 Pose Reconstruction

Once the homography has been decomposed and disambiguated, it is necessary to relate

this interframe motion with the inertial attitude and pose of the UAV. However, when the

monocular vision approach is used, scale (range) information is lost in the 2D projection

into the camera frame. Thus, the translation vector T 2
2→1 is only defined up to a scale factor.

In order to recover the scale, a measurement of the distance d from the camera to the feature
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point plane is required, as shown in Figures 5.1 and 5.2. This information could be provided

using a sensor that provides a direct altitude measurement, such as a barometer. A stereo

vision measurement system could also be used to extract range information; however, the

range of the measured distance is limited by the baseline distance between the two cameras.

Denote RB
N(k) as the Direction Cosine Matrix (DCM) representing the rotation from

the body reference frame (B) to the navigation reference frame (N) when the actual frame

occurs, and RN
B (k−1) the DCM rotation matrix from B to E when the previous frame occurs.

Additionally, the matrix RB
C represent the constant rotation matrix from the camera reference

frame C to the body reference frame B. Thus the homography measurements coming from

the decomposition of Eq. 3.13 can be related to the pose of the quadcopter as

RCk
Ck−1

(k) = RB
C

T
RN

B
T
(k)RN

B (k−1)RB
C (5.8)

TCk
Ck→Ck−1

(k) = RB
C

T
RN

B
T
(k)(PN(k−1)−PN(k)) (5.9)

N(k) = RB
C

T
RN

B
T
(k−1) e3 (5.10)

d(k) = e3
T (PN(k−1)) (5.11)

where PN represents the inertial position of the quadcopter in the navigation reference

frame, RCk
Ck−1

represent the rotation from the previous frame (k−1) to the current frame (k).

Additionally, e3 denotes a vector of coordinates e3 = (0,0,1)T . Finally, TCk
Ck→Ck−1

represents

the translation from the current frame (k) to the previous frame (k−1) with respect to the

current frame.
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In order to compute the current pose of the vehicle at time k, one can manipulate

Eqs. 5.8→ 5.11 to generate a daisy chained approach for the generation of the following

expressions for attitude and relative position respectively (Kaiser et al., 2010).

Tr
N
B (k) =

(
Tr

B2
B1

)−1 (
Tr

B3
B2

)−1
...
(

Tr
Bk
Bk−1

)−1
(5.12)

where Tr is the homogeneous representation of the rotation matrix RCk
Ck−1

and scaled transla-

tion TCk
Ck→Ck−1

expressed as

Tr
Bk
Bk−1

=


RB

C RCk
Ck−1

(k) d(k) TCk
Ck→Ck−1

(k)

0 1

 (5.13)

where d is used as the scaling factor measurement coming from the barometer sensor at each

time step. Then the attitude ρ(k) (Euler angles) can be extracted from the DCM matrix as:

ρ(k) =



φ(k) = arctan

(
RN

Bk
(3,2)

RN
Bk
(3,3)

)

θ(k) =−arcsin
(

RN
Bk
(1,3)

)

ψ(k) = arctan

(
RN

Bk
(1,2)

RN
Bk
(1,1)

)
(5.14)
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5.2 Homography-Based Kalman Filter

While the homography relationship can be used in the form of visual odometry, a vision-

only solution for the computation of the motion of a vehicle can rapidly accumulate drift

errors that affect the estimation as explained in Section 5.1. It is true that a covariance can

be included as part of drift correction in the visual odometry solution. However, without the

addition of more information about the environment, the uncertainty of the prediction model

remains high. Therefore, a more robust approach for uncertainty bounding is the inclusion

of inertial measurements into the navigation prediction model. Such an approach can also

address the scale ambiguity associated with monocular vision. However, the inclusion of

more information yields the addition of different sources of noise that need to be taken into

account.

In this thesis, the proposed sensor fusion is done through the implementation of an

extended Kalman filter (EKF) model that integrates accelerometer and rate gyro data from

the onboard IMU as part of the state propagation phase of the filter. The measurement

update in the filter is based on the reconstruction of the nine parameters of the homography

matrix since the disambiguation on the decomposition can lead to false fixes as shown in

Section 5.1. However, due to the loss of depth perception, an altitude measurement is needed

to reconstruct the homography. A diagram of the proposed architecture of the filter is shown

in Figure 5.3 where the depth reconstruction is done using a barometer or a laser range

finder. Additionally, a magnetometer measurement is added to the system as a means of

correcting the heading drift.
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Figure 5.3: EKF Architecture Diagram

5.2.1 Process Model

Since the Kalman filter is designed to work with additive zero-mean Gaussian noise,

it is assumed that all the sensors, including the camera measurements, are corrupted by

zero-mean Gaussian noise that obeys a first order Markov process. As a mean of correction

of the errors in the IMU (accelerometers, and gyroscope), the IMU bias is added to the

states to be estimated. The state estimation is composed of 9 states (position, velocity, and

orientation) from the 6-DoF UAV plus the addition of 6 states from the IMU bias estimation,

making the EKF a 15th order filter. The estimation vector is described by Eq. 5.15 as:

X̂ =
{

PN , V N , ρ, bacc, bgyr
}T

(5.15)

where PN and V N represent the position and velocity in the navigation reference frame

respectively, ρ = {φ,θ,ψ} represent the attitude Euler angles. Similarly, bacc denote the

three-axis accelerometer bias estimation and bgyr represent the gyroscope bias estimation.
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The process is formulated as part of a non-linear discrete system where the time size ∆ts

is defined by the IMU since it runs at the highest frequency and it is used as part of the

process propagation. The corresponding process propagation model can be described as

a function of the process measurement input u and the associated process measurement

random Gaussian white noise w associated with the model. This is modeled in Eq. 5.16 as:

Xk = Φ(Xk−1, uk +wk) (5.16)

The full process model is defined as follows:

PN(k)

V N(k)

ρ(k)

bacc(k)

bgyr(k)



=



PN(k−1)+VN(k−1)∆ts

VN(k−1)+(RN
B (k−1)ab(k))∆Ts

ρ(k−1)+(LN
B (k−1)ωB(k))∆Ts

bacc(k−1)

bgyr(k−1)


(5.17)

where aB denotes the acceleration in the body reference frame measured by the accelerome-

ter. The term ωB represents the angular acceleration in body reference frame coordinates

measured by the gyroscope. Additionally, RN
B represents the DCM rotation matrix that

transforms the coordinates from the body reference frame to the navigation reference frame.

The term LN
B denotes the Euler angle kinematics relationship given by

LN
B =


1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)sec(θ) cos(φ)sec(θ)

 (5.18)



59

The IMU measurements used in the process model are known to be corrupted by slow-

varying sensor biases and white noise wn. Thus the model of IMU measurements is given

as

aB
acc = aB−bacc−wacc

ωB
gyr = ωB−bgyr−wgyr

(5.19)

When linearized around the previous estimate, the process model takes the form of a

discrete state space system given by

Xk = Fk−1 Xk−1 +Gk−1 u(k−1)

where uk represents the IMU measurement input that is associated to the white noise wk as

modeled in Eq. 5.19. Fk, Gk, and uk matrices are given by

Fk−1 =



I3×3 I3×3∆ts 03×3 03×3 03×3

03×3 I3×3
∂RN

B
∂ρ

−RN
B ∆ts 03×3

03×3 03×3 I3×3 +
∂LN

B
∂ρ

03×3 −LN
B ∆ts

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3



Gk−1 =



03×3 03×3

RN
B ∆ts 03×3

03×3 LN
B ∆ts

03×3 03×3

03×3 03×3


uk−1 =

aB
acc

ωB
gyr



(5.20)
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5.2.2 Measurement Model

Based on the derivation described in Zhao et al. (2012), the measurement vector Ẑ takes

the form of:

Ẑk =
{

Hvec(k), −Zbaro(k), ψmag(k)
}T (5.21)

where the barometer is used as the altitude measurement and is represented as Zbaro, and

the term ψmag represents the magnetic heading. Additionally, Hvec(k) corresponds to the

normalized 9 entries of the homography matrix, stacked into a vector form.

The homography measurement is related to the vehicle states by approximating the

Eqs. 5.8→ 5.11 as follows:

RCk
Ck−1

(k) = RB
C

T
RN

B
T
(k)RN

B

(
k− ∆ts

∆tv

)
RB

C (5.22)

TCk
Ck→Ck−1

(k)≈−RB
C

T
RN

B
T
(k)VN(k)∆tv (5.23)

N(k)≈ RB
C

T
RCk

Ck−1
(k)

T
RN

B
T
(k) e3 (5.24)

d(k)≈−e3
T (PN(k)−V N(k)∆tv) (5.25)

where ∆tv represents the time step size at which the vision system provides a measurement.

Additionally, the rotation matrix RN
B

(
k− ∆ts

∆tv

)
is a a function of ρ(k), but it is related to

the previous attitude estimate at time t =
(

k− ∆ts
∆tv

)
. Based on the measurements modeled

in Eqs. 5.22→ 5.25, the homography matrix is reconstructed using Eq. 3.13, stacked in
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a vector form, and then normalized. The reconstructed measurement then takes the form

described in Eq. 5.26 and Eq. 5.27.

Hpro j(k) = RCk
Ck−1

(k)+
TCk

Ck→Ck−1
(k)

d(k)
N(k)T (5.26)

Hvec(k) = vec

(
Hpro j(k)

Hpro j3,3(k)

)
(5.27)

where the operator vec represent the column vector stacking. Moreover, the equation that

defines the magnetic heading from the three-axis magnetometer is:

ψmag(k) = arctan2

( −mB
y cos(φ̂(k)) + mB

z sin(φ̂(k))

mB
x cos(θ̂(k)) + mB

y sin(φ̂(k))sin(θ̂(k)) + mB
z cos(φ̂(k))sin(θ̂(k))

)
(5.28)

given that
{

mB
x , mB

y , mB
z
}

are each the magnetic readings from the magnetometer measured

with respect to the body reference frame of the vehicle and expressed in microTeslas µT .

The terms φ̂ and φ̂ are the last estimates of roll and pitch respectively.

The measurement model is given by the following equation:

Zk = h(Xk)+nk

where nk represents the corresponding noise associated with the measurement. Moreover,

the linearization of the measurement model is given by the Jacobian of h(X) with respect to

X , given by

Hk =


∂Hvec

∂PN 9×3

∂Hvec

∂VN 9×3

∂Hvec

∂ρ 9×3
09×3 09×3

eT
3 e3 03×3 03×3 03×3 03×3

03×3 03×3 eT
3 e3 03×3 03×3

 (5.29)
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5.2.3 Observability Analysis

In this section a numerical model for the analysis of observability of the proposed

navigation system is provided. The observability analysis provides a measure of performance

during the design of the algorithm as well as a measure of the observability of the states.

When the condition of observability is guaranteed, the asymptotic stability of the error

system in the Kalman filter is assured (Lewis et al., 2007).

Consider a discrete stochastic linear system of the form

xk = Φk,0 x0

zk = Hk xk + vk

(5.30)

where xk ∈ Rn represents the state vector at time step tk = k∆t , x0 ∈ Rn represents the

initial state vector as a normal random variable with mean x̄0, and Φk,0 ∈ Rn×n represents

the state transition matrix spanned from time step tk = 0 to time step tk = k∆t . Similarly,

zk ∈ Rm represents the measurement vector at time step tk = k, Hk ∈ Rm×n represents the

measurement matrix at time step tk = k∆t , and vk ∈ Rm represents a measurement noise

vector with Gaussian distribution, zero mean, and covariance Rk.

Let P0 represent the process covariance matrix at time step tk = 0. Likewise, let ŷk ∈ Rm

represent the innovation vector given as ŷk = zk −Hkx̂k. Then, the optimal estimation

problem obeys the Riccatti equation solution that minimizes the following cost function:

J = (x̄0− x0)
T P−1

0 (x̄0− x0)+
N

∑
k=0

(
ŷT

k Rkŷk
)

(5.31)
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Thus the optimal state estimate is given as

x̂0,k =
(

P−1
0 +L0,k

)−1(
K0,k +P−1

0 x̄0

)
(5.32)

where K0,k represents the observability gain of the form

K0,k =
N

∑
k=0

(
Φ

T
k,0HT

k R−1
k yk

)
(5.33)

Similarly, L0,k is the observability gramian, also known as the Fisher information matrix,

for a nondeterministic system and is given as:

L0,k =
N

∑
k=0

(
Φ

T
k,0HT

k R−1
k HkΦk,0

)
(5.34)

(Hong et al., 2008)

It is said that the system is stochastically observable on the time span T = [0, N], if for

every integer N the observability gramian satisfies the condition

α0I ≤ L0,k ≤ α0I (5.35)

for some N > k, and 0 > α0 > α1. This observability condition guarantees that for a large k,

the behavior of P0,k is unique independent of P0 (Lewis et al., 2007). However, if the system

is unobservable, then there exist an unobservable state vector xu, such that L0,kxu = 0. Thus

the unobservable subspace corresponds to the null space of L0,k. Therefore, the observability

analysis requires a rank test on the observability gramian matrix.

Let the SVD of the observability gramian be given as:

L0,k =UkΣkUT
k (5.36)
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where Uk = [Uko Uku] and Σk =

[
Σko 0
0 0

]
, given that the singular values Σko span the

observable subspace composed by observable singular vectors Uko and that the zero singular

values span the nullspace provided by the unbservable singular vectors Uku. Thus the

singular values provide a rank metric on the observability of the system (Hong et al., 2008).

In order to study the degree of observability of the observable subspace, it is necessary

to examine the behavior of the process error covariance matrix P0,k (Hong et al., 2008). Let

the process error covariance matrix be befined as

P0,k , E
[(

x̂0,k− x0
)(

x̂0,k− x0
)T
]

(5.37)

It can be shown that the relationship between the covariance and the observability gramian

is given as

(P0−P0,k)P−1
0 = P0,kL0,k (5.38)

It can be inferred from the relationship in Eq. 5.38 that the null space of (P0−P0,k)

corresponds to the unobservable subspace. However, since the null spaces for L0,k and

(P0−P0,k) can differ, the nullspace spanned by (P0−P0,k)u = 0 is going to be called the

unestimable subspace. The unestimable subspace tends to go in the direction where the error

covariance is relative small, thus generating a possible discrepancy between the tendencies

in the directions of convergence of the observable and unestimable subspaces.

A system is called estimable on the time span T = [0,N] if (P0−P0,k)> 0. Thus, the

nullspace of (P0−P0,k) corresponds to the unestimable subspace. Therefore, the degree of

estimability of the observable system can be given by the relative change of the standard

deviation of the errors which is influenced by the selection of the initial error covariance
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matrix (M. H. Lee et al., 2012). Thus, from Eq. 5.38, the rate of change of the error

covariance matrix nu can be defined as:

ν =
(√

P0−
√

P0,k

)(√
P0,k
)−1

= 1− 1√
P0(i, i)L0,k(i, i)+1

(5.39)

Thus, for some 1≤ i≤ n, if P0(i, i)L0,k(i, i)� 1, then the rate of change of the the standard

deviation of the ith component is almost zero. If the rate of change is almost zero, it can be

assumed that the ith component is almost unestimable (M. H. Lee et al., 2012). Therefore,

by analyzing the relative standard deviation change of the ith component from the left

side of side of Eq. 5.39 one can determine the degree of estimability of the stochastic

system (M. H. Lee et al., 2012). Consequently, if the span of a vector xu is unobservable

(L0,kxu = 0), then the span of P0xu = 0 is unestimable. Therefore, if ν < ν∗ for a vector u

given a threshold ν∗, then the subspace is considered to be weakly estimable for P0 and

consequently the span P0u can be assumed to be weakly observable (Hong et al., 2008).

5.2.4 Extended Kalman Filter Model

The nonlinear system dynamic model can be written in discrete-time as

x̂−k = x̂+k−1 + Φ(x̂+k−1, wk)∆ts (5.40)

which is known as the a priori state estimate. Because of the nonlinear nature of Eq.5.30,

the EKF model approach requires the model to be a first-order Taylor-Mac Laurin expansion
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with respect to the previous estimate x̂+k−1. This model is obtained by the computation the

Jacobian matrix given as:

Fk =
∂Φ(x)

∂x

∣∣∣∣
x=x̂+k−1

Using the computed Jacobian, the model expressed in Eq. 5.30 can be expressed as

a linear model without affecting the estimation, given that the propagation interval ∆ts is

sufficiently small for the approximation. Thus the linear model takes the form of:

xk+1 = Fk xk +Gk wk (5.41)

In order to compute the uncertainty of the system estimation, it is necessary to compute

an a priori error covariance using the linearization model in Eq. 5.31

P−k = Fk−1P+
k−1FT

k−1 + GkQk−1GT
k (5.42)

where Q represents the error covariance matrix computed from the variances in the process

model. This is sometimes the tuning parameter for the estimation.

The measurement model of the EKF is given as a nonlinear function of the state vector

h(x) and is defined as

zk = h(x̂−k )+nk (5.43)

In order to generate the estimation it is necessary of obtaining an observability gain

referred to as the Kalman gain. The Kalman gain takes the following form:

Kk = P−k HT
k
(
HkP−k HT

k +Rk
)−1

(5.44)

where Hk and Rk represent the measurement linearization Jacobian matrix and the error

covariance matrix of the measurement model respectively.
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As part of the estimation, the EKF uses the measurement model to update the state

vector (a posteriori state estimation). This is accomplished by defining the measurement

innovation as:

x̂+k = x̂−k +Kk
[
zk−h(x̂−k )

]
= x̂−k +Kkδz−k

(5.45)

As a final step in the EKF, it is necessary to recompute and correct the error covariance

matrix with the new information computed from Eq. 5.45. The a posteriori covariance

matrix is computed using the Kalman gain as:

P+
k = P−k − KkHkP−k (5.46)

Note that the propagation model and the measurement model are running at different

frequencies, given that the frequency of the propagation model is defined by the IMU and

that the frequency of the measurement model is defined by the frequency of the vision

system. The innovation component of the EKF is run at the frequency of the vision system.

This means that in between updates, the estimation is defined as a dead reckoning solution.

5.3 Simulation Results

In this section, the visual odometry and the homography-based filter are tested using

the simulation models described in Chapter 4. The estimation models are tested using the

simulated sensor parameters shown in Table 5.1.
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Table 5.1: Simulation sensor parameters

Sensor
Accelerometer Gyroscope Magnetometer Camera Barometer

ax ay az p q r mx my mz ~xcam Zbaro

Units m/s2 deg/s µT pixel m

Std. Dev. (σ) 0.356 0.6498 0.3846 0.022 0.0208 0.029 0.000169 0.000169 0.000169 0.007 0.238

Bias (b) 0.044 -0.0022 0.071 -0.0028 0.005 0.00154 0 0 0 - 0

Sample Rate 25Hz 25Hz 5Hz 5Hz 5Hz

5.3.1 Visual Odometry Simulation Results

A visual odometry solution is tested using the Previous Normal comparison and the

Multiple Homography comparisons. For this simulation, a landing target with exactly four

corners was projected onto the simulated camera plane. These corners were used as a source

for the computation of the homography matrix. Additionally, it was assumed that the vehicle

was orbiting the landing target and that the target was not lost from the line of sight of the

camera at any point of the simulation. The given simulated trajectory is shown in Figure 5.9.

The visual odometry algorithm solution was tested with a pixel noise variance of 0.007

pixels per frame. A comparison between each of the disambiguation algorithms is presented

in Figure 5.5 and 5.6 for position and attitude respectively together with their respective

error plot on the right side of each plot.
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Figure 5.4: Quadcopter Simulated 3D Trajectory for Visual Odometry

Figure 5.5: Visual Odometry Solution Position Comparison
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Figure 5.6: Visual Odometry Solution Attitude Comparison

It is possible to see from Figure 5.6 and 5.5 that, despite the generation of a tracking

solution, the error accumulates on the estimation due to the daisy-chained approach. Addi-

tionally, it is important to remark that the system does not take into account error handling.

Therefore, as it can be seen from the corresponding error plots, the error accumulates as a

function of time.

The performance analysis of each method is done by computing the root mean square

(RMS) error in Table 5.2. It is possible to observe from Table 5.2 that the overall performance

using the normal propagation is better than the homography comparison method. This effect
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occurs because at some instances of time, the homography comparison method could select

a false disambiguation since the homography estimation always leads to the computation

of different singular values when decomposing the homography in presence of noise. An

example of this phenomenon takes place at time t = 20 where a possible false lock occurs.

However, the overall performance of the algorithm can be improved by adding redundancy

to the comparison metric, thus eliminating false locks. This is accomplished by adding

a greater number of comparisons at the expense of the increment of the time delay. The

same effect can be accomplished by introducing an adaptive tolerance value as suggested

by (Caballero et al., 2009). However, the addition of an adaptive tolerance generates an

iteration at each time step, thus increasing the computational expense.

Table 5.2: RMS error computation for Visual Odometry sample test

RMS Error

State Units Normal Propagation Homography Comparison

XN [m] 1.0584 9.0174

YN [m] 1.1221 4.8862

ZN [m] 4.7549 8.1633

φ [rad] 0.2340 1.0342

θ [rad] 0.2697 0.3530

ψ [rad] 0.4407 1.2819
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5.3.2 Numerical Observability Analysis Results

In this section, a numerical test of observability is provided based on the equations and

metrics described in Section 5.2.3. Similar to the Visual Odometry Results, a simulation

model was provided with exactly four corners on the ground so the exact solution for

homography could be computed. The motion dynamics used for the observability analysis

were based on the 3D trajectory shown in Figure 5.7. The errors used for the computation

of the covariance matrix correspond to the variances detailed in Table 5.1 and correspond

to the variances of a low-grade micro-eletromechanical system (MEMS) IMU. The initial

covariance matrix P0 values used on the observability study are listed in Table 5.3.

Figure 5.7: 3D Trajectory for Numerical Observability Analysis
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Table 5.3: Initial Error Covariance for Observability Analysis

State Covariance (P0)

δPN

[m]

XN 1

YN 1

ZN 1

δV N

[m/s]

VX N 0.5

VY N 0.5

VZN 0.5

δρ

[rad]

φ 0.17

θ 0.17

ψ 0.085

∆bacc

[m/s2]

bax 0.01

bay 0.01

baz 0.01

∆bgyr

[rad/s]

bp 0.01

bq 0.01

br 0.01

The observability analysis was done by computing the discrete observability gramian

matrix using Eq 5.5 for the time span of T = [0,25] sec. The resultant gramian for the

aforementioned time span and the system was computed and then analyzed for observability



74

by performing the rank test from Eq. 5.39. Thus, the resultant singular values are shown

in descendant order in Table 5.4. As Table 5.4 shows, there exist two states which are

considered to be unobservable since the corresponding singular values are zero.

Table 5.4: Singular Values for the Observability Gramian Matrix

Index # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Singular Value 3.20E+08 2.34E+08 8.56E+07 5.81E+07 2.25E+06 1.76E+06 1.25E+06 3.79E+05 2.84E+05 2.66E+03 2.41E+03 2.12E+03 1.82E+02 0 0

The unobservable nullspace spanned by the zero singular values are computed to be as

follows:

Vuo =



0 1
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0



These results show that the translational states XN and YN are unobservable. However, an

unobservable subsystem can still be detectable, or in other words, the unobservable states

can still be estimated by simple propagation. This detectability condition entails that the

unobservable states must be naturally stable.

In order to evaluate how observable are the observable states, the estimability analysis is

performed by computing the relative rate of change of the standard deviation of the optimal

process covariance P0,k on the time span T = [0,25] sec as explained in Eq. 5.39. The
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resultant rate of change is shown in Table 5.5. From Table 5.5 it is also possible to see that

in general, all the observable states are completely estimable, with exception of the bias

error states since it is shown that the bias error states are less estimable than the other states.

Additionally, it can also be determined that bp is far less estimable than the rest of the states.

5.3.3 Homography-Based Kalman Filter Results

The model used for the simulation of the results of the homography-based EKF was

linked to the virtual environment as explained in Chapter 4. The idea was to test the

homography, Ransac outlier rejection, and feature detection and matching algorithms that

were described in Section 6.2.2. As it can be seen from Figure 5.8, the homography Ransac

algorithm detects planar correspondences despite the existence of obstacles on the ground.

Based on the computation of the homography using the simulated camera, the estimated

solution for the system was generated.

Figure 5.8: Simulated Camera Sample Tracking
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Table 5.5: Error Covariance Rate of Change in the Standard Deviation

State Covariance Rate

XN 0

YN 0

ZN 1

VX N 1

VY N 1

VZN 1

φ 0.9997

θ 1

ψ 1

bax 0.956

bay 0.9596

baz 0.9319

bp 0.67643

bq 0.992

br 0.996

The results for the 3D trajectory comparison are shown in Figure 5.9. Additionally, the

estimated state plots are shown in Figure 5.10 where a comparison between the EKF results

and a DR solution is shown.
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The results generated also include a three sigma error plot on the right column of

Figure 5.10. From Figures 5.9 and 5.10 it is possible to see that in general an accurate

tracking and estimation is generated where the EKF outperforms the DR solution. However,

it is also possible to see that the sigma limits from the error plot in the position in the x

and y direction estimation never converge to a constant value. This effect occurs due to the

unobservability of the XN and YN states. The unobservability effect on the position states

can also be evidenced in the error drift of these states.

Note that the variance in the sigma bounds in the velocity plot contains variations due to

the propagation of a DR in between measurement updates; in order words, the uncertainty

tends to increase until a measurement corrects the state. Nevertheless, as shown in Table 5.6,

when a comparison of the RMS errors of the EKF solution to the DR estimates shows that

the general performance of the homography-basd EKF is better than the DR.

Table 5.6: RMS Error Homography EKF Simulation

RMS Error

State Units DR EKF

XN [m] 937.4358 1.1231

YN [m] 2245.589 1.6143

ZN [m] 94.7884 0.0581

VX N [m/s] 23.0335 0.1351

VY N [m/s] 80.3079 0.1151

VZN [m/s] 2.3790 0.0387

φ [rad] 0.1392 0.0034

θ [rad] 0.1554 0.0033

ψ [rad] 12.696 0.0019
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Figure 5.9: Quadcopter Simulated 3D Trajectory for Homography-Based EKF

5.3.4 Monte Carlo Simulation

In order to generate a performance comparison analysis between the visual odometry,

dead reckoning, and homography-based EKF, a Monte Carlo simulation was done by varying

the noise seeds used in the random number generation for the Gaussian white noise addition.

An analysis of 100 runs was made for a system with exactly four feature points. The

simulation model given by Hartman et al. (2014) and the trajectory used for the Monte

Carlo simulation were the same ones used in the visual odometry simulation shown in

Figure 5.9. Note that since the vehicle starts in the air at an altitude h, it was assumed that

the first normal information at time t = 0 was not available; thus the computation of the

disambiguation was done using the Multiple Homography Comparison method.
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Figure 5.10: Homography-Based EKF Simulation Results

The results were averaged for position, velocity, and attitude respectively. A bar graph

showing the comparison results for the Monte Carlo simulation is shown in Figure 5.11. It

is possible to see that in general the visual odometry provides an estimate that can be more

reliable than the dead reckoning solution. However, the visual odometry, due to the lack of
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a covariance matrix, still accumulates error that drifts as a function of time. Additionally,

with the visual odometry solution, there is the lack of a correction for the IMU bias error.

Figure 5.11: Monte Carlo Simulation Results
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6. Experimental Results

In this chapter, a description of the generation of results using experimental data is provided.

As part of this discussion, a description of the hardware used for the data collection is given.

Additionally, the image feature recognition algorithm is also described together with the

handling of false measurements as part of the integration of the homography-based EKF.

6.1 Hardware Description

The testbed used all the data collection in this thesis is a 3DR Iris quadcopter. This is

a low-cost testbed that is controlled by the Pixhawk flight controller computer. The main

advantage of this testbed is that its stability and control has been largely tested as part of

the Ardupilot open source project, making this UAV an ideal testbed for data collection

and algorithm development. Additionally, the structure of the Iris quadcopter allows direct

attachment of a GoPro camera system. Figure 6.1 shows a close view of the assembled

testbed with the instrumentation onboard the vehicle.
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Figure 6.1: 3DR Iris Quadcopter Testbed

The Iris quadcopter specifications are shown in the Table 6.1.

Table 6.1: 3DR Iris Quadcopter specifications

Item Description

Motor to Motor Dimension 550 mm

Weight (with battery) 1282 gr

3-cell Battery 11.1 V, 3.5 Ah

Motors AC 2830, 850 kV

Telemetry/ Control Frequency 915 MHz

Average flight time 10-15 mins

Payload Capacity 425 gr
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6.1.1 Pixhawk Autopilot

The Pixhawk autopilot is a high-performance autopilot-on-module that was developed

as part of an open source and hardware project by The Computer Vision and Geometry

Lab and of the Eidgenssische Technische Hochschule (ETH) Zurich. It is a low-cost flight

computer suitable for fixed wing, multirotor, cars, and boat testbeds. The autopilot module

contains a 168 MHz/ 252 MIPS Cortex-M4F processor with a capacity of 256 KB in RAM

and 2MB in flash memory. This board is characterized by running an efficient real-time

operating system designed with flight control and management in mind. It contains 14

PWM/Servo outputs and several different connectivity options for the inclusion of additional

peripherals. The Pixhawk module includes a three-axis ST Micro LSM3030D 14 bits

accelerometer/magnetometer that supports standard and fast modes (100 Hz and 400 Hz).

Moreover, the Pixhawk autopilot includes an ST Micro L3GD20H 16 bits Gyroscope as

a three axis angular rate sensor. As part of the altitude measurement sensor, it uses a

MEAS MS5611 barometer. In addition, as means of providing redundancy, a second 3-axis

accelerometer/gyroscope is used (Invensense MPU 6000).

Figure 6.2: Pixhawk Autopilot
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6.1.2 3DR GPS Module

This external GPS module provides the integration of a digital compass (HMC5883L)

and the GPS receiver (u-Blox LEA-6H). These two sensors run at 3.3 V and provide a

measurement update of 5Hz. Additionally, they are designed to work with the GPS and

Galileo constellations.

Figure 6.3: 3DR GPS External Module

6.1.3 GoPro Hero 3+

The camera used for the data collection is the GoPro HERO 3+ that provides wireless

connectivity. The images are stored in H.264 digital video format, a proprietary GoPro

format, and uses a CMOS optical sensor. The video can be generated at a rate of up to

60 f ps with an effective sensor resolution of 5.0 MP. The main characteristic of this camera

is that it uses a wide-angle HD lens (fisheye lens) and has a very high impact resistance due

to its enclosure.



85

Figure 6.4: GoPro HERO 3+

6.2 Vision Processing Algorithm

In this section, a description of the process of computing the homography matrix is

provided. This includes the calibration and undistortion of the images together with the

feature extraction and matching. The overall vision processing workflow is shown in

Figure 6.5 where the vision system is divided into separate components that lead to the

computation of the Homography matrix that is used in the Homography-based EKF.

Figure 6.5: Vision Processing Workflow Diagram
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6.2.1 Camera Calibration

Camera calibration is the process of the estimation of the camera parameters that form

the camera intrinsic matrix, camera extrinsic matrix, and the image distortion coefficients.

This is a process usually done before the image feature extraction and uses images of

a checkerboard with known distances. In order to generate the camera calibration, the

MATLAB single calibration app was used. The typical workflow for the generation of the

camera matrix is shown in Figure 6.6.

Figure 6.6: Camera Calibration Workflow (Mathworks, n.d.)

As part of the calibration process, a set of 28 photos of a checkerboard was taken from

different angles. However, this set of images was pre-undistorted from the fisheye distortion

typical from the wide-angle lenses of the GoPro cameras. This process was done using the

GoPro Studio app. Once the pre-undistortion was completed, the set of images were input to

the MATLAB single camera calibrator app. A sample of the pre-undistorted checkerboard

images taken at two different angles is shown in Figure 6.7.

The reprojection of the tracked checkerboard corners in the camera calibration is shown

in Figure 6.8 together with the estimated extrinsic parameters for the calibration session.
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Figure 6.7: Pre-Undistorted Checkerboard Sample Images

Figure 6.8: Camera calibration Sample Results

Finally, the estimated intrinsic matrix K that will be used to map the homography from the

projective to the Euclidean space is:

Kint =


840.0015 0 945.439

0 841.347 531.085

0 0 1


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6.2.2 Image Feature Detection

Once the image from the GoPro camera has been extracted, undistorted, and calibrated, it

is necessary to detect ground features that can be matched between frames. For this purpose,

the chosen algorithm is the Speeded-Up Robust Features (SURF) due to its robustness,

portability, and sensitivity. This algorithm was developed by Bay et al. (2008) as an optimal

iteration of the Scale-Invariant Feature Transform (SIFT) algorithm.

The idea behind SURF is to generate an approximation of the Laplacian of Gaussian

with a box filter or square-shaped filter for finding scale-space. The advantage of using the

approximation is that the convolution with a box filter can be computed faster if the integral

image is used. In order to generate a blob detector, SURF relies on the determinant of the

Hessian matrix to compute the scale and location of the points of interest in the image as

shown in Figure 6.9 (Bradski, 2000). Therefore, given a pixel point p = (x,y), the Hessian

matrix H(p,σ) at point p and scale σ is given by:

H(p,σ) =

Lxx(p,σ) Lxy(p,σ)

Lyx(p,σ) Lyy(p,σ)

 (6.1)

given that Lmn represent the convolution of the second-order derivative of the Gaussian of

the image (Bay et al., 2008).

Additionally, the feature description in SURF is based on wavelet responses in vertical

and horizontal directions. This description is taken around a neighborhood of size 20×20

squares divided in 4×4 subregions. The vector descriptor takes the form of

ν =
(
∑dx, ∑dy, ∑ |dx|,∑ |dy|

)
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Figure 6.9: Hessian of an Image for SURF Feature Computation (Bay et al., 2008)

making the descriptor vector ν of size R64×1 (Bradski, 2000).

Once the feature has been detected in the current and previous frame, it is necessary to

generate a feature index pair correspondence so the Homography matrix can be computed.

The simplest, yet computationally expensive, matching algorithm can be defined as a Brute-

Force Matcher where a descriptor of a feature in the first set of features is matched with

all other features in the second set using some distance calculation, returning the closest

one as the correspondence pair. A sample of the SURF feature detection in two subsequent

frames is shown in Figure 6.10 where the matching correspondences in the two frames are

represented with a connecting yellow line.

From Figure 6.10 it is possible to see that the algorithm was able to find a set of matching

correspondences. However, it is also possible to see that there exist several lines that are

not parallel, but rather inclined in several directions. This means that several false matches
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Figure 6.10: SURF Feature Extraction Sample Dataset

were generated; these are called outliers. Therefore, in order to generate an accurate feature

matching, an outlier rejection algorithm is required. The outlier rejection algorithm used

was RANSAC and is described in Algorithm 3.1. The output of the RANSAC algorithm is

the set of feature inliers and the projective homography matrix. A sample of the matching

after RANSAC is shown in Figure 6.11.

Figure 6.11: SURF Features with Outlier Rejection Sample
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6.3 Measurement Integration

Despite the implementation of outlier rejection algorithms such as RANSAC, there

exists the possibility that the computed homography matrix contains a reliability of less

than 90%, resulting in a wrong projective transformation. This means that the RANSAC

algorithm was not able to filter all of the outliers in the data set. Specifically, this effect

is mostly seen when the vehicle is close to the ground at takeoff and landing stages due

to the rapid change of scale of the SURF features in the image plane. A sample of each

of the nine parameters of the homography measurement history of a flight test is shown in

Figure 6.12. Here, it is possible to observe that there exist peaks that are out of magnitude at

the beginning and the end of the flight, portions of the flight that corresponds to the takeoff

and landing respectively.

Figure 6.12: Raw Homography Measurement History
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In order to solve this problem, there exist several different methods that can be taken

into account. One solution is to start the vision state estimation when the vehicle is in

loitering mode at a slowly changing altitude rate. However, the false inliers can still occur

if the vehicle generates sudden rapid moves, thus generating false measurements that can

contribute to a faster drift. Therefore, two filtering methods are considered as part of

the scope of this thesis. The first one is a digital median filter, and the second one is an

innovation filter. A complete outline of the integration of these two methods is shown in

Figure 6.13.

Figure 6.13: EKF Diagram with Measurement Outlier Rejection

6.3.1 Median Filtering (MF)

The median filtering is a nonlinear digital method commonly used for noise removal

from images while preserving edges. Therefore, it is usually used in imaging as a ”salt and

pepper” type nose removal. It is similar to a mean filter. However, the characteristic of this
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filter is that it preserves useful data detail in an image. This type of filtering is particularly

useful when the distribution function that characterizes the noise is unknown.

Typically, it can be assumed that the homography matrix contains a Gaussian distri-

bution error noise, but when false inliers appear, the distribution of the error function

changes. Therefore, a reasonable approach is to assume that the density is a member of the

measurement set or some family of parametric families (Hamza et al., 2001).

Consider the additive noise model where Si is a discrete m-dimensional deterministic

sequence corrupted by a zero-mean noise sequence Vi with unknown distribution function,

where index i ∈ Zm.

Xi = Si +Vi (6.2)

where Xi is the observed sequence. The objective is to generate an output measurement Yi

as a function of the raw measurement Xi; thus Zi = f (Xi) where f represents the filtering

operator. Then, let W be defined as a sliding window subset of Zm of size 2N +1 and Wi the

window data sequence centered at the i location. Then the sliding windows can be defined as

Wi = {Xi+r : r ∈W}

Applying the operator function med to the sliding window Wi, the output of the median

filter takes the following form:

Yi = med{Wi}= med{Xi+r : r ∈W} (6.3)

(Hamza et al., 1999)
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When applying Eq. 6.3 with a sliding window of size 3 to the homography measurement,

the magnitude of the false inliers peaks can be reduced as shown in Figure 6.14. This can

help with the reduction of uncertainty when the covariance in the homography-based EKF

has not converged yet. However, when the magnitude of the median filter is too high, there

exist the risk of filtering useful information contained in the homography matrix. Therefore,

after some experimentation, it was found that the optimal median filtering magnitude for the

purposes of the Homography EKF is of size 2.

Figure 6.14: Homography Parameters History with Median Filtering
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6.3.2 Innovation Filtering (IF)

Another type of filtering considered for the correction of the false inlier measurements

is the idea of using an innovation filter or more commonly known as measurement gating or

editing. The idea is to use the innovation measurements from the Kalman filter to determine

whether the incoming measurement updates are consistent with previous information. This

is done by normalizing the measurement and comparing it with a predefined threshold value.

Once the false information has been determined, it is possible to modify the Kalman gain so

the filter can take into account the false measurement by rejecting the corresponding rows of

the measurement Jacobian Hk and the corresponding rows of the measurement covariance

matrix R.

Given a homography measurement subset Hveci ∈ Zm of the first and third term of the

homography parameters as plotted in Figure 6.15, it is possible to see that there exist peaks

in the innovation δZ− that correspond to a false measurement as seen in the innovation

covariance plot on the right side of each parameter. However, the magnitude of the false inlier

in the innovation of the first homography parameter Hvec1 differs from the magnitude of the

third homography parameter Hvec3. Therefore, it is necessary to generate a normalization of

the innovation so the innovations have a zero-mean unit-variance Gaussian distribution and

that the innovations covariance assumed by the Kalman filter is true (Groves, 2013).
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Figure 6.15: Measurement Innovations with Kalman Innovation Covariance

The innovations are thus normalized given the following equations derived from Eq. ??

and Eq. 5.35.

δZ−k = Zk−h(x̂−k ) (6.4)

C
δZ−k

= HkP−k HT
k +Rk (6.5)

where the normalized innovation is :

y−k, j =
δZ−k, j√
C

δZ−k

(6.6)

Figure 6.16 shows the normalized innovations of the homography parameters Hvec1 and

Hvec3.
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Figure 6.16: Normalized Innovation Homography History

From Figure 6.16 it is possible to see that the magnitudes of the innovations are similar.

This allows the definition of a common threshold that would filter the false measurements.

However, the relationship between the threshold and the false alarm rate are variant, thus

making the assessment of the threshold empirical. Nevertheless, some studies show that

a threshold of ±3 allows 99.73% of the genuine measurements to pass. The result of the

innovation filtering can be evidenced in the reconstruction of the homography measurement

using Eqs. 5.22→ 5.27 as shown in Figure 6.17 where the false measurement peaks in the

homography do not influence the reconstruction of the measurement.
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Figure 6.17: Homography Reconstruction Comparison

6.4 Results

In order to test the algorithm, two flight tests were designed. The first one was designed

with the requirement of flight over a planar surface with distinguishable ground features

that can be detected by the vision system as shown in Figure 6.18(a). The second flight

test was designed to be flown over an inclined plane of approximately 15deg with planar

features. This flight test was designed to test the normal vector assumption made in Eq. 5.24.

A graphical description of test two is shown in Figure 6.18(b). The two flights were flown in

a circular pattern as shown in Figure 6.19 where the GPS trajectory was plotted on top of a

Google Earth map. In both flights, the camera was mounted at an angle of +30deg with

respect to the horizontal plane of the vehicle.
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(a) Test 1 Layout

(b) Test 2 Layout

Figure 6.18: Mission Tests Description

Figure 6.19: 3D GPS-Based Trajectory
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The two sets of results were compared against the GPS-based Kalman filter of the

pixhawk log and the dead reckoning solution. Additionally, the GPS-based EKF solution

was assumed to be correct and accurate, thus a computation of the RMS error of the

homography-based EKF and dead reckoning for the two flight tests were computed with

respect to the GPS solution.

6.4.1 Test 1

The results generated for flight test 1 were computed using just the innovation filter

as means of false measurement filtering since the computation of false measurements was

sufficient to generate the desired accuracy. From the results shown in Figure 6.20 it is

possible to see that the dead reckoning solution tends to generate a fast drift that deviates

the solution from the considered true solution. However, the vision-based EKF solution

generates a solution that is close to the GPS-based solution despite the false inliers generated

at takeoff and landing. However, it is possible to observe in Figure 6.20(b) that the position

solution in the XN and YN axis tends to drift away due to the relativistic nature of the

homography matrix. Nevertheless, the solution in position, despite being unobservable,

generates a slower drift than the one generated by the dead reckoning solution, as predicted

in the simulation.

In addition, it is possible to see that the biases in the accelerometers and gyroscopes

converge to static values respectively. The RMS error performance comparison of the system

is shown in Table 6.2.
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Table 6.2: RMS Error Test 1

RMS Error

State Units DR EKF+IF

XN [m] 55.8503 1.1365

YN [m] 574.559 1.3454

ZN [m] 73.8184 0.5941

VX N [m/s] 4.0583 0.3188

VY N [m/s] 24.66 0.5344

VZN [m/s] 2.0217 0.2296

φ [rad] 0.0477 0.0154

θ [rad] 0.0587 0.0223

ψ [rad] 0.1018 0.0175
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(a) 3D Trajectory

(b) Position (c) Velocity

(d) Attitude (e) Bias

Figure 6.20: Results Flight Test 1
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6.4.2 Test 2

Similar to the previous case, the RMS error performance comparison analysis was

generated for flight test 2. However, for the generation of results in this flight test, it was

necessary to include a median filter since the Ransac homography computation system

generated several sets of false inliers not only during takeoff and landing, but also during

loitering due to the slanted ground.

As it can be seen from Figure 6.21, the proposed vision-based EKF still generates a better

approximation than the DR solution. However, the drift is greater than the drift generated

during flight test 1. This is because the addition of an inclined plane breaks the assumption

made in Eq. 5.24 and Eq. 5.25 since the approximations of a horizontal planar surface and a

vertical absolute distance for all tracked points no longer hold. A possible solution to this

problem would be to include a stereo vision system that would allow the computation of

the distance of each tracked point relative to the vehicle. However, it is also possible to

assume that all features belong to a horizontal planar space if the UAV altitude is sufficient

enough to discard small variations in the altitude of the feature points. Nevertheless, despite

the broken assumptions, the homography-based EKF still generates a close approximate

solution with the usage of the median and innovation filters.
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Table 6.3: RMS Error Test 2

RMS Error

State Units DR EKF+IF+MF

XN [m] 12.3358 4.5905

YN [m] 15.0471 4.9683

ZN [m] 42.1822 0.7204

VX N [m/s] 1.4548 1.6177

VY N [m/s] 2.1646 1.3277

VZN [m/s] 2.1076 0.2652

φ [rad] 0.0196 0.0364

θ [rad] 0.0313 0.0682

ψ [rad] 0.0403 0.0163
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(a) 3D Trajectory

(b) Position (c) Velocity

(d) Attitude (e) Bias

Figure 6.21: Results Flight Test 2
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7. Hybrid State Estimation

From the results generated either from simulation or experiments, the homography-based

EKF generates a close to accurate estimation of all of the vehicle states. However, the esti-

mated position, despite generating a similar solution to a GPS-based filter, is not observable

and tends to drift as a function of time. A slowly paced drift can still generate problems

related to stability when the control loop of the vehicle is closed. Therefore, it is desired to

reset the error in the position with the integration of a measurement that makes the position

states Xn observable without compromising the stability or computational requirements of

the current system. For this purpose, an additional measurement derived in Myhre et al.

(2018), which is based on the knowledge of the location of known landmarks, was used to

correct the state estimates when the landmarks are in the field of view of the camera. In

real life scenarios, the navigation reference frame is centered with respect to the landmarks

which can take the form of any terrain characteristics at beginning of the filter.

The proposed mission for the exploration of a GPS denied environment is shown in

Figure 7.1, where a predefined landing target is located at the starting point of the exploration

and is also set as the center of the navigation-reference frame. The vehicle follows a path

that obeys a circular pattern so the vehicle explores the terrain and then returns to the starting

point. The algorithm is thus divided into three stages. The first stage is called Landmark

Measurement in which the landing target is in the field of view of the camera. The second
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stage is the Homography Measurement in which the system generates an estimate that relies

only on the homography measurement and the inertial sensors information as explained

in Section 5.2. The last stage of the navigation system is called Estimation Correction in

which the landmark measurements are fused with the homography measurements to bound

the uncertainty and reset the error drift.

Figure 7.1: Hybrid State Estimation Mission Layout and Description

7.1 Landmark-Based Measurement

The landmark-based measurement is based on the prediction and comparison of the

projected landmarks using the pinhole camera model described in Section 4.2.2. Let ~Yi

be the i-th landmark location in the image pixel frame obtained from a vision processing
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algorithm, such as Viola-Jones or color-based detection. Thus the projected landmark model

takes the following form:

Ŷi = KintRN
C (k)[I|P̂N(k)]X̂N

lnd,i (7.1)

where X̂N
lnd,i denotes the known coordinate location of the i-th landmark in the navigation

reference frame, Kint represents the intrinsic matrix computed by the calibration matrix

procedure explained in Section 6.2.1, RN
C (k) represents the rotation matrix from camera

to navigation frame at time k, P̂N(k) represents the location of vehicle at time k, and

Ŷi = {xcam,ycam,1} represents the projected landmark on the focal plane in homogeneous

pixel coordinates. Eq. 7.1 is applied to every point member of the known landing target

~Yi ∈ Rn. The complete landmark measurement vector ~Zlnd,k is of size n and is given as:

~Zlnd,k =



~Y1

...

~Yn


(7.2)

Since not all the measurement landmarks are always inside the field of view of the

camera, a logical vector~ϒ ∈ Rn is provided as a part of the landmark vision system where

ϒi = {1|0} can take the form of 1 if the i-th landmark is present in the camera or 0 if it is

not currently present. As a result, the size of vector ~Zlnd,k is m≤ n, where m is the number

of landmark points that appear on the image.

7.2 Navigation Filter Architecture

The main problem with the integration of the two different vision-based systems in

a cascaded manner is that the landmark-based navigation EKf solution has a problem
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of instability when the landmarks leave the field of view of the camera, thus creating

what is known as black box navigation. In the black box navigation, the system does

not have any means to estimate and correct the covariance of the process, thus causing a

divergence in the uncertainty estimation. Additionally, when fusing a black box navigation

in cascade, there is a problem of propagation of the covariance error throughout all of the

independent systems. A cascaded measurement EKF filter integration was considered in

Chavez Armijos et al. (2017). However, for a centralized EKF with cascaded measurements,

despite having the capacity of handling black box navigation, the complexity increases due

to the increment of the dimension in the measurement model (Groves, 2013). An increment

of the dimension and non-linearities in the measurement models also increases the difficulty

for measurement fault detection and rejection, which are essential for the homography-based

measurement. Therefore, a Federated Filtered Integration (FFI), proposed by Carlson (1990),

was considered so the homography-based and landmark-based EKFs could be able to run

independently. For this purpose, the information fusion algorithm chosen is a Single Epoch

(SE) algorithm, which is based on a least squares estimation (Gong & Zhang, 2016; Groves,

2013). The information fusion is given as follows:

X̂k,se =
(

HT P−1
f H

)−1
HT ∗P−1

f
~X f (7.3)

where X̂k,se denotes the fused SE estimation at time k and ~X f = {x̂k,lnd, x̂k,hom} is a con-

catenated vector containing the landmark EKF estimate (x̂k,lnd) and the homography EKF

estimate (x̂k,hom). Similarly, PF = blckdiag{P̂k,lnd, P̂k,hom} is a block diagonal matrix con-

catenation of the last landmark EKF estimate covariance (P̂k,lnd) and the last homography
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EKF estimate covariance (P̂k,hom). Additionally, H = [I15×15, I15×15]
T represents a matrix

column concatenation of identity matrices. The covariance of the single epoch fusion

solution is as follows:

Pk,se =
(

HT P−1
f H

)−1
(7.4)

The cascaded architecture of the FFI with single epoch information fusion is shown in

Figure 7.2.

Figure 7.2: Federated Hybrid Filtered Integration

As it can be seen from Figure 7.2, the two subfilters use the previous estimate of the

centralized estimation. However, it is possible to see from the definition of Pf and Eq. 7.4

that the SE algorithm defines the covariance matrix with an error correlation between the

two different subsystems. This correlation can affect the computation and performance

of the homography EKF estimation covariance if the landmark EKF enters into black box

navigation. Therefore, the fused covariance Pk,se is multiplied by a constant κi = 3 before
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the covariance is fed back into the landmark EKF so a fusion reset can be computed. A reset

on the fusion is done by underestimating the fused Pk,se from the single epoch integration,

meaning that it is multiplied by a constant. For the homography EKF, there exists no reset

on the information, meaning that the last estimation of the SE covariance is not fed back

into the homography EKF.

7.3 Experimental Results

The hybrid filter architecture was tested given a circular trajectory as shown in Figure 7.1

so the three stages of the filter could be tested. The landing target used was based on an

”x” shaped form with balls of different colors at the corners as shown in Figure 7.3. The

algorithm used for the landmark detection was extracted from Myhre et al. (2018). The idea

is to detect the landmarks based on their distinct colors. For this purpose an HSV color

threshold was defined so a mask can be generated. Once the mask has been generated, a

circular blob is used to compute the center of the ball (Myhre et al., 2018; Chavez Armijos

et al., 2017). A sample of the color-based feature detection is shown in Figure 7.3.

For the homography-based vision system the same procedure discussed in Section 6.2 is

performed together with the innovation filtering explained in Section 6.3.2. A snapshot of

the flight test is shown in Figure 7.4.

Additionally, the trajectory followed in this flight test is shown in Figure 7.5. Moreover,

the corresponding estimates of the hybrid navigation approach are shown in Figure 7.6,

where a comparison is made between the homography-based EKF, the hybrid navigation

using an FFI implementation, a dead reckoning solution, and a GPS-based EKF which is



112

Figure 7.3: Color-Based Landmark Detection Algorithm

Figure 7.4: Hybrid Navigation Test Snapshot

assumed to be the comparison reference. Additionally, a performance RMS error evaluation

is presented in Table 7.1. From Figure 7.4 it is possible to see that the error accumulation

in the position estimation has been corrected on the hybrid navigation implementation.

However, there is an error related to the measurement associated with the known location of
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the landmark. This error generates a jump in the estimation when the landmark subsystem

starts providing a measurement and occurs when measuring the coordinates of the target

previous to the flight. However, the overall system tends to stabilize itself after some time.

Nevertheless, from Table 7.1, it is possible to observe that the homography-based EKF has

a better performance with respect to the hybrid navigation when estimating velocity and

attitude. A possible source of error could be poor tuning of the filters, or a propagation of

the previously mentioned error during the landmark coordinates measurement.

Table 7.1: RMS Error Hybrid Navigation Comparison Test

RMS Error

State Units Dead Reckon Homography EKF Hybrid Navigation

XN [m] 3319.857 5.979 2.227

YN [m] 733.510 4.163 3.719

ZN [m] 164.037 0.937 1.372

VxN [m/s] 68.335 0.297 0.032

VyN [m/s] 29.064 0.349 0.388

VzN [m/s] 4.743 0.111 0.131

φ [rad] 0.0841 0.0193 0.022

θ [rad] 0.0832 0.0147 0.024

ψ [rad] 0.1763 0.0147 0.013
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Figure 7.5: Hybrid Navigation Test 3D Trajectory

(a) Position (b) Velocity

(c) Attitude (d) Bias

Figure 7.6: Results Hybrid Navigation Flight Test
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8. Conclusion

A set of four different vision-based navigation solutions were successfully analyzed via

simulation and testing with experimental flight data. These methods were visual odometry,

dead reckoning, homography-based Kalman Filter, and a hybrid navigation filter. In addition,

two different methods for the disambiguation of the decomposition of the homography

matrix were developed and studied. The disambiguation methods enabled the generation

of a vision only solution that does depend on an additional altitude sensor to recover the

loss of perception typical in monocular systems. However, it was determined that despite

the generation of a suitable solution, the visual odometry solution tends to accumulate drift

error as a function of time because of the lack of a covariance matrix for error filtering.

A homography-based navigation filter based on inertial measurements (accelerometer

and rate gyro data) and the reconstruction of the homography matrix was studied and

optimized. The extended Kalman filter includes two different algorithms designed to reject

false measurements that typically appear when the camera sensor is close to the ground. In

order to test the algorithms a simulation analysis was performed. For the simulation analysis

a quadcopter model was developed together with the creation of a virtual environment so

the image processing could be tested together with the homography-based Kalman filter.

Moreover, a second simulation model was also developed for the generation of a statistical

analysis of the vision-based navigation algorithms using a Monte Carlo simulation for
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comparison. A validation of the results was done by post processing IMU data and camera

images obtained from quadcopter flight tests. These flight tests entailed flying an IRIS

quadcopter in a circular pattern over a planar region.

In general, the homography-based filter provides an accurate solution for navigation that

is independent of GPS measurements. However, the uncertainty in the sigma plots of the

simulation shows that the variances of the position in the ”x” and ”y” directions diverge

with time, thus generating an error drift in the mentioned states due to the unobservability of

these states. This unobservability condition was proven to be true for the stochastic system

by performing the rank test on the discrete observability gramian matrix computed for a

simulation model. Moreover, by performing an estimability test for observable states, it was

determined that the error bias states were less estimable than the other observable states.

During the experimental testing of the filter, some of the assumptions made for the

conceptualization of the homography-based EKF were broken to test the limits of the EKF.

One test, which entailed flying the quadcopter over a flat but inclined area, showed that the

inclusion of a median filter can help with the generation of an approximate solution with

better performance than a DR solution. In conclusion, under these tested conditions, the

homography-based EKF still generates an improved solution in comparison with the visual

odometry and dead reckoning algorithms.

In order to correct the drift from the homography-based EKF, a hybrid navigation system

was developed. In the hybrid navigation approach, an additional type of visual measurement

was used to make the position states observable. The hybrid navigation uses knowledge of

the location of one or more known landmarks in the scene to generate a solution estimate
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that resets the drift in the homography-based EKF whenever the landmarks are in the field

of view of the camera. Additionally, a federated filtered integration (FFI) with a single

epoch algorithm was used for the integration of the cascaded measurements as separate

independent systems. This FFI implementation resulted in improved accuracy in the position

estimation.
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9. Recommendations

For the testing of the homography-based navigation, the error covariance that was used

assumed that the errors of each of the homography parameters were independent of the other

parameters. Therefore, a study of the correlation of the errors between the homography

parameters can improve the tuning of the EKF. Additionally, the inclusion of an error model

using an AHRS algorithm for the magnetometer can also improve the solutions for heading.

For the observability analysis, the analysis needs to be further extended to the analysis

of different conditions due to the coupling of certain states during specific dynamic mo-

tions. Additionally, a detectability analysis needs to be performed in order to assess how

unobservable are the ”x” and ”y” translational states.

An implementation of the algorithms still needs to be done for further testing of stability.

This occurs because of the effects on stability that the processing frequency of the computer

can have on the filter itself. This implementation can also serve to perform an analysis of

stability on the guidance, navigation, and control of the vehicle by closing the loop.

Since an accurate solution has been generated with the homography-based EKF, a

triangulation of the SURF points at two instances of time can be computed so a 3D map

of the environment can be generated. A 3D map of the environment can be used for the

recognition of new landmarks that would allow the increment of the exploration area when

using the hybrid navigation system. The same mapping technique can be used for the
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homography only EKF solution. However, a consideration of the drift in position needs to

be taken into account.

For the hybrid navigation solution, it is necessary to perform a sensitivity analysis that

could provide some information about the error correlation effect that the camera has on

the two different vision measurements when computing the homography matrix and the

landmarks projection with the same image.
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