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Abstract

The Air Force Institute of Technology (AFIT) is investigating techniques to

improve aircraft navigation using low-cost imaging and inertial sensors. Stationary

features tracked within the image are used to improve the inertial navigation estimate.

These features are tracked using a correspondence search between frames. Previous

research investigated aiding these correspondence searches using inertial measure-

ments (i.e., stochastic projection). While this research demonstrated the benefits of

further sensor integration, it still relied on robust feature descriptors (e.g., SIFT or

SURF) to obtain a reliable correspondence match in the presence of rotation and

scale changes. Unfortunately, these robust feature extraction algorithms are compu-

tationally intensive and require significant resources for real-time operation. Simpler

feature extraction algorithms are much more efficient, but their feature descriptors are

not invariant to scale, rotation, or affine warping which limits matching performance

during arbitrary motion. This research uses inertial measurements to predict not only

the location of the feature in the next image but also the feature descriptor, resulting

in robust correspondence matching with low computational overhead.

This novel technique, called deeply-integrated feature tracking, is exercised us-

ing real imagery. The term deep integration is derived from the fact inertial infor-

mation is used to aide the image processing. The navigation experiments presented

demonstrate the performance of the new algorithm in relation to the previous work.

Further experiments also investigate a monocular camera setup necessary for actual

flight testing. Results show that the new algorithm is 12 times faster than its pre-

decessor while still producing an accurate trajectory. Thirty-percent more features

were initialized using the new tracker over the previous algorithm. However, low-level

aiding techniques successfully reduced the number of features initialized indicating a

more robust tracking solution through deep integration.
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Deeply-Integrated Feature Tracking

for Embedded Navigation

I. Introduction

Unmanned aerial systems (UAS) continue to develop and inundate every aspect

of warfare. In 2000, the United States Department of Defense owned and

operated less than 50 UAS systems. Today more than 6,000 systems find diverse

missions throughout the battlespace [27]. These systems carry a wide variety of

sensor payloads ranging from intelligence, surveillance, and reconnaissance (ISR) to

munitions. Not surprisingly, the Department of Defense seeks to continue expansion

into more difficult and dangerous missions with priority on ISR and targeting. In

addition, such systems should be nearly or completely autonomous to avoid burdening

the warfighter in the execution of their mission [28].

Enclosed areas such as indoors, underground, or urban environments present

a challenge and are currently only accessible to soldiers or limited-capability ground

systems. In these environments, traditional navigation systems cease to function with

the Global Positioning System (GPS) either unavailable or degraded. Non-traditional,

relative navigation systems provide the autonomy and accuracy necessary to execute

these ISR and engagement missions.

The Air Force Institute of Technology and Air Force Research Laboratory are

cooperating to develop airborne vehicles capable of operating freely and autonomously

in all environments, including indoor environments. To accomplish this goal, several

non-traditional sensors are being fused to deliver autonomous systems not dependent

on external reference. This research considers fusion of imaging and inertial sensors.

1



1.1 Problem Statement and Scope

Toward implementing a fully autonomous indoor flying vehicle using non-traditional

navigation, this research leverages a fused imaging and inertial system previously de-

veloped at the Air Force Institute of Technology [38]. This algorithm is referred to

in this research as the image-aided Kalman filter (IAKF). Image and inertial fusion

within the filter occurred using a method of stochastic feature tracking. A feature

is a distinct point in the image, and feature tracking refers to the detection, extrac-

tion, and matching of features between frames. Feature matching benefitted from

the stochastic constraint of the search space. However, the robust feature detection

and extraction proposed in previous research requires a high level of computation not

currently achievable on small indoor flying platforms. This research develops an alter-

native to a high-level feature detection and extraction that uses inertial information

in matching to achieve similar results. In particular, this research attempts to answer

the following two questions:

• Can the IAKF be modified to fit on a small vehicle?

• Can inertial information be used to improve feature tracking at a deeper level,

in addition to the previous stochastic correspondence search constraint?

The term deeply-integrated refers to the incorporation of inertial information into the

image processing, rather than just a reduction in correspondence search space.

1.2 Proposed Solution

The proposed solution for implementing the IAKF on a small indoor flyer in-

volves finding an alternative to high-level feature tracking. This research asserts that

the level of computation used in the high-level feature detection and extraction algo-

rithm is unnecessary when combined with inertial information. The following research

development goals were established:

• Modify the IAKF to use low-level feature detection, extraction, and matching.

2



• Develop additional processing techniques to improve low-level feature matching

using inertial information.

The developed algorithm will be validated with a set of indoor flight experiments.

This thesis is organized as follows. Chapter II introduces the background in-

formation fundamental to understanding the development of the deeply-integrated

feature tracking algorithm. Chapter III discusses the methodology of the produced

solution. In Chapter IV, the results of three image experiments are covered. Finally,

Chapter V gives a summary of conclusions drawn from the experiments and proposes

ideas for further research.

3



II. Background

This chapter covers the background information required to develop the deeply-

integrated feature tracking algorithm. When possible, notation was adopted

from previous research [38].

This chapter begins with the definition of the navigational coordinate frames.

Next, the image acquisition system used to aide the inertial system is introduced. The

acquisition system includes relevant projection, spatial aliasing, and the camera model

theory. Image processing techniques are reviewed next in preparation for discussions

about feature detection, extraction, and matching. Motion estimation using vision

and Kalman filtering is then covered. The related research in the field of vision-aided

inertial systems is reviewed, and the previous research is introduced. Finally, the

specifics the image-aided Kalman filter are covered along with details of stochastic

feature tracking.

2.1 Coordinate Frames

Coordinate frames are fundamental to the study and analysis of navigational

system. The coordinate frames used in this research are as follows [38].

• True inertial frame (I-frame)

• Earth-fixed inertial frame (i-frame)

• Earth-centered, earth-fixed frame (e-frame)

• Navigation frame (n-frame)

• Body frame (b-frame)

• Camera bar frame (c0-frame)

• Camera frame (c-frame)

Newton’s laws of motion only apply in a truly inertial frame (I-frame). This

frame does not rotate or translate. There is no true inertial frame in this research.

4



The Earth-fixed inertial frame (i-frame) has its origin at the center of mass of

the Earth. The axis of rotation defines the z axis of the system, and the x axis lies

in the equatorial plane aligned with the fixed stars. The y axis is defined by the

right-hand rule. This frame is only a close approximation of an inertial frame since

the earth revolves around the sun. However, this frame is a valid inertial frame for

terrestrial navigation.

The Earth-centered Earth-fixed frame (e-frame) is defined identically to the i-

frame except that the frame rotates with the axis of the Earth. The x axis is fixed

at the intersection of the Greenwich meridian and the equatorial plane. The z axis

is defined along the Earth’s axis of rotation, and the y axis is defined according to a

right-handed Cartesian system.

The navigation frame (n-frame) is a locally defined frame with the origin at

the center of the navigational system. A north-east-down (NED) axis alignment is

assumed for this research. Down is tangential to the surface of the Earth and points

toward the center of the Earth.

The body frame (b-frame) is defined with respect to the roll, pitch, and yaw axes

of the body. Specifically, the x, y, and z axis point out the nose, out the starboard,

and out the bottom on the body. Figure 2.1 shows the the body frame of and aircraft.

The camera frame (c-frame) and camera bar frame (c0-frame) are identical

except for a translation. The x, y, and z axis are defined as up, right, and forward

when looking out of the camera lens [10] [36]. The camera bar frame is used as the

common line-of-sight reference between the two cameras. Figure 2.2 shows the camera

and camera bar frames.

2.1.1 Direction Cosine Matrix. A direction cosine matrix (DCM) is used to

rotate from one coordinate frame to another. Here, a DCM from the previous from to

the new frame is denoted by: Cnew
previous. For instance, the Cc′

c DCM from Section 2.3.5

defines the rotation from the initial camera frame (c) to the next camera frame (c′).

5



Figure 2.1: Body Frame Diagram [38]. The body frame is defined according to the
roll, pitch, and yaw axes of the body.
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In the next section, the image acquisition system is introduced and character-

ized.

2.2 Image Acquisition

Careful analysis of image acquisition is pivotal to proper measurement within a

vision system. Because digital cameras are used in this research, this analysis focuses

on the optics and charged-coupled device (CCD). Optics focus light onto the image

plane where the CCD captures the electric charge of photons delivered over time.

The intensity captured is normally quantized on an 8-bit scale [0-255]. The recorded

intensity pattern is called the image, and the objects that reflect light into the camera

are collectively referred to as the scene. The following sections introduce key concepts

of image acquisition important to this research.

2.2.1 Radiometry. Radiance is the amount of energy emitted from an object,

and irradiance is the amount of energy received. A surface whose reflection depends

only on the amount of radiance is called Lambertian. In other words, the irradiance

does not depend on the viewing angle, and the object looks the same from all camera

poses. Lambertian surfaces are assumed in this research [37].

2.2.2 Projection Theory. Projection theory describes how light enters into

the camera. The pinhole camera model, shown in Figure 2.3, is the most simplistic

model where only one ray passes into the camera and onto the image plane. A more

realistic optic system involves lenses to focus multiple rays, reducing the required ex-

posure time. The fundamental equation of thin lenses gives the following relationship

for such an optical system:
1

Z
+

1

z
=

1

f
(2.1)

where Z is the distance from the object to the lens, z is the distance from the lens to

the virtual image plane, and f is the focal length. Rays of light entering the camera

parallel to the lens on one side converge on the focus on the opposite side of the

7



Figure 2.2: Camera Frame Diagram [38]. The camera frames are used to convert
from line-of-sight vectors to vectors in the navigational frame. In the binocular case,
features are initialized from the neutral point c0. In the monocular case, features are
initialized directly from the camera frame, ca.

!

!SCENE

IMAGE

Figure 2.3: Pinhole Camera Model. The pinhole camera model is the most sim-
plistic camera model. Only one ray passes into the camera resulting in a sharp,
completely focused image [38].
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lens, shown in Figure 2.4. The analysis in this research will use a variation of the

pinhole model with the image plane moved to the same side as the scene, as shown

in Figure 2.5.

From these basic projection concepts, the intrinsic camera parameters can be

defined that transform a spatial scene location into a pixel coordinate (spix). Note

that the definition of the camera coordinate system in this research is [down,right]

Figure 2.4: Thin Lens Model. The thin lens model is a more realistic projection
model. More light enters into the camera reducing exposure times. The fundamental
rule for the thin lens model transforms parallel lines into lines passing through the
focus on the opposite side of the lens [38].
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Figure 2.5: Research Camera Model. The camera model assumed in this research
is a modification of the pinhole camera model with the image plane on the same side
as the scene [38].
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instead of the standard computer vision notation, [right,down]:

spix =




−M

H 0 0

0 B
W 0



 sproj +





M+1
2

N+1
2



 (2.2)

where H and W are the physical height and width of the array, and M and N are

the number of horizontal and vertical pixels. sproj is the projection of the scene point

onto the image plane and is defined by:

sproj =
f

sc
z

sc (2.3)

where sc is the line-of-sight vector in the camera frame, and sc
z is the z dimension

of the line-of-sight vector. Substituting Equation (2.3) into Equation (2.2) and using

homogeneous coordinates to incorporate the addition into a matrix multiplication,

the result is a single matrix multiply defined by:

spix =
1

sc
z








−f M
H 0 M+1

2

0 f B
W

N+1
2

0 0 1








sc (2.4)

=
1

sc
z

T pix
c sc (2.5)

where intrinsic camera matrix (T pix
c ) is given by:

T pix
c =








−f M
H 0 M+1

2

0 f B
W

N+1
2

0 0 1








(2.6)

Figure 2.6 shows the relationship between the projected points and image pixel coor-

dinates.

2.2.3 Frequency Analysis and Spatial Aliasing. In this research, information

is extracted from the image using an image processing algorithm. If the image is
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not properly sampled, the image’s information could be corrupted by spatial aliasing

causing poor algorithm performance. Fundamentally, the camera is sampling the

effectively infinite spectrum of the scene. Spatial aliasing occurs in the camera system

when the detectors on the image plane capture frequency content higher than the

cutoff frequency defined by the optical system.

Assuming equal distance (r) between elements of the CCD, the sampling theo-

rem predicts the maximum observable spatial frequency in the image:

fmax =
1

2r
(2.7)

The optics act as a low-pass filter when delivering light to the CCD array. The spa-

tial cutoff frequency established depends on the aperture diameter (D), light wave-

length (λ), and focal length (f):

fc =
D

λf
(2.8)

In typical image setups, the spatial cutoff frequency (fc) is nearly one order of magni-

tude greater than the maximum sampling frequency defined by the CCD array. This

additional frequency content could interfere with the higher captured frequencies. As

a result, another low-pass filter is applied in the signal processing software to avoid

aliasing effects [37].

2.2.4 Camera Model and Nonlinearities. For this research, the camera

model refers to the set of parameters that define the characteristics of the camera’s

intrinsic camera matrix along with a model of the nonlinear deviations from the pin-

hole camera model caused by the optics. The camera model parameters are estimated

using the Open Computer Vision Toolbox [5] camera calibration model that consid-

ers radial and tangential distortion as the primary nonlinearities. Radial distortion

occurs when the camera lens is not the ideal shape causing a distortion around the

image perimeter. Tangential distortions occur when the lens is not mounted parallel

to the image plane [5] [38]. The method implemented in this package is based on
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techniques first introduced in [6]. By removing the nonlinearities, the presented pro-

jection theory may be used to transform a point located within the scene into a pixel

location, and vice-versa.

With an accurate model of the image acquisition system, image processing al-

gorithms can be applied to retrieve information from the images to be used within

the image-aided Kalman filter and stochastic feature tracker.

2.3 Fundamental Image Operations

This section covers basic image operations that are fundamental to the under-

standing of feature transforms. Features will be the fundamental link between the

image and inertial sensors. A feature is a distinct point in the scene comprised of a

location and descriptor. Feature transformation is the process that takes an acquired

intensity image and produces features.

In this section, the operations required to compute feature transforms are dis-

cussed: convolution, noise suppression, gradients, and edge detection. The homo-

graphic transform is also introduced in this section. Homographic transformation will

be used to aide the matching of feature descriptors in the next chapter.

2.3.1 Convolution. Convolution, or in the frequency spectrum multiplica-

tion, is a common technique used throughout this research to apply image filters.

Since convolution is a linear operation, the associative and distributive properties of

the operations can be leveraged to speed up image computations. In this research,

Gaussian filter and gradient kernels are applied using convolution. Mathematically, a

convolution is defined as:

i(i, j) = a ∗ I(i, j) =
m/2
∑

h=−m/2

n/2
∑

k=−n/2

a(h, k)I(i − h, j − k) (2.9)

where I is the image, and a is the kernel matrix applied to a region of (m,n) [37].
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2.3.2 Noise Suppression. Techniques that use linear and nonlinear filtering

to reduce various sources of noise are collectively called noise suppression. The non-

linear median filter is effective against outlier noises, such as shot noise caused by the

wave particle nature of light. However, shot noise is not modelled in this research, so

median filtering is not implemented.

The most commonly used noise filter is the low-pass filter. The ideal low-pass

filter is a two-dimensional sinc function. Two common approximations of the ideal

low-pass filter are the averaging and Gaussian filters. The averaging filter effectively

cancels some noise by spreading the effects of the noise over the image [37]. A better

approximation, the Gaussian filter, has no secondary lobes and is most common ap-

proximation used in image processing algorithms [29]. The two-dimensional Gaussian

is given by:

g(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(2.10)

where σ is the standard deviation of the distribution and x and y are the horizontal

and vertical dimensions.

In the algorithms described in this research, the Gaussian filter is used as a

low-pass filter to reduce high frequency noise. This type of noise is detrimental to

derivatives because each differentiation amplifies the noise.

2.3.3 Gradient/Laplacian. A gradient (∇) is a matrix operation that com-

putes the partial derivatives of each dimension. Gradients can also be represented

as the magnitude and orientation of the vector of the two partial derivatives. The

second partial derivative of each dimension is called the Laplacian ($). Orientation

information is lost when computing the Laplacian. The gradient and Laplacian are

defined mathematically by:

∇I(x, y) =

(
∂I

∂x
,
∂I

∂y

)

(2.11)

$I(x, y) =

(
∂2I

∂x∂x
,
∂2I

∂y∂y

)

(2.12)
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Gradients are normally implemented by convolving the image with a kernel matrix.

Two common kernels are the Prewitt and Sobel kernels. The Prewitt kernel for

horizontal gradient is given by [?]:

GPrewitt =








1 0 −1

1 0 −1

1 0 −1








(2.13)

The Sobel gradient kernel differs from the Prewitt by emphasizing the center pixel.

The horizontal Sobel kernel is given by [?]:

GSobel =








1 0 −1

2 0 −2

1 0 −1








(2.14)

The second dimension’s derivative is found by transposing the kernel matrix [25]. The

gradient is computed as follows:

∇I(x, y) = (Ix, Iy) =

(
∂I

∂x
,
∂I

∂y

)

=
(

G ∗ I(x, y), GT ∗ I(x, y)
)

(2.15)

where G is the Prewitt or Sobel kernel.

2.3.4 Edge Detection. Simple edge detection uses the gradient filter’s mag-

nitude as the final result. More advanced algorithms, such as the Canny edge detec-

tor, use gradient orientation to find edges other than vertical and horizontal. These

techniques also use non-maximum suppression to clean up the edges, or dilation and

erosion to make continuous edges, called contours [37]. Edge detection will be an

important step in the scale-invariant feature transform to improve the algorithms sta-

bility during processing. The scale-invariant feature transform computes edges using

an eigenvalue decomposition of a local window’s Hessian matrix [18].
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2.3.5 Homographic Transform. This research uses a homographic trans-

form to predict how a image will look after a camera translation and rotation. A

homography is a special type of perspective transform between image frames for a

planar surface located in the scene. Perspective transforms occur due to the effects

of viewing a three dimensional world in a two dimensional image. When rotation and

translation occurs together, called a six degree-of-freedom motion (6DoF), the effect

perceived by the imaging system is a perspective transformation. In the absence of

inertial information, four point correspondences can be used to estimate the homogra-

phy matrix. Each individual point provides two linear constraints on the eight degree

of freedom homography matrix. Methods for solving this system are detailed in [13].

In this research, however, the homographic transform (Th) is determined using

inertial information. Specifically, the determination uses the interframe rotation (Cc′
c ),

translation (t) of the camera center, and the intrinsic properties of the camera defined

by the intrinsic camera matrix T pix
c . Because of the planar assumption, the object

can be completely described using the planar normal vector (n) and distance from

the camera to the plane (d). Let sc be the line-of-sight vector in the camera frame

and spix be the corresponding 2D projection into the image plane, the homographic

transform is defined by [35]:

sc′ = Cc′

c sc + t (2.16)

Th = T c
pix(C

c′

c +
t ⊗ nT

d
)T pix

c (2.17)

spix′

= Ths
pix (2.18)

Figure 2.7 visually demonstrates the homographic transform. Note that the normal

vector and planar distance can be appropriately modified for the new frame using the
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Figure 2.6: Camera Image Array. Camera projection coordinates are transformed
into pixels in the image array of (MxN) pixels. H and W represent the physical height
and width of the array [38].

.

.

Figure 2.7: Homographic Transform. The homographic transform is computed
using the camera center rotation (Cc′

c ) and translation (t) along with the planar normal
vector (n) and the distance from the camera center to the plane (d). For every point
on the plane, the transformation between frames is defined by the homography (Th).
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following relation [35]:

n′ = Cc′

c n (2.19)

d′ = d − nT t (2.20)

2.4 Feature Transforms

Features are fundamental to how this research fuses imaging and inertial sen-

sors. Distinct locations in the scene are tracked to determine the relative position of

the aircraft. Feature transformation is the process of detecting these interest points

and extracting a description from a local image region around that interest point.

Feature detection normally uses image derivatives described in Section 2.3.3. Fea-

ture extraction can consist of capturing intensity or gradient information. In the case

of the scale-invariant feature transform (SIFT) however, additional computation is

required to determine the descriptor.

Three feature detection algorithms are reviewed in this section: Harris, Good

Features, and SIFT. The section section covering SIFT also discusses feature extrac-

tion.

2.4.1 Harris Corner Detector. First formalized in 1988 by Harris and

Stephens, the algorithm computes an image gradient matrix (Ig) whose elements are

smoothed by a Gaussian kernel (g(·), see Equation (2.10)) for a local window. First,

the derivative image is computed for each dimension:

Ix(x, y) = G ∗ I(x, y) (2.21)

Iy(x, y) = G′ ∗ I(x, y) (2.22)
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Next, the gradient matrix and its eigenvalues (α,β) are computed:

Ig(x, y) =





∑

g ∗ I2
x

∑

g ∗ IxIy

∑

g ∗ IyIx

∑

g ∗ I2
y



 ⇒ eig(Ig) =




α 0

0 β



 (2.23)

The size of the eigenvalues (α,β) of Ig determines the nature of the surface. Two large

eigenvalues equate to a strong corner, with significant gradient in both directions.

Weaker corners have one or two small eigenvalues. A single large eigenvalue indicates

information in only one direction and implies an edge. This condition is known as the

aperture problem, where only the distance perpendicular to the edge is detectable [37].

Two small eigenvalues correspond to little information, or a constant intensity surface.

In either case, the feature location cannot be uniquely determined.

Instead of computing a full eigenvalue decomposition and comparing eigenvalues

directly, the following quality metric is used [12]:

C(x, y) = det(Ig) − k(trace(Ig))
2 (2.24)

where:

det(Ig) = αβ (2.25)

trace(Ig) = α+ β (2.26)

This scalar metric is thresholded to determine corners, and the tuning parameter k

can be varied from 0 to 1. Smaller values of the tuning parameter favor two large

eigenvalues to produce a high metric score. The parameter k is commonly set to 0.4,

determined empirically [8]. Corners, the feature detection output, are points in the

quality metric matrix that exceed a constant threshold [12].

The Harris corner detector is invariant to rotation but not scaling changes [33].

Improvements to the Harris corner detector include eliminating the tuning parameter
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k by using a ratio of image gradients [26] and adding a scale-space search [31] similar

to the later discussion of the scale-invariant feature transform.

2.4.2 Shi Tomasi Good Features Detector. In [34], Shi and Tomasi state that

the performance of a feature detection algorithm is tied closely to the type of tracking

algorithm used. For their application, the Kanade-Lucas tracking algorithm [19], a

so-called “Good Feature” involves checking invertibility for a least-squares tracking

solution. This does not explicitly guarantee a corner in the strict sense. Instead, the

algorithm computes the minimum eigenvector of the local gradient window around

each pixel. The threshold for acceptable features is a percentage of the global maxi-

mum of the set of each pixel’s minimum eigenvalue. Points higher than this dynamic

threshold are candidate features. Finally, a minimum feature distance between lo-

cal maximums determines which features are kept. The Good Features detection

algorithm is summarized by the following steps [4]:

1. Determine the minimum eigenvalue for each pixel’s local gradient window Ig

2. Determine the maximum of all minimum eigenvalues

3. Identify features above a percentage of the global maximum minimum eigenvalue

(i.e., the feature quality)

4. Determine local maximums from the remaining features within a predefined

minimum distance of other local maxima

The Harris corner and Good Features detectors are generally referred to as low-

level feature detection. Next, the more complex scale-invariant feature transform is

introduced.

2.4.3 Scale-Invariant Feature Transform . The scale-invariant feature trans-

form (SIFT) is considered a modern feature detection algorithm that is invariant to

scale, rotation, and partially invariant to changes in illumination and affine warp-

ing. Because of these characteristics, SIFT has found its way into many applications
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including pattern recognition, structure from motion, stereo correspondence, and mo-

tion estimation.

In this explanation of SIFT, keypoints are synonymous with interest points

defined previously. The algorithm is comprised of four stages:

1. Scale-space extrema detection

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor computation

In this research’s context, the first two stages are considered feature detection,

and the final two stages are feature extraction. Scale-space extrema detection uses a

difference of Gaussian (DoG) filter computed at a fixed number of scales per octave.

The DoG is an approximation of the scaled-normalized Laplacian of Gaussian, whose

local maxima and minima are stable features [18]. The DoG is given by:

D(x, y, σ) = [g(x, y, kσ) − g(x, y, σ)] ∗ I(x, y) ≈ (k − 1)σ2∇2g(x, y, σ) (2.27)

where x, y are the two dimensional image location, σ is the standard deviation, g is

the Gaussian kernel, k is the scale parameter, and I is the image. At each octave, the

image is downsampled by a factor of two, effectively doubling the standard deviation.

Determined empirically, three scales per octave was found to produce adequate scale

sampling. Experiments found that further sampling would lead to more extrema but

increasing instability, along with increased cost of computation (more convolution).

Experiments also showed an appropriate choice for the Gaussian smoothing to be a

standard deviation of 1.6. This was chosen as a tradeoff between feature repeatability

and speed (size of the convolution window). The smoothing effectively discards the

highest frequency content (see Section 2.2.3), but the algorithm avoids information

loss by upsampling the image prior to smoothing. A three-dimensional search space
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is now available to localize extrema and determine keypoints. Figure 2.8 shows an

example scale-space decomposition.

The determination of keypoints distinct from their neighbors (i.e., the search

for high contrast) involves a gradient strength comparison of the nine elements on

either side of the keypoint’s scale and the eight neighbors in the same scale. Once

an extrema is found, interpolation in the three dimensional search space is used to

improve the location and scale estimates. Edge responses are also discarded to increase

the stability of detected features. According to the author, features found along edges

are sensitive to noise because of the second derivative technique of localization.

Scale-space decomposition

Increasing scale

Original image

Figure 2.8: Scale-space Decomposition. A captured image in decomposed into
multiple scales using the difference of Gaussian filter. Local extrema are detected in
this three dimensional search space. Images from [38].
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Orientation assignment occurs in a scale-invariant method, using the filtered

image at the keypoint’s scale for calculations. Sample points of gradient orientation

are weighted with a Gaussian filter centered around the keypoint then fit into a

histogram with 10 degree bins. The primary orientation is assigned according to the

three closest histogram values to each peak [18].

With location, scale, and orientation determined, the descriptor computation

attempts to reduce the effects of viewpoint and illumination change. Inspired by bio-

logical research into the visual cortex, the method incorporates gradient and spatial

frequency. The descriptor coordinates are determined relative to the primary orien-

tation. This relative definition of coordinates achieves rotation invariance in the de-

scriptor. The local gradient orientations are apportioned to 4x4 subregion histograms,

each with 45 degree bins. The values from each histogram are placed into a 128 ele-

ment vector (4x4x8). Normalization is applied to the vector to provide illumination

invariance.

The final result of the processing is location, scale, primary orientation, and his-

togram vector. The feature descriptor is the scale, primary orientation, and histogram

vector [17] [18].

Significant processing is required to determine SIFT’s robust features. There

have been a number of attempts to increase the speed of the algorithm using tech-

niques such as principle component analysis (PCA) [15]. Alternatively, SIFT inspired

algorithms of comparable performance also exist, e.g. SURF [1] [2].

2.5 Feature Matching

After features are detected and extracted, the next step in feature tracking is

the matching of descriptors. The feature matching techniques reviewed in this section

includes Euclidean distance, normalized cross correlation, and gradient techniques.

SIFT uses Euclidean distance between one-dimensional feature descriptors to match

features. During low-level feature detection algorithm discussion, a feature descriptor
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was not specified. Commonly, the two-dimensional local intensity or gradient is used

as the local descriptor. The descriptor selected for this research is the local inten-

sity and is matched using normalized cross-correlation. Gradient techniques are also

discussed for possible future improvements and testing.

2.5.1 Euclidean Distance. Previous research [38] used a 1x128 element

descriptor from SIFT. Matching two SIFT descriptors involves computing a Euclidean

distance. Given two descriptors a and b, the Euclidean distance (dE) is given by:

dE = ‖ a − b ‖2 (2.28)

where ‖ ·‖ 2 is the two-norm. Using a small angle approximation [18], calculation is

simplified:

dE ≈ arccos < a, b > (2.29)

Since the feature descriptors are normalized and non-negative, the result should range

from 0 to π
2 , with smaller Euclidean distances corresponding to stronger matches.

Next, two-dimensional matrix techniques for low-level feature extraction are

introduced, beginning with the normalized cross-correlation of intensity windows.

2.5.2 Normalized Cross-Correlation. Cross-correlation is used in matching

because of its similarity to the Euclidian distance, however normalization is necessary

to properly match templates in the presence of illumination changes and saturation.

The normalized version of the cross-correlation is commonly referred to as the correla-

tion coefficient or normalized cross-correlation (NCC). The correlation coefficient (ρ)

between the template (t) and the comparison window (w) for a location (u, v) within
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the larger image is given by:

ρ(u, v) =

∑

x,y[w(x, y) − w̄u,v][t(x − u, y − v) − t̄]
√

∑

x,y[w(x, y) − w̄u,v]2
∑

x,y[t(x − u, y − v) − t̄]2
(2.30)

In [16], a more efficient computational method is introduced. The correlation score

ranges from -1 to 1. A Gaussian filter may be applied over the image to de-emphasize

the regions of the correlation most affected by misregistration [18]. This primarily

deals with boundary regions of the image.

2.5.3 Gradient Techniques. Gradients are calculated in search of features

and are nicely invariant to uniform intensity shifts. When normalized, the gradient

is also invariant to intensity scaling. These normalized gradient matching techniques,

such as [41], claim increased accuracy in the presence of strong illumination changes.

Similar to the building of the SIFT descriptor (see Section 2.4.3), research in [11]

proposes that gradient orientation be used in correspondence matching. The authors

show the technique is computationally inexpensive for small templates, with improved

correlation results. However, the techniques still do not provide rotation or affine

invariance for the descriptor.

2.6 Motion Estimation

In this research, estimation of aircraft pose and feature locations occur within

the Kalman filter, an optimal estimator. In this section, vision-only techniques of

estimation are introduced and contrasted with Kalman filtering.

2.6.1 Least-Squares Estimation. In most vision-only applications, the fun-

damental matrix (F ), or essential matrix (E) if the camera calibration (T pix
c ) is known,
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is estimated to determine camera motion from one frame to another:

x′Fx = 0 (2.31)

E = T c
pixFT pix

c (2.32)

where x is the set of pixel locations in the first frame and x′ is the pixel locations

in the second frame. This relationship is a constraint of projective geometry and

states that the cross product of a point with itself (when transformed back into the

same frame) is zero. The fundamental matrix has seven degrees-of-freedom and is

usually determined using a least-squares method. Problems can plague this method

of determining motion while using noisy measurements. First, the estimated solution

does not have to correspond to any real-world motion. Real-world motion can be

defined as a rotation, translation, and perspective transform [14]. Additionally, this

method is susceptible to the incorporation of erroneous measurements [13].

In this research, inertial sensor measurements eliminate the need to determine

the camera motion by vision-only estimation. Instead, inertial and image measure-

ments are optimally combined using a Kalman filter.

2.6.2 Kalman Filtering. Kalman filtering seeks to determine the solution

of stochastic differential equations modelling system dynamics while incorporating

discrete measurements. Linear and nonlinear Kalman filters are introduced in this

section. For information beyond this discussion on Kalman filtering see [7] or [21] [22].

2.6.2.1 Linear Kalman Filtering. Linear Kalman filtering optimally

solves the linear stochastic differential equation of the form:

ẋ = Fx + Bu + Gw (2.33)

with the systems dynamics matrix F , state vector x, input matrix B, input vector

u, the noise matrix G, and the noise sources w. The noise sources are all assumed

25



zero-mean, white Gaussian noise processes. The covariance of the noise is defined by:

E{w(t)wT (t + τ)} = Q(t)δ(τ) (2.34)

where E{·} is the expectation operator, Q is the process noise, and δ is the dirac

delta function. In addition, each state is a Gaussian noise process, whose statisti-

cal distribution is completely defined by a mean (x) and covariance (P ). The time

propagation of these statistics are defined by the following equations:

x(t−i ) = Φ(ti, ti−1)x(t+i−1) +

∫ t−
i

t+
i−1

Φ(ti, τ)B(τ)dτ (2.35)

P (t−i ) = Φ(ti, ti−1)P (t+i−1)Φ
T (ti, ti−1) +

∫ t−
i

t+
i−1

Φ(ti, τ)G(τ)QGT (τ)ΦT (ti, τ)dτ (2.36)

where t−i is the instant in time just before the increment of time (i), and t+i is the

instant immediately after. Φ is the state transition matrix determined by the matrix

exponential:

Φ(ti, ti−1) = eF (ti−ti−1) (2.37)

Discrete state measurements are incorporated using a measurement model and

Kalman filter update equations. The measurement model is defined by:

z(ti) = H(ti)x(ti) + v(ti) (2.38)

E{v(ti)v(tj)
T} = R(ti)δij (2.39)

where z is the discrete measurement, H is the influence matrix, v is zero-mean Gaus-

sian noise, R is referred to as the measurement noise, and dij is the Kroeneker delta

function. A filter update involves first computing the Kalman filter gain K, a measure
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of the certainty of the measurement over the propagated estimate:

K(ti) = P (t−i )HT (ti)[H(ti)P (t−i )HT (ti) + R(ti)]
−1 (2.40)

The measurement is then incorporated into the filter estimate using the update equa-

tions:

x(t+i ) = x(t−i ) + K(ti)
[

z(ti) − H(ti)x(t−i )
]

(2.41)

P (t+i ) = P (t−i ) − K(ti)H(ti)P (t−i ) (2.42)

Together the update and propagation define the optimal solution to the stochas-

tic differential equation for all time, given the filter assumptions of linearity and noise

properties are not violated [21] [38].

2.6.2.2 Extended Kalman Filter. Nonlinear models violate the as-

sumptions of the conventional linear Kalman filter. In the extended Kalman fil-

ter (EKF), the nonlinear model is linearized around the current nominal state esti-

mate. This section introduces the basics of extended Kalman filtering.

Consider stochastic differential and measurement equations:

ẋ(t) = f [x(t), u(t), t] + Bu(t) + Gw(t) (2.43)

z(ti) = h[x(ti), ti] + v(ti) (2.44)

where f and h are nonlinear functions of the state x and input u. The goal of the

extended Kalman filter is to develop linear state propagation and measurement equa-

tion as shown in the conventional Kalman filter. The nonlinearity is approximated

using a Taylor series expansion and perturbation model. The result of this analysis

is a whole-valued state composed of the current optimal estimate (x̄(t), z̄(t)) and a
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perturbation (δx(t), δz(t)).

x(t) = x̄(t) + δx(t) (2.45)

z(t) = z̄(t) + δz(t) (2.46)

The state perturbation is propagated in time according to the following equations:

δẋ(t) = F (t)δx(t) + Gw(t) (2.47)

F (t) =
∂f [x(t), u(t), t]

∂x

∣
∣
∣
x=xn(t),u=un(t)

(2.48)

where F is the linearization of the dynamics around the current optimal state estimate

and inputs, or nominals. Similarly, the measurement equation is linearized:

δz(ti) = H(ti)δx(ti) + v(ti) (2.49)

H(ti) =
δh[x(ti), ti]

δx

∣
∣
∣
x=xn(ti)

(2.50)

where H is the linearized measurement equation around the nominal estimate. Now

the conventional Kalman filter propagation and update equations can be used to

estimate the perturbation in time, and the whole valued states can be determined

using Equations (2.45) and (2.46). This filter derivation provides a biased estimate,

and the solution is no longer completely optimal [21].

In the next section, related research is presented and discussed including the

previous research at the Air Force Institute of Technology.

2.7 Related Research

This section covers similar techniques that use inertial and camera measure-

ments to improve small vehicle navigation. First, an overview of the previous research

at AFIT is presented. Similar findings are also presented in the field of image and in-
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ertial sensor fusion. Finally, techniques that served as the motivation for the low-level

feature descriptor aiding are introduced.

2.7.1 Overview of Previous Research. Previous research at the Air Force

Institute of Technology demonstrated the fusion of image and inertial sensors using a

technique called stochastic feature tracking [38]. Features are distinct points within

the scene comprised of a location and descriptor. An extended Kalman filter tracks

aircraft position, velocity, and attitude along with the location of stationary features,

called landmarks. The current image frame’s features are matched to landmarks using

a correspondence search constrained by each landmark’s current uncertainty. The

reduction of the search space using uncertainty is termed the stochastic constraint. For

the previous research, the scale-invariant feature transform (SIFT) [18] was selected

for its robustness over diverse camera movements. This research attempts to find

a less computationally intensive feature transform aided to be more robust and still

stochastically constraining the correspondence search. Further details of the algorithm

are reviewed in Section 2.8 and Chapter 3.

2.7.2 Image and Inertial Sensor Fusion. A number of similar feature track-

ing systems have been attempted for use in the flight control of an aircraft. In [20],

an extended Kalman filter with image, inertial, and magnetometer measurements was

used as a navigation reference for a simulated helicopter. The simulated environment

used basic shapes to simplify feature extraction and assumed that the feature’s loca-

tion was known. The experiment verified that images were able to constrain inertial

drift and successfully navigate the helicopter.

In [9], the author used a fisheye lens to capture images and extract features by

using a rotationally-fixed projection with a Harris corner detector [12]. This type of

extraction allowed for features to be tracked over an extended period of time in simu-

lated and real imagery. Over a closed-loop trajectory, the results showed a reduction

overall position error when using feature tracking. This research will use real imagery
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and more conventional camera setups attempting to track features using alternative

techniques described in the next section.

2.7.3 Deeply-Integrated Imaging and Inertial Sensors. The deep integration

of imaging sensors involves prediction of feature descriptors using inertial information.

In [3], feature tracking with a conventional camera is improved using an inertial sensor.

Feature descriptors are derotated, or rotationally warped, between captured frames

using inertial information to improve feature matching.

Techniques in [35] involve using inertial and imaging sensors to stabilize an

aircraft in hover. Simulations verify the control law development based on the concept

of a image homography. A homography can predict how a planar surface will look

from a different camera pose, and this paper introduced a homography derivation

using inertial information. In this research, this homography formulation will be used

to transform feature descriptors into a new camera pose for matching.

In the next section, the image-aided Kalman filter developed in previous research

is covered in more detail.

2.8 Image and Inertial Fusion Algorithm

In this section, the previous image-aided Kalman filter (IAKF) is described in

detail. The previous research developed an EKF with three measurement updates:

alignment, inertial, and image. Stationary alignment updates are used to allow the

filter to estimate biases in the accelerometers and gyros. The inertial update reads

the rates from the gyros and accelerations from the accelerometers, and this serves

as the core update for many Kalman filters. This section reviews concepts specific to

the image update. During the image update, tracked positions of stationary features,

called landmarks, are estimated within the filter. This section reviews how relative

position in the camera frame is converted into the navigation frame and the general

components of the stochastic image update, also known as the stochastic feature

tracker.
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2.8.1 Determination of Landmark Location. During landmark initializa-

tion, a line-of-sight vector from the camera frame is determined (sc). This vector is

converted into the navigation frame using the camera-to-body DCM (Cb
c), body-to-

navigation DCM (Cn
b ), and the current camera position pn:

sn = Cn
b Cb

cs
c (2.51)

tn = pn + sn (2.52)

The result is the landmark location in the navigation frame (tn). Figure 2.9 demon-

strates this process visually.

2.8.2 Landmark Uncertainty Initialization. An important contribution of

the previous research [38] was the development of the landmark’s uncertainty based on

the statistics of the information used to derive the location. In general, this involves

computing partial derivatives with respect to each state estimate used in the deter-

mination of the landmark’s initial location estimate. In addition, this aggregation

assumes that these error sources are independent. The section will review two spe-
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Figure 2.9: Determination of Landmark Location [38]. The camera position line-
of-sight (s) vector is converted into a target location (t) using the current camera
position (p), and camera to navigation frame DCM (Cn

c ).
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cific methods of determining a landmarks location based on monocular and binocular

initialization.

In monocular vision, additional information is necessary to determine a land-

mark’s location due to the unobservable scale parameter. Determination of this scale

parameter in this research uses a method of egomotion with an initial guess at the

depth of features. A large uncertainty will allow feature depth to be estimated accu-

rately after some motion and matching of the landmark. The chosen depth acts as

a gain on the amount of motion, with a larger depth allowing subtle motion. The

uncertainty defines the search space around the predicted location.

Specifically the landmark’s location is determined by:

tn = pn + Cn
b

[

dCb
cT

c
pixz

]

︸ ︷︷ ︸

sn

(2.53)

where pn is the current aircraft location, Cn
b is the current aircraft attitude DCM, d

is the mean depth of features in the scene, Cb
c is the camera to body DCM, T c

pix is the

intrinsic camera matrix, and z is the homogenous pixel location. The initial landmark

position tn uncertainty is a composite of the uncertainties in the parameters of the

measurement equation. Assuming independence of the parameters, the composite

uncertainty is computed by the following equation:

Ptt = GtpPppG
T
tp + GtψPψψG

T
tψ + GtdPddG

T
td + GtαPααG

T
tα + GtzPzzG

T
tz (2.54)

where ψ and α correspond to the attitude error vectors of the Cn
b and Cb

c matricies.

The influence matricies (G) determine how much each component uncertainty factors

into initial landmark uncertainty. These influence matricies are computed by taking

partial derivatives with respect to each parameter. For a scalar depth parameter (d),
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the influence matricies are specified by:

Gtp =
∂tn

∂pn
= I3x3 (2.55)

Gtψ =
∂tn

∂ψ
= Cn

b skew(
[

dCb
cT

c
pixz

]

) (2.56)

Gdd = σ2
d (2.57)

Gtα =
∂tn

∂α
= −dCn

b Cb
c skew(

[

T c
pixz

]

) (2.58)

Gtz =
∂tn

∂z
= dCn

b Cb
cT

c
pix








1 0

0 1

0 0








(2.59)

where σd is the standard deviation of the static feature depth. This is a simplification

from the work presented in previous research because the terrain reference is not a

function of the slant angle.

Binocular initialization involves no a priori information about the environment

and determines the location of a landmark using the disparity between the cameras.

Landmarks are determined according to the following equation:

yn = pn + Cn
b

[

pb
0 + Cb

c0s
c0
0

]

(2.60)

where yn is the landmark location for a binocular initialized feature and sc0
0 is the line-

of-sight vector from a neutral frame between the two cameras. Figure 2.10 illustrates

this feature initialization geometry. During this initialization, a candidate feature

from the first camera is matched to a feature in the second camera using a stochas-

tic search space defined by the binocular disparity. Once a match is determined, a

linear regression is used to determine the neutral line-of-sight vector (sc0
0 ) from the

line-of-sight vector in each camera. Once determined, the result is substituted in to

Equation (2.60) to determine the estimated location in the navigation frame yn. De-

termination of the uncertainty in the measurement resembles computation of partial

derivatives in the monocular case. See [38] for the full derivation.
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2.8.3 Stochastic Constraint. Figure 2.11 illustrates the process of match-

ing landmarks with the stochastic constraint. The image update begins by detecting

and extracting features in the current frame. Next, each landmark and its uncer-

tainty is propagated to the current time. The predicted location and uncertainty are

projected into the camera frame, and features falling within this region are matched

to landmarks. The stochastic constraint refers to the two sigma uncertainty search

space based on the current landmark. A feature is matched if the matching metric

is higher than a specified threshold. From a matched landmark’s location, a residual

is computed that is incorporated into a Kalman filter update. Finally, the process

of landmark administration refers to the process of identifying features that have not

been matched recently. These stale landmarks are replaced by new features selected

by computing feature quality metric based on the Mahalanobis distance from other

currently tracked landmarks.

This concludes the background material required to develop the deeply-integrated

feature tracking algorithm. In the next chapter, the development methodology will be

introduced including the selection of the low-level feature transform and the necessary

inertial aiding of the low-level descriptor.
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Figure 2.10: Binocular Feature Initialization [38]. During binocular initialization,
features are initialized from a neutral point between the cameras (c0). This feature
initialization requires no a priori information.
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Figure 2.11: Extended Kalman Filter Image Update. The image-aided Kalman
filter’s stochastic feature tracking, or image update, involves three steps: feature de-
tection/extraction, landmark matching (with the stochastic constraint), and landmark
administration.
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III. Methodology

This section introduces the methodology used to develop a deeply-integrated

feature tracker for embedded navigation. First, the feature trade space is in-

troduced, and a new low-level feature extraction algorithm is selected. Next, the

modifications to the stochastic feature tracker within the context of the image-aided

Kalman filter are discussed.

The next section introduces deep-integration methods used to aid the low-level

feature descriptor, including rotation and six degree-of-freedom motion (6DoF) mo-

tion aiding. Finally, a section addressing monocular feature location initialization

is discussed. Prior to this discussion, binocular initialization is assumed. Monocular

initialization was selected for the final implementation for its weight and computation

savings for a indoor aircraft hover experiment.

3.1 New Feature Transformation Selection

3.1.1 Feature Trade Space. The first two steps of feature tracking are the

feature detection and extraction, together called a feature transform. The result of a

feature transform is a feature location and local description, called a descriptor. In

the absence of additional sensor information, the most desirable feature transforma-

tion algorithm would completely separate a feature’s location from its descriptor. No

known computer algorithm achieves this invariance entirely, but the scale-invariant

feature transform (SIFT, see Section 2.4.3) achieves a high degree of invariance. A

human’s visual processing capability closely approaches the ideal. Consider the fol-

lowing example. Given a pen or pencil found on your desk, blindly move the object

across your desk as in Figure 3.1. Quickly you will be able to find the where you

moved the object. In this case, the object is a red pen, and you recognized the pen

despite its location in the environment. This occurs because the description of the

object does not depend on its location. In fact, human visual perception is invariant

to a number of different image warping. Figure 3.2 shows warping examples that

37



may occur when you move the pen. In any of these case, humans can distinguish the

identical object or feature where image processing may not.

This variety of feature location and descriptor invariance is shown as a spectrum

of feature transformation algorithms in Figure 3.3. This research proposes that with

inertial sensor information, this lack of invariance in low-level feature descriptor can

be compensated to achieve results of a feature transformation that is nearly invariant.

3.1.2 Feature Transform Selection. Next, the feature transformation prob-

lem is decomposed into two steps: feature detection and extraction. Feature detection

determines the location of the interest point in the environment. Feature extraction

computes the feature’s description.

Two traits are desirable for the feature detection algorithm: strength and re-

peatability [33]. Finding strong or dominant features is important to avoid back-

ground clutter and separation from other features. Repeatability depends on the

strength of a feature when viewed from different camera poses. Common feature de-

tection algorithms use gradients to determine the interest points in the image. This is

(a) (b)

Figure 3.1: Human Visual Processing Example. A red pen place on a desk in the
image on the left. The pen is randomly moved and rotated in the image on the right.
Humans can identify this object easily because of an invariance of the description to
the location.
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Figure 3.2: Image Warping Examples. Each warping effect of a pen on the right
can be identified as the original pen on the left due to a human’s ability to keep the
object’s location and description independent.

Figure 3.3: The Feature Spectrum. In low-level feature description algorithms,
relationship to the feature’s location significantly affects the description. SIFT does
considerable computation to reduce the effect of scale and rotation on its descriptor.
In the ideal relationship, a feature’s location is entirely invariant of its location. No
known feature transform is capable of achieving this level of invariance, but humans
are good example of a high level of invariance.
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the case with the three feature transformation algorithms considered in this research:

the Harris corner detector, Good Features detector, and the scale-invariant feature

transform. These algorithms, however, differ in their localization of gradient max-

imum. The first two algorithms use gradient magnitude in the image plane, while

SIFT incorporates scale into the search space. These algorithms detect features by

comparing peaks to other nearby peaks as well as a threshold value. Repeatability

in feature detection is closely tied to the strength of the corner over different viewing

angles.

The Good Features and Harris algorithms are similar in their low-level detection

of interest points. Good Features detection was eventually selected for this research

because it produced a repeatable and distinct group of features over the experimental

environments. The dependable detection of features can be attributed to two im-

portant differences in the algorithms. The global thresholding in the Good Features

algorithm allows real-time adjustment of the feature detection threshold that avoids

feature starvation conditions (see Section 2.4.2). Feature starvation is the inability to

add new feature to track causing the navigational estimate to drift. Secondly, Good

Features are more repeatable over 6DoF camera motions [34].

Besides feature detection, the low-level feature algorithms distinguish them-

selves from SIFT also in their descriptor, formed through feature extraction. Al-

though many local descriptors could be associated with a low-level feature detection,

this research takes the lowest-level description, local intensity. There is no calculation

for this feature descriptor. For SIFT, dominant gradient orientation is used to form

the descriptor, also accounting for scale and rotation. This requires significantly more

computation.

3.1.3 Tuning the Good Features Detection. The Good Features algorithm

allows for some adjustment of feature quality, spacing, and amount of detections (see

Section 2.4.2). For every pixel in the image, the minimum eigenvalue of a local image

gradient is computed. Each minimum eigenvalue is compared to a percentage of the
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max of these minimum eigenvalues. The percentage is the Good Features quality.

Each candidate feature is compared to others within the spacing radius, and only

the strongest candidate feature is kept. Finally, only a specified number of features

are kept to avoid lengthly processing times. A quality of 0.01, spacing of 10 pixels,

and a maximum of 200 features detected a desirable set of features. These numbers

were empirically determined through multiple runs in the simulated filter. Selecting

a higher quality metric would result in increased feature strength, but a decrease in

repeatability. The feature spacing also helped with repeatability of strong features

over different camera motions.

In Figure 3.4, SIFT and Good Feature detections are compared on a set of

images. Notice that SIFT specifically chooses features that are not located along

edges, while Good Features simply takes the strongest magnitude features in the

image.

3.2 Feature Tracking with Good Features

This research centers around a replacement stochastic feature tracker for the

previously developed image-aided Kalman filter. Figure 3.5 shows the feature tracker

in relation to the extended Kalman filter propagation and inertial mechanization.

Features tracked in the filter are referred to as landmarks. Landmarks are

tracked and initialized in accordance with the image fusion algorithm (see Section 2.8).

The state vector contains fifteen elements, plus additional states for landmark position

estimation. The first fifteen states are defined as the navigation state error vector (δx)

comprised of position (δpn), velocity (δvn), attitude (ψ), accelerometer bias (δab), and
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Figure 3.4: Feature Detection Example. Example feature detection of Good Fea-
tures and SIFT features. Note that SIFT removes features detected along predomi-
nant edges.
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gyroscope bias(δbb) errors [38]:

δx =














δpn

δvn

ψ

δab

δbb




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



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



1x15

(3.1)

Propagation of the navigation state error uses the kinematic equations of motion.

Landmark positions augment this state vector. In this research, 10 feature locations

were tracked, and the complete state vector consisted of 45 elements.

The new image update replaces SIFT features with Good Features. Image

matching is now accomplished with a correlation coefficient computation, rather than

a simple Euclidean distance (see Sections 2.5.1 and 2.5.2). Figure 3.6 highlights the

differences in each algorithm. As previously discussed, these features are less invariant

to rotational and scaling changes, and techniques to aide the landmark matching will

be discussed in the next section.
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Figure 3.5: Image-aided Kalman Filter Block Diagram [38]. The image-aided
Kalman filter is decomposition into the extended Kalman filter, the inertial mech-
anization (inertial update), and the stochastic feature tracker (image update).

43



Feature Detection
and Extraction
SIFT Keypoint
and Descriptor

Feature Matching
to Landmarks

Euclidean Distance

Landmark
Administration

with Stochastic Constraint

Feature Detection
and Extraction

Good Feature  and
Intensity Window

Feature Matching
to Landmarks

Correlation Coef.

Landmark
Administration

with Stochastic Constraint

Landmark Template
Inertial Aiding

Figure 3.6: New Image Update. This figure summarizes the modification made to
the original extended Kalman filter. The computationally intensive SIFT features are
replaced with low-level Good Features with inertial aiding of descriptor matching.

44



Figure 3.7 shows the matching process between two image frames. In previous

research, the predictive transformation involved the feature location. The current

two-sigma uncertainty is searched for the strongest match, and this reduced search

space is called the stochastic constraint. SIFT features are more invariant to arbitrary

camera motion and primarily benefitted from the number of comparisons necessary

to find a match. For intensity window matches, an added benefit is the reduction in

false matches. False matches are common in indoor intensity matching because lights

and doorways have common geometry and little texture. False matches incorporated

into the filter are detrimental to the navigation solution.

3.2.1 Tuning the Feature Matching. A threshold must be established for the

correlation coefficient template matching. Figure 3.8 shows the tradeoff in accuracy

for different thresholds. If the threshold is set to a high value, the feature matching

will reject features misaligned by a few pixels. Conversely, a low threshold with allow

for too many erroneous matches. Thus, there is a tradeoff between pixel accuracy and

invariance to small 6DoF motion changes, such as the matching between binocular

camera disparity. A threshold of 93 percent was empirically found to produce a good

match without significant pixel misalignment. Also, the selected threshold performed

well over the small affine warping between the stereo cameras.

3.3 Deep Integration of Inertial and Imaging Sensors

In addition to the prediction of location, this research predicts the feature de-

scriptor in the next camera frame. This is an effort to compensate for the lack of

invariance of the intensity descriptor. Descriptor aiding assists matching in the pres-

ence of rotation and 6DoF motion changes. This descriptor aiding assumes, despite

changes in the strength, features can be repeatedly detected in the presence of the

motion. In other words, successful aiding requires that features be detectable over

the same camera motion.
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Figure 3.7: Image-aided Kalman Filter Diagram [38]. The image-aided Kalman
filter uses images to improve the state estimate and state estimation to improve the
feature tracking. This research implements a transformation of the descriptor and
uses a lower level feature detection and extraction [38].
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Aiding will allow for longer landmark tracking and has two primary benefits.

First, tracking a landmark longer will increase the certainty of the location and the

contribution to the navigation solution (δx) (see Section 2.6.2.2). Also, landmark

initialization can be an expensive operation in the filter requiring statistical calculation

of the influence matrices (see Section 2.8.2). Longer tracking means less landmark

initializations.

In the next sections, rotational and 6DoF descriptor aiding are introduced.

3.3.1 Rotational Descriptor Aiding. Rotational aiding removes rotations

along the camera frame’s z-axis from the time the initial template was captured to

the current orientation. The image rotation can be determined from the z-dimension

of the camera to navigation frame direction cosine matricies (Cc1
n ,Cc2

n ) at each time

epoch. Each pixel is transformed according to the following relation:

p′ =
[

Cc2
n Cn

c1

]

z
p (3.2)

where p is the set of descriptor pixels in the previous frame, and p′ is the pixels

transformed into the current frame. Bilinear interpolation of pixel values is used for
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Figure 3.8: Template Shift Analysis. (a) shows a example Good Feature template.
Shifted versions of the template are correlated with the original template. Example
thresholds of 98, 90, and 80 percent are plotted in (b).
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the uniform sampling lattice of the new frame. Figure 3.9 illustrates the rotational

descriptor aiding.

The feature matching threshold affects when rotational aiding will have any

benefit. A rotational descriptor experiment was conducted to demonstrate when

aiding would benefit matching. In the experiment, different sample templates where

rotationally transformed and compared to the original template. Figure 3.10 shows

the results from the experiment. Generally, correlation scores decrease as the amount

Landmark template

x

y

x’

y’

x y
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Landmark template
rotated to current frame

and interpolated

Newly detected
feature window

Correlation
coefficient
matching

Rotate to current
based on relative 

inertial

PREVIOUS FRAME CURRENT FRAME

Figure 3.9: Rotation Aiding Example. The tracked landmark is rotated into the
new frame by using z-dimension of the rotation between the previous and current
frame. Each pixel is transformed through the rotation and then resampled to fit the
current frames sampling lattice.
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of rotation increases. As the matching threshold increases, the tolerance for rotation

decreases. For the matching threshold of 93 percent, matching should be unaffected

by rotations less than 5 degrees. Level flight profiles, consisting of translation only

should not benefit significantly from the rotational aiding.

Many of the feature descriptors determined by the Good Features algorithm are

partially invariant to scale changes. Thus, rotational aiding alone can benefit during

a scale change in the camera. When these conditions do not exist or over larger

motions, perspective warping, called 6DoF descriptor aiding, is used.

3.3.2 Six Degree-of-Freedom Motion Descriptor Aiding. The second type

of descriptor aiding investigated in this research was 6DoF aiding. Good Feature

detection is strong and repeatable over scaling situations, however the intensity de-

scriptor is not always invariant. The previous SIFT algorithm’s descriptor provides

some invariance to severe 6DoF camera motion changes (40 to 70 degrees) [18], match-

ing approximately half the descriptors in these cases. In an effort to achieve similar

performance, the concept of 6DoF motion descriptor aiding is introduced.

This research proposes a homographic transform based on inertial information

to provide 6DoF camera motion invariance. In the image plane, 6DoF motion is per-
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Figure 3.10: Correlation Analysis for Template Rotation. Templates are rotated
then self-correlated to demonstrate the effect of rotation on matching. As the match-
ing threshold is increased, the tolerance for rotation decreases. Threshold lines are
shown for 98 and 93 percent correlation.
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ceived as a perspective projection. A homography is a special type of perspective

projection for a planar surface in the scene. The homography is computed according

to Equation (2.18) and involves the camera rotation, translation, and calibration as

well as the normal vector and distance to the plane. In this research, only ceiling

features are considered, and the planar normal is assumed to be pointing down in the

navigation frame. The distance to the plane is determined by computing a cross prod-

uct of the normal vector and line-of-sight vector to the feature. Each pixel from the

descriptor’s intensity template is mapped into the current frame (see Section 2.3.5).

Pixels are then resampled according to the current frame’s sampling lattice using

bilinear interpolation. Figure 3.11 shows a representative example of 6DoF motion

aiding from the experiments discussed in the next chapter. The tracked landmark

template is shown on the left. The feature on the right is the candidate match in the

next frame. Using the homographic transform, the tracked landmark is warped into

the current frame resulting in the center image. This warped template is properly

matched to the candidate feature in the current frame.

In the next section, a monocular initialization technique is introduced to further

minimize the computational complexity of the image-aided Kalman filter.
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Figure 3.11: Six Degree-of-Freedom Motion Aiding Example. The image in (a)
represents the unaided landmark template being matched to the feature window in
(c) (the landmark from a new camera pose). The landmark template in (b) has been
warped using a homography defined by inertial information.
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3.4 Monocular Landmark Initialization

In initial testing, binocular landmark initialization is assumed to eliminate the

need for a priori information. However, monocular initialization of landmarks is an

important requirement for the MAV application due to limited processing and space

on the aircraft. For monocular initialization in this research, a landmark depth is

determined by a statistical distribution. The mean of the distribution is a guess

of the maximum distance expected, and the distribution is given a high uncertainty.

The high mean means the IAKF will predict smaller motions between frames based on

inertial movement, and the high uncertainty increases the correspondence search space

for landmarks. This differs from monocular initialization presented in the previous

research [38] because the depth does not depend on the slant range to a defined

reference terrain (see Section 2.8.2). Instead, the depth is static and adjusted as the

filter matches the feature in the next frame.

This chapter selected a low-level feature transformation and introduced tech-

niques for feature descriptor aiding. In the next chapter, indoor flight experiments

are used to validate this deeply-integrated feature tracker.
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IV. Results

This chapter presents testing results comparing the deeply-integrated tracking

algorithm to the previous SIFT-based tracker. First, the computational costs

for each algorithm are compared to show the speed improvement. Next, three indoor

flight experiments are conducted to exercise the Good Features transformation with

different types of inertial aiding. These results are compared with the previous filter

developed in the SIFT-based research [38] to characterize accuracy differences. The

first test mirrors the indoor experiment presented in the previous research. The next

experiment introduces rotation while moving down the hallway as well as a banked

turn. This experiment exercises the benefits of inertial aiding. Finally, the last exper-

iment demonstrates image-aided Kalman filter (IAKF) monocular and binocular esti-

mation during an aircraft in hover within the Air Force Research Laboratory’s (AFRL)

micro air vehicle (MAV) laboratory. This MAV laboratory allows for a precise truth

trajectory to compare each algorithm’s estimated trajectory.

4.1 Computational Cost Analysis

A primary goal of this research was to reduce the computational cost of the fea-

ture tracking in the IAKF. Table 4.1 shows the processing speeds of each algorithm

for detection/extraction and matching. Besides aiding techniques, all other IAKF

stochastic feature tracking parameters were identical. For SIFT matching, the dot

product method (see Section 2.5.1) was used for the 128 element descriptors. A win-

dow size of 31x31 pixels was used for the Good Features descriptor, and the descriptor

was matched using normalized cross correlation. Algorithms were implemented in the

C programming language and run on a 1.06 GHz Pentium M system with 2 GB of

memory.

Because of the simplicity in detection and extraction, Good Features has a 22

times speed increase over the scale-invariant feature transform (SIFT). Because of

its one dimensional aspect, SIFT descriptor matching is twice as fast as the Good

Features matching. Assuming that the number of matching attempts remains the
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same on average, Good Features has 6 seconds to perform aiding techniques to improve

the robustness of feature matching. Although implemented in MATLAB and not C,

the average length of time for these transforms were 0.01 seconds for rotation and

0.25 seconds for 6DoF motion aiding. At a maximum, this aiding occurs once for

each landmark during an update. Overall, the new low-level tracking algorithm is 12

times less expensive than the previous algorithm. Next, the experimental setup and

truth reference system used in the indoor flight experiments are introduced.

4.2 Hardware Overview

Feature tracking performance is evaluated in the context of the image-aided

inertial Kalman filter. Real imaging situations are difficult to accurately model in

simulation, so real image sequences were captured used in experiments. The hardware

used for the flight experiments is reviewed in this section. The experimental test setup

used two cameras and one commercial grade inertial measurement unit (IMU). Images

were captured at an average rate of 2.3 Hertz. For the last indoor flight experiment,

the Vicon motion capture system provided a truth reference trajectory.

4.2.1 Experimental Test Setup. Data was collected using two PixeLINK [30]

cameras and one commercial-grade MIDG [23] inertial measurement unit. The Pix-

elLINK camera has a resolution of 1024x1280 pixels. Table 4.2 gives the specifications

for the MIDG IMU. During experiments, it was estimated that the MIDG IMU can

provide an accurate positional solution for approximately 10 seconds without aiding.

Table 4.1: Computational Cost Analysis. Average computation costs are compared
for SIFT and Good Features detection/extraction and matching.

SIFT Good Features
Detection/Extraction 6.70 sec 0.30 sec
Matching 0.10 sec 0.21 sec
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Table 4.2: MIDG II Specification Summary. The MIDG II is a combined GPS/IMU
unit that can operate up to 50hz. For this research, the GPS positional output was
ignored. Parameters marked with an asterisk are estimated [38].

Parameter (units) Value
Sampling interval (ms) 20
Gyro bias sigma (deg/hr) 1800
Gyro bias time constant (hr) 2*
Angular random walk (deg/

√
hr) 2.23

Gyro scalefactor sigma (PPM) 10000
Accel. bias sigma (m/s2) 0.196
Accel. bias time constant (hr) 2*
Velocity random walk (m/s/

√
hr) 0.261

Accel. scalefactor sigma (PPM) 10000

Figure 4.1 shows the complete data collection test setup. After collection, the

data was post-processed in the image-aided navigation filter using MATLAB.

4.2.2 Vicon Motion Capture System. The Vicon motion capture system

serves as a truth reference system for the indoor hover flight test in the Air Force

Research Laboratory’s micro air vehicle (MAV) laboratory. The system provides

high-rate, accurate three-dimensional positional estimate using 36 cameras. Reflective

visual markers are placed on the object for the cameras to observe. The final trajectory

estimate of location and attitude is determined by Vicon’s IQ software [40].

Next, the flight experiments are examined to demonstrate the performance of

the new stochastic tracker in comparison to previous tracker results.

4.3 Indoor Flight Experiments

Three experiments exercise the previous SIFT-based and Good Features track-

ing algorithms. In each experiment, a stationary alignment update is applied at the

beginning of the run to estimate the biases in the gyroscopes and accelerometers.

After each run, the estimated horizontal and vertical trajectory as well as the number

of initialized landmarks were recorded. The same filter parameters were used in each

run, only the feature tracking aspects were changed. The final trajectory estimate
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Figure 4.1: Experimental Setup. Two PixelLINK cameras and one MIDG inertial
measurement unit are mounted on a sensor bar and moved throughout the hallway.
Care was taken to keep the IMU at the same height through the flight profile.
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gives an indication of the accuracy of the IAKF estimation with each algorithm. The

number of landmarks initialized is an indicator of how long landmarks were tracked

and the robustness of the feature tracking algorithm. Landmarks tracked longer have

less uncertainty and more influence on the navigational estimate. Also, landmark ini-

tialization involves computation of uncertainty statistics which slows down the overall

image update.

For the first two experiments, 6DoF aiding was accomplished by assuming fea-

tures at a predetermined height were on the ceiling, and thus the planar normal

pointed down. Also, landmarks are initialized with binocular techniques.

For initial flight testing, the IAKF was run on a monocular platform and flown

in the MAV lab at AFRL. The final experiment demonstrates the IAKF’s performance

during the hover condition using the the SIFT-based and Good Features algorithms.

Monocular initialization is also compared to binocular initialization. The MAV lab

provides an accurate position and attitude truth reference system for the flight tra-

jectory, and a statistical analysis of the each tracker’s output is presented to further

quantify performance.

4.3.1 Hallway Experiment. The first experiment follows a closed-loop path

in a hallway. The experimental setup was kept at a constant vertical height through-

out the flight path. Figure 4.2(a) shows the closed path for each estimated trajectory.

The SIFT-based estimated trajectory serves as the previous research baseline. With

no stochastic correspondence search constraint, the Good Features estimated trajec-

tory quickly diverges. The divergence is due to false matches entering the filter and

corrupting the trajectory estimate. With the stochastic constraint of the search space,

the drift is constrained and the filter is able to produce an accurate trajectory esti-

mate. In fact, the inertial-aided, low-level tracker generally performs with an accuracy

greater than the SIFT tracker in this experiment.

Table 4.3 shows the number of landmarks initialized for each algorithm. Thirty

percent more landmarks were initialized by the low-level tracker during the exper-
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Table 4.3: Hallway Experiment Landmarks Initialized. A lower number of land-
marks initialized indicates higher feature tracking performance.

Landmarks initialized
SIFT 806
Good Features 1066
Rotational Aiding 1016
6DoF Aiding Alone 1040
6DoF and Rotation 1014

iment. This increase indicates that SIFT features are still more robust than the

inertial-aided, low-level features but does not necessarily indicate a slower image up-

date. Typically in MATLAB, the binocular landmark initialization took 0.75 seconds

(depending on the number of features and their distribution in the scene). Over the

entire flight profile, the SIFT-based tracker would have a speed advantage of 195 sec-

onds considering only the landmark initialization. However, there were also a total of

1688 image updates each requiring a feature transformation to be performed. Indi-

vidual low-level feature transforms had a speed savings of 6 seconds. The combined

transformation savings was 50 times the additional cost of landmark initialization

over the run. Thus, the deeply-integrated tracker performs considerably faster and

reduces computational complexity.

Results vary in the trajectories for a few possible of reasons. In the southeast

corner of the horizontal trajectory, a saturation condition occurs in the camera re-

sulting in feature starvation. Heading deviations in this corner are likely attributed

to this saturation. Furthermore, the features tracked in each trajectory differ because

of staggered landmark initialization events. An important observation to make is the

estimated trajectories are consistent during the run. This demonstrates successful

constraint of the inertial drift. Typically, the commercial-grade inertial sensor would

drift after approximately 10 seconds.

The unaided Good Features estimated trajectory is as good or better than the

previous SIFT-based estimated trajectory. Aiding was applied to increase the ro-

bustness of matches and reduce the number of landmarks initialized. Three aiding
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combinations were testing in this experiment: rotation only, 6DoF only, and a combi-

nation of the two techniques. The 6DoF aiding trajectory performed well but diverged

in the vertical trajectory. This is shown in Figure 4.2(b). The divergence can be at-

tributed to only keeping features that are tracked on the ceiling. Notably, 6DoF

aiding did not significantly improve the number of features initialized or the overall

trajectory in this experiment. Further investigation found that only 30 percent of the

6DoF-aiding attempts were able to produce an improved normalized cross-correlation

and match in the experiments. This indicates that either a violation of the planar

template assumption or improper estimation of the planar normal vector.

This flight experiment did not have enough rotation to emphasize the benefits

of inertial descriptor aiding. The next flight experiment focuses on showing these

benefits by introducing a rotation into the flight profile.

4.3.2 Severe Motion, Hallway Experiment. In the second experiment, the

flight profile moved straight down a hallway with a 30 degree banking oscillation. A

banked turn is executed at the end of the hallway, and the aircraft proceeds down

that hallway. Again, the true vertical trajectory remains constant throughout the

data collection. This experiment is meant to demonstrate the need for rotational

aiding depending on the flight profile. Figure 4.3 shows the results of the experiment

for each algorithm.

The Good Features trajectory estimate provides similar horizontal accuracy

but considerably less accuracy in the vertical trajectory. Rotational aiding provides

a more accurate horizontal estimate and drifts slightly less in the vertical trajectory

estimate. 6DoF-aiding further reduces the vertical drift but performs poorly in the

banked turn at the end of the hallway. Table 4.4 shows the landmarks initialized

by each algorithm. In this experiment, aiding techniques significantly improved the

number landmarks initialized for Good Features tracking. This indicates an increase

in the robustness of the feature descriptor occurred.
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Figure 4.2: Hallway Experiment Estimated Trajectories. The overall position es-
timate is observed over a 10 minute closed loop flight profile. Note that the true
vertical trajectory is zero for the duration of the flight.
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Figure 4.3: Severe Motion Hallway Experiment Estimated Trajectories. In this
experiment, the camera was rotated left and right during a straight path down a
hallway to clearly demonstrated the benefit of descriptor aiding for low-level features.
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Table 4.4: Severe Motion Hallway Experiment Landmarks Initialized. A lower
number of landmarks initialized indicates higher feature tracking performance.

Landmarks initialized
SIFT 184
Good Features 338
Rotational Aiding 260
6DoF and Rotation 274

In the next section, aiding techniques are not used. Instead, monocular and

binocular feature initialization is analyzed for an indoor hover condition to further

reduces computational complexity.

4.3.3 Indoor Flight Facility Hover Experiment. The Air Force Research

Laboratory (AFRL) MAV lab provided the environment for the final experiment. The

goal of the experiment was to prove the IAKF could provide a stable and accurate

solution during a vehicle hover. The Vicon flight motion capture system provided a

position and attitude truth reference for this experiment. Trajectories generated by

the previous and new versions of the IAKF were analyzed. Binocular and monocular

initializations are examined, but aiding was not used. At the beginning of the run,

an alignment update was performed (without movement) for 30 seconds. Next, the

test platform was lifted to a stable hover and finally brought down for a landing.

Table 4.5 shows the landmarks initialized during the experiment. In either

feature transformation, monocular camera initialization caused a severe increase in

the number of landmarks initialized. The increase for the Good Features algorithm

was more severe and increased by three times the number of landmarks using binocular

initialization.

Figure 4.4 shows the horizontal trajectory of binocular and monocular simula-

tions. The truth provided from the Vicon system is shown in black. Located at the

top of each figure is the flat wall of the facility. Figure 3.4(c) shows an image of the

facility wall. A zoomed view of the estimated trajectory is shown on the right side

of the figure. The binocular estimated trajectory errors are on the order of tenths of
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Table 4.5: MAV Lab Experiment Landmarks Initialized. A lower number of land-
marks initialized indicates higher feature tracking performance.

Landmarks initialized
SIFT binocular 36
SIFT monocular 68
Good Features binocular 30
Good Features monocular 90

meters. The monocular estimated trajectory still followed the truth trajectory but

with less accuracy than the binocular estimation. Still the errors are on the order of

tenths of meters.

Figure 4.5 shows the complete position and attitude trajectory for the binocular

and monocular runs. Notice that in every case, there is trouble tracking the easting

position that is perpendicular to the facility wall. This is a result of a lack of observ-

ability on the scale necessary to produce precise results. However, the the errors are

bound to tenths of a meter. In the attitude estimation, there is an unobservability in

the yaw dimension. The error is most predominant in the binocular algorithms. This

difference can be attributed to the dominant horizontal trends in the image, and few

vertical trends in the image (see Figure 3.4(c)). Overall, these results show that a

stable estimated hover trajectory can be achieved with each of these algorithms.

Further analysis focuses on the uncertainty of each of the estimated trajectories.

For a properly functioning IAKF, the filter should predict the true trajectory within

one-standard deviation on average for an ensemble of runs. This research has one

sample run from the ensemble and is not guaranteed to fall within these uncertainty

bounds. Also, the EKF is know to be a statistically biased estimator, and this could

contribute to observed biases (see Section 2.6.2.2).

Figure 4.6 shows SIFT binocular trajectory with uncertainty. This algorithm’s

performance serves as the baseline for the rest of the algorithms. The statistical

uncertainty accurately captures the true trajectory in position and attitude. There

was a slight bias in yaw estimate, but the estimate still follows the trend of the
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Figure 4.4: MAV Lab Horizontal Estimated Trajectories. The binocular estimated
trajectory, shown in (a), closely tracks the true trajectory. Monocular results, shown
in (b), give slightly less precision. In either case, the positional error is on the order
of tenths of meters. 63
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Figure 4.5: MAV Lab Full Estimated Trajectories. The trajectories show that
beside the low observable easting trajectory, the algorithms perform well constraining
error to tenths of meters.
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truth trajectory. In the pitch truth trajectory at 70 seconds, there is a jump in the

data. This jump is likely do to a reflection on the experimental setup causing the

Vicon visual reference system to improperly estimate the trajectory. This was the

only significant jump observed in the truth data. Overall, the binocular SIFT tracker

performed within the statistical uncertainty.

Figure 4.7 shows the Good Features binocular trajectory estimate. This tracker

has comparable performance to the estimated binocular SIFT trajectory with one

exception. Although a constant bias is not observed, there was drift in the estimated

yaw not captured by the one-sigma uncertainty. The divergence was approximately

10 degrees at the end of the run, but stabilized at the end of the flight. This drift

begins when the vehicle is raised to a height of one meter and was likely caused by

a poorly matched feature due to a reflection on the wall. With the exception of the

yaw, the binocular Good Features estimated trajectory accurately captures the truth

trajectory, and the tracker performed well.

Figure 4.8 shows the monocular SIFT trajectory estimate. The bias observed

in the binocular SIFT trajectory estimate is not present, and the filter performs

within the statistical uncertainty. As noted previously, the monocular initialization’s

accuracy was retained at the cost of additional feature initializations.

Figure 4.9 shows the monocular Good Features trajectory estimate. Again, the

tracker captures the truth trajectory in the one-sigma uncertainty bound. The north

trajectory estimate did start to diverge after 100 seconds. This divergence happens as

the vehicle approached the floor of the facility. The most likely cause of the divergence

is the loss of tracked features. With the exception to landing, the monocular Good

Features trajectory estimate performed within the statistical uncertainty and equally

as well as the binocular SIFT estimation.

For a final analysis of the MAV Lab experiment, root-sum-squared (RSS) errors

of position and attitude of each estimated trajectory were computed. The horizontal

and vertical RSS errors are plotted in Figures 4.10 and 4.11. The binocular SIFT
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Figure 4.6: MAV Lab SIFT Binocular Estimated Trajectory with Uncertainty. The
binocular SIFT estimated trajectory is plotted with one-sigma uncertainty and the
truth trajectory provided by the Vicon vision system.
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Figure 4.7: MAV Lab Good Features Binocular Estimated Trajectory with Uncer-
tainty. The binocular Good Features estimated trajectory is plotted with one-sigma
uncertainty and the truth trajectory provided by the Vicon vision system.
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Figure 4.8: MAV Lab SIFT Monocular Estimated Trajectory with Uncertainty.
The monocular SIFT estimated trajectory is plotted with one-sigma uncertainty and
the truth trajectory provided by the Vicon vision system.
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Figure 4.9: MAV Lab Good Features Monocular Estimated Trajectory with Uncer-
tainty. The monocular Good Features estimated trajectory is plotted with one-sigma
uncertainty and the truth trajectory provided by the Vicon vision system.
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estimated trajectory had the best error performance, and the monocular Good Feature

had the worst error due to the north position drift noted previously. All horizontal

errors are constrained to 0.25 meters. The vertical estimated SIFT monocular and

binocular trajectories performed slightly better than Good Features trajectories. All

vertical errors were constrained to 0.2 meters.

Figure 4.12 shows RSS attitude errors of each estimated trajectory. As noted

previously, the binocular Good Features estimated trajectory performed the worst

because of the drift in the yaw dimension. The monocular estimated trajectories

performed at least twice as good as the binocular versions. The could be explained

by issues matching landmarks in the second camera where they were not initialized.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

RS
S 

Ho
riz

on
ta

l P
os

itio
n 

Er
ro

r (
m

et
er

s)

 

 

SIFT binocular
Good Feat. binocular
SIFT monocular
Good Feat. monocular

Figure 4.10: Root-Sum-Squared (RSS) Horizontal Position Error. Binocular and
monocular estimated trajectory horizontal RSS error are compared for the SIFT and
Good Features stochastic feature trackers.
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Figure 4.11: Root-Sum-Squared (RSS) Vertical Position Error. Binocular and
monocular estimated trajectory vertical RSS error are compared for the SIFT and
Good Features stochastic feature trackers.
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Overall, these results show each stochastic tracker successfully estimates the

truth trajectory during the hover condition. Yaw and north position were the only

significant deviations from the truth trajectory in the binocular and monocular Good

Features estimated trajectories.

This concludes the results for the indoor flight experiments conducted for this

research. In the next chapter, conclusions from these results and recommendations

for future work are presented.
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Figure 4.12: Root-Sum-Squared (RSS) Attitude Error. Binocular and monocular
estimated trajectory attitude RSS error are compared for the SIFT and Good Features
stochastic feature trackers.
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V. Conclusion

This research sought to develop a deeply integrated feature tracking algorithm

that involved less computation than its predecessor. The previous algorithm

used high-level features, while this research used low-level features with inertial aid-

ing. Good Features extraction was selected for its repeatability and strength, two

important characteristics of a feature detection algorithm. Results showed that the

low-level transformation performed 12x faster and successfully reduced the overall

computational complexity.

Rotational and 6DoF motion aiding were investigated to improve the low-level

feature matching. Results showed that the deeply-integrated feature tracker was still

faster than the predecessor, even with aiding techniques. With rotational aiding,

a clear benefit was seen for severe flight trajectories. Six degree-of-freedom (6DoF)

aiding was not entirely successful, but did show promising results in vertical trajectory

aiding and reducing the number of landmarks initialized.

Three flight experiments showed that the low-level feature extraction can pro-

duced an accurate trajectory, on par with the previous robust features. The first

experiment showed that with the stochastic constraint alone, the low-level feature

extraction was able to constrain drift and produce an accurate trajectory. Aiding

produced only subtle improvements for the first flight profile because of the lack of

severe rotation. The second flight profile showed that aiding is necessary when severe

attitude changes occur. Finally, the indoor MAV simulation showed that monocu-

lar low-level feature initialization produced a consistent estimated trajectory for an

indoor hover condition. The only significant deviation from the truth occurred in

the binocular and monocular Good Features stochastic tracker and was attributed to

reflections on the surface of the MAV facility wall and less dominant horizontal trends

in the image scene.

In either algorithm, the position estimate still drifted when features where

poorly matched. This occurred in the first flight experiment were the image scene

became saturated in one corner of the building. Without tracked features, errors
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are introduced into the navigation solution that are unrecoverable without absolute

reference updates.

A downside to using low-level features was the increase in the number of ini-

tialized features. Generally, thirty percent more features were initialized with the

deeply-integrated feature tracker. This indicates that the SIFT-based feature track-

ing is more robust, but did not significantly affect the accuracy of the estimated

trajectory or the speed of the deeply-integrated feature tracker.

5.1 Future Work

The deeply-integrated feature tracker presented in this research demonstrated

the capability of reducing the computational complexity by using a low-level feature

transform with inertial aiding techniques. This section presents ideas for further

improvements to speed and accuracy of the algorithm as well as alternative testing

techniques.

Although not completed during this research phase, the low-level IAKF is being

implemented on an indoor flying platform. With a proper debugging interface and

recording capability, the real time operation of the filter could uncover timing issues

or other real-time problems. Furthermore, the combination of the IAKF and a control

algorithm has not yet been investigated. This final closed-loop test would validate the

entire vehicles functionality and is the next step toward a fully autonomous vehicle.

If monocular vision is used during more general flight, further investigation

of monocular landmark initialization will be necessary to produce accurate results.

Features were assumed to have a mean depth with high uncertainty. The state vector

is immediately augmented without measuring the depth. With low-level matching and

significant movement, false matches will likely enter the filter and cause a corrupted

estimate. A more appropriate landmark initialization using the stochastic constraint is

introduced in [38]. This initialization calculates the uncertainty of a candidate feature

and propagates the uncertainty into the next frame. A stochastically constrained
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feature search is conducted and only after a successful match is the depth determined

and the state vector augmented.

The truth reference provided by the MAV Lab at the Air Force Research Lab-

oratory could help accurately characterize errors over an extended period. However,

there are some disadvantages to using a visual marker system. First, the system pro-

duces a infrared flicker that could affect the vision system. Second, the size of the

facility is limited, and the flight profile is constrained. Surveyed markers can provide

an unconstrained position truth over a large area. However, this requires a debugging

interface to indicate that a survey point has been reached. Also, the vehicle must

pass over the surveyed points during the flight limiting the trajectory.

In this initial research, 6DoF motion aiding was limited to ceiling features. In

this case, the normal vector is fully determined. As this research showed, additional

processing time is available for more advanced techniques to determine the planar

normal vector. Future research could investigate initializing the planar normal vec-

tor using image processing techniques. In addition, the vector could be continually

estimated by augmenting the EKF’s state vector.

This research selected Good Features detection and a image intensity descriptor.

Other feature transformation combinations exist and warrant further investigation.

The first recommended modification would use a gradient method for the low-level

feature descriptor. The image gradient is readily available after the Good Features de-

tection. After analyzing the gradient descriptor, other feature transformations could

be introduced. The research in [24] [32] [33] provides an excellent starting point for

feature transformation research.

Other nonlinear Kalman filtering techniques have been discussed during this de-

velopment. Concurrent research at AFIT is investigating model-based mechanization

for reducing drift in commercial inertial measurement units via a method of feder-

ated filtering. This could reduce the 10 second drift rate of the current IMU. The

Unscented Kalman filter is another nonlinear Kalman filtering technique that trans-
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forms sample points in the distribution through the nonlinear function. The multiple

pose estimates from the Unscented filter could be passed to the feature descriptor

aiding for weighting. Position and rotational observations are theoretically possible

during such an update.

Finally, this research analyzed three flight profiles in detail to demonstrated the

performance and accuracy of the deeply-integrated feature tracker. A Monte-Carlo

analysis of repeated data collections over the same trajectory would give a better

indication of the statistical performance of the filter.

5.2 Summary

This research presented a deep integration of sensors necessary to reduce the

computational requirements for small indoor flying vehicles. The method introduced,

called the deeply-integrated feature tracker, used a low-level feature transform with

inertial aiding of the descriptor. Results showed that the new tracker provided an

accurate solution during multiple flight experiments. This filter is a key component

to achieving a fully autonomous indoor flying vehicle in the very near future.
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