819 research outputs found

    A Dependency Parsing Approach to Biomedical Text Mining

    Get PDF
    Biomedical research is currently facing a new type of challenge: an excess of information, both in terms of raw data from experiments and in the number of scientific publications describing their results. Mirroring the focus on data mining techniques to address the issues of structured data, there has recently been great interest in the development and application of text mining techniques to make more effective use of the knowledge contained in biomedical scientific publications, accessible only in the form of natural human language. This thesis describes research done in the broader scope of projects aiming to develop methods, tools and techniques for text mining tasks in general and for the biomedical domain in particular. The work described here involves more specifically the goal of extracting information from statements concerning relations of biomedical entities, such as protein-protein interactions. The approach taken is one using full parsing—syntactic analysis of the entire structure of sentences—and machine learning, aiming to develop reliable methods that can further be generalized to apply also to other domains. The five papers at the core of this thesis describe research on a number of distinct but related topics in text mining. In the first of these studies, we assessed the applicability of two popular general English parsers to biomedical text mining and, finding their performance limited, identified several specific challenges to accurate parsing of domain text. In a follow-up study focusing on parsing issues related to specialized domain terminology, we evaluated three lexical adaptation methods. We found that the accurate resolution of unknown words can considerably improve parsing performance and introduced a domain-adapted parser that reduced the error rate of theoriginal by 10% while also roughly halving parsing time. To establish the relative merits of parsers that differ in the applied formalisms and the representation given to their syntactic analyses, we have also developed evaluation methodology, considering different approaches to establishing comparable dependency-based evaluation results. We introduced a methodology for creating highly accurate conversions between different parse representations, demonstrating the feasibility of unification of idiverse syntactic schemes under a shared, application-oriented representation. In addition to allowing formalism-neutral evaluation, we argue that such unification can also increase the value of parsers for domain text mining. As a further step in this direction, we analysed the characteristics of publicly available biomedical corpora annotated for protein-protein interactions and created tools for converting them into a shared form, thus contributing also to the unification of text mining resources. The introduced unified corpora allowed us to perform a task-oriented comparative evaluation of biomedical text mining corpora. This evaluation established clear limits on the comparability of results for text mining methods evaluated on different resources, prompting further efforts toward standardization. To support this and other research, we have also designed and annotated BioInfer, the first domain corpus of its size combining annotation of syntax and biomedical entities with a detailed annotation of their relationships. The corpus represents a major design and development effort of the research group, with manual annotation that identifies over 6000 entities, 2500 relationships and 28,000 syntactic dependencies in 1100 sentences. In addition to combining these key annotations for a single set of sentences, BioInfer was also the first domain resource to introduce a representation of entity relations that is supported by ontologies and able to capture complex, structured relationships. Part I of this thesis presents a summary of this research in the broader context of a text mining system, and Part II contains reprints of the five included publications.Siirretty Doriast

    A neural network multi-task learning approach to biomedical named entity recognition

    Get PDF
    Background\textbf{Background} Named Entity Recognition (NER) is a key task in biomedical text mining. Accurate NER systems require task-specific, manually-annotated datasets, which are expensive to develop and thus limited in size. Since such datasets contain related but different information, an interesting question is whether it might be possible to use them together to improve NER performance. To investigate this, we develop supervised, multi-task, convolutional neural network models and apply them to a large number of varied existing biomedical named entity datasets. Additionally, we investigated the effect of dataset size on performance in both single- and multi-task settings. Results\textbf{Results} We present a single-task model for NER, a Multi-output multi-task model and a Dependent multi-task model. We apply the three models to 15 biomedical datasets containing multiple named entities including Anatomy, Chemical, Disease, Gene/Protein and Species. Each dataset represent a task. The results from the single-task model and the multi-task models are then compared for evidence of benefits from Multi-task Learning. With the Multi-output multi-task model we observed an average F-score improvement of 0.8% when compared to the single-task model from an average baseline of 78.4%. Although there was a significant drop in performance on one dataset, performance improves significantly for five datasets by up to 6.3%. For the Dependent multi-task model we observed an average improvement of 0.4% when compared to the single-task model. There were no significant drops in performance on any dataset, and performance improves significantly for six datasets by up to 1.1%. The dataset size experiments found that as dataset size decreased, the multi-output model’s performance increased compared to the single-task model’s. Using 50, 25 and 10% of the training data resulted in an average drop of approximately 3.4, 8 and 16.7% respectively for the single-task model but approximately 0.2, 3.0 and 9.8% for the multi-task model. Conclusions\textbf{Conclusions} Our results show that, on average, the multi-task models produced better NER results than the single-task models trained on a single NER dataset. We also found that Multi-task Learning is beneficial for small datasets. Across the various settings the improvements are significant, demonstrating the benefit of Multi-task Learning for this task.This work was supported by Medical Research Council [grant number MR/M013049/1] and the Cambridge Commonwealth, European and International Trust

    Parts-of-Speech Tagger Errors Do Not Necessarily Degrade Accuracy in Extracting Information from Biomedical Text

    Get PDF
    Background: An ongoing assessment of the literature is difficult with the rapidly increasing volume of research publications and limited effective information extraction tools which identify entity relationships from text. A recent study reported development of Muscorian, a generic text processing tool for extracting protein-protein interactions from text that achieved comparable performance to biomedical-specific text processing tools. This result was unexpected since potential errors from a series of text analysis processes is likely to adversely affect the outcome of the entire process. Most biomedical entity relationship extraction tools have used biomedical-specific parts-of-speech (POS) tagger as errors in POS tagging and are likely to affect subsequent semantic analysis of the text, such as shallow parsing. This study aims to evaluate the parts-of-speech (POS) tagging accuracy and attempts to explore whether a comparable performance is obtained when a generic POS tagger, MontyTagger, was used in place of MedPost, a tagger trained in biomedical text. Results: Our results demonstrated that MontyTagger, Muscorian's POS tagger, has a POS tagging accuracy of 83.1% when tested on biomedical text. Replacing MontyTagger with MedPost did not result in a significant improvement in entity relationship extraction from text; precision of 55.6% from MontyTagger versus 56.8% from MedPost on directional relationships and 86.1% from MontyTagger compared to 81.8% from MedPost on nondirectional relationships. This is unexpected as the potential for poor POS tagging by MontyTagger is likely to affect the outcome of the information extraction. An analysis of POS tagging errors demonstrated that 78.5% of tagging errors are being compensated by shallow parsing. Thus, despite 83.1% tagging accuracy, MontyTagger has a functional tagging accuracy of 94.6%. Conclusions: The POS tagging error does not adversely affect the information extraction task if the errors were resolved in shallow parsing through alternative POS tag use

    Human-competitive automatic topic indexing

    Get PDF
    Topic indexing is the task of identifying the main topics covered by a document. These are useful for many purposes: as subject headings in libraries, as keywords in academic publications and as tags on the web. Knowing a document's topics helps people judge its relevance quickly. However, assigning topics manually is labor intensive. This thesis shows how to generate them automatically in a way that competes with human performance. Three kinds of indexing are investigated: term assignment, a task commonly performed by librarians, who select topics from a controlled vocabulary; tagging, a popular activity of web users, who choose topics freely; and a new method of keyphrase extraction, where topics are equated to Wikipedia article names. A general two-stage algorithm is introduced that first selects candidate topics and then ranks them by significance based on their properties. These properties draw on statistical, semantic, domain-specific and encyclopedic knowledge. They are combined using a machine learning algorithm that models human indexing behavior from examples. This approach is evaluated by comparing automatically generated topics to those assigned by professional indexers, and by amateurs. We claim that the algorithm is human-competitive because it chooses topics that are as consistent with those assigned by humans as their topics are with each other. The approach is generalizable, requires little training data and applies across different domains and languages

    Ontology Enrichment from Free-text Clinical Documents: A Comparison of Alternative Approaches

    Get PDF
    While the biomedical informatics community widely acknowledges the utility of domain ontologies, there remain many barriers to their effective use. One important requirement of domain ontologies is that they achieve a high degree of coverage of the domain concepts and concept relationships. However, the development of these ontologies is typically a manual, time-consuming, and often error-prone process. Limited resources result in missing concepts and relationships, as well as difficulty in updating the ontology as domain knowledge changes. Methodologies developed in the fields of Natural Language Processing (NLP), Information Extraction (IE), Information Retrieval (IR), and Machine Learning (ML) provide techniques for automating the enrichment of ontology from free-text documents. In this dissertation, I extended these methodologies into biomedical ontology development. First, I reviewed existing methodologies and systems developed in the fields of NLP, IR, and IE, and discussed how existing methods can benefit the development of biomedical ontologies. This previously unconducted review was published in the Journal of Biomedical Informatics. Second, I compared the effectiveness of three methods from two different approaches, the symbolic (the Hearst method) and the statistical (the Church and Lin methods), using clinical free-text documents. Third, I developed a methodological framework for Ontology Learning (OL) evaluation and comparison. This framework permits evaluation of the two types of OL approaches that include three OL methods. The significance of this work is as follows: 1) The results from the comparative study showed the potential of these methods for biomedical ontology enrichment. For the two targeted domains (NCIT and RadLex), the Hearst method revealed an average of 21% and 11% new concept acceptance rates, respectively. The Lin method produced a 74% acceptance rate for NCIT; the Church method, 53%. As a result of this study (published in the Journal of Methods of Information in Medicine), many suggested candidates have been incorporated into the NCIT; 2) The evaluation framework is flexible and general enough that it can analyze the performance of ontology enrichment methods for many domains, thus expediting the process of automation and minimizing the likelihood that key concepts and relationships would be missed as domain knowledge evolves

    Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ontology term labels can be ambiguous and have multiple senses. While this is no problem for human annotators, it is a challenge to automated methods, which identify ontology terms in text. Classical approaches to word sense disambiguation use co-occurring words or terms. However, most treat ontologies as simple terminologies, without making use of the ontology structure or the semantic similarity between terms. Another useful source of information for disambiguation are metadata. Here, we systematically compare three approaches to word sense disambiguation, which use ontologies and metadata, respectively.</p> <p>Results</p> <p>The 'Closest Sense' method assumes that the ontology defines multiple senses of the term. It computes the shortest path of co-occurring terms in the document to one of these senses. The 'Term Cooc' method defines a log-odds ratio for co-occurring terms including co-occurrences inferred from the ontology structure. The 'MetaData' approach trains a classifier on metadata. It does not require any ontology, but requires training data, which the other methods do not. To evaluate these approaches we defined a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The 'MetaData' approach performed best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The 'Term Cooc' approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The 'Closest Sense' approach achieves on average 80% success rate.</p> <p>Conclusion</p> <p>Metadata is valuable for disambiguation, but requires high quality training data. Closest Sense requires no training, but a large, consistently modelled ontology, which are two opposing conditions. Term Cooc achieves greater 90% success given a consistently modelled ontology. Overall, the results show that well structured ontologies can play a very important role to improve disambiguation.</p> <p>Availability</p> <p>The three benchmark datasets created for the purpose of disambiguation are available in Additional file <supplr sid="S1">1</supplr>.</p> <suppl id="S1"> <title> <p>Additional file 1</p> </title> <text> <p><b>Benchmark datasets used in the experiments.</b> The three corpora (High quality/Low quantity corpus; Medium quality/Medium quantity corpus; Low quality/High quantity corpus) are given in the form of PubMed identifiers (PMID) for True/False cases for the 7 ambiguous terms examined (GO/MeSH/UMLS identifiers are also given).</p> </text> <file name="1471-2105-10-28-S1.txt"> <p>Click here for file</p> </file> </suppl
    corecore