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Background: Named Entity Recognition (NER) is a key task in biomedical text mining. Accurate NER systems require
task-specific, manually-annotated datasets, which are expensive to develop and thus limited in size. Since such
datasets contain related but different information, an interesting question is whether it might be possible to use them
together to improve NER performance. To investigate this, we develop supervised, multi-task, convolutional neural
network models and apply them to a large number of varied existing biomedical named entity datasets. Additionally,
we investigated the effect of dataset size on performance in both single- and multi-task settings.

Results: We present a single-task model for NER, a Multi-output multi-task model and a Dependent multi-task model.
We apply the three models to 15 biomedical datasets containing multiple named entities including Anatomy,
Chemical, Disease, Gene/Protein and Species. Each dataset represent a task. The results from the single-task model
and the multi-task models are then compared for evidence of benefits from Multi-task Learning.

With the Multi-output multi-task model we observed an average F-score improvement of 0.8% when compared to
the single-task model from an average baseline of 78.4%. Although there was a significant drop in performance on
one dataset, performance improves significantly for five datasets by up to 6.3%. For the Dependent multi-task model
we observed an average improvement of 0.4% when compared to the single-task model. There were no significant
drops in performance on any dataset, and performance improves significantly for six datasets by up to 1.1%.

The dataset size experiments found that as dataset size decreased, the multi-output model’s performance increased
compared to the single-task model’s. Using 50, 25 and 10% of the training data resulted in an average drop of
approximately 3.4, 8 and 16.7% respectively for the single-task model but approximately 0.2, 3.0 and 9.8% for the

multi-task model.

Conclusions: Our results show that, on average, the multi-task models produced better NER results than the
single-task models trained on a single NER dataset. We also found that Multi-task Learning is beneficial for small
datasets. Across the various settings the improvements are significant, demonstrating the benefit of Multi-task

Learning for this task.
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Background

Biomedical text mining and Natural Language Processing
(NLP) have made tremendous progress over the past
decades, and are now used to support practical tasks
such as literature curation, literature review and seman-
tic enrichment of networks [1]. While this is a promising
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development, many real-life tasks in biomedicine would
benefit from further improvements in the accuracy of text
mining systems.

The necessary first step in processing literature for
biomedical text mining is identifying relevant named
entities such as protein names in text. This task is
termed Named Entity Recognition (NER). High accu-
racy NER systems require manually annotated named
entity datasets for training and evaluation. Many such

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


https://core.ac.uk/display/189162613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1776-8&domain=pdf
http://orcid.org/0000-0002-3036-0811
mailto: gkoc2@cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Crichton et al. BMC Bioinformatics (2017) 18:368

datasets have been created and made publicly available.
These include annotations for a variety of named enti-
ties such as genes and proteins [2], chemicals [3] and
species [4] names. Because manual annotations are expen-
sive to develop, datasets are limited in size and not
available for many sub-domains of biomedicine [5, 6].
As a consequence, many NER systems suffer from poor
performance (7, 8].

The question of how to improve the performance of
NER, especially in the very common situation where only
limited annotations are available, is still an open area of
research. One potentially promising solution is to use
multiple annotated datasets together to train a model for
improved performance on a single dataset. This can help
since datasets may contain complementary information
that can help to solve individual tasks more accurately
when trained jointly.

In machine learning, this approach is called Multi-task
Learning (MTL) [9]. The basic idea of MTL is to learn
a problem together with other related problems at the
same time, using a shared representation. When tasks
have commonality and especially when training data for
them are limited, MTL can lead to better performance
than a model trained on only a single dataset, allowing
the learner to capitalise on the commonality among the
tasks. This has been previously demonstrated in several
learning scenarios in bioinformatics and in several other
application areas of machine learning [10-12].

A variety of different methods have been used for MTL,
including neural networks, joint inference, and learning
low dimensional features that can be transferred to differ-
ent tasks [11, 13, 14]. Recently, there have been exciting
results using Convolutional Neural Networks (CNNs) for
MTL and transfer learning in image processing [15] and
NLP [16-18], among other areas.

In this work, we investigate whether a MTL model-
ing framework implemented with CNNs can be applied
to biomedical NER to benefit this key task. This is, to
the best of our knowledge, the first application of this
MTL framework to the task. Like other language process-
ing tasks in biomedicine, NER is made challenging by the
nature of biomedical texts, e.g. heavy use of terminology,
complex co-referential links, and complex mapping from
syntax to semantics. Additionally, the annotated datasets
available vary greatly in the nature of named entities (e.g.
species vs. disease), the granularity of annotation, as well
as in the specific domains they focus on (e.g. chemistry
vs. anatomy). It is therefore an open question whether this
task can benefit from MTL.

Due to the aforementioned disparities between data-
sets, we treat each dataset as a separate task even when
the annotators sought to annotate the same named enti-
ties. Thus datasets and tasks are used interchangeably.
We first develop a single task CNN model for NER and
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then two variants of a multi-task CNN. We apply these to
15 datasets containing multiple named entities including
Anatomy, Chemical, Disease, Gene/Protein and Species.
The results are then compared for evidence of benefits
from MTL. On one MTL model we observe an average F-
score improvement of 0.8% with a range of —2.4 to 6.3%
on MTL in comparison with single task learning from an
average baseline F-score of 78.4% with range 68.6 to 83.9%.
Although there is a significant drop in performance on
one dataset, performance improves significantly for five
datasets. For the other MTL model we observe an average
E-score improvement of 0.4% with a range of -0.2 to 1.1%
on MTL in comparison with single task learning from the
same baseline. There is no significant drop in performance
on any dataset, and performance improves significantly
for six datasets. These are promising results which show
the potential of MTL for biomedical NER.

The “Motivation” section explains the motivations
behind this work and how it can contribute to biomed-
ical text mining. The “Related work” section describes
the background and related work in MTL and NER.
Details of the models, methods and datasets used are in
the “Methods” section. Our experiments are detailed in
the “Experiments” section. We analyse the results and
their implications in the “Results and discussion” section.
The “Conclusion” section concludes the presented work
and explains possible future directions.

Motivation
Previous work have demonstrated the benefits of MTL.
These include leveraging the information contained in the
training signals of related tasks during training to per-
form better at a given task, combining data across tasks
when few data are available per task and discovering relat-
edness among data previously thought to be unrelated
[12, 17, 19]. These benefits can be seen in potentially
ambiguous terms which are spelled the same and are
named entities in some situations, but not in others. Some
training sets may contain examples of both so that a
model can learn to distinguish between them, but oth-
ers may only contain one type. A model trained with a
dataset combination which contains both types (even if
each dataset contains only one but they are opposites) can
learn to distinguish between them and perform better.
We are similarly interested in these benefits, but are
additionally interested in the following benefits, given the
particular challenges of biomedical text mining.

Making the best use of information in existing datasets

Given the level of knowledge interaction and overlap
in the biomedical domain, it is conceivable that signals
learned from one dataset could be helpful in learning to
perform well on other datasets. As an example, two of
the Gene/Protein datasets we used contain Pebp2 (and its
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variants) in their evaluation data but not in their train-
ing data. There are three other datasets which do contain
Pebp2 (and its variants) in their training data so mod-
els trained with these datasets may do better on the
evaluation than models trained in isolation. If a model
can utilize such information it could conceivably per-
form better as a result of having access to this additional
knowledge. Currently, when models use additional knowl-
edge as guidance it is typically handcrafted and passed to
models during training rather than learned as part of the
training process.

Efficient creation and use of datasets

The datasets used to train supervised and semi-
supervised models are expensive to create. They typically
contain manual annotations by highly trained domain
specialists (e.g. biologists with sufficient linguistics train-
ing) often covering thousands of instances (e.g. of named
entities or relations) each. If models which facilitate the
transfer of knowledge between existing datasets can be
developed and understood, they may be able to reduce the
annotation overhead. For example, such models may be
able to detect which type of annotations are really needed
and which are not because the information is already
included in another dataset or the knowledge require-
ments of tasks overlap. This can help to focus annotation
efforts aimed at types not covered in any existing datasets
and can aid in obtaining required annotations faster even
if the resulting datasets are smaller. Caruana [9] demon-
strated that sampling data amplification can help small
datasets in MTL where tasks are related by combining
the estimates of the learned parameters to obtain better
estimates than it would by estimating them from small
samples which may not provide enough information for
modeling complex relationships between input and pre-
dictions.

It can be tempting to think that these objectives can be
met by simply combining the existing corpora into a sin-
gle large corpus which can then be used to train a model.
The work of [20], which investigated the feasibility of this
for gene/protein named entities in three datasets, showed
otherwise. They found that simply using combined data
resulted in performance drops of nearly 12% F-score and
identified as the main cause of the drop incompatibilities
in the annotations due to the fact that they were made
by different groups with no explicit consensus about what
should be annotated.

Thus the problem of utilizing all the knowledge in exist-
ing datasets in a single model to gain the benefits of doing
so, including those highlighted in this section, remains a
challenging open problem in biomedical NLP.

Related work
MTL uses inductive transfer in such a way as to improve
learning for a task by using signals of related tasks
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discovered during training. The work of [9] motivated and
laid the foundation for much of the work done in MTL
by demonstrating feasibility and important early findings.
The author applied MTL on various detailed synthetic and
four real-world problems. He highlighted the importance
of the tasks being related and defined to a great extent
what related meant in the context of MTL. He defines a
related task as one which gives the main task better per-
formance than when it is trained on its own. He found
that: related tasks are not correlated tasks, related tasks
must share input features and hidden units to benefit each
other during training and finally that related tasks would
not always help each other. This final finding may seem at
odds to the given definition of related, but he explains that
the learning algorithm also affects whether related tasks
are able to benefit each other and allows for the existence
of related tasks which the algorithm may not be able to
take advantage of.

Since then, there have been work which like this one
used MTL for NLP tasks though on general domain
data. Collobert et al. [16] sought to use MTL in a uni-
fied model to gain increased performance in several core
NLP tasks: NER, chunking, Part of Speech (POS) tagging
and semantic role labeling with neural networks. They
achieved a unified model which performed all tasks with-
out significant degradation of performance, but there was
little benefit from MTL. Ando and Zhang [11] investi-
gated learning functions which serve as good predictors
of good classifiers on hypothesis spaces using MTL of
labeled and unlabeled data. They reported good results
when tested on several machine learning tasks includ-
ing NER, POS tagging and hand-written digit image
classification. Liu et al. [21] used multi-task deep neu-
ral networks to learn representations for information
retrieval and semantic classification by jointly training a
model for both tasks which has shared and private lay-
ers. Their model outperformed strong baselines for both
query classification and web search tasks. MTL can be
related in some sense to joint learning and to that end
[22] presented a model which used single-task annotated
data as additional information to improve the perfor-
mance of a model for jointly learning two tasks over five
datasets.

MTL has also been applied in the biomedical domain to
improve results in Text Mining and NLP. Qi et al. [23] used
semi-supervised MTL to classify whether protein pairs
were interacting. They first trained a model on super-
vised classification task with fully-labeled examples then
shared some layers of the model with a semi-supervised
model which is trained on only partially-labeled exam-
ples. Qi et al. [24] used MTL for small interfering RNA
(siRNA) efficiency prediction by learning several func-
tions of efficiency indicators which gave a predictor for
siRNA efficiency. In [25] the authors used multi-task
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learning to predict a range of Mental Health conditions
from users’ tweets by using demographic attributes and
mental states as multiple tasks to feed-forward neural
networks.

MTL’s use in the biomedical domain has also been seen
in image classification where CNNs, the model we use,
is more prevalent. Zeng and Ji [15] successfully used the
weights of CNNs from [26] trained on general domain
images as the starting point for further training on images
in the biomedical domain to gain improved performance.
Zhang et al. [27] used MTL methods with CNNs and
labeled images to fine-tune models trained on natural
images to extract features for specific biomedical tasks.
Their features learned from deep models with multi-task
methods outperformed other methods in annotating gene
expression patterns.

In summary, research in MTL using neural networks
has produced a wide spectrum of approaches. These
approaches have yielded impressive results on some tasks
(e.g. image processing) while results on others (e.g. main-
stream NLP) have been more modest. We apply MTL to a
NLP task and on a scale where it could be highly benefi-
cial but where it has not been investigated yet: biomedical
NER across 15 datasets. We present a single task and two
multi-task models which train these datasets and compare
their performance across the two settings. We were able
to achieve significant gains in several datasets with both
of the multi-task models despite the difference in the way
in which they apply MTL.

Methods

Pre-trained biomedical word embeddings

All our experiments used pre-trained, static word repre-
sentations as input to the models. These representations
are called word embeddings and are the inputs to most
current neural network models which operate on text.
Popular embeddings include those created by [28, 29].
Those are however aimed at general domain work and can
produce very high out-of-vocabulary rates when used on
biomedical texts, thus for this work we used the embed-
dings created in [30] which are created from biomedical
texts. An embedding for unknown words was also trained
for use with out-of-vocabulary words during training of
our models.

Datasets

We used 16 biomedical corpora: 15 focused on biomedical
NER and one on biomedical POS tagging. POS tagging is
a sequential labeling task which assigns a part-of-speech
(e.g. Verb, Nouns) to each word in text. We chose datasets
which were publicly available and included sufficient
amounts of the most utilized named entities in bioinfor-
matics: Anatomy, Chemical, Disease, Gene/Protein and
Species. The names of the datasets and information about
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their corresponding named entities are listed in Table 1.
Details of their creation, prior use, and comparison of
the original data to the versions we prepared for sequen-
tial labeling can be found in Additional file 1 provided
on the paper’s Github page which is https://github.com/
cambridgeltl/ MTL-Bioinformatics-2016.

Table 1 The datasets and details of their annotations

Dataset Contents Entity counts

AnatEM [38] Anatomy NE 13,701

BC2GM [2] Gene/Protein NE 24,583

BC4CHEMD [3]  Chemical NE 84,310

BC5CDR [5] Chemical, Disease NEs Chemical: 15,935; Disease:
12,852

BioNLPO9 [52] Gene/Protein NE 14,963

BioNLP11EPI [53] Gene/Protein NE 15,811

BioNLP11ID [53] 4 NEs Gene/Protein: 6551; Organism:

3471;

Chemical: 973;
Regulon-operon: 87

Gene/Protein: 7908; Cell: 3492;
Cancer: 2582

BioNLP13CG [54] 16 NEs

Chemical: 2270; Organism:
1715; Multi-tissue structure:
857;

Tissue: 587; Cellular
component: 569; Organ: 421;

Organism substance: 283;
Pathological formation: 228;
Amino acid: 135;

Immaterial anatomical entity:
102; Organism subdivision: 98;

Anatomical system: 41;
Developing anatomical
structure: 35

12,057

Gene/Protein: 10,891;
Chemical: 2487;

BioNLP13GE [55]
BioNLP13PC [56] 4 NEs

Gene/Protein NE

Complex: 1502; Cellular
component: 1013

CRAFT [57] 6 NEs SO: 18,974; Gene/Protein:
16,064;
Taxonomy: 6868; Chemical:
6053; CL: 5495; GO-CC: 4180
Ex-PTM [58] Gene/Protein NE 4698
JNLPBA [44] 5 NEs Gene/Protein: 35,336; DNA:
10,589; Cell Type: 8639
Cell Line: 4330; RNA: 1069
Linnaeus [4] Species NE 4263
NCBI-Disease [6] Disease NE 6881
GENIA-PoS [59]  PoS-Tagging N/A
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A point of concern for our method would be whether
there is significant overlap between the training sentences
of one dataset and the test sentences in another as this
would expose the model to examples which it would be
evaluated on. We found that the test sets for BC5CDR
and BioNLP09 overlapped with the BC2GM train sets 0.02
and 0.37%, respectively, and that the test set for INLPBA
overlapped with 0.08% of the BioNLP09 train set. These
figures were not deemed large enough to influence the
validity of the experiments so no steps were taken to
resolve them.

Experimental setting

We first trained a single-task model for each of the
datasets in multiple settings then trained them in sev-
eral MTL settings. The results of the performance in the
multi-task settings were compared to those in similar
single-task settings. The multi-task settings are detailed
in the “Experiments” section and involved two multi-
task models which we will introduce in this section while
the others involved variations on subsets of the datasets
trained jointly and variation in dataset sizes.

At each training step a fixed amount of training exam-
ples (mini-batch) from the dataset being trained was
selected after shuffling the training examples. For the
multi-task models this mini-batch would be randomly
selected from one of the datasets being trained and the
model trained with only the part of the model relevant to
the selected dataset activated.

Our models were trained to perform NER as a sequen-
tial tagging task where each word in a sentence is tagged
with an appropriate tag. The tags used were Single-named
entity, Begin-named entity, In-named entity, End-named
entity and Out where named entity differed according to
the type of named entities in the dataset (gene/proteins,
chemicals etc.). A word is tagged Single-named entity if
it is the only word in the named entity, while entities of
two or more words begin with Begin-named entity and
end with End-named entity. In-named entity is used for
words which occur between Begin-named entity and End-
named entity tags if a named entity has three or more
words. Out is used if a word is not a part of any named
entity. Each dataset contained train, development and test
sections and a split into these sections was introduced if
none existed. Models were trained on the train section,
their hyperparameters were tuned on the development
section and the final evaluations were done on the test
section.

The three main models in this work are all CNNs with
varying architectures, and a feed-forward model was used
as a baseline. The models and relevant method details are
described in this section. We treated each dataset as a
separate task. The details of the datasets used and their
respective annotation information are listed in Table 1.
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The input layer of all the models accept representa-
tions of the focus word to be classified and a context of n
words before and after it to give a total of 21 + I words.
The representations remain unchanged during training.
During pre-processing, special tokens representing sen-
tence breaks are added. The Viterbi algorithm used for
calculating binary transition probabilities as by [31] is
applied to the outputs of all models. An overview of this
is as follows, first a binary transition matrix is calculated
from the training data labels where for each possible tag
transition sequence a score of 1 is given if the training data
contains the transition and 0 if such a transition does not
exist. The information in this matrix is then applied to the
sequence of predicted tags and used to update any pre-
dicted tag sequences which are not seen in the training
data (i.e. with tag transition score 0) with a tag transition
sequence which was seen.

Baseline model

This was a feed-forward neural network with a hidden
Rectified Linear Unit (ReLU) [32] activation layer leading
to an output layer with Softmax activation.

Single task model

The input layer leads to a convolutional layer which
applies multiple filter sizes to a window of words in the
input in a single direction. To apply each filter in only a
single direction over the window of words, the width of
the filter always equals the amount of dimensions of the
word embeddings. The outputs of all filters then go to a
layer with ReLU activation. We concatenate and reshape
the outputs before they pass into a fully connected layer
then an output layer with a Softmax activation which clas-
sifies the focus word by selecting the label with the maxi-
mum value of the Softmax output. This model is similar to
the one used by [17] but there is no max-pooling after the
convolution layer. We refrain from using pooling layers so
that positional information in the input would not be lost.
We experimented with max-pooling and found that per-
formance improved when it was not used. See Fig. 1 for a
depiction of this model.

Multi-output multi-task model

The first multi-task model is similar to the single-output
model described in the “Single task model” section up to
the output layer. In this model there are separate output
layers for each task the model learns. Thus a private out-
put layer with Softmax activation represents each task but
all tasks share the rest of the model. This model is similar
to the one used by [16] but there are convolutional lay-
ers. It is also similar to the one used by [17] but we share
the convolution layers in addition to the word embed-
dings and there is again no max-pooling. Figure 2 depicts
this model.
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Dependent multi-task model

This model makes use of the fact that some NLP tasks are
able to use information from other tasks to perform better.
An example of this is that NER may utilize the information
contained in the output of POS tagging to improve its
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performance. This model combines two of the single-task
models described in the “Single task model” section with
one model accepting input from the other. The first model
trains for the auxiliary task (POS tagging in our exam-
ple), then that trained model is used in the training of
the second part of the model for the main task (NER in
our example) by concatenating the fully connected lay-
ers of the model trained for the auxiliary task and the
one trained for the main task. The use of this arrange-
ment is similar to the one used by [33] but our layers
between word embeddings and Softmax are convolutions
and fully-connected layers. See Fig. 3 for a depiction of
this model.

Experiments

All inputs consisted of a focus word and three words to
the left and right of it to give a seven word context win-
dow. The baseline model had one hidden layer of size
300 and was trained with the Stochastic Gradient Descent
optimizer using mini-batch size 50. All CNN models used
dropout [34] with a probability of 0.75 at the fully con-
nected layer only. No other form of regularization was
used. The CNN models used 100 filters of sizes of 3, 4 and
5 and a learning rate of 10~* was used with the Adam [35]
optimizer on mini-batch size 200. The loss function used
was Categorical Crossentropy. These settings were chosen
as they produced the best results from parameter tun-
ing on the development sections of BC2GM, BioNLP09,
BC5CDR and AnatEM.

Each dataset was used to train a single-task model
(“Single task model” section). Details of these as
well as the various multi-task experiments utilizing
multi-task models (“Multi-output multi-task model” and
“Dependent multi-task model” sections) follow.

Baseline experiments: We completed tests with the
baseline model using each of the datasets listed in Table 1.

Effect of datasets on each other: To determine the
exact effect that each NER dataset had on every other one,
the multi-task model described in the “Multi-output multi-
task model” section was used to train each NER dataset
with every other one. That is, a Multi-output multi-task
model was trained for each ordered combination of the
datasets to give 15 x 14 models.

Grouping datasets with similar named entities: Sev-
eral datasets in Table 1 sought to annotate the same
named entities (Chemical, Cell, Cellular Component,
Disease, Gene/Protein, Species). We created modified ver-
sions of these datasets which extracted only those entity
annotations and then grouped the datasets which anno-
tated the same named entity. This was done by changing
the labels of the classes of annotations of entities, other
than the one in focus, to the ‘Out’ class. These groups were
used to train the Multi-output multi-task model from the
“Multi-output multi-task model” section.



Crichton et al. BMC Bioinformatics (2017) 18:368

Page 7 of 14

>

Input Sentence

\the MTVP transgene promoter region

Ve

Input Sentence

| the MTVP transgene promoter region

[ Lookup Table . region)

\_ =i )

I

J
re!ion

L
Lookup Table the

N (e

~\

(Convolution Layer i v ¥

N

("Convolution Layer i i

(Fully Connected Layer

[

.

@ &

o/

Fully Connected Layer

>

Softmax ’
I

\.

=

i

\

Auxiliary Task

Fig. 3 Multi-task dependent convolutional model

Main Task

Multi-task experiments with complete dataset suite:
The first part of this experiment used all the NER datasets
to train the Multi-output multi-task model (“Multi-out-
put multi-task model” section). In the second part,
the Dependent multi-task model (“Dependent multi-task
model” section) was used to train each dataset with the
GENIA-PoS dataset as the auxiliary task.

Correlation of dataset size and effect of Multi-
task Learning: To determine how the effect of Multi-
task Learning varies with dataset size for our chosen
datasets, we used only 50, 25 and 10% of the training
section of each dataset in both single and multi-task
settings and observed the effect this had on perfor-
mance. In the multi-task settings, the reduced dataset
was trained only with the dataset which best improved
it as determined from the effects experiment described
above (i.e. the dataset listed in the ‘Best Dataset’ col-
umn of Table 2). The Multi-output multi-task model
(“Multi-output multi-task model” section) was used for
these experiments.

Results and discussion

In the tables of results, columns headed STM refer
to results from the single-task model (“Single task
model” section), columns headed MO-MTM refer
to results from the Multi-output multi-task model
(“Multi-output multi-task model” section) and columns
headed D-MTM refer to the Dependent multi-task model
(“Dependent multi-task model” section). The scores
reported are macro F1-Scores (a single precision and

recall calculated for all types) of the entities at the men-
tion level so exact matches are required for multi-word
entities. Best results are shown in bold and statistically
significant score changes are shown with an asterisk. All
statistical tests were done using a two-tailed ¢-test with
a = 0.05. The accuracy on the POS tagging task for the

Table 2 Best positive effects

Dataset ST™M Best MO-MTM Best dataset
AnatEM 81.55 81.68 NCBI-Disease
BC2GM 72.63 72.21 EX-PTM
BC4CHEMD 82.95 80.31 BioNLP13GE
BC5CDR 83.66 83.77 BioNLP11EPI
BioNLP0O9 83.90 84.16 BioNLP13GE
BioNLP11EPI 77.72 78.10 BioNLPO9
BioNLP11ID 81.50 82.26* BioNLP13GE
BioNLP13CG 76.74 77.33% BioNLP13PC
BioNLP13GE 73.28 76.09* BioNLP11EPI
BioNLP13PC 80.61 80.94 EX-PTM
CRAFT 79.55 7848 BioNLP13GE
Ex-PTM 68.56 73.58* BioNLP11EPI
JNLPBA 69.60 68.92 BioNLP13GE
Linnaeus 83.98 83.63 NCBI-Disease
NCBI-Disease 80.26 80.74 Ex-PTM
Average 7843 78.81 N/A

Datasets in rightmost column are the auxiliary ones. (Bold: best scores,
significant)

*: statistically
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model used in the Dependent multi-task model training
was 98.10%.

Multi-task learning effect of each dataset

Information about the maximum scores achieved for each
dataset is shown in Table 2. In 4 of the 15 datasets, there
were maximums which were significantly higher than the
single-task maximum scores shown in the ‘STM’ column
of the table. This illustrates that for these datasets there
is at least one other dataset in our suite which could be
trained jointly with it which would yield better perfor-
mance than training it by itself.

An aim of this experiment was to determine which
dataset had the most positive interaction with a particu-
lar dataset. Table 2 shows the result of this in the ‘Best
Dataset’ column. Most of the datasets which proved to be
the best combined with a given dataset were predictable
in that datasets which annotated the same named entities
were able to help each other, but other successful com-
binations were less predictable, for example the dataset
which best interacted with BC4ACHEMD (Chemical) was
BioNLP13GE (Gene/Protein) despite the presence of
other datasets which annotated Chemicals and the dataset
which best interacted with Linnaeus (Species) was NCBI-
Disease (Disease) not another dataset which annotated
Species.

The full list of results from the 15 x 14 models were not
included here for brevity, but they can be found in section
2 of Additional file 1.

Multi-task learning in grouped datasets

The results in Tables 3, 4, 5, 6, 7 and 8 present the effect
of training the Multi-output model with datasets which
aim to annotate similar named entities. In four of the six
groups, there were marked increases in the average per-
formance of the group of tasks, marked decrease in one
group and the results of the remaining one were equiv-
alent. Across the groups there were 27 experiments; 16
showed significant increase, 1 showed significant decrease
and the remaining 10 showed no significant change.

Table 3 Chemical group

Dataset ST™M MO-MTM
BC4CHEMD 82.95 8251
BC5CDR 87.02 89.22%
BioNLP111D 65.79 63.74
BioNLP13CG 66.40 77.17%
BioNLP13PC 74.53 79.46*
CRAFT 80.00 74.83
Average 7643 7749
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Table 4 Species group
Dataset STM MO-MTM
BioNLP11ID 7414 77.25*
BioNLP13CG 82.75 86.29*
CRAFT 97.74 97.44
Linnaeus 83.98 83.54
Average 84.65 86.13

(Bold: best scores, *: statistically significant)

It is important to note that although the focus of the
annotations were similar, both the sources of the text and
the annotations are different for these datasets. This gen-
eral improvement suggests that the multi-task model was
able to utilize the real-world distributions from which
these labeled examples were sampled and leverage infor-
mation in all or some of them to increase performance in
most of them, despite variations in source text and possi-
bly annotation guidelines. This provides evidence of MTL
having a positive effect on the NER task.

Multi-task learning on all datasets

The results in Table 9 show the effect of training the
Multi-output multi-task model and the Dependent multi-
task model with all the datasets as they were originally
annotated. These results show that the average score of
the Multi-output model is higher than that of the 15
separately trained models. Since the average score over
such varied datasets as those used can be misleading,
we examined each dataset individually and analyzed the
differences in performance.

This revealed that of the results for individual datasets,
there were 6 where the difference in performance between
the Multi-output model and the single-task model was
statistically significant. There were 5 datasets where it
performed significantly better and 1 dataset where it was
significantly worse. The performances in the 9 remain-
ing datasets were comparable. This also provides evidence
of MTL having a positive effect on the NER task as in
the “Multi-task learning in grouped datasets” section but
in this case it is a more impressive feat since the num-
ber of datasets and the variability among them are much
increased.

Table 5 Cellular component group

Dataset ST™M MO-MTM
BioNLP13CG 7279 74.80*
BioNLP13PC 83.23 84.67*
CRAFT 61.04 63.08*
Average 72.35 74.18

(Bold: best scores, *: statistically significant)

(Bold: best scores, *: statistically significant)
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Table 6 Disease group Table 8 Gene/protein group
Dataset ST™M MO-MTM Dataset ST™M MO-MTM
BC5CDR 80.46 80.39 BC2GM 72.63 73.04
NCBI-Disease 80.26 80.46 BioNLP09 83.90 84.76*
Average 80.36 80.42 BioNLP11EPI 77.72 79.00*
(Bold: best scores, *: statistically significant) BioNLP11ID 86.20 87.21*
BioNLP13CG 83.40 85.98*
Table 9 also illustrates that the average score of the  BioNLP13GE 73.28 79.66*
Dependent model was higher than that of the 15 sep-  BioNLP13PC 8321 84.84*
arately trained models. Analysis of the results revealed  gart 7285 75.16%
that of the .results fgr individual datasets, there were 6 68.56 74.91*
where the difference in performance between that and the
. . g . JNLPBA 69.60 69.73
single-task model was significant. In all 6 it performed
Average 77.14 7943

significantly better, it was significantly worse in none
and the performances in the 9 remaining datasets were
comparable.

These results show the advantages and disadvantages of
the two approaches to MTL which each model incorpo-
rates. In the Dependent model the average improvement
was less impressive than the Multi-output model but it
also shows that this model did not make performance on
any particular dataset significantly worse. This is possi-
bly due to the large amount of separation between the
components responsible for each task which allows for
the NER model to incorporate POS information when
it can be helpful and ignore it when it is not. Compar-
ison of the results of the Multi-output model and the
Dependent Model show that the Multi-output model had
a higher average score because it gave larger gains in
the datasets where it performed better but also showed
larger losses where it did not. This is possibly due to shar-
ing most of the model among the datasets regardless of
whether or not this is helpful. This result indicates that in
cases where tasks are thought to be similar and can con-
tribute equally the Multi-output model may be the better
of the two while in cases where there is a clear main
and auxiliary task separation, the Dependent model may
perform better.

There were seven datasets which showed significant
performance change across the two multi-task models.
Five of them (BioNLP11EPI, BioNLP13CG, BioNLP13GE,
BioNLP13PC, Ex-PTM) were improved in both models
which indicated that these datasets benefited from simply
having the information present in the additional datasets

Table 7 Cell group

Dataset ST™M MO-MTM
BioNLP13CG 83.25 82.83
CRAFT 88.08 86.89%
Average 85.66 84.86

(Bold: best scores, *: statistically significant)

available to them, regardless of the model. One (AnatEM)
had better performance in the Dependent model but
no difference in the Multi-output model while another
(BioNLP11ID) had significantly worse performance in
the Multi-output model but no significant performance
change in the Dependent model. Both of these datasets
recorded improved performance in the Dependent model
which indicate that they benefit from having POS-Tagging
information integrated in the manner which the Depen-
dent model uses.

Table 9 Single task and multi-task f-scores on NER tasks

Dataset Baseline ST™M MO-MTM D-MTM
AnatEM 81.79 81.55 81.83 82.21*
BC2GM 70.31 72.63 73.17 72.87
BCACHEMD 81.08 82.95 8237 83.02
BC5CDR 83.11 83.66 83.90 83.83
BioNLP09 81.84 83.90 84.20 84.10
BioNLP11EPI 74.98 7772 78.86* 78.03*%
BioNLP11ID 81.44 81.50 80.58* 81.73
BioNLP13CG 7523 76.74 78.90* 77.52%
BioNLP13GE 72.49 73.28 78.58* 74.00%
BioNLP13PC 79.35 80.61 81.92* 81.50%
CRAFT 78.76 79.55 79.10 79.56
Ex-PTM 65.75 68.56 74.90* 69.67*
JNLPBA 6743 69.60 70.09 69.44
Linnaeus 79.01 83.98 8157 84.04
NCBI-Disease 79.09 80.26 79.02 80.37
Average 76.78 7843 79.26 78.79

(Bold: best scores, *: statistically significant)

(Bold: best scores, *: statistically significant compared to single-task model)
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Dataset size and multi-task learning

Table 10 correlates dataset performance and decreased
size both in isolation and when trained in a multi-task
setting. The best scores for each dataset is in bold and
the better scores for each training set size are itali-
cized. Statistically significant changes in scores relative
to the full single-task model are shown with aster-
isks while statistically significant changes in scores rela-
tive to the corresponding single-task model are marked
with a plus sign.

Multi-task Learning is advantageous here as well as
shown in the ‘0.5 MO-MTM,; ‘0.25 MO-MTM’ and ‘0.1
MO-MTM’ columns. As the size of the datasets were
reduced, the multi-task model was able to show an
increase in average score over the corresponding single-
task models. The gap between the average scores of
the single-task models and the corresponding multi-task
model also widened as the datasets became smaller. In
fact, there were two datasets (BioNLP13GE and Ex-PTM)
where using only 50% of the training data in a multi-task
setting yielded significantly better performance than using
the full training data in a single task setting. In the case
of Ex-PTM, this was also the case when it was used with
only 25% of its training data. This augurs well for our
stated aim of using Multi-task Learning to improve per-
formance on small datasets. It can also indicate that new
datasets can contain fewer annotations and thus would
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consume less resources to create - another stated aim of
this work.

An additional result from this experiment was that,
for many of the datasets, randomly removing 50% of
the training data resulted in an average drop of only
approximately 3.4% F-score in single task training as
can be seen by comparing the ‘1.0 STM’ and ‘0.5 STM’
columns of Table 10. When the model is trained on
75% less training data, that average drop extends to 8%
as some datasets continue to be robust although there
is a predictable drop in performance in most datasets.
It is not until 90% of the training data of the datasets
are removed that a steep drop in average performance
of approximately 16.7% is registered across all datasets.
This high performance on reduced-sized corpora sup-
ports what is reported in [36] using BANNER [37], a
NER model based on Conditional Random Fields (CRF)
for biomedical NER. This may indicate that, like BAN-
NER, the single-task model presented in the “Single task
model” section is able to efficiently utilize even a rel-
atively small amount of training data to obtain good
enough performance. We wish to point out that in the
respective data reduction scenarios, the multi-task mod-
els record drops of approximately 0.2% when 50% of
the training data is removed, approximately 3.0% when
75% is removed and approximately 9.8% when 90%
is removed.

Table 10 Effect of dataset size reduction on single-task and multi-task performance

1.0 0.5 0.5 0.25 0.25 0.1 0.1
Dataset ST™M ST™M MO-MTM ST™M MO-MTM ST™M MO-MTM
AnatEM 81.55 78.74% 78.35% 74.82* 76.59%+ 65.99* 63.15
BC2GM 72.63 70.27* 70.73%+ 67.37% 67.14% 63.07* 63.14*
BC4CHEMD 82.95 80.16* 79.22%+ 76.81% 76.26* 71.94* 72.53*
BC5CDR 83.66 81.15% 82.45%+ 79.09* 80.44*+ 74.47* 75.48*
BioNLP0O9 83.90 81.89* 82.22* 80.56* 79.58% 75.12% 78.32*
BioNLP11EPI 77.72 74.00% 77.57%+ 70.89* 75.61+ 67.63* 75.04%+
BioNLP111D 81.50 76.65 81.39 70.60* 78.17%+ 68.19% 73.52%
BioNLP13CG 76.74 70.58* 75.02%+ 65.08% 72.98%+ 51.61* 67.86*+
BioNLP13GE 73.28 73.32 81.37%+ 67.43 78.80* 52.66* 77.12%+
BioNLP13PC 80.61 75.39* 7757 70.03* 73.90* 57.62* 68.65*+
CRAFT 79.55 75.25% 79.01+ 72.19* 76.79%+ 60.91* 71.00*
Ex-PTM 68.56 62.81 74.60*+ 53.30% 74.27%+ 47.01% 69.83+
JNLPBA 69.60 68.34 69.65 66.63* 68.13 62.80* 65.40"+
Linnaeus 83.98 80.08* 87.61+ 69.53* 79.86 3944 45.73
NCBI-Disease 80.26 76,51 76.84 71.88* 73.55% 67.48* 62.89%
Average 7843 75.01 78.24 7041 7547 61.73 68.64

(Bold: best scores for dataset, /talic: better score for each setting, *: statistically significant compared to full single-task model, +: statistically significant compared to

corresponding single-task model)
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Comparison with benchmark results

The focus of this study is on Multi-task Learning and we
have chosen not to perform task-specific adaptation or
use resources such as gazetteers that are frequently part
of state-of-the-art methods targeting individual corpora
or particular entity types. It is nevertheless an inter-
esting question how the level of performance achieved
by our methods compares to that of competitive task-
specific systems. To address this question, we sur-
veyed the literature on each of the corpora to identify
results representative of the best-performing methods
for each. In particular, for the corpora introduced for
shared tasks involving named entity recognition (BC2GM,
BC4CHEMD, BC5CDR, and JNLPBA) we consider the
highest result reported in the shared task for our bench-
mark.

To assure that our results are comparable to pre-
viously published ones, we apply the same evaluation
metrics and criteria as in each of the studies com-
pared to. When those criteria differ from the exact
mention-level F-score used in our primary evaluation,
we further apply the specific software released for eval-
uation using each corpus to assess performance, i.e. the
evalbio.pl script for AnatEM and alt_eval.perl
for BC2GM. For the other corpora, we use the stan-
dard conlleval.pl evaluation introduced for CoNLL
shared tasks.

The BioNLP corpora (BioNLP09, BioNLP11EP],
BioNLP11ID, BioNLP13CG, BioNLP13GE and
BioNLP13PC) and the Ex-PTM corpus were introduced
for event extraction tasks where gold named entity anno-
tations are taken to be available as a starting point for the
task. Thus, although the annotations of these corpora can
be readily used for NER as we have done here, there is no
previous body of NER work establishing state-of-the-art
performance on these resources. Similarly, the CRAFT
corpus was not primarily designed for NER and has not
been previously used for sequential labeling tasks of the
form we consider here. For these reasons, in the following
comparison we focus on the remaining corpora: AnatEM,
BC2GM, BC4CHEMD, BC5CDR, JNLPBA, Linnaeus,
and NCBI-Disease.

AnatEM

The AnatEM corpus was created for anatomical entity
mention recognition and released with a benchmark sys-
tem, AnatomyTagger, which scored 91.61% F-score for
right boundary match in the single-class setting we apply
in this study [38]. To the best of our knowledge this result
remains the state of the art for this corpus.

BC2GMm
The top-performing system [39] in the BioCreative II gene
mention recognition task achieved an F-score of 87.21%
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by the official task evaluation criteria, which relax strict
entity span matching by defining alternative boundaries
for some named entities [2]. We note that this result has
remained very competitive, with recent systems reporting
similar results (see e.g. [40]).

BC4CHEMD

In the original BioCreative IV chemical entity mention
recognition task [3], the highest performance, 87.39%
F-score, was achieved by the tmChem system of
Leaman et al. [41]. The task required exact matching of
gold entities, i.e. the same criterion applied in our primary
evaluation.

BC5CDR

The recent BioCreative V Chemical Disease Relation task
[5] included an evaluation of the mention-level perfor-
mance of chemical and disease mention recognition, the
subtask we consider in this paper. The best-performing
system for this task, by Li et al. [42], achieved an F-score
of 86.76% under standard exact matching criteria.

JNLPBA

The highest performance in the 2004 JNLPBA shared
task on biomedical entity recognition was achieved by
the system of Zhou and Su [43], which scored 72.55%
F-score for exact match [44]. Although this result is
notably older than many of the other benchmarks consid-
ered here, it remains competitive with the performance of
recently proposed approaches (e.g. [45]).

Linnaeus

As for AnatEM, the Linnaeus corpus was created specifi-
cally for entity mention (specifically, species name) recog-
nition and released together with a recognition system.
The original study reports the performance of the system
as 94.3% recall and 97.1% precision (95.68% F-score) on
the mention level [4]. A number of caveats to comparabil-
ity apply to the evaluation on on this corpus. First, as the
Linnaeus system is dictionary-based and thus requires no
training data, it was evaluated on the entire corpus rather
than on a specific test subset (as we do here). Second, later
work by [46] reported a notably lower F-score of 85.1% for
the Linnaeus system on this corpus in an evaluation where
their proposed tagger, SPECIES, achieved 91.1%. While
comparability to our results may thus be lower than for
the other corpora, we nevertheless reference the highest
number, reported by Gerner et al. [4] as our benchmark
here.

NCBI-Disease

The NCBI disease corpus was introduced for disease
name recognition and normalization and has been applied
in numerous studies of this task [6]. For this corpus, we
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select as our benchmark a result from the TaggerOne
system recently introduced by two of the authors of the
corpus [47]. TaggerOne achieved an exact match F-score
of 82.9%, a result that is highly competitive with other
recent work on the corpus (e.g. [48]).

Table 11 shows the benchmark results and the results
achieved by the methods considered here when the same
evaluation criteria are applied.

Applications and practicality

The argument can be made that the increases in perfor-
mance we report are trivial and may not be worth doing
in practical applications. This can be especially true of
the Dependent multi-task model. We note however that,
if there is no benefit from Multi-task Learning, then the
single-task setting can be used for a particular task and
the practitioner is no worse off than before. Our con-
tribution is that for some datasets the benefits can be
significant and in those cases we present an option to the
practitioner to obtain improved performance which pre-
viously was not available. An additional argument against
application of the work presented is the results which
show that it can be difficult to predict when Multi-task
Learning will be beneficial and by how much. We con-
tend that the models and methods presented here make
it possible to quickly determine empirically the amount
of benefit that Multi-task Learning, as implemented
here, provides.

The training time of the models varied according to
the size of the dataset(s) involved and the type of model.
The experiment which took the longest time to run was
the one where all the datasets were trained together
with the Multi-output multi-task model which we ran for
190,000 steps with batch sizes of 200 examples drawn on
each step from a randomly selected dataset. This took
approximately 40 min to train on a single Nvidia Titan X
GPU. As the weights are randomly initialized at the start
of training, there is some variation in scores between runs.
For the single task experiments, the average variance in
F-Score was 0.099. For the Multi-output multi-task model

Table 11 Comparison to benchmark results

Corpus Benchmark Ours Matching criteria
AnatEM 9161 88.55 Right boundary match
BC2GM 87.21 84.41 Alternative boundaries
BCACHEMD 87.39 82.32 Exact

BC5CDR 86.76 83.87 Exact

JNLPBA 72.55 68.95 Exact

Linnaeus 95.68* 7933 Exact

NCBI-Disease 829 77.82 Exact

(*: see text for caveat regarding comparability)
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it was 0.092 and for the Dependent multi-task model
it was 0.012. In our experiments under the conditions
outlined here, training never failed entirely.

Conclusion

In this paper we investigated whether Multi-task Learn-
ing could benefit the key text mining task of biomedical
NER across various NER datasets. We first developed a
single task CNN model for NER and then two variants
of a multi-task CNN. We trained these on 15 domain-
specific datasets representing a myriad of biomedical
named entities.

We observed an average improvement on Multi-task
Learning in comparison with single task learning. Individ-
ually, there were also significant improvements on many
of the datasets. Although there was a drop in performance
on some tasks, for most tasks performance improves sig-
nificantly. This is a promising result which shows the
potential of MTL for biomedical NER.

We have made all the datasets used and the code
of all our models publicly available for download and
use along with instructions of how the models can be
trained using the data. These can be found at https://
github.com/cambridgeltl/MTL-Bioinformatics-2016. We
presented our experiments along with the datasets and
models which demonstrated improvement and detailed
the conditions under which they did so.

Limitations to the work include that it can be difficult to
predict situations when these Multi-task Learning mod-
els will definitely provide benefit and the extent of any
increases in performance that they may give before it is
actually applied. This area has recently received research
attention [49-51] and some of the proposed methods may
be useful in this regard in the future. Another limitation
is that the current implementation of the models does not
allow for overlapping annotations of the same term in the
data.

Future work

The field of biomedical NLP contain several challenging
tasks, many of a more complex nature than NER and POS-
tagging but which use those tasks as starting points. There
are also freely available datasets for some of these tasks.
Our presented models and methods are flexible enough
to apply to some of these tasks (e.g. event extraction) and
it would be interesting to see if the results presented here
can also be produced on some of them.

Complex tasks usually utilise information from less
complex tasks (e.g. core event detection utilising NER).
Using the Dependent multi-task model presented here,
which experimented with an architecture that facilitates
utilizing lower-level tasks to aid higher-level ones in a
single network, is a plausible approach to handling these
tasks in light of the promising results presented here.


https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
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