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Abstract

DISCOURSE CAUSALITY RECOGNITION

IN THE BIOMEDICAL DOMAIN

Claudiu Mihăilă
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2014

With the advent of online publishing of scientific research came an avalanche of elec-
tronic resources and repositories containing knowledge encoded in some form or an-
other. In the domain of biomedical sciences, research is now being published at a
faster-than-ever pace, with several thousand articles per day. It is impossible for any
human being to process that amount of information in due time, let alone apply it
to their own needs. Thus appeared the necessity of being able to automatically re-
trieve relevant documents and extract useful information from text. Although it is now
possible to distil essential factual knowledge from text, it is difficult to interpret the
connections between the extracted facts. These connections, also known as discourse
relations, make the text coherent and cohesive, and their automatic discovery can lead
to a better understanding of the conveyed knowledge. One fundamental discourse re-
lation is causality, as it is the one which explains reasons and allows for inferences to
be made. This thesis is the first comprehensive study which focusses on recognising
discourse causality in biomedical scientific literature. We first construct a manually
annotated corpus of discourse causality and analyse its characteristics. Then, a meth-
odology for automatically recognising causal relations using text mining and natural
language processing techniques is presented. Furthermore, we investigate the auto-
matic identification of additional information about the polarity, certainty, knowledge
type and source of causal relations. The entire methodology is evaluated by empir-
ical experiments, whose results show that it is possible to successfully extract causal
relations from biomedical literature. Finally, we provide an example of a direct ap-
plication of our research and offer ideas for further research directions and possible
improvements to our methodology.
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Chapter 1

Introduction

This chapter provides an introduction to the research project. It begins with a descrip-

tion of the motivation and definition of the problem for this research. This is followed

by an outline of research aims and objectives.

1.1 Motivation and problem definition

Human language is a complex, extremely powerful communication system. Whilst

people have an amazing ability to communicate with one another, understanding nat-

ural language is a daunting task for computers. The main difficulty is that although

natural language provides the ability to signal, it also enables its users to express an in-

finite number of new meanings. Natural languages are inherently ambiguous, and thus

become a problem for computers which are not able to manage complex contextual

situations.

Since the beginning of computational linguistics and natural language processing

(NLP) it has been a known fact that scientific sublanguages exhibit specific proper-

ties that differentiate them from general language (Harris, 1968). These differences

can be observed at various levels, such as vocabulary, semantic relationships and,
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in some cases, even syntax (Grishman, 2001), and often require domain-specialised

knowledge sources to aid in the performed analysis. For instance, Biber (1988) de-

scribes two distinctive syntactic characteristics of academic writing which distinguish

it from general English. Firstly, in academic writing, supplementary information is

most commonly integrated by modification of phrases rather than by the addition of

extra clauses. Secondly, academic writing demands a greater effort from the reader by

omitting non-essential information, through the frequent use of passivisation, nomin-

alisation and noun compounding. They also show that these tendencies towards ”less

elaborate and less explicit” language have become more pronounced in recent history.

Language is the medium in which, amongst others, health sciences education, re-

search and practice operate. The language used in this domain, usually referred to

as biomedical language, has also been studied from the sublanguage point of view.

Some researchers focussed on differences at the semantic and syntactic levels, using

predicate-argument structures (PASs) to formally describe frames for predicates (usu-

ally verbs, but also their participial and nominalised forms) and the roles of their ar-

guments (parts of the sentence surrounding it) (Wattarujeekrit et al., 2004; Thompson

et al., 2011a). For instance, Wattarujeekrit et al. (2004) analysed the PASs of a large

number of verbs used in biomedical articles, and their results suggest that in some

cases a significant difference exists in the predicate frames compared to those obtained

from analysing news articles by the PropBank project (Palmer et al., 2005). Other

studies address the differences between the language used in different biomedical sub-

domains (Lippincott et al., 2011; Mihăilă and Batista-Navarro, 2012; Mihăilă et al.,

2012) to discover that detectable differences exist between them, varying according to

the employed features. Their conclusion is that biomedical researchers need be aware

of the importance of subdomain variation when considering the practical use of NLP

applications. A similar study closely examines the differences not between biomed-

ical and general languages, but between the abstracts and the body texts of scientific
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biomedical research articles (Cohen et al., 2010). The two genres were found to differ

significantly from structural, morpho-syntactic, semantic and discourse points of view,

as well as in the performance of various text mining tools when applied on them.

Another problem is that, due to the rapid advances in biomedical research, sci-

entific literature in this domain is being published at an ever-increasing rate (Verspoor

et al., 2006). Without the aid of automated means, keeping abreast of recent devel-

opments within biomedicine would become difficult for researchers (Ananiadou and

McNaught, 2006). Thus, it has become more and more important to be able to provide

such automated, efficient and accurate means of retrieving and extracting user-oriented

biomedical knowledge (Cohen and Hunter, 2008). Based on this need, biomedical

text mining has seen significant recent advancements in the last years (Zweigenbaum

et al., 2007), including named entity recognition (Fukuda et al., 1998), coreference

resolution (Batista-Navarro and Ananiadou, 2011; Savova et al., 2011) and relation

(Miwa et al., 2009) and event extraction (Miwa et al., 2012b,a). Additionally, bio-text

mining tools have been included in specifically designed frameworks and systems, in

which biomedical researchers can easily build workflows to extract information, e.g.,

U-Compare (Kano et al., 2009; Kontonatsios et al., 2013) and Argo (Rak et al., 2012),

or create and curate pathways and link them to the literature, e.g., PathText (Kemper

et al., 2010). Using biomedical text mining technology, text can now be enriched via

the addition of semantic metadata and thus can support tasks such as analysing mo-

lecular pathways (Rzhetsky et al., 2004) and semantic searching (Miyao et al., 2006).

On the one hand, text mining gives extra power to the searching mechanism, thus re-

ducing the number of separate searches that have to be performed. On the other hand,

it increases the relevance of the results that are returned by the search. In contrast to

traditional search engines, text mining systems do not simply view documents as se-

quences of words, but rather they try to structure this information automatically. More

specifically, instead of applying bag-of-words approaches, they try to find relationships
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(or events) between words and phrases (or entities) within sentences, a process called

event extraction.

Biomolecular events have recently received considerable attention as an important

source of information in biomedical text mining (Tsuruoka et al., 2011; Ananiadou

et al., 2010; Miwa et al., 2010), especially with three shared tasks dedicated to their

extraction (Tsujii, 2009; Tsujii et al., 2011; Nédellec et al., 2013a). Once extracted,

biomedical events can be used not only for returning appropriate results in response to

searches, but also for the discovery of unknown facts.

Although event-based searching can retrieve many more relevant documents and

distil essential factual knowledge from text than is possible using traditional keyword

searches, the typical event representations (and the event extraction systems based on

such representations) do not take into account all available information pertaining to

the interpretation of the event, making it difficult to interpret the connections between

extracted facts. New knowledge can be obtained by connecting the newly extracted

events with already existing information. These connections, also known as discourse

relations, make the text coherent and cohesive, and their automatic discovery can lead

to a better understanding of the conveyed knowledge. They can be either explicit or

implicit, depending on whether or not they are expressed in text using overt discourse

connectives (also known as triggers). One of the fundamental discourse relations is

causality, as it explains the functioning of ourselves, our environment and our inter-

action with it. This information can be leveraged by epidemiologists to identify pat-

terns and predict disease outbreaks, health care professionals to provide personalised

treatments based on patient history, etc. Nevertheless, causal relations pose two main

difficulties when trying to recognise them, one regarding causal triggers, and the other

regarding their arguments.

Firstly, causal triggers are both highly ambiguous and highly variable. Take, for
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instance, the example (1.1) below, where the token and expresses causality1. However,

in most other contexts, the same token has a non-causal meaning, denoting only a

conjunction.

(1.1) SsrB binds within SPI-2 and activates SPI-2 genes for transcription.

This is the usual case with most closed-class part-of-speech words, such as con-

junctions and adverbials. Other examples of trigger types more commonly used as

causal triggers and belonging to open-class parts-of-speech are suggesting, indicating

and resulting in. For instance, example (1.2) contains two mentions of indicating, but

neither of them implies discourse causality.

(1.2) Buffer treated control cells showed intense green staining with syto9 (indic-

ating viability) and a lack of PI staining (indicating no dead/dying cells or DNA

release).

Furthermore, their variability leads to numerous ways of expressing the same causal

trigger, due to the open-class properties of nouns and verbs. Take example (1.3), where

the trigger this result suggests that indicates a causal relation.

(1.3) The hilE mRNA level measured by real-time PCR also revealed that hilE

expression was increased in SR1304 by about 2-fold (Figure 3A).

This result suggests that Mlc can act as a negative regulator of hilE.

1All examples provided in this thesis are excerpts form the BioCause corpus, unless otherwise stated.
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The same idea can be conveyed using synonyms of these words, such as observa-

tion, experiment, indicate, show, prove etc. The high variability reflects in obtaining a

low recall, since there will be many false negatives (FNs).

With respect to the two arguments of a causal relation, cause and effect, they

are more difficult to recognise than causal triggers, as we have previously reported

(Mihăilă et al., 2013). Firstly, the spans of text that make up the arguments are of ar-

bitrary length, varying significantly from one case to another. Arguments can go up to

100 tokens in length in the case of Cause, and up to 70 in the case of Effect.

Secondly, the position of the two arguments around the trigger can change. Al-

though most of the relations follow a Cause-Trigger-Effect pattern, there is an import-

ant percentage of relations, 20%, which do not obey this rule. Furthermore, we showed

that almost half of all relations have one argument in a different sentence than that of

the trigger. Thus, the search space increases significantly and the difficulty of a correct

recognition increases too.

This leads to the third issue, which concerns the distance between the trigger and

the arguments. We illustrated the number of sentences between that of the trigger and

that of the separate argument, when it is located in a different sentence. About half of

the cases have the argument located in the previous sentence, but the rest spread up to

the tenth previous sentence.

Considering the shortcomings that have been identified above, one possible solu-

tion is to analyse the characteristics of discourse causal relations in the biomedical

domain and to create a methodology for their automatic recognition and extraction.

This can be achieved by employing deep linguistic analysis methods specific to bio-

medicine.

In this thesis, we report on the research undertaken to evaluate the feasibility of
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identifying discourse causality relations in biomedical text. We first present our an-

notation effort for enriching biomedical text with causality information. We then de-

scribe our approaches to train systems to recognise discourse causality automatically.

Finally, we give one example from the many applications of discourse causality by

creating natural language questions from causal relations.

1.2 Aims and Objectives

In what follows, we provide a brief description of the research project by outlining the

main aims, objectives, hypothesis and evaluation measures.

1.2.1 Research Aims

The main aim of this thesis is as follows:

A0 to investigate the use of NLP techniques in the task of recognising discourse

causality in biomedical scientific literature.

In order to accomplish the main aim A0, we have split it into more specific aims,

marked as ASn , and define them as follows:

AS1 to develop a methodology for the automatic recognition of biomedical discourse

causality.

AS2 to produce a ranking of the most relevant features which can recognise biomed-

ical discourse causality.

AS3 to develop a methodology for the automatic classification of meta-knowledge

information about causal relations.

At this moment, it is necessary to emphasise two aspects which are not the subject

of the current research study:
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1. This study does not propose a new definition of causality, nor does it debate

which definition is better. The literature contains multiple definitions of causal-

ity, depending on the field under study. Nevertheless, most of them have some

overlapping core characteristics. We consider this set of characteristics as caus-

ality.

2. This research is limited to the biomedical scientific literature. Although there ex-

ists a large amount of work for open-domain discourse analysis, the biomedical

domain (as well as many other specific domains) has been rather ignored. Due

to the specificity of biomedical language, direct applications of open-domain

methodologies are not suitable and vice versa.

Thus, considering the three specific aims of this study, the research questions ad-

dressed by this thesis are as follows:

RQ1 how can natural language processing techniques be organised into a methodo-

logy that can identify the characteristics of biomedical discourse causality?

RQ2 to what extent can discourse causality be automatically recognised in biomedical

scientific literature?

RQ3 to what extent can linguistic features be used to recognise discourse causality?

(a) to what extent can domain-independent features be used to recognise bio-

medical discourse causality?

(b) to what extent can domain-dependent features be used to recognise bio-

medical discourse causality?

(c) which are the features that are the most relevant to the task of automatically

recognising biomedical discourse causality?
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RQ4 to what extent can the meta-knowledge of biomedical discourse causality be

recognised?

RQ5 can the task of recognising biomedical discourse causality improve on other NLP

tasks, such as question generation?

1.2.2 Hypothesis

The research effort is being driven by the following main hypothesis:

H0 Discourse causality in biomedical scientific literature exhibits significant and

measurable differences, which can be captured through statistical and linguistic

indicators.

To test the hypothesis, a framework which incorporates deep NLP techniques along

with existing shallower techniques is proposed to improve the identification of biomed-

ical discourse causality.

1.2.3 Research Objectives

To answer the research questions stated above, the following research objectives need

to be met:

O1 to develop a manually annotated corpus of biomedical scientific literature with

relevant discourse causality information.

O2 to develop a methodology that can recognise discourse causality in biomedical

literature.

O3 to identify useful features for recognising biomedical discourse causality.

O4 to develop a manually annotated corpus of biomedical discourse causality with

meta-knowledge information.
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O5 to investigate the automatic recognition of the meta-knowledge information of

biomedical causal relations.

1.2.4 Research Evaluation

Three traditional evaluation methodologies will be followed for assessing the quality

of resources produced in the course of this research:

1. the manual annotations performed by human experts are evaluated using inter-

annotator agreement (IAA).

2. the performance of the models is evaluated using precision, recall and F-score.

3. the methodologies are evaluated based on the performance of their correspond-

ing models.

1.3 Summary of Contributions

To summarise, the main original contributions of this thesis are as follows:

1. a methodology to investigate biomedical discourse causality;

2. a novel resource for discourse relation studies in the biomedical domain created

as a by-product of this research: BioCause;

3. novel knowledge regarding biomedical discourse causality, being the first com-

putational study which addresses this aim;

4. the first study which provides an analysis and ranking of the features able to

recognise biomedical causal relations;

5. the first study which investigates the meta-knowledge of biomedical discourse

causal relations;
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To achieve this, an extensive review of the current research studies and approaches

to the recognition of discourse causality in biomedical language has been undertaken.

The first contribution, the biomedical discourse causality investigation methodo-

logy, is situated in an inter-disciplinary context. It is a mixture of three main research

areas: biomedicine, natural language processing, and machine learning. In Chapter 3,

we present the necessary information with respect to the resources and tools that are

employed in this research. The pipeline for processing the literature from raw text to

extracted causal relations is described at an abstract level.

The second contribution represents the resource that has been compiled for these

experiments: the Biomedical discourse causality corpus, BioCause. The scarcity of

discourse relation resources for the biomedical domain is overcome by the compilation

of a new corpus, assembled according to the needs of this project. The compilation

process is detailed in Chapter 4, together with an in-depth evaluation of inter-annotator

agreement.

Starting from the manually annotated BioCause, we were able to gain new insights

into how causality is expressed in biomedical scientific literature. The third contribu-

tion provides detailed discussions on the characteristics of the corpus, causal triggers

and causal arguments (in Chapter 4), as well as the empirical experiments undertaken

to investigate the feasibility of recognising causal triggers (Chapter 5) and their argu-

ments (Chapter 6).

From the output of these experiments follows the fourth contribution. Based on

the results obtained from the numerous models created, we analysed all features inde-

pendently to investigate their usefulness towards our task. The performance of each

feature is presented in Chapters 5 and 6, according to which step in our pipeline they

belong, showing their interaction with other features and the change in performance

brought by their addition.
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The fifth contribution regards the identification of additional information con-

cerning causal relations. Knowing the polarity, certainty, knowledge type and source

of causal relations is an important aspect that can dramatically change their interpret-

ation. Chapter7 describes the manual annotation process, as well as the experiments

performed to prove the viability of extracting such information.

1.4 Structure of the thesis

This thesis comprises nine chapters, in which the objectives of the research are fol-

lowed systematically, and is grouped in three parts. Chapter 2 provides the background

for the remaining chapters, offering an overview of causality and various perspectives

of studying it. Chapters 3, 4, 5, 6 and 7 constitute the original contributions: guidelines

for causality and meta-knowledge annotation, an annotated corpus, a corpus analysis,

and the experimental results obtained. Chapter 8 represents the third part, evaluating

an application of the work completed in the previous four chapters.

Chapter 2 gives an introduction to causality. This is achieved via a discussion of

causality as studied in philosophy and general-domain natural language processing.

The chapter then addresses causality in the context of biomedical text mining and nat-

ural language processing. The difference between the various definitions of causality

is established, as each of the described efforts brings a new variation or focusses on a

different aspect.

Chapter 3 reports on the methodology adopted in this thesis. It describes the

pipeline we have devised for the creation of a full discourse causality parser. More spe-

cifically, it provides the high-level steps in recognising causal triggers, their arguments

and disambiguating between the cause and the effect, as well as the core concepts of

machine learning and evaluation measures employed in this research.
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Chapter 4 describes the process of creating BioCause, the corpus that will be ex-

ploited in Chapters 5, 6, 7 and 8. BioCause is a new resource containing manual

annotations of discourse causality across 19 full-text journal articles on infectious dis-

eases. All details regarding the annotation, as well as detailed analyses of causal trig-

gers, their arguments, and annotator disagreements, are included.

Chapter 5 describes the work on the identification of discourse causal triggers.

The chapter begins with motivating the task, after which follows a detailed description

of the employed features. We then present the experimental results, and discuss the

impact of the engineered features, training corpus and algorithms.

Following the detection of triggers, in Chapter 6 we undertake the task of recog-

nising their arguments. We split this task into three steps, each of them following a

similar structure as the previous chapter. We describe the features, present the results

and discuss various factors that influence them for each step individually.

Chapter 8 details one of multiple threads of research that can be extended from this

work, involving both the biomedical discourse causality area and the natural language

processing and generation areas. It contains a description of the rules that are used to

create natural language questions generated from causal relation annotations, as well

as a manual evaluation for these questions.

In Chapter 9, the concluding remarks of this research are reported. The chapter

revisits the aims and the objectives of the thesis, and discusses to what extent these have

been accomplished in the experiments that have been conducted. The thesis finishes

by suggesting future directions of research.



48 CHAPTER 1. INTRODUCTION



Chapter 2

Causality

Causality, as a general semantic relationship, has been studied for many millennia,

and in a multitude of completely different topics, such as Philosophy, Psychology and

Linguistics. In contrast, causality in the biomedical domain has been scarcely studied.

Most studies limit themselves to establish causal relations between entities in fine-

grained contexts, such as disease-treatment or gene-protein. In this chapter we first

provide details concerning causality and various theories that attempt to define it, both

in the general and biomedical domains. This is followed by a review of the various

efforts in the biomedical domain which capture some aspects of causality. Finally,

we analyse the resources and methods that are currently used for automatic causality

recognition, emphasising on their strengths and weaknesses.

2.1 Definitions of causality

Causality is the relationship that stands between one event (which is named the cause)

and a second event (known as the effect), where the second event is understood as a

consequence of the first.

Studies on causality have been performed in multiple fields. Therefore, different

49
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theories exist in parallel in, e.g., Philosophy, Psychology, and Biomedicine. However,

a consensus has not yet emerged between researchers regarding the definition of caus-

ality or its perception by humans. These theories are briefly described in the following

subsections.

2.2 Causality in the general domain

Causality has been in the focus of philosophers for millennia, dating back as far as

Aristotle in the Western philosophical tradition. Although several theories have been

developed over the years, it still remains a recurring topic in contemporary Philosophy,

Psychology, Linguistics etc.

Hobbs (1990), for instance, suggests that a large amount of contextual and ex-

ternal knowledge is required to interpret discourse. His proposed discourse relations

are defined in terms of various types of inferences that have to be made in order to

understand the text. There are four types of inferences, and, correspondingly, four co-

herence relations. Most relevant to our research is that which mentions that a discourse

can be coherent since it describes coherent events in the world. The notion of coherent

events refers to the fact that if one event is known, the other can be inferred provided

that appropriate background knowledge is available. The relation that exists between

these events is an OCCASION relation, which can be subdivided in either CAUSE or

ENABLEMENT. Hobbs also proposes that these relations that exist in text must be or-

ganised into a tree structure in order to make the text coherent. Thus, the relations are

defined recursively.

Mann and Thompson (1988) develop the Rhetorical Structure Theory (RST), which

describes the organisation of natural text by characterising its structure in terms of re-

lations that hold between two different parts of the text, named nucleus and satellite.



2.2. CAUSALITY IN THE GENERAL DOMAIN 51

There are 78 fine-grained relations which are used in the annotation of the RST Dis-

course Treebank (RSTDT) corpus (Carlson et al., 2001). Usually, the elements of

this very large set are grouped into 18 coarse-grained relations in order to reduce the

complexity. However, each of the 18 relations can exist with several possible config-

urations for its arguments (or nuclearity), which results in 41 possible combinations.

With regard to CAUSALITY, this relation has five subtypes: VOLITIONAL CAUSE,

NON-VOLITIONAL CAUSE, VOLITIONAL RESULT, NON-VOLITIONAL RESULT, and

PURPOSE. The differentiation between the first four subtypes is performed with the

purpose of including both situations that are and are not intended outcomes of some

action, as well as showing which roles are played by the nucleus and its satellite. The

last subtype refers to yet unrealised situations, presented in the satellite, that can be-

come reality through the activity described in the nucleus.

An interesting and important feature of RST, which also made it popular, is the

fact that the relations are not mapped directly onto texts. Instead, they are part of

more abstract structures, called schema applications, which are then connected to the

text. By doing so, schema applications can be organised into a hierarchical system,

a rhetorical structure tree, with the textual Elementary Discourse Units (EDUs) being

located at the leaf level of the trees. This hierarchy is similar to that proposed by Hobbs

(1990).

Regularity theories (Hume and Selby-Bigge, 1896) provide a widely used modern

definition of causality. According to these theories, causality is a constant conjunction

between events, associated with priority in time and contiguity in time and space. Ba-

sically, this theory states that one event causes another event if the latter follows the

former and it is usual that the first event is followed by the second event. In this con-

text, causality is thought to be asymmetric, imperfect, and indeterminate, and therefore

is treated using probabilities.

In contrast, in the counterfactual theory (Lewis, 2001), causation is defined as what



52 CHAPTER 2. CAUSALITY

would have happened if something were the case that in fact is not the case. Altern-

atively, event1 causes event2 only in the case when it is true that if event1 had not

occurred, then event2 would not have occurred either.

Another theory, which is largely adopted, regards causality as a condition for the

occurrence of an event (Sosa, 1975). Thus, causes are split into three categories:

1. Sufficient cause – if event1 causes event2, then the existence of event1 implies

the existence of event2. Nonetheless, another event3 may cause event2 as well;

2. Necessary cause – if event1 causes event2, then the existence of event2 implies

the existence of event1. However, the existence of event1 does not guarantee the

existence of event2;

3. Insufficient but Necessary part of an Unnecessary but Sufficient (INUS) cause –

event1 contributes to the cause of event2. However, the existence of event1 does

not guarantee the existence of event2, and vice-versa. An example of this type

of causation is a conglomerate of events, including event1, which then implies

the existence of event2. Nevertheless, event2 can be caused by other events or

groups of events excluding event1, and the existence of event1 by itself does not

guarantee the existence of event2.

Knott and Sanders (1998) take another approach to define discourse relations in

terms of cognitive primitives. There are four such basic notions, each with two values,

which can be combined to form twelve classes of discourse relations.

1. BASIC OPERATION: discourse relations are either CAUSAL, where a ‘relevant’

causal connection exists between the spans, or ADDITIVE otherwise.

2. SOURCE OF COHERENCE: relations are either SEMANTIC, if the two spans are

related in terms of their propositional content, or PRAGMATIC if they are related

by their illocutionary force.
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3. POLARITY: relations can be either NEGATIVE, if the operation links the con-

tent of one span to the negation of the content of the other span, or POSITIVE

otherwise.

4. ORDER OF SEGMENTS: this is applicable only to Causal relations, where they

are BASIC if the antecedent is on the left and NON-BASIC if it is on the right.

As can be noticed, CAUSALITY does not have a clear definition, and it is part of a

set of cognitive primitives. Different combinations of the last three primitives create

different kinds of causal relations, such as CLAIM-ARGUMENT (POSITIVE, PRAG-

MATIC and BASIC) or CONSEQUENCE-CAUSE (SEMANTIC, POSITIVE, NON-BASIC).

2.3 Causality in the biomedical domain

Causality has also been studied in the biomedical domain, in order to develop a basis

for epidemiological research. Thus, it becomes easier to establish scientifically valid

causal connections between potential disease agents and the multitude of diseases af-

fecting humankind.

Bradford-Hill criteria are a set of nine minimal conditions which are necessary in

order to provide adequate evidence for the existence of a causal relationship between an

incidence and a consequence (Bradford-Hill, 1965). These were presented initially as

a way of determining the causal link between a specific factor (e.g., cigarette smoking)

and a disease (such as emphysema or lung cancer). The nine criteria are explained

briefly in what follows.

1. Strength: the probability for the existence of a causal relationship between two

events is directly proportional to the association between those two events, as

measured by appropriate statistical tests;
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2. Consistency: the association between the studied events must occur consistently

when they are replicated in different settings and when using different methods.

3. Specificity: the probability of a causal relationship is increased if a single sup-

posed cause is proven to produce a single specific effect. The lack of specificity

does not, however, deny causality;

4. Temporality: in the timeline of events, the cause must necessarily always precede

the effect, otherwise the causality relationship cannot be considered;

5. Biological gradient: if a dose-response relationship is present, it is strong evid-

ence for a causal relationship; an increase or decrease in the exposure to the

causal factor should be reflected in an increase or decrease, respectively, in the

incidence of the effect;

6. Plausibility: the causal relationship must agree with currently accepted under-

standing of biomedical processes. Nevertheless, this might not be true in the

case of new theories;

7. Coherence: the studied cause-effect association must not contradict, in a signi-

ficant way, the current state of knowledge within its field and related fields;

8. Experiment: various experiments can be performed by taking prophylactic ac-

tions in the examined associations and observing whether the effect suffers al-

terations.

9. Analogy: in some cases, judging by the analogy with an already recognised

causal relationship can prove beneficial.

However, none of these nine viewpoints is able to prove or deny indisputably the

cause-effect hypothesis and, also, none can be required as a sine qua non. They give,

in fact, with more or less strength, support for the causal relationship.
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Nevertheless, the data in this work comes from scientific research articles, which

have been analysed and reviewed by experts in their respective fields. Therefore,

we consider that the information contained in the articles presents scientifically valid

causal connections, the only remaining thing is distinguishing them from other rela-

tionships.

Amongst the large number of corpora that have been developed for biomedical text

mining purposes, several include the annotation of statements regarding some type of

causal associations, such as BioInfer (Pyysalo et al., 2007), GENIA (Kim et al., 2008)

and GREC (Thompson et al., 2009). However, these corpora do not include an ex-

haustive coverage of causal statements. Furthermore, the granularity of the annotation

of such statements is limited in several respects, which are described below. Since such

corpus resources underlie most currently existing methods for the automatic analysis

of biomedical text, there is an opportunity to advance the state of the art in domain-

specific information extraction (IE) and text mining (TM) through the improvement of

annotation schemata, resources and methods in the area of causal relation extraction.

2.3.1 Difference to the general domain

Mulkar-Mehta et al. (2011) state that only 11% of the biomedical causal connectives

are found in football news and 12% of the causal connectives found in football news

are found in biomedical publications. For instance, causal markers such as inhibit,

activate or induce are specific to the biomedical domain, whereas causatives such as

edging and lifting are found just in the football news domain. Common causal markers

are limited in number, and are usually restricted to certain parts-of-speech. Most of

these are conjunctions and prepositions, such as after, because, for, when, which are

polysemous in nature. The only two common verbs found to denote causality are lead

and produce.
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2.3.2 Causality in biocuration efforts

General, non-specific physical causation is of obvious interest in biocuration efforts

such as the assignment of Gene Ontology (GO) (Ashburner et al., 2000) terms to genes

to characterise gene functions (Camon et al., 2004), in part because detailed molecular-

level interactions are rarely known when a phenomenon is first observed. For example,

an effect due to P1 positively regulating the expression of P2 through activation of a

transcription factor of P2 by catalysing its phosphorylation may be first observed, re-

ported and curated simply as P1 having a positive effect on the activity of P2. Yet,

general terms of causality such as “cause” rarely appear in biomedical domain onto-

logies or other formalisations of the ways in which entities, processes and events are

associated with each other. Instead, such formalisations frequently apply terms such

as “regulation”, “stimulation” and “inhibition”. Whilst such terms also carry specific

senses in biology, their definitions in domain ontologies and use in biocuration efforts

show that, typically, their scope effectively encompasses any general causal associ-

ation.

The definitions of the Gene Ontology are good examples, due to the wide support

of the ontology within the biocuration community, the large number of existing annota-

tions and the adoption of the ontology definitions in prominent domain text annotation

efforts. These definitions, included in Table 2.1, are broader than they may initially

appear: they explicitly include indirect physical effects (“control of gene expression”)

without limitation on the length of the low-level causal chain and, through enumera-

tion (“frequency, rate or extent”), effectively exhaust the ways in which a process can

be affected by another. Specific cases can further illustrate the breadth of these defin-

itions: GO terms such as REGULATION OF MULTICELLULAR ORGANISM GROWTH

are used in curation efforts to capture such findings as the HDAC3 gene regulates the

growth of humans – an indirect causal association across multiple levels of biological
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GO ID GO term GO definition
GO:0050789 REGULATION Any process that modulates the frequency,

OF A BIOLOGICAL rate extent of a biological process.
PROCESS Biological processes are regulated by

many means; examples include the control
of gene expression, protein modification
or interaction with a protein or substrate
molecule, or interaction with a protein
or substrate molecule.

GO:0048518 POSITIVE Any process that activates or increases
REGULATION OF the frequency extent of a biological
A BIOLOGICAL process. Biological processes
PROCESS are regulated by many means; examples

include the control of gene expression,
protein modification or interaction
with a protein or substrate molecule.

GO:0048519 NEGATIVE Any process that stops, prevents or reduces
REGULATION OF the extent of a biological process.
A BIOLOGICAL Biological processes are regulated by many
PROCESS means; examples include the control of gene

expression, protein modification or interaction
with a protein or substrate molecule.

Table 2.1: Gene Ontology definitions of regulation, positive regulation and negative
regulation of biological processes.

organisation that involves very complicated and only partially understood molecular

pathways.

The GO definition of REGULATION OF BIOLOGICAL PROCESS is thus broadly

equivalent to the explicitly comprehensive definition “any process that has any effect

on another biological process”. Furthermore, in a neutral biological context, the fol-

lowing pairs of statements are roughly synonymous according to the GO definitions:

“A affects B”→ “A regulates B”

“A has a positive effect on B”→ “A positively regulates B”

“A has a negative effect on B”→ “A negatively regulates B”

and the following hold :

“A causes B” ≈ “A positively regulates B”
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“A prevents B” ≈ “A negatively regulates B”

One should also consider the exact GO synonyms of positive regulation (e.g.,

UP REGULATION, UP-REGULATION, UPREGULATION OF BIOLOGICAL PROCESS and

POSITIVE REGULATION OF PHYSIOLOGICAL PROCESS) and negative regulation (e.g.,

DOWN REGULATION, DOWN-REGULATION, DOWNREGULATION OF BIOLOGICAL PRO-

CESS and NEGATIVE REGULATION OF PHYSIOLOGICAL PROCESS). Thus, whilst the

observation that “causation” is rarely considered in general terms in domain curation,

text annotation or IE, most of its scope covered in the many efforts that involve the

general concept of regulation is physical causation.

2.3.3 Causality in pathway models

Pathway model curation is a specific biocuration task of particular interest to systems

biology (Ghosh et al., 2011a). Pathway curation efforts seek to characterise com-

plex biological systems involving large numbers of entities and their reactions in detail

using formal, machine-readable representations. The Systems Biology Markup Lan-

guage (SBML)1 standard (Hucka et al., 2003) for pathway representation has been

applied to a large number of curation efforts.

In particular, the SBML version used by the CellDesigner software2 (Funahashi

et al., 2008) has been adopted by major efforts, such as PANTHER3 (Mi and Thomas,

2009). As such, the SBML/CellDesigner reaction semantics are of significant interest

to domain IE efforts seeking to support automatic pathway curation.

SBML reactions are represented as typed associations of three sets of entities: re-

actants, products and modifiers. The base reaction types are normally specific bio-

molecular event/process types, such as binding or phosphorylation, and, thus, are out

1http://sbml.org
2http://celldesigner.org/
3http://www.pantherdb.org/

http://sbml.org
http://celldesigner.org/
http://www.pantherdb.org/
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SBML/CellDesigner GENIA
Catalysis Positive regulation

Physical stimulation Positive regulation
Modulation Regulation

Trigger Positive regulation
Inhibition Negative regulation

Table 2.2: Comparison between SBML/CellDesigner reaction modifications and
GENIA event types.

of scope for the study of general causality. However, SBML also allows the ways in

which entities modify reactions to be characterised using specific types, summarised

in Table 2.2, together with related GENIA event types (following Ohta et al. (2011a)).

Some of the modification types (e.g., MODULATION and INHIBITION) are generic and

used in practice to annotate general physical causal associations whose detailed mo-

lecular mechanisms may not be known.

2.3.4 Causality in biomedical corpora

A number of biomedical domain text annotation efforts include statements of general

physical causality in their scope. The GENIA event corpus, the most widely adopted

manually annotated domain resource for structured information extraction, adopts GO

types and annotates statements of general causation using the types REGULATION,

POSITIVE REGULATION and NEGATIVE REGULATION (Kim et al., 2008). Examples

from the GENIA-derived annotation of the BioNLP shared task 2011 GE task corpus

are shown in Figures 2.1 and 2.2. The GENIA event corpus annotation guidelines have

been adapted also to a number of other tasks, such as in the annotation of the BioNLP

shared task EPI and ID corpora (Ohta et al., 2011b; Pyysalo et al., 2011). An example

from the ID corpus annotation is given in Figure 2.3.

Whilst other domain corpora with similar annotation targets have adopted different

ontologies and annotation types, general causality is captured also in the annotation of
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Figure 2.1: Example annotation from BioNLP shared task GE with annotation for
general statement of causality (“is sufficient to”).

Figure 2.2: Example annotation from BioNLP shared task GE with annotation for
general statements of causality (“prevention” and “caused”).

Figure 2.3: Example annotation from BioNLP shared task Infectious Diseases corpus
with annotation for general statements of causality (“is essential for”).

corpora such as BioInfer (Pyysalo et al., 2007) and GREC (Thompson et al., 2009).

BioInfer applies an independently developed ontology that incorporates types cap-

turing both the general positive-negative-unspecified distinction involved in GO and

GENIA annotation, as well as more detailed subtypes capturing, e.g., the distinction

between initiating a process and having a general positive effect on one (Figure 2.4).

In contrast, the GREC corpus opts for an approach where only a small set of specific

associations are assigned detailed types, with the majority being generically typed as

GENE REGULATION EVENT (GRE). Nevertheless, the scope of this generic type ex-

tends to cover also general physical causal associations (Figure 2.5).

Thus, general physical causality is broadly included in the scope of many domain

resources annotated with structured representations for information extraction. How-

ever, the scopes of these annotations do exclude a variety of statements potentially

involving causal associations. Restrictions include limitation to specific forms of ex-

pression such as only verbal and nominalised forms, annotation of explicit statements

only and exclusion of statements that only suggest possible causal connections (“A
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Initiate Upregulate Regulate Downregulate Halt

Start Positive Unspecified Negative Full-stop

Dynamics

Change

Causal

Figure 2.4: Fragment of the BioInfer ontology of causal associations involving change
in process dynamics. Arrows correspond to IS-A relationships.

Figure 2.5: Example annotation from GREC corpus with annotation for general state-
ment of causality (“caused”).

happened after B”). Such limitations imply gaps between the full set of statements of

interest and those annotated in domain resources and leave open a number of oppor-

tunities for further improvement of resources and tools for the analysis of causality in

biomedical text.

Several other more discourse-oriented resources have also been created. The work

most similar to ours is the BioDRB corpus (Prasad et al., 2011), which is a collection

of 24 open-access full-text biomedical articles selected from GENIA, containing an-

notations of 16 types of discourse relations, one of which is causality. It was created

by adapting the framework of the Penn Discourse Treebank (PDTB) (Prasad et al.,

2008), which annotates the argument structure, semantics and attribution of discourse

relations and their arguments. The number of purely causal relations annotated in this

corpus is 542. There are another 23 relations which are a mixture between causality

and one of either background, temporal, conjunction or reinforcement relations. For

machine learning purposes, this dataset is considered relatively small, as it might not
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capture sufficient contextual diversity to perform well on unseen data. Thus, a de-

tailed comparison and combining of this resource with the one described in this thesis

represent an interesting opportunity.

2.4 Approaches to automatically recognising causality

Although prior studies in discourse causality extraction are relatively sparse, a large

amount of work has been dedicated to generic discourse parsing and discourse relation

identification in the general domain, where researchers have developed end-to-end dis-

course parsers. Most work is based on the PDTB (Prasad et al., 2008), a corpus of

lexically-grounded annotations of discourse relations. Whilst there are many success-

ful attempts in the direction of automatically classifying triggers, argument identifica-

tion has been explored to a more limited extent. Furthermore, until now, comparatively

little work has been carried out on causal discourse relations in the biomedical domain,

although causal associations between biological entities, events and processes are cent-

ral to most claims of interest (Kleinberg and Hripcsak, 2011).

There are several main aspects that need to be considered when attempting to re-

cognise discourse causality. First, there is the problem of data. For machine learners

to perform well, a significant amount of manually annotated text is necessary. The

same applies for rule-based systems, as researchers need to develop the rules based

on observations made on annotations. The second issue is, given any two spans of

text, the recognition of the existence or inexistence of causal relations. This decision

requires large amounts of background knowledge. The third aspect regards the iden-

tification of causal triggers. On the one hand, causal triggers are highly ambiguous,

with some being used for multiple discourse relations or no discourse relation at all.

On the other hand, they are highly variable, the same meaning being conveyed in nu-

merous ways. Consequent to detecting triggers, another issue is the recognition of the
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two arguments, namely Cause and Effect. Deciding which two spans of text around the

trigger are connected causally is a very difficult problem, as the search space is very

large. Furthermore, a significant amount of background knowledge is needed in order

to establish which argument plays which of the two roles. In order not to go around

these two steps of trigger and then argument detection, another approach is to decide

directly on the existence of a causal relation between two (usually adjacent) spans of

text. If not adjacent, there exists the problem of a very high number of combinations.

Otherwise, a large number of relations can be missed if the two sentences are not ad-

jacent. These aspects are discussed in detail in the following four subsections.

2.4.1 Acquiring data

Like in all NLP tasks, one of the most difficult problems to address is the acquisition of

appropriate data. Whilst in some cases the creation of such data is relatively easy, re-

quiring no expertise in a domain, extensive knowledge or thinking about interpretation,

in discourse analysis the situation is different.

The most important problem when creating corpora for discourse analysis is the

subjectivity of the annotators when interpreting the text they are annotating. A large

part of this problem can be resolved with a number of training sessions, in which an-

notators discuss the annotation guidelines and agree on the interpretation of borderline

cases.

In the case of biomedical discourse analysis, the problem is complicated by the fact

that the information contained can be understood fully only by domain experts. Thus, it

is important for the annotation to be performed by humans with extensive biomedical

education and deep understanding of the subject. However, finding domain experts

who are interested in performing tedious annotation tasks is very difficult. This leads

to both an increased period of time needed for the annotation, and higher financial cost.
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For example, the 24 full text articles in the previously described BioDRB corpus have

been annotated over a period of three whole years (Prasad et al., 2011).

To overcome these problems, researchers have analysed the possibility of boot-

strapping, in an unsupervised manner, a corpus of discourse relations. For instance,

Marcu and Echihabi (2002) approach the task of disambiguating discourse relations in

the general domain by employing automatic and unsupervised data acquisition. They

focus on four relation types: CONTRAST, CAUSE-EXPLANATION-EVIDENCE, CON-

DITION and ELABORATION. As can be noticed, these relations are defined at a much

coarser level of granularity than in most discourse theories, such as those previously

described in Section 2.2. In fact, they decide to focus on these four categories as they

are based on a common set of intuitions shared between the various theories. Another

reason is that by having a coarse definition for discourse relations, both the complexity

and ambiguity of the employed theory are reduced and, thus, would allow for com-

puters to better generalise and ultimately recognise them in free text.

To create the corpus of bootstrapped discourse relations, they extract from a large

collection of text (1 billion words, 41 million sentences) all adjacent sentence pairs

which contain a specific cue phrase at the beginning of the second sentence. A similar

process is applied to sentences which contain the cue phrases in the middle: the sen-

tence is split into two spans, on each side of the cue phrase. The relations between the

two spans of text (inter- or intra-sententially) are marked according to the cue phrase

that was found. Examples of cues that are used are but and although for CONTRAST,

because and thus for CAUSE, if and then for CONDITION, and for example and which

for ELABORATION. However, this method has two significant problems. First, the size

of the set of cue phrases is very limited. Second, the set of cue phrases is specifically

chosen in order to minimise the number of resulting false positives. As it has been

shown in previous research (Schiffrin, 1988; Marcu, 2000), some occurrences of but
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Reference Base alg. Corpus F-score
Marcu and Echihabi (2002) NB RSTDT 57%
Girju and Moldovan (2002) Heuristics TREC9 65.50%
Chang and Choi (2004) NB *TREC5 83.10%
Chang and Choi (2006) EM *cTREC5 77.37%
Blanco et al. (2008) C4.5 *TREC5 90.45%
Pitler and Nenkova (2009) NB PDTB 94.15%
Subba and Di Eugenio (2009) FOL+ILP Instructional 62.78%
Subba and Di Eugenio (2009) FOL+ILP *Instructional 19.05%
Hernault et al. (2010) ME PDTB 10.80%
Hernault et al. (2010) ME *PDTB 2.60%
Do et al. (2011) CEA *PDTB 41.70%

Table 2.3: Approaches to relation classification.

and because do not have discourse functions. This percentage of cues without dis-

course function ranges between 15% and 20% of occurrences (Carlson et al., 2001).

However, other discourse triggers can be more ambiguous than this.

2.4.2 Classification of discourse relations

Classifying discourse relations is an important step towards a more correct understand-

ing of the meaning conveyed in text, and, subsequently, towards the improvement of

several NLP tasks, such as question answering or automatic summarisation. A special

focus has been given to causality and causal relations. Table 2.3 presents the most rel-

evant work that has been performed in the task of classifying discourse relations. As

most work focusses on discourse relations in general, we use an asterisk (*) to mark the

causal subset of relations if results for these are available. Although there is research

dating to the late 1980s, most initial work uses hand-made causality patterns, which

function on restricted constructions and domains (Joskowsicz et al., 1989; Low et al.,

2001).

Marcu and Echihabi (2002), whose dataset was described in the previous section,

used inter-sentence word pair probability to discriminate between the four relation



66 CHAPTER 2. CAUSALITY

types. Using Naı̈ve Bayes (NB), an accuracy of 57% is obtained for extracting causal-

ity between sentences.

Girju and Moldovan (2002) investigate the recognition of causal relations between

noun phrases (NPs) with the purpose of improving the performance of question an-

swering. They filter causal triggers and create a ranking of five noun classes based on

WordNet. Upon examination, a precision of 65.50% is computed, and later improved

to 73.91% by using a decision tree classifier (Girju, 2003).

Chang and Choi (2004) move from the extraction of causal relation that consider

lexical and syntactical patterns to a more advanced, co-occurrence-based method. In

their approach, if two event pairs share some lexical pairs and one of the events is

proven to be a causal relation, the causal probability of the other event increases.

Events are represented as (S,V,O) ternary expressions, and a pre-defined list of cue-

phrases, taken from Girju and Moldovan (2002), is used to filter causal events. A NB

classifier then learns to distinguish between causal and non-causal event pairs, whilst

an Expectation Maximisation (EM) classifier applies the NB model to a large raw cor-

pus to re-estimate the parameters. The evaluation performed on a subset of the TREC5

corpus, selected to have the word cancer in each sentence, results in a maximum F-

score of 83.10%.

Chang and Choi (2006) improve on this work by acquiring, in an unsupervised

manner, new cue phrases for causality based on similar classifiers. The noise that was

added to the model by the automatic cue phrase acquistion is reflected in a lower F-

score when evaluated on the same dataset. However, the proposed method is attractive

for cases where dictionaries and word-sense mappings are not available.

Blanco et al. (2008) propose a method for the detection of causal relations between

a verb phrase (VP) and a subordinate clause. After manually classifying 1270 sen-

tences from the TREC5 corpus into causal or non-causal, they extract the syntactic

patterns from the 170 causation-encoding sentences. The machine learner classifies



2.4. APPROACHES TO AUTOMATICALLY RECOGNISING CAUSALITY 67

one thousand sentences from SemCor 2.1 into causal or non-causal, based on an array

of features. This includes the cue phrases themselves, their modifiers (e.g., adverbs

like long or prepositions like if ), the semantic class and tense of the potentially cause

and effect verbs. The C4.5 decision trees classify the instances with an F-score value

of 90.45%.

Looking at the four top-level classes of relations in the PDTB (Expansion, Compar-

ison, Contingency – containing causality, and Temporal), Pitler and Nenkova (2009)

attempt to automatically distinguish between them. Their NB classifier reaches a top

F-score of 94.15%, which is the same as the human IAA observed in the creation of

the corpus.

Presenting an innovative idea, Subba and Di Eugenio (2009) tackle the problem

with a first order logic (FOL) learning approach combined with inductive logic pro-

gramming (ILP). They motivate their decision linguistically: such models can lever-

age the rich compositional semantic data of the EDUs from VerbNet along with the

structural relational properties of the text spans. The experiments are performed on a

corpus of 176 instructional text documents, which has been manually split into 5744

EDUs. ILP is shown to surpass other machine learning (ML) classifiers, such as NB,

Decision Tree, and RIPPER. The F-score of ILP reaches 62.78%, which is 6% higher

than the second best, Decision Tree. Also provided by Subba and Di Eugenio (2009)

are classification results for individual relation types. Causality is recognised with

only 19.05% F-score, which is much less than the macro-average of 49.51%. In fact,

causal relations are the second worst amongst all relation types as regards their correct

recognition.

In an attempt to overcome the problem of data sparseness, Hernault et al. (2010)

experiment with semi-supervised learning by creating a feature co-occurrence matrix

from unlabelled data. Their proposed method computes the co-occurrence between

each pair of features using unlabelled data by calculating the χ2 of those two features
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co-occurring in all feature vectors. Then this information is used to extend the feature

vectors during both training and testing in case some features are not observed during

training, thus reducing the sparseness in test feature vectors. No new features are

introduced in this work, instead the method exploits features that have been previously

shown to be discriminative for the task. Evaluated on the PDTB corpus, the system

obtains results reaching a macro-average of 10.80% F-score and 2.60% F-score for

causality only. However, the results are too low to be used as-is in discourse parsers.

Do et al. (2011) investigate causal relations that occur between events. They de-

velop the concept of Cause-Effect Association to measure the causal associatedness

of two events, based on combinations of pointwise mutual information (PMI), inverse

document frequency (idf), distances and co-occurrences between event predicates, one

predicate and the other’s arguments, and between the arguments of the two predicates.

The system using this new measure reaches an F-score of 41.70% in recognising causal

relations between events.

2.4.3 Detecting causal triggers

Table 2.4 summarises the most relevant work that has been performed in the task of

analysing discourse and discourse causality triggers. As can be noticed, there is no

work which specifically addresses causal relations or which provides separate results

for them. Furthermore, the amount of work addressing triggers in the biomedical do-

main is limited to only two recent studies.

Pitler and Nenkova (2009) are amongst the first researchers who have tackled the

problem of identifying discourse connectives, but without determining the discourse

relation, as a disambiguation task. Using almost only syntactic features related to the

trigger, they achieve an F-score of around 91% when using automatic parses (result

provided by Lin et al. (2012) for comparability reasons). The power of the employed
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Reference Base alg. Corpus F-score
Pitler and Nenkova (2009) NB PDTB 91.00%
Wellner (2009) Reranking PDTB 95.47%
Lin et al. (2012) ME PDTB 93.62%
Ibn Faiz and Mercer (2013) ME PDTB 95.81%
Ramesh et al. (2012) CRF BioDRB 75.70%
Ibn Faiz and Mercer (2013) ME BioDRB 82.36%

Table 2.4: Approaches to trigger detection.

features is impressive considering their simplicity, the syntax by itself reaching 88.19%

F-score. In fact, their best result (94.19%, which is equivalent to the previously men-

tioned 91%) is obtained when using pair-wise interactions between features, such as

trigger - syntax.

Basing their work on the one previously mentioned, Lin et al. (2012) have intro-

duced new features and manage to slightly improve the overall performance. They

included features related to the immediate context of the discourse trigger, such as

the previous and next words, their part-of-speech (PoS) and syntactic interaction with

the trigger itself. Also, they added as a feature the entire path from the connective to

the root of the parse tree. Thus, the final F-score is 93.62%, with most error cases

belonging to highly ambiguous triggers, such as and.

Another two approaches consider the syntactic constituency and dependency struc-

ture of the context of the trigger Wellner (2009). Features include the path from the

trigger to the syntactic root, syntactic context features and conjunctive features in the

case of the syntactic approach, whilst the dependency approach relies on features such

as immediately neighbouring words and their part-of-speech, parents and siblings of

the connective and clause detection.

Another small increase in F-score, with just under 1% over Pitler and Nenkova

(2009) (considering their previously mentioned 94.19% F-score) and even less over

Wellner (2009) is reached by slightly combining the surface level and syntactic feature
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sets of these respective works on the PDTB corpus (Ibn Faiz and Mercer, 2013).

Regardless of the impressive amount and quality of work performed in the general

domain, there exists a significant difference to the biomedical domain. As mentioned

earlier, Mulkar-Mehta et al. (2011) have analysed the phrases that act as causal triggers

in four different domains, i.e. financial news articles, football blog stories, football

news articles, and biomedical scientific publications. Their investigation showed that

there are only five common causal triggers amongst all four domains (after, because,

by, to and when). However, these five triggers occur with different frequencies in the

four domains and, furthermore, have different causal precision values. With regard

to the biomedical domain, they discovered that only 11% of the biomedical causal

triggers are found in football news, whilst 12% of football news causal triggers are

found in biomedical articles.

Using the BioDRB corpus as data, Ramesh et al. (2012) have explored the iden-

tification of discourse connectives. Similar to work in the general domain, they do

not distinguish between the types of discourse relations. Using mostly a set of or-

thographic features, they obtain the best F-score of 75.7% using Conditional Random

Fields (CRFs), with Support Vector Machines (SVMs) reaching only 65.7%. These

results were obtained by using only syntactic features, as semantic features were shown

to lower the performance. Also, they prove that there exist differences in discourse trig-

gers between the biomedical and general domains by training a model on the BioDRB

and evaluating it against PDTB and vice-versa. Such cross-domain models reach a

maximum F-score of 59.20%, which demonstrates the need of domain-specific models

for biomedicine.

The same conclusions have been reached by Ibn Faiz and Mercer (2013), who man-

age to improve these results by around 6%. They notice that the automatic named entity

recognition performed by ABNER (Settles, 2005) lowers the overall performance due

to its orthographic features, which are already included in the feature set.
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Reference Base alg. Corpus F1-A1 F1-A2 F1-Rel
Wellner and Pustejovsky (2007) ME PDTB 69.80% 90.80% 64.60%
Elwell and Baldridge (2008) ME PDTB 80.00% 90.20% 73.60%
Prasad et al. (2010) Manual PDTB 86.30% - -
Ghosh et al. (2011b) CRF PDTB 57.30% 79.10% -
Ghosh et al. (2012) CRF PDTB 58.40% 79.30% -
Lin et al. (2012) ME PDTB 47.68% 70.27% 40.37%
Xu et al. (2012) ME PDTB 50.48% 70.17% 48.66%
Stepanov and Riccardi (2013) CRF PDTB 57.26% 82.35% -

Table 2.5: Approaches to argument detection. A1 represents the first argument, A2 is
the second argument, and Rel is the relation as a whole.

2.4.4 Detecting causal arguments

Table 2.5 provides the list of the most relevant work that has been undertaken in the

task of recognising discourse arguments. As can be seen from the table, all efforts are

directed at the discourse in PDTB, whilst the biomedical domain is not investigated at

all.

The research so far can be classified into two main categories on the basis of the

model they employ. In the first category, researchers consider a single model discourse

parsing method, where the two arguments are identified in a cascade of two sequential

models (one for each argument). There is no distinction made between the location

of the arguments, i.e., whether or not they are in the same sentence or not. Rather, a

single model decides on both the position and span of an argument, but not for both

arguments at the same time.

Ghosh et al. (2011b), for instance, design the argument detection as a cascade of

decisions based on CRFs, trained on lexical, syntactic and semantic features. The sys-

tem first identifies the second argument, with features including the surface expression

of tokens, the syntactic category path from the root of the parse tree to the token, PoS

tag, lemma, inflection, information about the main verb of the sentence, and whether

the previous sentence starts with a connective. Furthermore, they add the relation that
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the trigger has been assigned in the PDTB. Then the system proceeds to identifying

the first argument, but adding to the feature set gold-standard second-argument labels

for the tokens. The performance reaches 57.30% F-score for the first argument, and

79.10% for the second argument. Feature-wise, the trigger relation sense is deemed to

be the most relevant, for both arguments, whilst the information regarding the previous

sentence plays an important role for the first argument. Additionally, using lemmas

combined with inflection information increases the performance more than when com-

pared to their individual contribution.

In subsequent work, Ghosh et al. (2012) develop two constraint-based methods

with the purpose of increasing the recall of their parser. There are five hard constraints,

which refer to overgeneration (each argument must be located in only one sentence),

undergeneration (each trigger must have exactly one argument of each type), inter-

sentential second argument (the second argument must be in the same sentence as

the trigger), post-sentential first argument (the first argument must be located in the

same sentence as the trigger or in a prior sentence), and overlapping of arguments

and triggers (arguments and triggers are disjunct textual spans). These constraints are

assigned weights, with all being set to 1, except undergeneration, which is set to 2.

Thus, the system tries to maximise the difference between the score assigned by the

CRF classifier and the weight of violated constraints. The addition of these constraints

increases the F-score in the case of the first argument by 1.1%, whilst for the second

argument by 0.2%.

In the second category, a multiple model discourse parsing method splits the pro-

cess into two steps. First, a decision is made on the position of the arguments (same

sentence of different sentences), and then identifying the actual span of text compos-

ing the arguments. This method has been preferred in the literature, with much work

following this process. Nevertheless, for the second step of identifying the text spans

there are several approaches. Some researchers investigate the detection of the head of
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the arguments (Wellner and Pustejovsky, 2007; Elwell and Baldridge, 2008). Prasad

et al. (2010) limit their detection to identifying only the sentence in which the first ar-

gument is located. Actual argument spans have been detected as well, either as part of

complete discourse parsers (Lin et al., 2012; Xu et al., 2012), or separately (Stepanov

and Riccardi, 2013).

Wellner and Pustejovsky (2007) provide the first attempt at identifying the argu-

ments of discourse triggers in the PDTB. However, instead of identifying the full ar-

gument extents, they have undertaken the restricted task of identifying the arguments’

heads. They use Maximum Entropy (ME) rankers, combined with a reranking step to

jointly select the two arguments of each trigger. By representing the arguments in this

manner, their method reaches an accuracy of 74.20% on gold parses and 64.60% on

automatic parses. To obtain these results, they employ an array of lexical, syntactic,

dependency, constituency and trigger-based features. They conclude that dependency

features are more informative than constituency features, a fact which is due to the

reduced sparseness of the more compact way of representing syntax.

The results of Wellner and Pustejovsky (2007) have been later improved by Elwell

and Baldridge (2008). The improvements refer to creating separate models which are

tuned to specific triggers and trigger types. For instance, one model is created for

subordinating conjunctions, another for coordinating conjunctions, and one for dis-

course adverbials. They base their decision on the observation that different types of

triggers have a different behaviour towards their first arguments. For instance, sub-

ordinating and coordinating conjunctions are connected via syntactic constituency to

their arguments, whilst discourse adverbials are not, since their arguments can be loc-

ated anywhere in the prior discourse. Furthermore, they add new features related to the

morphological properties of triggers and their arguments, additional syntactic features

and an expanded context with the previous and following triggers. These extensions

improve the F-score on automatic parses by 9%, to 73.60%.
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Taking a different approach at recognising the more challenging first argument,

Prasad et al. (2010) aim to predict the sentences in which it is located. Their baseline is

the simple rule specifying that the first argument is located in the immediately previous

sentence to that of the trigger, which results in 83.30% F-score. The algorithm involves

a combination of cascaded heuristics that first filter potential candidates, then rank

them based on coreference and finally evaluate the remaining candidates. The manual

application of this algorithm shows a 3% improvement over the baseline.

Lin et al. (2012) develop the first full, end-to-end discourse parser for the PDTB.

As part of it, the argument detection is split into three steps: deciding on their position

(same sentence (SS) or different sentence (DS)), their nodes in the parse trees, and

their textual spans. Finding the position of the arguments makes use of simple lexical

features, such as the trigger itself and its left and right neighbours, as well as their

PoSs. Under these circumstances, the performance reaches 92.09% F-score. Follow-

ing this, an ME classifier assigns a triplet of probabilities to each node in the sentence

parse trees, corresponding to three possible labels it can have: first argument, second

argument, or none. Nevertheless, the arguments located in different sentences are not

dealt with appropriately, and only a simple rule that labels the previous sentence as the

first argument is used. Basing the decisions on mostly syntactic features, this module

reaches an F-score of 82.60%. Finally, a tree subtraction module, proposed by Dinesh

et al. (2005), computes the actual text spans of the two arguments by separating the

tokens in the two subtrees according to the type of trigger: subordinating or coordinat-

ing conjunctions. The application of the last module results in an exact-match F-score

of 40.37%, whilst the partial match is doubled, at 80.96%.

A similar approach is undertaken by Xu et al. (2012), who expand the context

window of the trigger to identify the position of the arguments and their spans. In

contrast, they first decide whether a node is a valid argument, and then decide its

role from the three possible labels, first or second argument or none. This leads to a
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statistically significant increase in F-score for the first argument, at 50.48%, whilst the

second argument is detected with a slightly lower accuracy: 70.17% F-score. Again,

they do not treat the inter-sentential case properly, employing the same simple heuristic

as in the previous case.

Stepanov and Riccardi (2013) conducted a series of experiments in which they

compare all of the previous approaches. They select the best of the two main categor-

ies that we mentioned earlier in order to increase the performance to 57.26% F-score

for the first argument and 82.35% F-score for the second argument. Unfortunately,

they do not report a relation F-score, where both arguments need to be identified to

count as a correctly identified relation. Their method is an extension of that of Ghosh

et al. (2011b), which used CRFs to extract the spans of arguments, by integrating the

argument position detection and the immediately previous sentence heuristic for inter-

sentential first arguments.

2.5 Summary

The purpose of this chapter is to highlight the main directions of research that exist

in discourse analysis, whilst putting emphasis on the most relevant studies involved in

the literature.

We first reviewed the literature regarding theories of discourse and discourse ana-

lysis. Together, these studies provide important insights into the structure of discourse

and its coherence. Unfortunately, a common point between the various theories is that

they lack an exact definition for causality.

Following this, we analyse causal relations in a biomedical context, where previ-

ous research has shown that causal triggers that are found in general language or other

domains (e.g., sports, finance, news) are not applicable (Mulkar-Mehta et al., 2011).
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Furthermore, we examined multiple curation and annotation efforts to create biomed-

ical gold standard corpora. Although some of them include causal relations, they are

limited in scope and usually involve only physical causation. The only exception is the

BioDRB corpus, which contains, amongst others, a small number of causal discourse

relations. Although causal relation bootstrapping has been attempted, the seed for the

method needs to be manually provided, which already limits the range of discoverable

relations. Additionally, a large number of false positives will be generated, which add

noise to the created models.

As we have seen, most relation recognition techniques, causal or general, require

some pre-existing lexical or syntactic patterns as a basis for creating models. However,

according to Mulkar-Mehta et al. (2011), general language causal cue phrases are not

applicable to the biomedical domain. Thus, data that is specific to biomedicine is ne-

cessary. Moreover, both in deciding the existence of causal relations between textual

spans and extracting the arguments of causal triggers, previous research uses pair-wise

similarity and WordNet as semantic relatedness resources. These are not completely

suitable and transferable to the biomedical domain. One the one hand, there exists

no biomedical version of WordNet, and research has shown its creation would be ex-

tremely challenging (Fellbaum et al., 2006) were its structure even suitable for the

biomedical domain (Poprat et al., 2008). On the other hand, creating pair-wise word/-

phrase similarities with regard to causation would prove to be not scalable. Within

the fastly evolving biomedical language, new terms are coined daily, whilst others fall

out of use, at higher rates than general language. Plus, the variability and ambiguity

of terms is much greater in the biomedical domain. This highly volatile character of

biomedical language would require the causal models to be continuously re-created.

The studies included in this review highlight the need for more biomedical gold

standard data to capture a wider range of causal discourse relations in this specific

domain.



Chapter 3

Methodology

The line of research reported in this thesis connects various concepts and techniques

from different fields of study: it applies machine learning algorithms to the investiga-

tion of the nature of causality in the discourse of biomedical scientific language. As a

result, it is necessary to briefly introduce the background concepts, tools and resources

relevant to this research.

In this chapter, we outline the necessary information regarding the resources and

tools used for this research. Since our studied hypotheses are related to the expres-

sion of discourse causality in biomedical scientific language, we need to use a corpus

containing such annotations.

The chapter continues by describing the pipeline we have devised for the creation

of a full discourse causality parser. It describes the high-level steps in recognising

causal triggers, their arguments and disambiguating between the cause and the effect.

Finally, we outline the core concepts of machine learning and the machine learning

algorithms employed in this research. We briefly describe machine learning and the

types of machine learning that exist, and explain the main mathematical concepts of

several algorithms pertaining to each type. We also introduce the employed machine

learning frameworks.

77
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3.1 Our approach

In order to understand the work described in subsequent chapters, we define several

concepts used throughout this thesis. These refer to causal relations and their compon-

ents, as well as the pipeline that we developed for automatic causal relation recognition.

3.1.1 Causality

Causality is a discourse relation which is very difficult to define, and most studies

consider it as a fundamental, almost axiomatic relation. We will not attempt to provide

a definition of causality. Instead, we rely on the existing definitions and theories and

extract the commonalities between them.

Most causal relations are signalled by an explicit phrase, which tells humans that a

causal link exists in discourse. These phrases, named from here on triggers, can take

various surface expressions, ranging from single words to more than five words. They

can belong to different parts-of-speech, and can form various syntactic structures.

Each trigger has an associated pair of text spans, its two arguments. According

to their localisation relative to the trigger, arguments can be either SS arguments (ex-

ample (3.1)) or DS arguments (example (3.2)).

(3.1) [Strains expressing the mutant PmrB proteins could express pbgP normally

in response to the low Mg2+ signal], indicating that [mutations in residues of the

periplasmic domain of PmrB do not impair the enzymatic activity of the cytoplas-

mic domain of the PmrB protein].

(3.2) [Indeed, the pKa of one of the glutamic acid residues of the regulatory protein
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TraM is approximately7.7 in the folded protein].

Therefore, it is plausible that [protonation/deprotonation of one or more of the

glutamic acids in the periplasmic domain of PmrB could occur at pH approximately

5.8].

Independent arguments can be located in another sentence anywhere in the text,

therefore their recognition is more difficult, even for humans.

According to the syntactic relation to the trigger, an argument can be either a

dependent argument (DA) or an independent argument (IA), as shown in example (3.3).

Because the English language is a right-branching language, the dependent argument

is usually located immediately after the trigger.

(3.3) [The low pH signal may also act synergistically with the low Mg2+ signal in

vivo]IA because [Mg2+ deprivation alone is not sufficient to provide all the LPS

modifications seen in Salmonella when present inside macrophages]DA.

The argument that is located in a different sentence to the trigger is always the

independent argument. When in the same sentence, the parse tree of the sentence

needs to be analysed in order to distinguish between the two.

Furthermore, each argument plays one of the two roles in a causal relation, Cause

or Effect. Example (3.4)

(3.4) [The levels of phosphorylated PmrA are determined by the balance of the

autokinase + phosphotransferase activity of PmrB and PmrB’s phosphatase activity

towards phospho-PmrA]Cause.
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Require: a text T
Ensure: discourse causal relations in T

1: Identify all causal triggers in T
2: for all trigger t do
3: Label t as SS or DS
4: if t is SS then {arguments in same sentence}
5: Split sentence in clauses
6: Label the immediate right clause of t as DA
7: Label the rest of the sentence as IA
8: else {arguments in different sentences}
9: Label sentence of t as DepArg

10: Identify IndArg around the sentence of t
11: end if
12: Identify relation direction
13: end for

Figure 3.1: Pseudocode for identifying causal relations in the BioCause.

Thus, [PmrD may be necessary to ensure that the amount of phosphorylated PmrA

is such to promote transcription of its regulated genes]E f f ect .

3.1.2 Pipeline

The pseudocode for the causality recognition pipeline is shown in Figure 3.1. Sim-

ilar to the annotation mechanism used by the experts who produced the BioCause

corpus, we have split the recognition of causality into three major steps. In the first

step, the annotators were given just the raw text T , which was then analysed to find

causal triggers. Second, when a causal trigger was found, the annotators decided on

whether its two arguments are in the same sentence or different sentence. In the former

case, the clause syntactically depending on the trigger becomes the DA, whilst the rest

of the sentence represents the IA. In the latter case, the sentence containing the trigger

becomes the DA, whilst the IA is identified as one of the sentences around the trigger.

Finally, in the third step, after both arguments are located, the annotator classifies the

direction of the relation, that is which argument plays which of the semantic roles of
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cause and effect.

3.2 Learning methods and tools

The choice of learning method and algorithm can significantly influence the perform-

ance of a classification task. In what follows, we briefly describe the main concepts

behind the algorithms employed in this work.

3.2.1 Supervised machine learning

The goal of supervised machine learning is the ability to automatically infer a function

from analysing labelled training data that can assign to a data point one label from a

predefined set of labels. In an optimal scenario, this inferred function will be able to

correctly determine the class label for unseen data points, via generalisation.

More specifically, let D be a set of n training data points of the form

D = {(xi,yi) | xi ∈ Rp, yi ∈ {−1,+1}} , i = 1,n (3.1)

where xi is a p-dimensional feature vector for the i-th training instance, and yi is either

+1 or -1, indicating the class to which the point xi belongs. A supervised learner must

then find the function g : X → Y in a space of possible functions G that minimises the

loss function L : Y ×Y → R≥0. For a point (xi,yi) ∈D , the loss of predicting the class

label ŷ is L(yi, ŷ).

Several supervised machine learning algorithms have been selected in this research.

Their theory is briefly discussed in the following sections.
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Decision Trees

Decision trees are one type of model used in machine learning, representing the de-

cisions made by classifiers in its nodes. Each node inside the tree corresponds to one

of the features in the dataset, and is used to make a binary classification. The tree is

learned by splitting the initial dataset into smaller subsets based on an attribute evalu-

ator. This process of splitting into smaller subsets is repeated recursively until either

all instances in a subset all have the same label, or until the splitting does not add

any more value to the predictions. Thus, the trees are induced in a top-down manner,

making them a greedy algorithm.

There are many decision tree algorithms that have been created. In this work,

we use C4.5 (Quinlan, 1993), one of the most popular algorithms. C4.5 functions on a

simple recursive procedure, where the dataset is split for the feature that has the highest

normalised information gain amongst all features.

In this work, we use the C4.5 algorithm as implemented in the Weka framework

(Hall et al., 2009; Witten and Frank, 2005), where it is named J48.

Random Forest

Random Forests (Breiman, 2001) are an ensemble learning method that operate by con-

structing multiple decision trees during training and decide the label for each instance

through a voting scheme amongst all the trees.

The multiple decision trees are built using a much smaller number of features than

in the original dataset. However, each tree has a different subset of features, which are

sampled randomly. Furthermore, each tree is trained and tested on a different subset

of instances from the initial dataset. In the end, all trees vote for each instance and the

majority decides on the final label. In this work, we use the implementation in Weka.
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Support Vector Machines

Support vector machines (Cortes and Vapnik, 1995) perform binary classification by

attempting to construct a p-dimensional hyperplane that optimally separates the data

into two categories. This is achieved by transforming the data into a higher dimensional

space by employing a kernel function, followed by solving the optimisation problem

given in Equation (3.2).

min
w,ξ,b

{
1
2
‖w‖2 +C

n

∑
i=1

ξi

}
(3.2)

subject to

yi(w · xi−b)≥ 1−ξi,

ξi ≥ 0,

i = 1,n

where xi is the point to be classified, yi is the label of point xi, w is the feature weight

vector, ξi is the error in the i-th instance, b determines the offset of the hyperplane

from the origin along the normal vector w, and C is a constant representing the overall

importance of errors.

In this work, we employ the LibSVM implementation (Chang and Lin, 2011), as,

unlike the SMO implementation in Weka, it is more efficient, contains various SVM

formulations and allows cross-validation.

Naı̈ve Bayes

Naı̈ve Bayes is one of the simplest probabilistic classification algorithms. It uses the

Bayes probability model for predicting the class probabilities of inputs.
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The candidate phrase ti is classified into c0, representing a non-causal phrase, or c1,

meaning a causal trigger. The class c∗ of the candidate phrase ti is computed as shown

in Equation 3.3.

c∗ = argmax
c j

P(c j|ti) = argmax
c j

P(c j)P(ti|c j)

P(ti)
(3.3)

In this work, we use the implementation in Weka.

3.2.2 Graphical models

Conditional Random Fields (Lafferty et al., 2001) are a type of discriminative undir-

ected probabilistic graphical model. They are frequently used in pattern recognition

and NLP, since they can predict a label for a single instance by taking into account the

context of that instance, unlike ordinary classifiers.

The input to the CRF algorithm is a sequence of tokens of text. This can be

provided by a pipeline of pre-processing methods taking raw text as input. Such a

pipeline is described in the following sections. The CRF algorithm then finds the most

probable label sequence y given an observation sequence x, as shown in Equation 3.4.

y = argmax
y

Pλ(y|x) (3.4)

where x consists of the sequence of tokens from the input text. The probability

Pλ(y|x) is calculated as shown in Equation 3.5.

Pλ(y|x) =
1
Zx
· exp

(
n

∑
i=1

m

∑
j=1

λ j f j(yi−1,yi,x, i)

)
(3.5)

Each feature function f j(yi−1,yi,x, i) is assigned an individual learned weight λ j

and multiplied by it. All m weighted feature functions are summated for each item

in the sequence, exponentiated and divided by the Zx normalisation factor for all state
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sequences.

An advantage of Conditional Random Fields is that they were designed to over-

come the label bias problem, which had already been recognised in the context of

neural network-based Markov models in the early 1990s. This occurs frequently in

other graphical models, such as Maximum Entropy Markov models (MEMMs), where

states with low-entropy transition distributions effectively ignore their observations.

In our research, we leveraged an existing implementation of CRF. More specific-

ally, we employ CRFSuite1, which provides fast training and tagging, simple data

formats and state-of-the-art training methods.

3.2.3 Semi-supervised machine learning

Semi-supervised learning refers to the use of both labelled and unlabelled data for

training. It contrasts with supervised learning, where the entire training data set is

labelled. Other names are learning from labelled and unlabelled data or learning from

partially labelled/classified data. Semi-supervised learning can be classified as either

transductive or inductive.

One the one hand, a learner is said to be transductive if it only works on the labelled

and unlabelled training data, and cannot handle unseen data. The early graph-based

methods are often transductive. On the other hand, inductive learners can naturally

handle unseen data. It is important to notice that, under this naming convention,

transductive support vector machines (TSVMs) are in fact inductive learners, because

the resulting classifiers are defined over the whole space and are therefore capable of

handling unseen data. The name TSVM originates from the initial intention to having

them work only on the observed data, although people now use them for induction as

well.

1http://www.chokkan.org/software/crfsuite/

http://www.chokkan.org/software/crfsuite/
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Whilst labels are hard to obtain, unlabelled data are abundant, and therefore semi-

supervised learning is an appropriate method of reducing human labour and improving

accuracy. Although the domain experts spend significantly less time in annotating and

creating labelled data, a reasonable amount of effort needs to be invested in the design-

ing of good models, features, kernels and similarity functions for semi-supervised

learning. Such effort is more critical than for supervised learning, since the lack of

labelled training data will affect the final performance.

In a semi-supervised learning setting, we modelled the problem as a self-training

task. The main reason for including this method is the limited amount of existing

gold standard data. Self-training has been previously used in NLP applications, such

as word sense disambiguation (Yarowsky, 1995), identification of subjective nouns

(Riloff and Wiebe, 2003) and emotions in dialogues (Maeireizo et al., 2004). Nev-

ertheless, to the best of our knowledge, it has not been applied in discourse (causal)

relation recognition.

Require: labelled data Λ, unlabelled data ϒ, confidence threshold τ

Ensure: labelled data Λ

1: while |ϒ|> 0 do
2: train model µ on Λ

3: classify ϒ using µ
4: for all x ∈ ϒ do
5: if µcon f (x)> τ then {confidence of classification greater than threshold}
6: Λ← Λ∪ (x,µ(x))
7: ϒ← ϒ− x
8: end if
9: end for

10: end while

Figure 3.2: Pseudocode for identifying causal relations using SSL.

The entire learning process is included in Figure 3.2, whilst a visual representation

is depicted in Figure 3.3. We have started the learning process with a small amount of

labelled data, Λ, for classifier training. This results in the creation of a classification

model, µ. Then, the unlabelled data, ϒ, is classified using µ. From these newly obtained
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Figure 3.3: Self training approach

classifications, only those instances that have a classification confidence higher than a

pre-set threshold τ are considered gold and are added to the labelled data as classified

by µ. (Note that this might be different from the gold-standard label in the original

corpus.) The rest are kept as unlabelled. If there are no instances that are classified

with a confidence greater than τ, the model would come to a blocked state. Thus, we

apply some simple heuristics to select several instances to be added to the labelled

data. The process is repeated until all instances are classified.

3.3 Statistical and probabilistic methods for evaluation

This section describes briefly the main statistical concepts that are used throughout

this work. We are interested in measuring how much human experts agree with each

other in their decisions, as well as how well the models perform against gold standard

data. Moreover, we look at statistical significance tests, as we want to know whether

increases or decreases in performance occur by chance alone or not.
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3.3.1 Inter-annotator agreement evaluation

Evaluating the agreement of multiple human annotators is an essential task to be per-

formed after any annotation effort. This establishes both the quality of the resulting

work and a possible upper-bound for the performance of automatic systems.

Cohen’s kappa (κ) is a statistical measure of agreement between two annotators

who each classify N items into C mutually exclusive categories (Carletta, 1996). Since

κ takes into account the agreement occurring by chance, it is generally thought to be

a more robust measure than simple percent agreement calculation. Kappa statistic is

calculated as defined in Equation 3.6.

κ =
P(a)−P(e)

1−P(e)
(3.6)

where P(a) is the observed agreement rate among annotators, and P(e) is the es-

timated probability of the annotators agreeing by chance, using the observed data to

calculate the probabilities of each observer randomly saying each category. If the an-

notators are in complete agreement, then κ = 1. If there is no agreement among the

annotators, other than what would be expected by chance (as defined by P(e)), then

κ = 0.

Both Landis and Koch (1977) and Fleiss (1981) suggest that κ values of 0 indicate

no agreement, 0-0.20 slight agreement, 0.21-0.40 fair agreement, 0.41-0.60 moderate

agreement, 0.61-0.80 substantial agreement, and 0.81-1 almost perfect agreement.

3.3.2 Performance evaluation

For performance evaluation purposes, we have used the standard metrics, namely pre-

cision, recall and F-measure. Precision measures the ratio of correct answers amongst

those returned, whilst recall measures the ratio of correct answers amongst those that

should have been returned. These two measures can be computed according to the
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number of true positives (TPs), false positives (FPs) and FNs, which are counted by

comparing the output of an automatic method (A) to a reference set of answers, usually

gold standard data (R).

• TP represents the number of instances present in both the automatic answer and

the reference data, i.e. |A∩R|.

• FP represents the number of instances that are present in the answer, but not in

the reference data, i.e. |A−R|.

• FN represents the number of instances that are not present in the answer, but are

in the reference data, i.e. |R−A|.

Thus, precision is computed according to equation 3.7, whilst recall to equation 3.8.

P =
T P

T P+FP
(3.7)

R =
T P

T P+FN
(3.8)

Based on the above formulas for precision and recall, F-measure is defined as in

equation 3.9.

Fβ = (1+β
2) · P ·R

β2 ·P+R
(3.9)

The constant β represents the weight balance between precision and recall. We

have used β = 1 (and thus use the notation F1), since we want to balance precision

and recall. A β = 2 would give more weight to precision, whereas β = 0.5 gives more

weight to recall.

By extension, F-measure can be computed directly from TP, FP and FN, as shown

in equation 3.10.
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F1 =
2 ·T P

2 ·T P+FP+FN
(3.10)

Due to its formulation, F-measure assigns equal weights to all instances in a clas-

sification task. However, in NLP, it is very common for the classification tasks to be

performed on un-balanced datasets. This is due to the nature of language itself, where

words or phenomena usually occur with a Zipfian distribution. The result of this is a

bias of F-score towards the majority class. Computed in this setting, F-score is named

micro-average F-score. To overcome this issue, it is possible to compute the macro-

average F-score, which averages the precision and recall per class, and then computes

the F-score on these two averages, as in equation 3.13.

Pav =
Pi

N
(3.11)

where Pi is the precision for each class i, and N is the number of classes.

Rav =
Ri

N
(3.12)

where Ri is the recall for each class i, and N is the number of classes.

maFβ = (1+β
2) · Pav ·Rav

β2 ·Pav +Rav
(3.13)

3.3.3 Statistical significance

Statistical significance represents the probability that an effect occurs not due to just

chance alone. Statistical hypothesis testing is used to determine the statistical signific-

ance of a result.

Student’s t-test is a statistical hypothesis test in which the test statistic follows a

Student’s t distribution if the null hypothesis is supported. This test can be used to
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decide whether two sets are or are not significantly different from each other, as shown

in equation 3.14.

t =
X̄1− X̄2

sX1X2 ·
√

2
n

(3.14)

where

sX1X2 =

√
1
2
(s2

X1
+ s2

X2
)

The result of this t-test leads to a decision on the rejection or acceptance of the

null hypothesis based on a pre-defined low probability threshold, called p-value, often

coupled to a significance or alpha (α) level of 5%. If the p-value is found to be less than

5%, then the result would be considered statistically significant and the null hypothesis

is rejected.

The analysis of variance (ANOVA) is a generalised form of the t-test, as it can

be applied to more than two groups at the same time. This is better for testing three

or more groups of observations since performing multiple t-tests results in a higher

chance of committing type I errors2.

3.4 Text pre-processing and NLP techniques

This section describes the text pre-processing techniques that are used in detecting

discourse causality.

2A type I error is the incorrect rejection of a true null hypothesis, which is equivalent to a false
positive.
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3.4.1 Text pre-processing

The first step of pre-processing consists in sentence segmentation, which deals with

splitting the raw text in the document into separate sentences, thus allowing sentence-

by-sentence processing in the subsequent steps.

Since all subsequent processing is based on this task, it is necessary to obtain an ac-

curacy as high as possible. Thus, six different sentence splitters were tested. These are

listed in Table 3.1, together with specifications regarding whether they are statistical

or rule-based, and whether they are designed for the biomedical domain or not.

Tool ML/Rule BioMed
Genia SS ML Y
LingPipe ML Y
OpenNLP ML N
RASP R N
NaCTeM R Y
UIMA R Y

Table 3.1: Sentence splitters.

The first three sentence splitters use machine learning models, whilst the last three

contain rules to determine sentence boundaries. In contrast to the OpenNLP and RASP

systems, which were designed for general language, the other four were built specific-

ally for the biomedical domain, either with models obtained from the MEDLINE or

GENIA corpora, or with rules encoding biomedical specificities.

GENIA Sentence Splitter3 (Sætre et al., 2007) is a sentence splitter optimised for

biomedical texts. The classification model is based on a supervised learning method

using maximum entropy modelling, which is trained on the GENIA corpus. This sen-

tence splitter outputs many false positive boundaries for abbreviated words, either gen-

eric (e.g., i.e., Fig., Dr., etc.) or biomedicine specific (i.p. injection, hr.). Moreover,

it gives false negatives in the case of lowercase letter words that start the sentence

3http://www.nactem.ac.uk/y-matsu/geniass/

http://www.nactem.ac.uk/y-matsu/geniass/
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(mTOR, pS6, eIF-4E, cDNA, etc.).

LingPipe4 is a toolkit for processing text using machine learners. The sentence

splitter incorporated into LingPipe is trained with a MEDLINE sentence model. The

small number of errors occur on abbreviations, such as e.g., i.e., Fig., Dr.. Furthermore,

LingPipe has errors due to missing closing parentheses and brackets in the source

documents. However, these can be considered as not actual splitter errors, but human

typing mistakes.

OpenNLP5 is an open-domain machine learning based toolkit for the processing of

natural language text. Errors occur very frequently in the sentence splitter included.

Some of the errors are domain independent (false positives at abbreviations such as

Fig., Dr., and false negatives in sentences ending in numbers), whilst other are specific

to biomedicine (sentences starting with lowercase words cDNA or containing abbrevi-

ated words granzyme B.).

RASP6 Briscoe et al. (2006) is another domain-independent, robust parsing system

for English. Although it was not designed for a specific domain, the sentence split-

ter performs with a high accuracy in the biomedical domain. Since it is a rule-based

system, the obvious problematic cases are abbreviations. It is very difficult to decide

whether a sentence boundary follows an abbreviation or not. Erroneous cases include

mainly units of measure (hr., ml., mg., rpm.) and abbreviated biomedical entities (gran-

zyme B., cyclin A., antifarm A., DNAse I.).

The sentence splitter developed at NaCTeM7 employs heuristic rules for identify-

ing boundaries of sentences and paragraphs. However, it fails to recognise sentences

which start with lowercase words or words beginning with Greek characters (β-casein),

as well as several common abbreviations, such as Fig. or Drs.

4http://alias-i.com/lingpipe
5http://incubator.apache.org/opennlp/
6http://ilexir.co.uk/applications/rasp/download/
7http://text0.mib.man.ac.uk:8080/scottpiao/sent detector

http://alias-i.com/lingpipe
http://incubator.apache.org/opennlp/
http://ilexir.co.uk/applications/rasp/download/
http://text0.mib.man.ac.uk:8080/scottpiao/sent_detector
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UIMA8 contains a rule-based component which is dedicated to sentence splitting.

Like NaCTeM’s splitter, it misses sentence boundaries if the sentence starts with lower-

case or Greek characters and numbers, along with general abbreviations, such as St.,

vs., Co. and Drs.

Table 3.2 presents the performance of the six sentence splitters against a gold cor-

pus of 7829 sentences. The performance is expressed as the rate of TP, standing for

correctly identified sentence boundaries, FP, i.e. erroneous sentence boundaries, FN,

corresponding to missed sentence boundaries, and F-score. For our final sentence split-

ting, we have considered the intersection of the six splitters as correct, and all differ-

ences in splitting have been manually treated.

Tool TP FP FN F1

Genia SS 97.46% 4.44% 2.54% 96.54%
LingPipe 98.62% 0.66% 1.38% 98.97%
OpenNLP 94.43% 3.46% 5.57% 95.44%
NaCTeM 95.78% 4.59% 4.22% 95.60%
RASP 98.68% 0.77% 1.32% 98.95%
UIMA 95.98% 2.97% 4.02% 96.48%

Table 3.2: Performance of sentence splitters.

Following sentence splitting, the process of tokenisation determines token bound-

aries, such as words, numbers and punctuation in text. In biomedical text, this step

is much more complicated than in general language text due to biomedical jargon.

Example (3.5) shows a tokenised sentence. As can be noticed, the array of charac-

ters 2,3,4,9-Tetrahydro-1H-β-carboline is a single token, although it contains differ-

ent types of characters, including Latin letters, Greek letters, numbers, commas and

hyphens, whilst 1,2,3,4-Tetrahydro-9H-pyrido[3,4-b]indole contains brackets too. Al-

though in general language the change in the type of character usually means a token

boundary, in biomedical text this assumption is false. Additionally, the length of a

8http://uima.apache.org/index.html

http://uima.apache.org/index.html
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token is much larger in biomedical text, therefore a model trained to consider length in

general language will perform worse on biomedical text.

(3.5) [2,3,4,9-Tetrahydro-1H-β-carboline] [acid], [also] [known] [as] [1,2,3,4-Te-

trahydro-9H-pyrido[3,4-b]indole], [is] [a] [natural] [organic] [derivative] [of] [β-

carboline.].

In this research, we use the GENIA tokeniser (Tsuruoka et al., 2005) trained on

MEDLINE.

3.4.2 Shallow NLP pre-processing

Shallow NLP techniques help in the analysis of morphological features of text, not

providing syntactic or semantic information of any kind. These pre-processing steps

are performed by the Enju parser (Miyao and Tsujii, 2008), which implicitly employs

the GENIA tagger models trained on MEDLINE.

Part-of-speech tagging deals with assigning grammatical tags, such as noun and

verb, to each token, as in example (3.6). This is mostly helpful in generalising in

the cases where synonyms are used, since the grammatical category does not usually

change.

(3.6) Acid[NN] activation[NN] of[IN] the[DT] two-component[JJ] regulatory[JJ]

system[NN] of[IN] Salmonella[NNP] enterica[NNP]

Another important step is lemmatisation, which is the process of transforming the

words into their dictionary base forms. This generalises the texts, since inflected verbs
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and nouns are all normalised to the same value, their lemma. For instance, both activ-

ates and activated are changed into activate.

3.4.3 Deep NLP pre-processing

Deep NLP techniques are used to extract and analyse syntactic and semantic informa-

tion from text. Superficial techniques, like those previously mentioned, cannot capture

complex details needed in order to be able to discover causal relations and interpret

discourse.

Extracting dependency relations from text returns syntactic relationships between

pairs of words in a sentence. These are useful in cases where the syntax of a sentence

is changed due to rephrasing, as the dependency relations should remain the same.

Syntactic constituency extraction allows the comparison of n-grams at a syntactic

level and at multiple levels in the parse tree. Unlike simpler n-gram comparison that

considers only exact words, this method generalises very well to capture sequences of

syntactic categories. Both these relations are extracted with the help of the Enju parser.

However, syntactic analysis cannot capture information about the meaning of words

in their context, and semantic analysis is necessary. Named entity recognition is the

task of identifying and extracting named entities from text. Named entities are less

likely to be replaced by others in the same context, whilst the syntax and functional

words can change to reflect the same meaning. However, synonyms of named entities

can be used and a mapping to unique identifiers is necessary for disambiguation pur-

poses. Therefore, by analysing a large number of types of named entities, it is possible

to produce significant relations between spans of text, including causality.

There exist a large number of automatic named entity recognisers, most of which

are trained on specific classes of entities. For instance, OSCAR (Corbett and Copes-

take, 2008; Jessop et al., 2011) works mostly in the Chemistry domain, recognising
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chemicals, reactions etc., whilst MetaMap9 maps concepts to the Unified Medical Lan-

guage System (UMLS) vocabulary. A wide array of named entity information can be

obtained by applying several such systems, e.g., MetaMap, OSCAR, NeMine (Sasaki

et al., 2008) and Europe PMC10, so all these will be used in our methodology.

The named entities that have been recognised in the previous step can be further

leveraged in order to extract events between them. For instance, one might be inter-

ested in the activation of particular genes under specific conditions, or the mechanism

of dysregulation of apoptosis in cancer. This type of knowledge can be produced by

EventMine (Miwa et al., 2012b), a machine learning-based pipeline system, that deals

with extracting biomedical events from documents that are already annotated with vari-

ous named entity information, such as genes and proteins. Given appropriate training

data, EventMine can be trained to extract many different types and structures of events.

The core system consists of four detection modules, which operate on the output of

syntactic parsers.

3.5 Summary

This chapter described the general framework for our proposed discourse causal rela-

tion recognition in the biomedical domain. Additionally, we have reviewed and briefly

explained some concepts that will be used throughout this work. Some core concepts

of machine learning have been presented, showing the how the process of learning

occurs. Moreover, we listed and defined the evaluation metrics that are used in this

analysis. The chapter concluded with a description of both shallow and deep NLP

pre-processing techniques that are incorporated in the causality detection framework.

9http://metamap.nlm.nih.gov/
10http://europepmc.org/

http://metamap.nlm.nih.gov/
http://europepmc.org/
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Chapter 4

BioCause

This chapter provides an overview of the process through which the BioCause cor-

pus has been created. It starts with a description of the data source selection for the

annotation effort and the experimental justification of selecting a single biomedical

subdomain. We undertake the first analysis of the effectiveness of semantics alone in

distinguishing biomedical subdomains and show that classifiers trained on named en-

tity types perform very well in identifying the subdomain of an article. The corpus

used for these experiments and analysis is not related to the Biocause corpus.

We then provide a description of the employed annotation scheme for the creation

of BioCause and the training of the annotators. This is followed by detailed discussions

on the characteristics of the corpus, causal triggers and causal arguments, together with

an in-depth evaluation of inter-annotator agreement. Finally, a brief comparison of the

annotation results between BioCause and the BioDRB is included.

4.1 Data source for BioCause

There are three main issues that need to be considered in order to select appropri-

ate data for manual annotation and further using this annotation for the training of

99
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automatic causality recognition systems. These relate to dissimilarities between bio-

medical sublanguages, the interaction of discourse annotations with other semantic

mark-up, and the differences between abstracts and full-body texts. These issues are

all discussed in what follows.

First, past work has shown that there are significant differences between various

biomedical sublanguages at the levels of syntax and shallow discourse structure (Lip-

pincott et al., 2011). Therefore, we extend this line of research and show in Section 4.2

that this hypothesis holds true even in the case of deeper semantics, such as named en-

tity types. The documents in the corpus used for this experiment are not related to those

in the BioCause corpus, but merely form the basis for the experiments supporting our

decision. This is due to the fact that discourse relations, including causality, inherently

belonging to semantics, are closely related to the named entities and events present in

text. For instance, whilst in a disease subdomain causality would exist between patho-

logic agents, diseases, symptoms and drugs, in a pharmacological domain these rela-

tions would connect various chemical molecules, chemical reactions, or side effects,

to name a few. We can conclude that linguistic observations at the lexical, syntactic

and semantic levels made on one sublanguage may not necessarily be valid on another.

Thus, we believe that attempting to train a machine-learning causality detection sys-

tem on a mixture of subdomains, especially when the amount of manually annotated

data is limited, would be detrimental to the learning process. Although we recognise

that this choice is associated with high domain specificity, it is preferable to obtain a

higher performance in a specific subdomain than a lower performance in a more gen-

eral domain or a mixture of subdomains. Nevertheless, considering these differences,

switching to a different subdomain should be simply a matter of re-training machine

learners and re-creating the causality model. One can extend existing causality models

by adding features that have not been encountered before. These would most probably

be semantic features, such as a new typology for named entities and events, since these
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are specific to subdomains.

Second, discourse causality, as a semantic relation, is inherently dependent on the

named entities and events that are present in text. Hence, the errors in automatically

recognising these essential bio-annotations can propagate in the processing pipeline

and reflect negatively in the overall performance of recognising causality relations.

Although the recognition of certain named entity types, such as proteins and genes, can

currently reach performances of over 90% F-score, other named entity (NE) types and

most event types are still at an unreliable level for inclusion in pipelines of discourse

parsing. For instance, events can now be correctly identified with 50-55% F-score,

depending on the complexity of each type of event (Nédellec et al., 2013a). Therefore,

in order to isolate the task of recognising causality from that of recognising entities and

events, gold standard named entity and event annotations are required. The effect of

automatic named entity recognition (NER) and event extraction can be subsequently

studied by replacing the gold standard annotations with automatic ones.

Finally, previous research has shown that although the information density is highest

in abstracts, information coverage is much greater in full texts than in abstracts. Thus,

these may be a better source of biologically relevant data (Schuemie et al., 2004; Shah

et al., 2003). Therefore, it is important to develop a resource comprising full text art-

icles in which to annotate discourse causality and extend previous work by analysing

the distribution of causal relations between abstracts and text bodies.

For all of these three reasons, the causality annotation for BioCause is added on

the top of existing event annotations from the BioNLP Shared Task (ST) on Infec-

tious Diseases (ID) (Pyysalo et al., 2011). Whilst in other document sets, such as in

those used for subdomain analysis (Mihăilă et al., 2012), entity and event annotations

are automatically created by NER and event extraction systems such as NERsuite1 or

1http://nersuite.nlplab.org/

http://nersuite.nlplab.org/
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EventMine (Miwa et al., 2010), the BioNLP ST ID task has annotations created manu-

ally by biomedical experts with experience in annotation efforts. Furthermore, the

BioNLP ST ID corpus has a large size (19 documents, 1̃00K words) and is comprised

of full-text journal articles pertaining to a specific topic – infectious diseases.

4.2 Subdomain analysis

Whilst a multitude of tools and resources has been introduced in domain-specific NLP

efforts for the recognition of entity mentions in text, a high proportion of these was

trained and evaluated on popular corpora such as BioInfer (Pyysalo et al., 2007),

GENETAG (Tanabe et al., 2005), GENIA (Kim et al., 2008), and PennBioIE (Kulick

et al., 2004), as well as shared task corpora from BioCreative I, II, III (Arighi et al.,

2011) and BioNLP 2009, 2011 and 2013 (Kim et al., 2011; Nédellec et al., 2013b).

Most of these corpora consist of documents from the molecular biology subdomain.

However, previous studies have established that different biomedical sublanguages ex-

hibit linguistic variations.

The work of Harris (1968) introduced a formalisation of the notion of sublanguage,

which he defined as a subset of general language. According to his theory, it is possible

to process specialised languages, since they have a structure that can be expressed in

a computable form. Several subsequent works on the study of biomedical languages

have substantiated his theory, including the work of Sager et al. (1987) on pharmaco-

logical literature and lipid metabolism, and that of Friedman et al. (2002) analysing the

properties of clinical and biomolecular sublanguages.

Taking a different angle, Stetson et al. (2002) uncovered the differences between

“signout” notes and other medical notes (e.g., ambulatory clinic notes and discharge

summaries) in terms of three aspects: discourse length, abbreviation use and abbrevi-

ation ambiguity. Based on their findings, “signout” notes are shorter and use a higher
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number of less ambiguous abbreviations.

Verspoor et al. (2009) measured the lexical and structural variation in biomed-

ical Open Access journals and subscription-based journals, concluding that there are

no significant differences between them. Therefore, a model trained on one of these

sources can be used successfully on the other, but only as long as the subject is main-

tained. Furthermore, they compare a mouse genomics corpus with two reference cor-

pora, one composed of newswire texts and another of general biomedical articles. In

this case, unsurprisingly, significant differences are found across many linguistic di-

mensions. Relevant to our study is the comparison between the more specific mouse

genome corpus and the more general biomedical one: whilst similar from some points

of view, such as negation and passivisation, they differ in sentence length and semantic

features, such as the presence of various named entities.

These experiments, in contrast, investigate the differences and similarities between

any two of twenty biomedical sublanguages at the level of named entities. Examining

the distributions of different named entity types across several categories, our work is

subtly similar to that of Cohen et al. (2010), who looked at the distributional variations

of semantic classes in their effort to characterise the differences between abstracts and

full texts. Four semantic classes, namely, Gene, Mutation, Drug and Disease, were

taken into account in their study. Except for Gene, significant differences in terms of

densities per thousand words have been observed between abstracts and full texts.

Also relevant is the work of Lippincott et al. (2011) in which a clustering-based

quantitative analysis of the linguistic variations across 38 different biomedical sublan-

guages was presented. They investigate four dimensions relevant to the performance

of NLP systems, i.e. vocabulary, syntax, semantics and discourse structure. With re-

gard to semantic features, the authors induced a topic model using Latent Dirichlet

Analysis (LDA) for each word, and then extended the model to documents and sub-

domains according to observed distributions. Their conclusion is that an unsupervised
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machine learning system is able to create robust clusters of subdomains, thus proving

their hypothesis that the commonly used molecular biology subdomain is not repres-

entative of the domain as a whole. In contrast, we examine the differences and similar-

ities between biomedical sublanguages at the level of named entities, using supervised

machine learning algorithms and on a different number of subdomains.

It follows that tools which were developed and evaluated on corpora derived from

one subdomain might not always perform as well on corpora from another subdomain.

Understanding these linguistic variations is essential to domain adaptation of natural

language processing tools, e.g., cross-domain instance weighting, ensemble learning

and semi-supervised learning (Jiang, 2008).

We initially created a corpus of documents from various biomedical subdomains,

from which we then extracted named entity information automatically. The NEs were

later transformed into input for machine learning algorithms, as discussed below.

4.2.1 Document Collection

A corpus was created by first searching the National Library of Medicine (NLM) Cata-

log2 for journals which are in English and available via PubMed Central (PMC), and

then narrowing down the results to those whose Broad Subject Term attributes contain

only one biomedical subdomain name. Since we are interested in full-text articles, we

retained only those journals which are available within the PubMed Open Access sub-

set3. After obtaining the total number of documents across different journals in each

subdomain, we retained only those subdomains with at least 400 documents.

Using the PMC identifiers of all articles under the 20 remaining subdomains, we

2http://www.ncbi.nlm.nih.gov/nlmcatalog
3http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist
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Subdomain Shortname No. of words
Allergy and Immunology Allergy 0.9M
Biology Biology 3.3M
Cell Biology CellBio 3.2M
Communicable Diseases Communi 1.4M
Critical Care Critica 1.6M
Environmental Health Environ 1.9M
Genetics Genetic 3.0M
Health Services Research HealthS 1.7M
Medical Informatics Medical 2.6M
Medicine Medicin 2.1M
Microbiology Microbi 2.6M
Neoplasms Neoplas 2.2M
Neurology Neurolo 2.3M
Pharmacology Pharmac 1.8M
Physiology Physiol 3.5M
Public Health PublicH 1.7M
Pulmonary Medicine Pulmona 1.9M
Rheumatology Rheumat 1.9M
Tropical Medicine Tropica 1.7M
Virology Virolog 2.3M

Table 4.1: The 20 subdomains in the corpus, their shortnames and number of words in
the corpus subset.

retrieved documents from Europe PMC4. For each subdomain, we randomly selec-

ted 400 documents, which contain automatically annotated named entities. Since the

retrieved documents are in XML format, several unusable fragments were removed

before converting them to plain text. Examples of such fragments are article metadata

(authors, affiliations, publishing history), tables, figures, and references. Table 4.1

shows the 20 subdomains and the approximate size of the corresponding corpus subset

(in number of words) after the pre-processing step.

4http://europepmc.org/

http://europepmc.org/
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4.2.2 Tagging of Named Entities

We formed a silver standard corpus by harmonising the annotations of multiple re-

sources and named entity recognisers. This method was chosen due to the fact that

there are no gold standard annotations available for such a large number of full-text

articles.

To create the named-entity-tagged corpus, we used a simple method that augments

the named entities present in the Europe PMC articles with the output of two NER

tools, i.e. NeMine and OSCAR. In Europe PMC, only six named entity types are

annotated; with the use of NeMine and OSCAR, however, we obtained a total of 19

different classes of entities, summarised in Table 4.2.

Named entities in the Europe PMC database were identified using NeMine (Sasaki

et al., 2008), a dictionary-based statistical named entity recognition system. This sys-

tem was later extended and used by Nobata et al. (2009) to include more types, such

as phenomena, processes, organs and symptoms. We used this most recent version of

the software as our second source of more diverse entity types.

The Open-Source Chemistry Analysis Routines (OSCAR) software (Corbett and

Copestake, 2008; Jessop et al., 2011; Kolluru et al., 2011) is a toolkit for the recog-

nition of named entities and data in chemistry publications. Currently in its fourth

version, it uses three types of chemical entity recognisers, namely regular expressions,

patterns and Maximum Entropy Markov models.

Nevertheless, due to the combination of several NER systems, some NE types are

more general and comprise other more specific types, therefore leading to double an-

notation. For instance, the Gene—Protein type is more general than both Gene and

Protein, so only Gene or Protein will be kept in case they overlap with Gene—Protein.

The same applies to the Chemical molecule type, which is a hypernym of Gene, Pro-

tein, Drug and Metabolite. In the case of multiple annotations over the same span of
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Type Europe PMC NeMine OSCAR
Gene X X
Protein X X
Gene—Protein X
Disease X X
Drug X X
Metabolite X X
Bacteria X
Diagnostic process X
General phenomenon X
Indicator X
Natural phenomenon X
Organ X
Pathologic function X
Symptom X
Therapeutic process X
Chemical molecule X
Chemical adjective X
Enzyme X
Reaction X

Table 4.2: Named entity types and their source.

text, we removed the more general Chemical molecule type, so that each entity is la-

belled only with the more specific category assigned. Although this type of multiple

annotations was frequent, we did not encounter any case of contradicting annotations

over the same span of text.

This corpus is available upon request from the author.

4.2.3 Experimental Setup

Based on the corpus previously described, we created a data set for supervised machine

learning algorithms. Every document in the corpus was transformed into a vector con-

sisting of 19 features. Each of these features corresponds to an entity type in Table 4.2,

having a numeric value ranging from 0 to 1. This value, θ, represents the ratio of the

specific entity type to the total number of named entities recognised in that document,
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as shown in Equation 4.1.

θ =
ntype

N
(4.1)

where ntype represents the number of named entities of a certain type in a document

and N represents the total number of named entities in that document. Each vector was

labelled with the name of the subdomain to which the respective document belongs.

From the twenty subdomains in the corpus, we formed all possible combinations

of two (thus resulting in a total of 190 pairs), for each of which we built a binary

classifier. Weka (Witten and Frank, 2005; Hall et al., 2009) was employed as the ma-

chine learning framework, due to its large variety of classification algorithms. We

experimented with a large number of classifiers, including J48, JRip, Logistic, Ran-

domTree, RandomForest, SMO and combinations of these with AdaBoost. Evaluation

was performed using the 10-fold cross-validation technique. RandomForest obtained

the best F-score in 86 out of the 190 subdomain pairs, whilst the best result in 98 cases

was obtained by AdaBoost in combination with other algorithms (JRip, RandomTree,

Logistic). The remaining pairs were best classified by JRip (4 pairs) and Logistic (2

pairs). We therefore decided to present only the results using RandomForest.

4.2.4 Feature Evaluation

To confirm the value of the selected features in classifying documents into subdo-

mains, we performed the chi-squared (χ2) test of independence between each named

entity and each pair of subdomains. Chi-squared is defined in Equation 4.2, whilst the

expected value of the observation is computed according to Equation 4.3.

χ
2 =

r

∑
i=1

c

∑
j=1

(Oi, j−Ei, j)
2

Ei, j
(4.2)
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Figure 4.1: A heatmap showing the Frobenius norm based on the chi-squared vector
for each pair of subdomains.

Ei, j =
∑

c
k=1 Oi,k ∑

r
k=1 Ok, j

N
(4.3)

where r and c are the number of rows and columns, respectively, in the contingency

table.

The values are obtained by applying the ChiSquare Attribute Evaluator that is im-

plemented in Weka. Each result contains a vector of 19 chi-squared scores, one for

each feature. To visualise this graphically, we computed the Frobenius norm of the

vector of chi-squared values for each subdomain pair. The Frobenius norm is defined

as the square root of the sum of the absolute squares of its elements, as seen in Equa-

tion 4.4 (Golub and van Van Loan, 1996).

‖A‖F =
√

AA∗ =

√
m

∑
i=1

n

∑
j=1
|ai j|2 (4.4)
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where A
∗

denotes the conjugate transpose of A, and m and n are the size of the matrix

A.

The resulting heatmap is included as Figure 4.1. The higher the value of the

Frobenius norm, the better is the combination of features for distinguishing between

the two subdomains in the pair.

To gain an insight into which features contribute most or least to the overall task,

the sum of the chi-squared statistic for each feature was taken over all pairs of subdo-

mains. We present the mean values obtained from this exercise in Table 4.3.

Type Mean
Disease 195.06
Gene—Protein 145.94
Protein 140.83
Metabolite 112.17
Reaction 108.43
Chemical molecule 87.84
Drug 82.57
Gene 78.03
Indicator 63.10
Therapeutic 56.09
Organ 35.78
Enzyme 30.77
Diagnostic process 24.30
Chemical adjective 19.07
Symptom 16.46
Bacteria 10.57
Natural phenomenon 7.07
Pathologic function 5.79
General phenomenon 0.34

Table 4.3: Mean values of the χ2 statistic for each feature over all pairs of subdomains.

4.2.5 Classifier Results

From the 20 subdomains, a binary classifier was built for each possible subdomain pair,

as discussed in the previous section. The heatmap in Figure 4.2 shows the performance



4.2. SUBDOMAIN ANALYSIS 111

A
lle
rg
y

B
io
lo
gy

C
el
lB
io

C
om
m
un
i

C
rit
ic
a

E
nv
iro
n

G
en
et
ic

H
ea
lth
S

M
ed
ic
al

M
ed
ic
in

M
ic
ro
bi

N
eo
pl
as

N
eu
ro
lo

P
ha
rm
ac

P
hy
si
ol

P
ub
lic
H

P
ul
m
on
a

R
he
um
at

Tr
op
ic
a

V
iro
lo
g

Allergy

Biology

CellBio

Communi

Critica

Environ

Genetic

HealthS

Medical

Medicin

Microbi

Neoplas

Neurolo

Pharmac

Physiol

PublicH

Pulmona

Rheumat

Tropica

Virolog
50

55

60

65

70

75

80

85

90

95

Figure 4.2: A heatmap showing the performance (in F-score) of each classifier built
for each pair of subdomains.

of each of the 190 pairs in terms of F-score. This heatmap is non-symmetric, in the

sense that the F-score of subdomains A and B is different from that of B and A. All

F-scores presented in this heatmap are computed with respect to the subdomain on the

Y-axis (left) and against the subdomains on the X-axis (top).

A cell with a dark shade of grey corresponds to a pair of subdomains which are

discernible from each other by a classifier trained on named entity type frequencies.

Cell Biology and Pharmacology, for example, are found to have very distinct named

entity type frequencies, as evidenced by the very good performance (97.15% F-score)

of the classifier for them.

In contrast, a lighter tint of grey means that the corresponding pair consists of

subdomains which are very similar in their named entity type frequencies. Such is true

in the case of Communicable Diseases and Tropical Diseases, for instance, in which

the classifier obtained an F-score of 56.63%.
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Subdomain Similar subdomains
Biology Cell Biology, Genetics, Microbiology
Communicable Diseases Tropical Diseases
Medicine Pulmonary Medicine
Health Services Research Public Health
Genetics Microbiology
Pulmonary Medicine Rheumatology
Microbiology Virology

Table 4.4: Similar subdomains; the subdomains listed in the second column can be
considered as highly similar to the corresponding subdomain in the first column based
on their named entity type frequencies.

4.2.6 Analysis

From these results, we are able to enumerate the subdomains which can be considered

as different or similar to a subdomain of interest in terms of frequencies of their named

entity types. In obtaining the most similar subdomains, we looked at the pairs whose

F-score is at the lower end of the scale. There are no pairs for which the F-scores

are between 50 to 55%, and only two pairs fall within the 55-60%-range. We hence

used as threshold an F-score of 65% (i.e., subdomains in pairs for which the F-score

of the classifier is 65% and below were considered similar). In contrast, we looked at

the other end of the scale (i.e., pairs for which the F-score of the classifier is 95% and

above) to obtain a listing of the most dissimilar subdomains.

Findings in Table 4.4 suggest that when building NLP tools (e.g., named entity

recognisers) for documents under the subdomain in the first column, one might trivi-

ally adapt those developed for the corresponding subdomains in the second column. A

named entity recogniser for the Microbiology subdomain, for example, might be trivi-

ally applied to Virology documents. However, it might also be the case that there are

no named entity recognisers built yet that are specialised for these subdomains.

In contrast, those built for the subdomains in the second column of Table 4.5 might

need further training or adaptation in applying them to the corresponding subdomain



4.2. SUBDOMAIN ANALYSIS 113

Subdomain Dissimilar subdomains
Biology Public Health, Health Services Research
Cell Biology Critical Care, Communicable Diseases, Pharmacology,

Public Health, Health Services Research
Genetics Public Health, Health Services Research
Health Services Research Microbiology, Neoplasms, Physiology,

Rheumatology, Virology
Neoplasms Public Health
Physiology Public Health

Table 4.5: Dissimilar subdomains; the subdomains listed in the second column can be
considered as different from the corresponding subdomain in the first column based on
their named entity type frequencies.

in the first column, as these tools might have been trained on documents where the

named entity types which occur frequently in the subdomain of interest are sparse. For

instance, there is no certainty that NER tools developed for the Pharmacology domain

will work well on Neoplasms documents.

We computed the mean along each row and column of the heatmap, and determ-

ined that both the row and column corresponding to Medicine produced the minimum,

while Pharmacology has the maximum. This finding suggests that Medicine is the bio-

medical subdomain which is most “alike” every other subdomain, irrespective of the

direction F-score is computed in, whilst Pharmacology is the least one. In developing

a named entity recogniser for Pharmacology, one has to consider its differences with

other biomedical subdomains in terms of named entity type distributions.

4.2.7 Summary

We formed a silver standard corpus from 20 biomedical subdomains and built a binary

classifier for each possible subdomain pair. From the results, we have observed that

most subdomains are highly discernible from each other by a classifier, in terms of
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named entity type frequencies. This proves the fact that semantics too plays an import-

ant role in characterising a subdomain and its corresponding sublanguage, exhibiting

slight variations to which machine learners are sensitive. However, there are also sev-

eral cases when a classifier is unable to distinguish between subdomains, implying that

they have highly similar named entity type distributions. This usually happens when

the two subdomains are in a IS-A relation, such as Cell Biology and Biology. Since dis-

course relations, and, implicitly, causality, depend on semantics, such differences and

similarities in named entity type frequencies should be considered when developing

automated tools for one subdomain and adapting them for use on another.

4.3 Causality representation

Conceptually, the annotation involves two basic annotation primitives, spans and re-

lations. Spans represent continuous portions of text with an assigned type, whilst re-

lations are directed, typed, binary associations between two spans. Spans mark both

the specific statements in text that play the roles of Cause and Effect in statements of

causality, as well as expressions that explicitly state the existence of a causal relation.

The annotation involves two span types: ARGUMENT and TRIGGER. The former

is used to mark statements that are part of a causal relationship, whilst the latter is used

to mark phrases that express causal triggers. For instance, in example (4.1), the text

spans “A occurred” and “B happened” would be marked as ARGUMENT, whilst the

text span “Thus” as TRIGGER.

(4.1) A occurred.

Thus, B happened.
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In contrast, relations identify connections between the various spans of text. The

relation types identify the roles that the spans of text play in the association. The

annotation involves two relation types: CAUSE and EFFECT. EFFECT always marks

the statement that is stated as the result, whilst CAUSE marks the statement that leads to

that result. The difference between these two concepts is detailed below, in Section 4.4.

In example (4.1), the relation from the trigger Thus to the argument A occurred would

be a CAUSE relation, whilst the relation from the trigger to the argument B happened

would be an EFFECT relation.

4.4 Causality annotation

The sense type “Cause” is used when the two arguments of the relation are related

causally and are not in a conditional relation. As previously mentioned, this defini-

tion is rather vague, so annotators must also use other methods in order to recognise

causality. Thus, considering previous research (Bethard et al., 2008; Grivaz, 2010),

they were asked to check for temporal asymmetry and counterfactuality, try rewording

and other linguistic tests, such as the insertion of explicit causal triggers and checking

whether the rephrasing is equivalent to the original.

Cause - Effect pairs are annotated as centred on a TRIGGER span, whilst the asso-

ciated spans are of type ARGUMENT, with CAUSE and EFFECT representing the dir-

ection (Figure 4.3). The span identifying the causal trigger (TRIGGER) may be empty,

but a non-empty span is marked in all cases where an explicit connective occurs. In

cases where there is no explicit connective expressed, the TRIGGER span is placed

in between the two ARGUMENT spans with an empty (zero-width) span, as shown in

Figure 4.4.
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Figure 4.3: Example of Cause–Effect annotation with an explicit trigger.

Arg

Arg

Trigger

Figure 4.4: Example of Cause–Effect annotation with an implicit trigger.

4.5 Annotation software and format

The original event annotation of the BioNLP ID Shared Task corpus was performed

using BRAT (Stenetorp et al., 2012). This is a web-based annotation tool aimed at

enhancing annotator productivity by simplifying and automating parts of the annota-

tion process. Customising the settings of BRAT is reasonably straightforward, allowing

users to change the information to be annotated and the way it is displayed. Further-

more, BRAT is freely available under the open-source MIT licence from its homepage5.

As such, we decided to continue to use this tool for our task of annotating causality

relations in text.

The stand-off annotation files are kept separate from the original text files and are

connected to them by character offsets. Each span annotation (TRIGGER and ARGU-

MENTs) has a unique identifier and encodes the start and end offsets of the text span,

the type of the span and the actual text span annotated, all separated by tabs. Each

causal relation has a unique identifier and stores the identifiers of the trigger and the

two arguments, together with their relation subtype. An example of a complete relation

annotation is illustrated in Figure 4.5.

5http://brat.nlplab.org

http://brat.nlplab.org
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Argument

Argument
Trigger

Trigger Cause

Figure 4.5: Example of an annotation file as created by BRAT.

This simple, yet highly efficient format allows for easy processing and full trans-

formation into other formats (e.g., XML), thus increasing the portability between vari-

ous annotation systems. Furthermore, since this schema is not very specific, it can be

reused and easily applied to other datasets, not necessarily belonging to the biomed-

ical domain. Moreover, being represented in an offset stand-off format, the schema

can allow the existence of other annotations over the same source text without creat-

ing annotation conflicts, such as overlapping in XML. In this case, the text is already

annotated with named entity and event information. Other types of annotation are

allowed and can be successfully integrated (e.g., part-of-speech and dependency).

4.6 Annotators and training

Although it has been shown that linguists are able to identify certain aspects in biomed-

ical texts reliably, such as negation and speculation (Vincze et al., 2008), they could

be overwhelmed in trying to understand the semantics. Identifying which events affect

which events, especially when a causal trigger is not explicitly stated, is an extremely

difficult task, as it requires vast, domain-specific background knowledge and an almost

complete understanding of the topic. Therefore, due to the specificity of the biomed-

ical domain, it is necessary for the annotators to be experts in this field of research.

Furthermore, the annotators must have near-native competency in English. For the

purpose of this task, two human experts have been employed to create the annotations

in the corpus.

Besides the biomedical expertise, the two selected annotators also have extensive
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experience in annotating text from the biomedical domain for text mining purposes.

They have previously participated in other annotation efforts focussing on creating

gold standard corpora of named entities, events and meta-knowledge. The annotators

undertook a period of training prior to commencing the annotation task proper. During

this time, they were given a small set of documents to practise on. As a result, they

became accustomed to both the annotation tool and the guidelines.

Both annotators were given the same subset of articles to annotate, independently

of each other. This allowed the detection of annotation errors and disagreements

between annotators. They produced annotations in small sets of documents, which

were then analysed and in response to which the annotators obtained feedback detail-

ing their errors. Also, the annotators offered feedback regarding the annotation tool

and guidelines, in order to increase the speed of the process. This led to noticing

potential problems with the guidelines, which were addressed accordingly. The final

guidelines were produced after the training period finished and these were used for the

actual annotation.

4.7 General analysis of BioCause

The corpus contains a total of 850 causal relation annotations spread over 19 open-

access biomedical journal articles regarding infectious diseases.

Table 4.6 summarises the general statistics of the corpus. Counting the unique ex-

plicit trigger types was performed using two settings. On the one hand, we considered

the surface expression of the trigger, thus distinguishing between all morphological

variants and modifications by adverbs, prepositions or conjunctions. For instance, the

triggers thus and and thus were treated as separate types, as well as suggest and sug-

gests. However, the case of the triggers was ignored. As can be seen from the table,

there are 381 unique explicit triggers in the corpus. This means that, on average, each
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Feature Value
No. of articles 19
No. of causal associations 850
No. of implicit associations 50
No. of unique explicit triggers 381
No. of unique lemmatised explicit triggers 347
Tokens per trigger 3.09
Tokens per CAUSE arg. 21.31
Tokens per EFFECT arg. 16.87

Table 4.6: General statistics for the BioCause corpus.

trigger is used only 2.10 times.

On the other hand, all tokens forming triggers were lemmatised prior to counting.

This means that both suggest and suggests are counted for the same trigger type. There

are 347 unique lemmatised triggers in the corpus, corresponding to an average usage

of 2.31 times per trigger. Both count settings show the diversity of causality-triggering

phrases that are used in the biomedical domain.

Furthermore, the causal argument of the relation is, on average, almost 1.27 times

longer than the other argument, the effect. This is due to the specificity of the biomed-

ical domain and also the nature of research articles, where usually a causal argument

that leads to an effect is complex and is composed of several, concatenated causes.

This is exemplified below, in Section 4.9.

We also looked at the distribution of causality relations in the distinct discourse

zones that are common in research articles. Figure 4.6 depicts the percentage of causal

relations over six discourse zones, as given in Equation 4.5.

fa(i) =
ni

∑ j∈D n j
(4.5)

where ni is the number of causal relations in zone i, and D is the set of discourse

zones. The discourse zones are Title and abstract, Introduction, Background, Results,
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Discussion, Results and discussion and Conclusion. The zone Results and discussion is

included because this is how some of the articles have been segmented in their original

form.

Figure 4.6: Actual distribution of causal associations in the corpus amongst seven
different discourse zones.

As expected, most causal relations (over 80%) occur in the Results, Discussion and

Results and Discussion section of articles, whereas the Background and Conclusion

section contain a very small number of relations, just over 1%. However, because the

discourse zones are very different in size, we also computed the frequency of causal

relations relative to the number of tokens present in that respective discourse zone, as

given in Equation 4.6.

fr(i) =
ni

||di||
(4.6)

where ni is the number of causal relations in zone i, and ||di|| is the size of discourse

zone i in words.

This distribution is depicted in Figure 4.7. The results change quite dramatically

and tend to be more balanced when computed in this manner. The Title and abstract

section becomes the zone with the highest causal relation density (over 23%), whilst in

Background and Conclusion there are 17%. The Results, Discussion and Results and

discussion sections contain 50% of the total number of causal relations.
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Figure 4.7: Distribution of causal associations in the corpus amongst seven different
discourse zones relative to the number of tokens in each zone.

4.8 Analysis of causal triggers

Table 4.7 lists the 22 most frequent causality triggers in the corpus, together with their

count in the corpus as a whole. These are counted in a surface expression setting. In

total, the causality relations that are centred on these 22 triggers (only 5.77% of all

trigger types) constitute more than 30% of the cases of causality in the entire corpus.

Similarly, Table 4.8 contains the 22 most frequent triggers that occur at least five

times, counted in a lemmatised setting. The lemmas are automatically generated by

the Enju parser. These 22 triggers occur 332 times, accounting for almost 41.5% of

the total number of causality cases. The data in both these tables suggest that the

majority of relevant causality relations are centred on a relatively small set of phrases

and words. Indeed, in the entire corpus, only 22 distinct phrases or words have been

used to annotate five or more causal relations, whilst the remaining explicit triggers

have a very low frequency of less than five occurrences. As with many other natural

language phenomena, this distribution is Zipfian. Almost all of the entries in Tables 4.7

and 4.8 correspond to phrases or words which usually denote a causal relation or

inference between two spans of text.

Figure 4.8 shows the usage of annotated triggers as having causal and non-causal

meaning in black and grey, respectively. Each trigger type has been allocated an ID
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Feature Count (relative frequency)
suggesting that 51 (6.04%)
thus 42 (4.98%)
indicating that 34 (4.03%)
therefore 17 (2.01%)
these results suggest that 14 (1.66%)
suggests that 12 (1.42%)
due to 10 (1.18%)
suggesting 10 (1.18%)
indicating 9 (1.06%)
the results indicate that 9 (1.06%)
these results indicate that 9 (1.06%)
suggest that 8 (0.94%)
because 7 (0.83%)
caused 6 (0.71%)
required for 6 (0.71%)
resulting in 6 (0.71%)
which suggests that 6 (0.71%)
and thus 5 (0.58%)
indicates that 5 (0.58%)
suggests 5 (0.58%)
these data indicate that 5 (0.58%)
these observations suggest that 5 (0.58%)

Table 4.7: Count and relative frequency for the most frequently occurring triggers
using surface-expression forms.

and two charts have been produced. The trigger IDs have remained unchanged for

the purpose of producing the two charts. Figure 4.8a depicts the actual number of

causal/non-causal instances for each trigger, whilst Figure 4.8b is based on the ratio of

causal:non-causal instances for each trigger. A logarithmic scale is used in Figure 4.8a

for visibility purposes, as there are many small values and very few large ones.

By analysing both figures simultaneously, it can be noticed that there exists a large

number of triggers which seldom occur, but which are exclusively causal in meaning.

More than 200 triggers, to the left of both charts, occur less than 20 times each, but

they are 100% causal. This high variability in expressing causality represents one

significant problem in automatically detecting causal triggers.
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Feature Count (relative frequency)
suggest that 75 (9.36%)
indicate that 45 (5.62%)
thus 42 (5.24%)
suggest 20 (2.50%)
therefore 17 (2.12%)
these result suggest that 15 (1.87%)
indicate 12 (1.50%)
cause 10 (1.25%)
due to 10 (1.25%)
result in 9 (1.12%)
the result indicate that 9 (1.12%)
these result indicate that 9 (1.12%)
because 7 (0.87%)
demonstrate that 7 (0.87%)
which suggest that 7 (0.87%)
lead to 6 (0.75%)
require for 6 (0.75%)
these observation suggest that 6 (0.75%)
and thus 5 (0.62%)
confirm that 5 (0.62%)
our finding indicate that 5 (0.62%)
reveal that 5 (0.62%)

Table 4.8: Count and relative frequency for the most frequently occurring triggers
using lemmatised forms.

On the right side of the graphs, the total number of occurrences of causal triggers

in the corpus increases very quickly, but the percentage of causal meaning decreases

drastically. Example (4.2) shows one of the 78 instances of the word when acting as

a non-causal trigger. In the case of when, there are only two instances which denote

causality. There are over 50 triggers (rightmost) that occur less than 20% causally

from their at least 20 occurrences in the corpus. In fact, there are 64 trigger types

which occur only once as a causal instance, whilst the average number of non-causal

instances for these types is 14.25. This shows the high ambiguity of causal triggers,

the other important issue of automatically identifying them.
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Figure 4.8: Usage of annotated triggers as having causal and non-causal meaning.

(4.2) Colonization analysis also revealed the incapability of the DeltasalKR mutant

to colonize any susceptible tissue of piglets when administered alone.

Furthermore, the explicit triggers can be classified into two categories, according

to their means of lexicalisation. Firstly, there are triggers which are expressed using

subordinating conjunctions or adverbials. These are shown in examples (4.3) and (4.4),

respectively. There are 37 distinct triggers which belong to this class.

(4.3) This acid pH-promoted increase appears to be specific to a subset of PhoP-

activated genes that includes pmrD because expression of the PhoP-regulated slyA

gene and the PhoP-independent corA gene was not affected by the pH of the me-

dium.

(4.4) Mlc is a global regulator of carbohydrate metabolism and controls several

genes involved in sugar utilisation.
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Therefore Mlc also affects the virulence of Salmonella.

The second type is composed of triggers belonging to open-class part-of-speech

categories, mainly verbs or nominalised verbs, which are usually modified by conjunc-

tions, prepositions or subordinators. Most of these are of the form subject-predicate,

lexicalised as pronoun/noun + verb + adverbial/conjunction/subordinator, where the

pronoun/noun is an anaphorical referent to the argument that first appears in the text

and the verb shows the relation to the following argument. An instance of this case

is shown in example (4.5), where the verb suggested denotes the causal relationship

and the subject This refers anaphorically to the first sentence. Other patterns also exist,

although with a lower frequency, such as prepositional phrases and verb phrases.

(4.5) There was residual pbgP expression in the pmrB mutant induced with mild

acid pH, which was in contrast to the absence of pbgP transcription in the pmrA

mutant.

This suggested that PmrA could become phosphorylated from another phospho-

donor(s) when PmrB is not present.

In fact, there are 165 distinct syntactic patterns that cover the entire set of causal

triggers in BioCause. Only nine patterns have a count of over ten instances, but they

make up for half of all triggers. These are listed in Table 4.9. As can be noticed,

most of the triggers contain one verb, which usually comes with a noun subject and

complementiser. Adverbials and conjunctions also make it in the top nine.

The rest of 156 patterns are more complex versions of the ones listed in this table.

Variations include multiple nouns, auxiliary verbs, determiners, adjectives or preposi-

tions.
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Pattern Count (relative frequency)
V-C 133 (20.27%)
V 63 (9.60%)
ADV 59 (8.99%)
D-N-V-C 42 (6.40%)
N-V-C 28 (4.27%)
V-P 22 (3.35%)
SC 14 (2.13%)
N-V 11 (1.68%)
D-N-V 10 (1.52%)

Table 4.9: Count and relative frequency for the most frequently occurring PoS patterns
for triggers.

Parent Count (relative frequency)
S 331 (41.48%)
VP 228 (28.57%)
ADV 72 (9.02%)
V 68 (8.52%)
PP 21 (2.63%)
SCP 16 (2.00%)
SC 14 (1.75%)

Table 4.10: Count and relative frequency for the most frequently occurring parent
constituents for triggers.

Triggers are covered by constituents that can belong to various syntactic categories.

Table 4.10 lists the seven parents that have more than ten occurrences in the corpus.

In total, there are 17 different types of parents. As can be observed, most triggers

(41%) have a Sentence constituent as their parent, whilst another 28% belong to a verb

phrase. These seven types represent almost 94% of all trigger parents.

We also report, in Figure 4.9, the distribution of the length of triggers annotated

in the corpus, in terms of tokens. As can be seen in the figure, more than 50% of the

total number of triggers consist of one or two words, whilst around 25% consist of

three or four words. The length of the trigger appears to be inversely proportional to

its frequency – the longer the trigger, the more uncommon it is. Again, the distribution
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Figure 4.9: Distribution of triggers according to their length in tokens.

has a Zipfian shape.

4.9 Analysis of causal arguments

The arguments of a causal relation can be classified into two categories, depending

on the type of relation to the trigger. Syntactically, one argument is DA on the causal

trigger, whilst the other is IA of the causal trigger. Furthermore, the IA can be found in

the SS as the trigger, or in a DS. Semantically, one argument plays the role of Cause,

whilst the other plays the role of Effect. In this section, we analyse causal arguments

from both these perspectives in this section, and also observe the connections between

the two types.

Figure 4.10 shows the distribution of the lengths of both the Cause (black) and the

Effect arguments (grey) in the corpus, in terms of tokens.

As previously mentioned, it can be noticed that the Cause argument is usually

longer than the Effect argument. This is due to the style used in biomedical research

articles, in which multiple causal elements are concatenated or explained in order to
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Cause
Effect

Figure 4.10: Distribution of Cause and Effect arguments according to their length in
tokens. Data points are plotted only where there are instances of arguments of that
length.
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Order Count Relative frequency
C- -E 30 3.52%
E- -C 20 2.35%
C-T-E 687 80.82%
E-T-C 91 10.69%
E-C-T 2 0.23%
T-C-E 9 1.06%
T-E-C 11 1.29%

Table 4.11: Distribution of the order of arguments (Cause – C, Effect – E) relative to
the trigger (T). Implicit triggers are marked using an underscore character (’ ’).

infer an effect. Take, for instance, the sentences in example (4.6), where two causal ele-

ments (namely “the activation of the hilA transcription” and “that of HilC/D-dependent

invFD expression”) are connected by a coordinating conjunction (“and”). Another

frequent case is the inclusion of explanations or supplementary information, without

which the inference could not be possible. This explains why this information is also

included in the argument annotation spans.

(4.6) Since HilD activates the transcription of hilA (14), which in turn can activate

HilA-dependent invFA expression (10), and directly activates HilC/D-dependent

invFD expression, these results establish that the mlc mutation exerts a negative

effect on SPI1 gene expression, mainly by increasing the level of hilE expression.

The order of the arguments does not vary significantly, with more than 80% occur-

ring in the form of Cause-Trigger-Effect. Table 4.11 shows the complete distribution

of the order of the two arguments relative to the trigger. As can be seen, there are

only 24 cases where the trigger appears before or after both arguments. In the case of

implicit triggers, we considered them as being placed in between the two arguments.

It is also noticeable that the Effect argument is usually the dependent argument.
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Cause
SS DS

Effect SS 447 (55.88%) 320 (40%)
DS 33 (4.12%) 0 (0%)

Table 4.12: Distribution of the position of Cause and Effect arguments in the same
sentence (SS) or different sentences (DS) relative to the trigger.

This is specific to the scientific domain, where first a cause (or list of causes) is given,

which is then followed by its effect(s).

The relative position of the two arguments is roughly balanced, as can be observed

from Table 4.12. Just over half of causal relations are intra-sentential (55.88%), whilst

44.12% of these are inter-sentential. This proves the difficulty of the task: since there

is no syntactic dependency between the trigger and its extra-sentential argument, the

identification can be performed based only on lexical and semantic features.

Furthermore, the Effect argument is located in the same sentence with the causal

trigger in more than 95% of instances. In contrast, the Cause argument is slightly more

balanced: 60% of instances are located in the same sentence as the trigger, whilst 40%

are in a different sentence.

When located in a different sentence than the causal trigger, the distance to the

independent argument has the distribution given in Figure 4.11. As can be noticed,

almost all DS IAs are located in previous sentences. Moreover, almost 61% of all

DS IAs are located in the immediately previous sentence to that of the trigger. The

frequency rapidly decreases to almost 20% and 11% in the case of the second and third

previous sentences, respectively. A very low frequency exists up to the tenth previous

sentence. With regard to the following sentences, only less than 2% of arguments are

found there. Furthermore, they are usually found very close to the trigger sentence,

mostly in the immediately following sentence.

There are no restrictions on how far the two arguments can be from each other in

text. In other words, they may or may not be adjacent. Therefore, we have looked at
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Figure 4.11: Distribution of the number of sentences from the trigger sentence to that
of the DS IndArg inclusive.

the distance between the two arguments. We show in Figure 4.12 the frequency of the

various distances measured by the number of tokens. The average distance between

the two arguments is of 13.5 tokens. It should be noted that this distance also includes

the trigger if this is placed in between the two arguments.

There are more than one hundred cases where the distance is two or three tokens

(116 and 177, respectively). For the distance of four to six tokens, there are between

50 and 100 instances. It can be observed that the graph has a flat, yet long tail. There

are almost 200 cases where the distance is greater than or equal to 10 tokens.

In terms of sentences, the distance is closely related to the distribution of distances

from the trigger to the DS independent argument in Figure 4.11. As Figure 4.13 shows,

around 60% of DS IAs are located in an immediately neighbouring sentence. About

30% are found in the second or third sentence, whilst an extremely low proportion of

DS IAs are found in up to the tenth sentence.

Most arguments are found in the same sentence. Otherwise, they are found in

immediately neighbouring sentences, or at most in the second or third neighbouring
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Figure 4.12: Distribution of the number of tokens between the arguments.
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Figure 4.13: Distribution of the number of sentences between the arguments.

sentences. There exists a long tail of infrequent pairs of arguments located up to ten

sentences away from each other.

4.10 Evaluating inter-annotator agreement

Due to the complexity of the annotation task and the variety of types of spans and

relations, IAA cannot be computed using standard means. For instance, the Kappa

statistic (Fleiss, 1981) cannot be used in our case, as this requires classifications to

correspond to mutually exclusive and discrete categories. Instead, we have chosen to

follow similar cases in selecting F-measure to calculate IAA (Thompson et al., 2009;

Hripcsak and Rothschild, 2005).

F-measure is usually used to combine the precision and recall in order to com-

pare the performance of an information retrieval or extraction system against a gold

standard. In our case, precision and recall can be computed by considering one set of

annotations as the gold standard. The resulting F-score will be the same, regardless of
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which set is considered gold.

Because of the various angles of annotation, we have split the evaluation method-

ology into several subtasks of the annotation process. For each subtask, we calculated

the inter-annotator agreement in terms of F-score. Initially, we computed the number

of identical and overlapping triggers. For these triggers only, we then continued by

counting the arguments, using both the exact match criterion and the relaxed match

criterion introduced below. This is done separately for the CAUSE argument and for

the EFFECT argument.

• Trigger identification – how many causal associations have the same trigger. Two

separate values are computed here:

– Exact match – trigger text spans match exactly.

– Relaxed match – trigger text spans overlap with each other, but do not

necessarily match exactly.

• Argument identification – for agreed triggers, how many have the same argu-

ments. Four separate values are computed here, two for each argument:

– Exact match – argument text spans match exactly.

– Relaxed match – argument text spans overlap with each other, but do not

necessarily match exactly.

In order to ensure the quality and consistency of the causality annotation through-

out the corpus, three full articles (approximately 15% of the corpus) were annotated by

both human experts. This allowed us to calculate the agreement levels between them.

We first present some general agreement statistics on the corpus as a whole, followed

by detailed numbers on each subtask. We also analyse the differences in annotation

between the two experts.
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Feature First annotator Second annotator
No. of causal associations 109 125
No. of implicit triggers 13 (11.93%) 18 (14.40%)
No. of explicit triggers 96 (88.07%) 107 (85.60%)
No. of tokens per trigger 2.80 2.87
No. of tokens per CAUSE arg. 19.55 17.60
No. of tokens per EFFECT arg. 13.94 13.84

Table 4.13: General inter-annotator agreement statistics for the corpus. The percent-
ages represent the proportion of that specific type of causal relations in the total number
of causal relations identified by that annotator.

4.10.1 General statistics

Table 4.13 contains a comparison between the two human expert annotators from vari-

ous points of view. We included the number of causal associations, the number of

implicit and explicit triggers, as well as the average length of the trigger and of the two

arguments in tokens. These numbers are obtained from the annotations following the

final guidelines.

As can be observed from the table, there is little difference between the two annot-

ators in terms of the different comparison criteria. The second annotator has identified

16 more causal associations than the first annotator. Nevertheless, the percentage of ex-

plicit and implicit triggers remains rather stable over the two sets of annotations. This

is also true with respect to the length in tokens of the triggers and the two arguments.

4.10.2 Subtask statistics

In order to compute the agreement level in F-score terms, we considered one annot-

ator as the gold standard against which we compare the other annotator. We report

in Table 4.14 the F-scores for the various subtasks. As can be observed, in all the

doubly annotated documents, the two annotators agreed, with an exact match criterion,

on 60 relations. This gives an F-score of 51.28%, which again proves the difficulty
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Match type Feature F-score
Exact relation 51.28%
Relaxed relation 65.81%
Exact trigger 64.10%
Relaxed trigger 65.81%

ET

Exact CAUSE arg. 82.67%
Relaxed CAUSE arg. 90.67%
Exact EFFECT arg. 94.67%
Relaxed EFFECT arg. 98.67%

RT

Exact CAUSE arg. 82.52%
Relaxed CAUSE arg. 90.91%
Exact EFFECT arg. 93.51%
Relaxed EFFECT arg. 98.70%

Table 4.14: Inter-annotator agreement for relations, triggers and the two arguments in
the case of exact-match triggers (ET) and relaxed-match triggers (RT).

and subjectivity of the task. In the case of relaxed matching, the F-score increases to

65.81%.

The two annotators agreed only on two thirds of the total number of triggers using

an exact match criterion. The agreement increases by a small amount when relaxed

matching is used. This demonstrates that identifying causal discourse relations is a

relatively difficult task, even for experienced human judges.

The agreement on argument spans, nevertheless, is extremely high. This strongly

suggests that once the annotators decide to mark a causal relation, finding the argu-

ments is a rather straightforward task to accomplish. The F-score for identifying the

CAUSE argument with an exact match rule is just over 80%, whilst the EFFECT argu-

ment is around 94%. This is due to the difficulty in recognising the exact cause in a

causal relation. When the relaxed matching is used, the F-score increases significantly,

to 90% for the CAUSE argument and 98% for the EFFECT argument.

These agreement values are in line with similar semantic annotation efforts for

which F-score has been computed. For instance, in the BioNLP ST ID task, the partial-

match inter-annotator agreement for event annotation is approximately 75%. However,
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the arguments of these events have been already given as gold standard, therefore the

task is significantly simpler than the one described in this article. Nevertheless, the

best performing system participating in the shared task obtained an F-score of 56%.

After performing the double annotation and computing of the agreement scores,

the disagreed cases were discussed between the annotators and the correct annotations

were decided upon. Specifically, one of the two annotations was determined to be

correct, an alteration was made or the annotation was removed completely. We also

computed the agreement of each of the annotator with respect to the resulting gold

standard corpus. In an exact-match setting, the F-score of each of the two annotators

against the gold standard is 78.26% and 64.68%, respectively. Using a relaxed-match

criterion, the F-scores increase to 86.17% and 87.73%, respectively.

4.10.3 Annotation discrepancies

We also looked at the differences between the two annotators. A number of these

differences were simply annotation errors, where the selected spans contained extra

characters from surrounding words or missed characters from the words on the bound-

aries. These have been corrected. The other differences relate to actual disagreements

between the two annotators. Similarly to the subtasks on which we computed the

agreement scores, the differences can be categorised in those relating to triggers or

either of the two arguments.

Trigger discrepancies

In the doubly annotated section of the corpus, there are only two cases of overlapping,

but not identical, triggers. One of them is given in example (4.7) below. One annotator

considered the span “therein” to be the trigger, whilst the other annotator considered it
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to be “therein appears to be”.

(4.7) Further bioinformatics analysis of the 89K island revealed a distinct two-com-

ponent signal transduction system (TCSTS) encoded Ann1[Ann2[therein]Ann2 appears

to be]Ann1 orthologous to the SalK/SalR system of S. salivarius, a salivaricin regu-

lated TCSTS.

Otherwise, the triggers are either exactly agreed upon or completely distinct. The

distinct triggers, i.e. those identified by one annotator and not by the other, are not

realised linguistically in a different manner than those which were agreed upon. The

annotators simply did not agree on considering those cases as suggesting causality.

Argument discrepancies

Cases where the two annotators choose overlapping arguments are more frequent than

overlapping triggers, but are still insignificant compared to the number of agreed ar-

guments. There are eight cases of overlapping CAUSE and four of overlapping EF-

FECT arguments. Examples for both CAUSE and EFFECT are included below, in ex-

ample (4.8) and example (4.9), respectively.

(4.8) Ann1[Results of real-time quantitative RT-PCR also confirmed that, Ann2[in the

complemented strain CDeltasalKR, only partial genes identified as down-regulated

in the mutant rebounded to comparative transcript levels of the wild-type strain.]Ann2]Ann1

Those unrecovered genes were probably irrelevant to the bacterial virulence of SS2.
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(4.9) The acid tolerance response of Salmonella results in Ann1[Ann2[the synthesis

of over 50 acid shock proteins (Bearson et al., 1998) that are likely to function

primarily when variations in internal pH occur]Ann2, i.e. when Salmonella experi-

ences severe acidic conditions (pH approximately 3).]Ann1

In example (4.8), the CAUSE arguments chosen by the two annotators overlap.

Whilst one annotator considered the entire first sentence as the CAUSE argument, the

other expert did not include the first clause, related to the results. Thus, their argument

was annotated as “in the complemented strain CDeltasalKR, only partial genes identi-

fied as down-regulated in the mutant rebounded to comparative transcript levels of the

wild-type strain”. After discussions, the two annotators agreed to exclude the clause

related to the results, as this is not necessary for the correct interpretation of the stated

facts.

In contrast, example (4.9) shows a case of overlapping EFFECT arguments. One

annotator considered the effect to be “the synthesis of over 50 acid shock proteins

(Bearson et al., 1998) that are likely to function primarily when variations in internal

pH occur”. The other annotator, however, also included the span of text that further

explains and describes the context, “i.e. when Salmonella experiences severe acidic

conditions (pH approximately 3)”. The selected argument was the extended version

annotated by the first annotator, mainly due to the fact that only the specification of the

mentioned condition provides biologists with sufficient detail to correctly understand

the biochemical processes that occur in the described situation.

Besides overlapping arguments, there are several cases of completely different ar-

guments. More specifically, there are seven cases of disagreed CAUSE arguments and

only one case of a disagreed EFFECT argument. As we mentioned above, identifying

the CAUSE argument is a much more difficult task than that of identifying the EFFECT
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argument. Since this subtask depends on the background knowledge, expertise and

interpretation of each annotator, they might have different biomedical points of view

on how events connect to each other causally.

In example (4.10), we provide one case in which the two annotators select different

text spans for the CAUSE argument of a causal relation.

(4.10) Ann1[In the animal model, attenuation of virulence has been noted for Salmo-

nella strains that carry mutations in the pts, crr, cya or crp genes, which encode the

general energy-coupling enzymes of the PTS, enzyme IIAGlc of the PTS, adenylate

cyclase and cyclic AMP receptor protein, respectively.]Ann1 Ann2[Mlc is a global

regulator of carbohydrate metabolism and controls several genes involved in sugar

utilization.]Ann2

Therefore, it seemed possible that Mlc also affects the virulence of Salmonella.

This is due to the fact that Mlc is closely related functionally to the mentioned list

of genes (pts, crr, cya and crp). On the one hand, the first sentence provides a more

detailed explanation of the cause without mentioning Mlc, together with the observa-

tion of the attenuation of virulence. On the other hand, the second sentence mentions

Mlc and the genes in general, but it is not linked to the virulence of Salmonella. Thus,

the final decision in this case has the first sentence as the cause, since it includes the

virulence of Salmonella and the genes that produce it.

4.11 Comparison to the BioDRB

The major difference between BioCause and BioDRB is the fact the latter allows for

discontinuous argument spans, whilst the former does not. This setting increases the
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Feature BioCause BioDRB
No. of causal associations 850 565
No. of implicit triggers 50 (5.88%) 98 (17.34%)
No. of explicit triggers 800 (94.12%) 467 (82.65%)
No. of tokens per trigger 3.09 2.46
No. of tokens per CAUSE arg. 21.31 31.24
No. of tokens per EFFECT arg. 16.87 20.56
C- -E 30 (3.52%) 78 (13.80%)
E- -C 20 (2.35%) 20 (3.53%)
C-T-E 687 (80.82%) 192 (33.98%)
C-E-T 0 (0%) 81 (14.33%)
E-T-C 91 (10.69%) 135 (23.89%)
E-C-T 2 (0.23%) 10 (1.76%)
T-C-E 9 (1.06%) 49 (8.67%)
T-E-C 11 (1.29%) 0 (0%)

Table 4.15: Comparison between BioDRB and BioCause with respect to various meas-
ures.

difficulty in automatically determining the argument spans. As we have previously

mentioned in Section 2.3.4, the BioDRB contains 542 purely causal relations, as well

as 23 relations which are a mixture of causality and other discourse relations. Since the

BioDRB and BioCause have somewhat similar sizes, we performed a comparison with

respect to some of the previous characteristics. The results are included in Table 4.15.

As can be seen, the BioDRB corpus contains a greater number of implicit relations than

BioCause. Furthermore, whilst the explicit trigger length is shorter, causal relations in

the BioDRB have generally longer cause and effect arguments. The major difference

in the order of arguments consists in the lack of the C-E-T pattern in BioCause and the

lack of the T-E-C pattern in the BioDRB.

With regard to the distributions of lengths and distances, these are roughly similar

in shape when plotted against each other. Figure 4.14 contains the distributions of

trigger lengths, Cause and Effect argument lengths and distance between arguments

between the BioCause and BioDRB corpora. The distribution of the distance between
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Figure 4.14: Comparison of the distributions of trigger lengths, Cause and Effect
lengths and distance between arguments between the BioCause and BioDRB corpora.
The distance between arguments is given using a logarithmic scale in order to provide
a better view.

arguments is given using a logarithmic scale in order to provide a better view of the

graph for small values. It can be noticed that the first three figures are consistent

with the data in Table 4.15: in BioCause, the triggers are slightly longer, whilst the

arguments are slightly shorter.

4.12 Summary

This chapter has focussed on describing the process of creating BioCause, the first

biomedical text corpus specifically addressing the problem of discourse causality. We
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have justified the selection of the data source that has undergone the annotation effort,

discussing the three main reasons for our choice: the differences between biomedical

sublanguages, the interaction of discourse relations with other semantic annotations,

and the differences between abstracts and full-body texts. Further to the differences

between biomedical sublanguages, we conducted the first study that analyses the per-

formance of the ratio of named entity types as the only discriminant between biomed-

ical subdomains. We thus prove that, by employing only this kind of features, classi-

fiers can successfully distinguish between pairs of subdomains with F-scores reaching

values of 97%.

We have detailed the underlying annotation scheme, the employed annotation format

and software, and the selection and training of annotators. We have then analysed the

annotated discourse causality relations within the corpus. Of interest are the statistics

regarding the causal triggers and their arguments. For instance, we noticed both the

high ambiguity and high variability of causal triggers, which, on average, occur 2.10

times per trigger type. With respect to causal arguments of triggers, we have shown

that about half are located in the same sentence as the trigger, whilst the rest are inter-

sentential relations. In this latter case they are found in neighbouring sentences in

about 60% of instances, but there are numerous cases with longer distances.

Furthermore, we have looked at the inter-annotator agreement between the two do-

main experts that have produced the BioCause. We concluded that once the annotators

agree on a causal trigger (approximatively 66% F-score), identifying the arguments

becomes relatively easy, with high agreement rates (more than 90% F-score for Cause

and more than 98% F-score for Effect).

Finally, we have compared the annotations in the newly created resource with those

found in the BioDRB corpus.We have showed that these two corpora complement each

other in terms of the order of arguments around the trigger. Otherwise, the corpora have

similar statistics, i.e. trigger and argument lengths, distances between them etc.
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Chapter 5

Causal trigger detection

We conducted the first study on the analysis and identification of discourse causal

triggers in the biomedical domain. In this chapter, we provide a detailed account of

our analysis and results.

We investigate the key aspects of a machine learning solution to the problem. These

include the selection of feature engineering and the choice of learning method and

algorithm.

We start by motivating our research and describing the features that are used in the

training of machine learners. We employ six types of features, i.e. lexical, syntactic,

dependency, command, semantic and positional, and provide production details and

motivation for each feature. The features are then tested for relevancy to the task and

only a subset is maintained for training learners based on a series of experiments using

two attribute evaluators.

Several experiments have been designed in order to find the best learning paradigm,

algorithm and settings. The first system relies on rules developed by analysing the data

and looking at statistics regarding triggers. Such rules concern dictionaries, syntactic

patterns and dependency relations. The performance of these rules is, as expected,

low, reaching a maximum of 24% F-score. The second experiment is dedicated to

145
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supervised machine learning: given gold standard labels for all tokens in BioCause,

we evaluate the performance of multiple machine learning algorithms. A top F-score

of 81.53% is obtained by CRFs. Finally, given the low amount of positive training data

available, we employ a semi-supervised approach, i.e. self-training. The algorithm

learns by itself starting from a subset of training data, and automatically corrects its

mistakes when new data is available. The performance is similar to that obtained in

the case of supervised learning, reaching 83% F-score.

The effect of all features used for machine learning is investigated. For every fea-

ture, we analyse whether its addition increases or decreases the overall performance of

the classifier and the amplitude of this change.

We have evaluated our system on two open access corpora of biomedical discourse

causality, BioCause and BioDRB. The performance remains consistent when run on

each of the corpora or on their combination. Experimental results show that there is an

acute need for more training data, as the learning curve increases with a polynomial

trend.

5.1 Motivation

Causal triggers and, more generally, discourse triggers pose two main difficulties when

trying to recognise them. First, causal triggers are highly ambiguous. The same tokens

in a trigger can also have non-causal meaning on other contexts. One such case is

the conjunction and, shown in example (5.1), for which the number of non-causal

instances (2305) in BioCause is much greater than that of causal instances (1).

(5.1) SsrB binds within SPI-2 and activates SPI-2 genes for transcription.
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This is the usual case with closed-class part-of-speech words, such as conjunctions

and adverbials. Other examples of trigger types more commonly used as causal triggers

and belonging to open-class parts-of-speech are suggesting (9 causal instances, 54 non-

causal instances), indicating (8 causal instances, 41 non-causal instances) and resulting

in (6 causal instances, 14 non-causal instances). For instance, example (5.2) contains

two mentions of indicating, but neither of them implies discourse causality.

(5.2) Buffer treated control cells showed intense green staining with syto9 (indic-

ating viability) and a lack of PI staining (indicating no dead/dying cells or DNA

release).

This high ambiguity of causal triggers leads to a very high number of false positives

and, subsequently, a final low precision.

The second issue in detecting causal triggers is the fact that they are highly variable.

There are numerous ways of expressing the same causal trigger, due to the open-class

properties of nouns and verbs. Take example (5.3), where the trigger this result sug-

gests that indicates a causal relation.

(5.3) The hilE mRNA level measured by real-time PCR also revealed that hilE

expression was increased in SR1304 by about 2-fold (Figure 3A).

This result suggests that Mlc can act as a negative regulator of hilE.

The same idea can be conveyed using synonyms of these words, such as observa-

tion, experiment, indicate, show, prove, etc. The high variability reflects in obtaining a

low recall, since there will be many false negatives.
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To overcome these two issues, we introduce new features which, to some extent,

can resolve these problems. More sophisticated structural features are needed in or-

der to better capture the syntactic properties of causal triggers. We use c-command

relationships, which have been ignored until now in the task of identifying causal trig-

gers. Moreover, we explore the parse tree both vertically and horizontally in order to

provide more information to classifiers regarding the syntax of the sentence. However,

although syntax plays a strong role in identifying discourse triggers, even for struc-

tural triggers it by no means “aligns” with the discourse structure (Dinesh et al., 2005).

Therefore, we also include the semantic context of the triggers into the feature set. We

add both general language and biomedical semantic knowledge from WordNet, named

entity and event recognisers and UMLS.

5.2 Experimental setup

We experimented with various rule-based and machine learning algorithms and vari-

ous settings for the task of identifying causal triggers. We have modelled the trigger

recognition in three ways.

The first method is rule-based. Three different types of rules, based on lexical,

dependency and syntactic features, are combined into five systems. These systems are

evaluated on the whole of BioCause.

The second method approaches the problem as a supervised machine learning

paradigm. On the one hand, we consider identifying triggers as a sequence labelling

task. We have experimented with CRF, a probabilistic modelling framework com-

monly used for sequence labelling tasks. In this specific task, we employed the CRF-

Suite implementation1. On the other hand, we modelled trigger detection as a clas-

sification task, using NB, SVMs and Random Forests (RFs). More specifically, we

1http://www.chokkan.org/software/crfsuite

http://www.chokkan.org/software/crfsuite
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employed the implementation in Weka (Hall et al., 2009; Witten and Frank, 2005) for

RFs and NB, and LibSVM (Chang and Lin, 2011) for SVMs. All evaluations are per-

formed in a 10-fold cross-validation setting. Although we analyse the features in the

following sections using automatic evaluators, we perform the experiments using all

features that have been produced. This decision is based on the fact that we want to

observe the impact of all features, without any type of initial selection.

Finally, semi-supervised learning is used to overcome the low amount of gold

standard data. We evaluated this method with CRF, RF and SVM classifiers that learn

from their mistakes and correct them in the self-training period. Five rounds of eval-

uations have been undertaken by splitting BioCause into five equally sized distinct

subsets. At each round, the learning is performed on four subsets (80% of BioCause),

whilst the models are tested on the remaining subset, ensuring that each subset is tested.

Furthermore, we create semi-supervised models by using unlabelled data. BioCause

is split into two equally sized subsets, one used for seed data, and one for final model

evaluation. The self-learning is performed on unseen and unlabelled data comprising

24 full-text articles.

5.3 Feature engineering

Feature engineering and selection is a vital part of any machine learning system. As

seen in Chapter 2, various types of features have previously been used for the task

of detecting causal triggers, including lexical, syntactic, semantic and statistical (bag

of words) features. However, most past work has concentrated around lexical and

syntactic features, whilst the semantic aspects of causality (like named entities and

events) have been ignored or deemed detrimental to the task in the few cases in which

they were considered (Ramesh et al., 2012). In addition to these features, we introduce

a new set of features derived from command relationships and position in sentence.
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Thus, based on our analysis of causal triggers, we engineered six types of fea-

tures for the development of this causality model, i.e., lexical, syntactic, dependency,

command, semantic and position in sentence. A more detailed description is given in

subsequent sections. For brevity, we code the types of features as follows:

• L: lexical

• X: syntactic

• D: dependency

• C: command

• S: semantic

• P: position

5.3.1 Lexical features

The lexical features are built from the actual tokens present in text, and are summarised

in Table 5.1. Their utility has been noticed by several researchers (Wellner, 2009; Lin

et al., 2012; Ibn Faiz and Mercer, 2013), who state that both the surface level token

and its neighbours help towards a correct classification.

The tokenisation and lemmatisation steps are performed by employing the GENIA

tagger (Tsuruoka et al., 2005) trained on MEDLINE. The first two features represent

the token’s surface expression and its lemma. The previously mentioned studies do not

mention the use of lemmas in their feature lists, but Katrenko and Adriaans (2007) do

in their slightly different task of extracting factual biomedical relations. The inclusion

of lemmata is justified by the need of generalisation: some inflected lexemes may

occur very rarely (if at all) in the limited amount of training data, and, in a real-world

deployment, a learner may be perplexed when encountering them.
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ID Short description Values
L1 token 8509
L2 lemma(token) 5795
L3 neighbour(token,[left,right],[1..5]) 8509
L4 lemma(L3) 5795

Table 5.1: Lexical features used in identifying causal connectives.

In contrast, there exists a need for specialisation due to the polysemy and hom-

onymy of words. Take, for instance, Example (5.4), where and can refer to both a

causal relation (the first occurrence) and an enumeration (the second occurrence).

(5.4) SsrB binds within SPI-2 and activates SPI-2 genes for transcription and

traslation.

It is noticeable how the context affects the meaning of a token and therefore it

is necessary to include surrounding tokens in order to allow a learner to differentiate

between and as a causal trigger or enumerating conjunction. Thus, we included the

five tokens immediately to the left and the ones immediately to the right of the current

token. In the case of causal triggers, this decision is based on two observations. First,

in the case of tokens to the left, most triggers are found either at the beginning of the

sentence (311 instances) or are preceded by a comma (238 instances). These two left

contexts represent 69% of all triggers. Second, for the tokens to the right, almost 45%

of triggers are followed by a determiner, such as the, a or an (281 instances), or a

comma (71 instances).

5.3.2 Syntactic features

Syntax is the main provider of features in the literature. Almost all approaches use the

PoS and syntactic category of the token and its neighbours (Pitler and Nenkova, 2009;
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/P

Figure 5.1: Partial parse tree of a sentence starting with a causal trigger.

ID Short description Values
X1 partOfSpeech(token) 47
X2 syntCat(token) 11
X3 partOfSpeech(L3) 47
X4 syntCat(L3) 11
X5 syntCatPathFromRoot(token) 51811
X6 syntCatCollapsedPathFromRoot(token) 21691
X7 syntCatPositionPathFromRoot(token) 55850
X8 ancestor(token,[1..3]) 20
X9 lowestCommonAncestor(token,neighbourOf (token,left,1)) 21
X10 distanceBetween(token, X9) 37

Table 5.2: Syntactic features used in identifying causal connectives.

Wellner, 2009; Ramesh et al., 2012; Ibn Faiz and Mercer, 2013). Pitler and Nenkova

(2009) explore the parse tree horizontally, including the neighbours into the equation.

In contrast, Wellner (2009) explores it vertically, deriving features from the path from

the root of the parse tree to the token.

The syntax, dependency and predicate argument structure are produced by the Enju

parser (Miyao and Tsujii, 2008). Figure 5.1 depicts a partial lexical parse tree of a

sentence which starts with a causal trigger, namely Our results suggest that. From the

lexical parse trees, several types of features have been generated, a list of which is

included in Table 5.2.
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The first two features represent the PoS and syntactic category of a token. For in-

stance, the figure shows that the token that has the Penn Treebank-style part-of-speech

IN (representing a preposition or subordinating conjunction), whilst its syntactic cat-

egory is P. Moreover, the word Our is marked as a possessive pronoun (PRP$ ), res-

ults as a plural noun (NNS), and suggest as a non-3rd person singular present verb

(VBP). Syntactic categories are generalised parts-of-speech, created by removing, e.g.,

inflection details. A complete list of PoS and syntactic category tags is included in

Appendix C. These features are included due to the fact that either many triggers are

lexicalised as an adverb or conjunction, or are part of a verb phrase.

For the same reason, the syntactical category path from the root of the lexical parse

tree to the token is also included as X5. Because in parse trees there are many cases

where constituents will repeat when moving vertically, we collapse X5 into a new

feature (X6) by deleting consecutive repetitions of the same syntactic category. For

instance, in a path such as S/VP/VP/V, the adjacent identical tags VP/VP are combined

into VP, thus creating a collapsed path of S/VP/V.

Also based on X5, the path encodes in feature X7, for each parent constituent, the

position of the token in its subtree, i.e., beginning (B), inside (I) or end (E); if the token

is the only leaf node of the constituent, this is marked differently, using a C. Thus, the

path of that, highlighted in the figure, is I-S/I-VP/B-CP/C-CX. Feature X7 has been

used before by Ghosh et al. (2011b), whilst Wellner and Pustejovsky (2007) used X5,

both in their task of extracting the arguments of discourse triggers in general.

Furthermore, the ancestors of each token to the third degree are instantiated as

three different features. This has been found by Ibn Faiz and Mercer (2013) to better

generalise the syntactic context of the token than X5, although they restrict it to only

the first parent. In the case that such ancestors do not exist (i.e., the root of the lexical

parse tree is less than three nodes away), a “none” value is given. For instance, the

token that in Figure 5.1 has as its first three ancestors the constituents marked with
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ID Short description Values
D1 pas(token) 3241
D2 pas-role(token) 2
D3 pos(D1) 28
D4 distanceBetween(token,D1) 11

Table 5.3: Dependency features used in identifying causal connectives.

CX, CP and VP.

Finally, the lowest common ancestor in the lexical parse tree between the current

token and its left neighbour has been included. The lowest common ancestor of two

nodes A and B in a dependency tree is a node L, and there exists no other node N

such that L is an ancestor of N. In the previous tree example in Figure 5.1, the lowest

common ancestor for that and suggest is VP.

These last two feature types have been produced on the observation that the lowest

common ancestor for all tokens in a causal trigger is S or VP in over 70% of instances.

Furthermore, the percentage of cases of triggers with V or ADV as lowest common

ancestor is almost 9% in each case. Also, the average distance to the lowest common

ancestor is 3.

5.3.3 Dependency features

These features are constructed based on the dependency relations found by Enju in the

sentence. Table 5.3 includes all dependency features employed in this study.

First, for each token, we extracted the predicate-argument structure and included

the arguments as surface expression forms. We also included the PoS of these argu-

ments, as well as the distance from the token.
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5.3.4 Command features

Command features are constructed from command relations found in the constituency

parse tree of the sentence. The concept of command relation was initially introduced

by Langacker (1966), who defined it as ‘a node X commands a node Y if neither X nor

Y dominates the other and the S (sentence) node most immediately dominating X also

dominates Y’. A more general definition has been provided by Reinhart (1976), who

defined a constituent command (c-command) by eliminating the restriction of having

the node dominating both X and Y being a sentence. Barker and Pullum (1990) relaxed

this definition even further, by removing the non-co-dominance condition between X

and Y.

S

A B

C D

F GE

Figure 5.2: c-command syntax tree: A c-commands B, B c-commands A, C c-
commands D, D c-commands C etc.

Based on command relations as defined by Barker and Pullum (1990) and exempli-

fied in Figure 5.2, we developed several features, which, to the best of our knowledge,

have not been previously used for identifying discourse causal triggers. These are

included in Table 5.4.

Features C1-C3 indicate whether the current token c-commands a clause (SBAR),

VP or NP constituent, respectively. Features C4-C6 are similar, with the exception

that the dominant node must be an S (sentence). In the case of features C7-C9, the

dominant node must be a VP.

All mentioned features rely on the observation that a trigger c-commands at least

one of its arguments (more specifically, the dependent argument). In most cases, trigger
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ID Short description Values
C1 c-commands(token, SBAR) 2
C2 c-commands(token, VP) 2
C3 c-commands(token, NP) 2
C4 S-commands(token, SBAR) 2
C5 S-commands(token, VP) 2
C6 S-commands(token, NP) 2
C7 VP-commands(token, SBAR) 2
C8 VP-commands(token, VP) 2
C9 VP-commands(token, NP) 2

Table 5.4: Command features used in identifying causal connectives.

tokens S-command or VP-command argument tokens, whose superparent is usually an

SBAR, VP, or NP.

5.3.5 Semantic features

Although the role of semantic features has been previously explored, the results are

contradictory. In one study in the biomedical domain, adding a semantic layer lowers

the performance of recognising discourse triggers (Ramesh et al., 2012), whilst in the

general domain rich compositional semantic information (i.e. VerbNet and CoreLex)

manages to produce a statistically significant increase in F-score (Subba and Di Eu-

genio, 2009). Ramesh et al. (2012) use the BANNER gene tagger and LINNAEUS

species tagger to obtain named entity information about genes and species, as well as

MetaMap to map text elements to UMLS.

We have exploited several semantic knowledge sources to identify causal triggers

more accurately, as a mapping to concepts, named entities and events acts as a back-

off smoothing, thus increasing performance. This happens due to the fact that causal

triggers do not encode biomedical knowledge, thus tokens recognised as named entities

or events should not be recognised as causal triggers. A list of all semantic features in

included in Table 5.5.
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ID Short description Values
S1 isNamedEntity(token) 2
S2 namedEntityType(token) 9
S3 isEvent(token) 2
S4 eventType(token) 8
S5 wordnetHypernym(token) 1158
S6 isUMLSEntity(token) 2
S7 UMLSEntityType(token) 126

Table 5.5: Semantic features used in identifying causal connectives.

One semantic knowledge source is the BioCause corpus itself. All documents an-

notated for causality in BioCause had been previously manually annotated with bio-

medical named entity and event information. This was performed in the context of

various shared tasks, such as the BioNLP 2011 Shared Task on Infectious Diseases

(Pyysalo et al., 2011). We therefore leverage this existing information to add another

semantic layer to the model. Moreover, another advantage of having a gold standard

annotation is the fact that it is now possible to separate the task of automatic causal

trigger recognition from automatic named entity recognition and event extraction. The

named entity and event annotation in the BioCause corpus is used to extract informa-

tion about whether a token is part of a named entity or event trigger. Furthermore, the

type of the named entity or event is included as a separate feature. Whilst named en-

tities have been employed before (Ramesh et al., 2012), to the best of our knowledge,

event information has not.

The second semantic knowledge source is WordNet (Fellbaum, 1998). Using this

resource, the hypernym of every token in the text has been included as a feature. This

is needed for those tokens which are not specific to biomedicine. Only the first sense

of every token has been considered, as no sense disambiguation technique has been

employed.

Finally, tokens have been linked to the UMLS (Bodenreider, 2004) semantic types.

Thus, we included a feature to say whether a token is part of a UMLS type (S6) and
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ID Short description Values
P1 indexInSent(token) 123
P2 percentageInSent(token) 2798
P3 positionInSent(token) 3
P4 length(sentence(token)) 94

Table 5.6: Position features used in identifying causal connectives.

another for its semantic type if S6 is true.

5.3.6 Position features

Position features have also been engineered and included in Table 5.6.

First, the location of the token in the sentence is important, as most of the triggers

occur in the beginning or middle of the sentence. This feature takes integer values,

representing the index in the sentence. However, due to the various sentence lengths

in which causality occurs, this may result in data sparseness. Thus, we add a feature

which shows the token’s index in the sentence percentage-wise. That is, we divide the

value of feature P1 by the length of the sentence. To be more discrete, we also add a

feature which takes only three values: ”Beginning”, ”Middle”, and ”End”.

Furthermore, the sentence length has been included, as this is correlated with the

position: the shorter the sentence, the smaller the chances that a token is part of a

trigger in the middle of the sentence.

5.4 Feature analysis

The aim of our investigation was to:

• identify the optimum set of features for the task of identifying causal triggers

• compare the performance of different feature sets by evaluating their individual

and combined impact on the overall performance
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Many of the features that have been employed in this research are based on the

tokens present in text and, thus, the set of values for each feature usually contains

several hundred entries, e.g., lexical features and MetaMap features. As would be ex-

pected, some values occur more often than others: stop-words are the most frequent,

whilst highly specialised concepts appear infrequently. This imbalanced nominal fea-

ture set with a high number of values can be confusing for machine learners. There-

fore, all nominal features have been transformed into numerous binary features: one

binary feature for each value of a nominal feature, only one of which can be true for

an instance. However, this results in an extremely high dimensional and sparse feature

space, which can be difficult to process and learn from.

To this end, we automatically analysed all binary features to decide which are rel-

evant to our task. We have evaluated the entire feature space using two attribute evalu-

ators, InfoGain and ChiSquare, which are implemented in Weka. Table 5.7 shows the

top features from an optimal set, as assigned by InfoGain. ChiSquare offers a similar

set of top features, with slight order changes.

The top ten most predictive features relate to surface expression forms and lem-

mas (three features), syntactic categories (two features), parents in the parse tree (two

features), WordNet hypernyms (one feature), index in the sentence features (one fea-

ture) and distance to the lowest common ancestor (one feature). These are imme-

diately followed by more diverse features: the common parent constituent with the

previous token, MetaMap and named entity information, part of speech, c-command,

S-command and VP-command features, and sentence length.

At the other end, there are many lexical features that have almost no predictive

power. Be it lemmata or surface expressions, the token under study or its neighbours,

biomedical terminology does not help as much as the features previously mentioned.

However, semantic features based on biomedical terminology help classification, oc-

curring in the top third of the table.
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Feature InfoGain score
L1 that 0.00888
L2 that 0.00887
X2 C 0.00816
L2 suggest 0.00755
X1 C 0.00751
D2 CP 0.00744
S5 declare 0.00727
D2 NX 0.00702
P4 0.00634
D4 0.00597

Table 5.7: Top ten predictive features in identifying causal connectives using InfoGain.

5.5 Experimental results

We ran a series of experiments in order to systematically evaluate the effect of the

numerous learning algorithms. This section describes the results of our experiments.

5.5.1 Rule-based

Several rule-based baseline systems have been devised based on the observations and

analysis of the corpus. The overall performance of all rule systems is included in

Table 5.8.

The first baseline is a simple dictionary-based heuristic, named Dict. It consists of

a lexicon which is populated with all annotated causal triggers and which is then used

to tag all instances of its entries in the text as causal connectives. As expected with an

approach of this type, the precision of this heuristic is very low, reaching only 8.36%.

This leads to an F-score of 15.43%, considering that the recall is 100%. This is mainly

due to often occurring words and/or phrases which are rarely used as causal triggers,

such as and, by and that.

Based on the observation about the lowest common ancestor for all tokens in a

causal trigger mentioned in Section 4.8, we built a baseline system that checks all
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Classifier P R F1

Dict 8.36% 100% 15.43%
Depend 8.05% 76.69% 14.57%
Synt 14.61% 20.45% 17.04%
Dict+Depend 14.47% 74.5% 24.23%
Dict+Synt 21.88% 20.45% 21.13%

Table 5.8: Performance of rule-based classifiers in identifying causal connectives.

constituent nodes in the lexical parse tree for the sentence (S), verb (V), VP and

adverb (ADV) tags and marks them as causal triggers. The name of this system is

Depend. Not only does Depend obtain a slightly lower precision than Dict, but it also

performs worse in terms of recall. The F-score is 14.57%, largely due to the high

number of intermediate nodes in the lexical parse tree that have VP as their category.

The third baseline is a syntax-based approach, Synt. We extracted the part-of-

speech patterns from all triggers, creating a set of 165 unique patterns. For instance, for

the trigger suggesting that, the part-of-speech pattern is V-C (verb-complementiser).

We experimented with all possible sets of patterns to search for. The best performing

pattern was found to be V-C, which occurs in 20.45% of triggers. It gives a precision

of 14.61% and a recall of 20.45%, thus resulting in an F-score of 17.04%.

We then combined Dict and Depend: we considered only constituents that have

the necessary category (S, V, VP or ADV) and include a trigger from the dictionary.

Although the recall decreases slightly, the precision increases to almost twice that of

both Dict and Depend. This produces a much better F-score of 24.23%. Similarly, the

combination of Dict and Synt results in a precision of 21.88%, a recall of 20.45%, and

thus in an F-score of 21.13%.

5.5.2 Supervised learning

In a supervised learning approach, we experimented with several algorithms, which

are listed in Table 5.9 together with their top performance.
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Classifier P R F1

CRF 89.99% 74.53% 81.53%
Random Forest 78.45% 67.26% 72.42%
SVM 87.56% 61.60% 72.32%
Naı̈ve bayes 56.95% 80.15% 66.58%

Table 5.9: Performance of various classifiers in identifying causal connectives.

Features P R F1

L 89.00% 67.09% 76.50%
XDC 92.30% 66.21% 77.10%
LX 86.41% 73.26% 79.29%
LS 89.54% 69.10% 78.00%
XDCS 83.95% 70.78% 76.80%
LXD 87.76% 73.29% 79.87%
LXDCS 89.29% 73.53% 80.65%
LXDCSP 89.99% 74.53% 81.53%

Table 5.10: Effect of feature types on CRF.

As can be observed, we obtained the best performances, in terms of not only F-

score, but also precision, in the case of Conditional Random Fields. A slightly lower

performance is obtained in the case of Random Forests and Support Vector Machines.

Although the F-scores of these two algorithms are similar, SVM has a better precision,

whilst RF results in a better recall. Naı̈ve Bayes performs worst, with just over 66%

F-score. Its recall, however, is the highest amongst all classifiers, reaching more than

80%. In what follows, we will discuss the performance of each algorithm individually,

together with the best performing sets of features. We have included only the top

performing feature combinations in order to reduce space.

In the case of CRFs, as can be noticed from Table 5.10, the best performance, in

terms of F-score, is obtained when combining all six types of features. The best preci-

sion is, however, obtained by using the syntactic, dependency and command features,

reaching over 92%, almost 3% higher than when all six feature types are used.

Adding command and semantic features to the feature set increases the precision



5.5. EXPERIMENTAL RESULTS 163

Features P R F1

L 77.12% 67.40% 71.93%
X 68.41% 62.57% 65.35%
S 84.34% 57.25% 67.89%
LX 77.12% 66.75% 71.56%
LS 78.45% 67.26% 72.42%
XS 72.33% 64.20% 68.08%
LXDCS 77.45% 66.23% 71.40%
LXDCSP 76.92% 67.36% 71.82%

Table 5.11: Effect of feature types on Random Forests.

in every case. Looking at the results of LXD and LXDCS, it can be noticed that the

precision increases by over 1.5%, resulting in an almost 1% improvement of F-score.

Adding positional features further improves the precision by 0.7%, but also increases

the recall by 1%.

As can be seen from Table 5.11, the best performance of RFs is obtained when

combining lexical and semantic features. Due to the fact that causal triggers do not

have a semantic mapping to concepts in the named entity and UMLS annotations, the

trees in the random forest can easily produce rules that distinguish triggers from non-

triggers. We have experimented with different values for the parameters of the forest:

the number of trees and the number of random features. These results are obtained for

21 trees and 10 random features.

As such, the use of semantic features alone produces a very good precision of

84.34%. Also, in all cases where semantic features are combined with other feature

types, the precision increases by 0.5% in the case of lexical features and 3.5% in the

case of syntactic features. However, the recall of semantic features alone is the lowest.

The best recall is obtained when using only lexical features. Nevertheless, the best

performance, 72.42%, is still more than 9% lower than that obtained in the case of

CRF.

For SVMs, we have experimented with two kernels, namely polynomial (second
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Features P R F1

L 81.23% 60.76% 69.51%
X 82.19% 56.74% 67.13%
S 85.69% 57.15% 68.56%
LXD 86.74% 54.28% 66.77%
LS 87.56% 61.60% 72.32%
XCS 84.22% 55.67% 67.03%
LXS 88.10% 54.35% 67.22%
LXDCSP 89.25% 57.33% 69.81%

Table 5.12: Effect of feature types on SVM.

Features P R F1

L 57.42% 70.67% 63.35%
X 51.25% 76.45% 61.36%
S 44.33% 67.88% 53.63%
LX 51.78% 81.34% 63.27%
LS 57.89% 71.00% 63.77%
XS 51.75% 77.20% 61.96%
LXS 52.00% 81.11% 63.37%
LXDCSP 54.00% 80.65% 64.69%

Table 5.13: Effect of feature types on Naı̈ve Bayes.

degree) and radial basis function (RBF) kernels. For each of these two kernels, we

have evaluated various combinations of parameter values for cost and weight. Both

these kernels achieved similar results, indicating that the feature space is not linearly

separable and that the problem is highly complex.

The effect of feature types on the performance of SVMs is shown in Table 5.12,

where the used kernel is polynomial. As can be observed, the best performance is

obtained when combining the lexical and semantic feature types (72.32% F-score).

Nevertheless, the best precision is produced by the combination of all feature types,

whilst the best recall is obtained by combining lexical and semantic features. Actually,

the addition of command and semantic features again improves precision: by more

than 2% in XCS, and by 2.5% in the case of LXDCSP. In this latter case, the recall

also increases thanks to the positional features.
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Finally, Table 5.13 shows the performance of the Naı̈ve Bayes classifier. This

algorithm has obtained the worst precision in all tests, which resulted in the lowest

F-score. The recall, however, is very high, reaching more than 80% in some cases.

As we expected, the majority of errors arise from sequences of tokens which are

only used infrequently as causal triggers. This applies to 107 trigger types, whose

number of FPs is higher than the number of TPs. In fact, 64 trigger types occur only

once as a causal instance, whilst the average number of FPs for these types is 14.25.

Such errors are also found by Ibn Faiz and Mercer (2013), for whom 62% of the

erroneous cases are due to highly ambiguous triggers such as and, as, if and when.

5.5.3 Semi-supervised learning

For the supervised classification part of semi-supervised learning (SSL), we have em-

ployed CRFs, RFs and SVMs, as they have performed best in the experiments de-

scribed in the previous section. As for the heuristics used in case no instance is clas-

sified with a confidence greater than τ, we have used several rule-based routines. We

consider for marking as labelled instances only those which have the confidence in the

top 5% of all confidences. We then filter these instances and select only those which

have several feature values that were deemed important by the experiments discussed

in Section 5.6. These include the lemma of the token (L2), the predicate-argument

structure links of the token and ancestor constituents (D1, D2), its c-command and

VP-command values (C1-C3, C7-C9), and named entity information (S1, S5, S6).

The lemma has to be part of a lexicon of lemmas contained in causal triggers that

is pre-compiled. At least one of the ancestor constituents must be either a VP, NP or

S. The token must c-command or VP-command a VP or NP. Furthermore, the token

must not bear any biomedical meaning. These rules are given equal weights, and each

token must comply with at least two of the rules in order to be considered as labelled



166 CHAPTER 5. CAUSAL TRIGGER DETECTION

0.125 0.25 0.375 0.50 0.625 0.75 0.875
0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Seed size

F
−

sc
or

e

CRF

Ratio 1:1
Ratio 1:2
Ratio 1:5
Ratio 1:50

Figure 5.3: Self training results for causal trigger identification at τ = 0.6 using CRF.

correctly.

We developed several models, each with a different size for the initial labelled set,

Λ, as well as a different ratio of positive to negative instances in Λ. The data for the

experiments comes from two different sources. First, we tested our approach with

gold data from BioCause only. However, the size of BioCause is rather small for semi-

supervised methods. Therefore, we created another evaluation where we use BioCause

for the gold seed and test, whilst the learning is performed on unlabelled data. Both

these experiments are detailed in the following subsections.

Experiments on BioCause

For training and evaluating our approach, we split the data in BioCause into five,

equally sized folds. One fold (20% of BioCause) was used for testing the final model,

whilst the other four (80% of BioCause) were used for the self-training part. Thus,

the experiment has been repeated five times for each variation, ensuring that each fold
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Figure 5.4: Self training results for causal trigger identification at τ = 0.6 using RF.
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Figure 5.5: Self training results for causal trigger identification at τ = 0.6 using SVM.

is becomes a test fold. The average performance for each variation is given in Fig-

ures 5.3, 5.4 and 5.5.

On the one hand, we trained models with different sizes for the seed labelled sets

Λ. There are seven models, varying in the percentage of positive instances from 12.5%
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to 87.5%, in steps of 12.5%, extracted from the self-training part of the corpus. On the

other hand, we changed the ratio of positive to negative instances in each labelled set.

The ratios are 1:1, 1:2, 1:5, and the actual ratio in BioCause, approximately 1:50.

As can be noticed, all models have a generally increasing trend, showing that the

amount of gold standard training data is essential to this task. Furthermore, the learning

curve does not turn into a plateau when a high percentage of data is available for

training. This suggests that the performance could be improved if more data were

available. The top results, when the seed size is 87.5%, are similar to those obtained

by employing supervised algorithms (summarised in Table 5.9).

The difference in F-scores between the various ratios for small amounts of gold

training data is large. However, this decreases progressively as the amount of training

data is increased. More specifically, when the amount of data is only 12.5% of the

total size of BioCause, the F-score ranges from 57% to 69% for RF, 66% to 71% for

SVM, and 68% to 78% for CRF. At the other end, for the highest amount of data

available, the F-score varies between 64% and 71% for RF, 69% to 73% for SVM,

and 76% to 82% for CRF. This effect has also been noticed by Hernault et al. (2010),

who employ a semi-supervised approach to exploit the co-occurrence of features in

unlabelled data in infrequent discourse relation classification. The reason for this is

that for a small number of training instances, the number of unseen features in the

testing data is large. When more training data is added at each step, the number of

unseen features diminishes and the learning curves of all the models tend to converge.

This shows that there is no need to learn models by giving high amounts of negative

examples. These examples will most probably be repetitive and will not affect the final

performance.

The best F-scores are obtained when the ratio is the natural ratio. Actually, the

closer the ratio is to the natural one, the better the performance. Training a model

on an artificially created corpus, that does not reflect the natural balance, will affect
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Figure 5.6: Number of self-training loops when varying τ for the natural ratio using
CRF.
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Figure 5.7: Number of self-training loops when varying τ for the natural ratio using
RF.

its performance in a real-world situation. The model becomes less strict the more

balanced the data is, and will thus produce more false positives. In the case of 1:1 ratio,
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Figure 5.8: Number of self-training loops when varying τ for the natural ratio using
SVM.

the recall of the model is very high, reaching values of more than 90%. The precision,

however, is extremely low, varying between 10% and 20%. As the seed ratio is shifted

towards the natural ratio, the precision and the recall become more balanced: precision

increases and recall decreases, but with an overall increased F-score.

We have also run experiments with different values for the threshold τ. This para-

meter affects both how quickly the classifier learns the model and its quality. A small

value for τ will result in a fast convergence with many false positives treated as positive

labelled data, thus leading to a lower final score. Conversely, a higher value lengthens

the time needed for convergence, but the model should be more accurate. However,

this could also lead to using the heuristics more often, if no instance is classified with

high confidence. This will introduce more errors into the model, which will see a drop

in performance. Therefore, we tested values ranging from 60% to 90% in increments

of 10% for the seven seed set sizes above and measured the number of loops each

model needs for convergence.



5.5. EXPERIMENTAL RESULTS 171

0.125 0.25 0.375 0.50 0.625 0.75 0.875
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

Seed size

F
−

sc
or

e

CRF

τ = 0.6
τ = 0.7
τ = 0.8
τ = 0.9

Figure 5.9: Self training results when varying τ for the natural ratio using CRF.
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Figure 5.10: Self training results when varying τ for the natural ratio using RF.

As can be seen in Figures 5.6 - 5.11, the convergence time varies significantly for

different values of τ, but the F-score does not. Increasing τ results in an increasing

number of loops needed for convergence over all seed sizes. The difference in the

number of loops for small seed sizes is much larger than in the case of large seed sizes.
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Figure 5.11: Self training results when varying τ for the natural ratio using SVM.

This is because of the large number of unseen features in a small seed, which results in

low confidence classifications. Thus, very few instances are moved to the seed, whilst

many instances will be kept as unlabelled for the next loop.

Furthermore, increasing τ does not significantly increase the F-score of the self-

trained model. Although it is to be expected to have fewer confident classifications

as τ increases, this does not happen. This can be explained by the low frequency

and high variability of causal triggers. Classifications are made with similar levels of

confidence, regardless of the amount of training data. However, the more training data

is given, the more correct classifications are made.

Experiments on unlabelled data

In this case, we have mixed the gold-standard data with unseen and unlabelled data.

The gold standard data is represented by BioCause. We have split BioCause into two

equally sized sets. One set is used for the seed set, whilst the other is used for the final

model evaluation. The experiment is then repeated with swapped sets.
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Figure 5.12: Self training results for causal trigger identification at τ = 0.6 using CRF.
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Figure 5.13: Self training results for causal trigger identification at τ = 0.6 using RF.

The unlabelled data consists of 24 full-text open-access journal articles also on

infectious diseases. Unlike BioCause, they do not contain any type of gold standard

annotations. All features that are used in the experiments, i.e. lexical, syntactic, de-

pendency, command, semantic, and position, are derived from fully automatic parses.
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Figure 5.14: Self training results for causal trigger identification at τ= 0.6 using SVM.

Our analysis follows the same structure as in the previous section. We investigate

the effect of both parameters in the self-learning method, i.e. the confidence threshold

τ and the size of the gold seed Λ. In contrast to the previous section, the seed size has

another value, 100%, as the learning is now done on unlabelled data.

Figures 5.12 - 5.14 show the performance of the three classifiers at τ = 0.6. As can

be observed, the learning curve is similar to that depicted in the previous section. The

performance improves slightly, to 83% F-score, in the case of CRF, whilst for RF and

SVM it revolves around 74%.

The first observation is that the learning time for each loop increases considerably

due to the larger amount of data that needs to be processed into a model. The number

of learning loops increases significantly in the case where the seed size is very small.

As can be noticed in Figures 5.15 - 5.17, the necessary number of learning loops is

much larger than in the previous experiment, whilst the performance increases only

slightly. At the other end, when a large amount of data is available as seed, the training

time decreases considerably.
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Figure 5.15: Number of self-training loops when varying τ for the natural ratio using
CRF.
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Figure 5.16: Number of self-training loops when varying τ for the natural ratio using
RF.

Comparing these figures with those obtained for the experiment on BioCause, it can

be seen that the curves have different slopes. Whilst the lines were previously stable

throughout the increase of the seed size, in this case they drop. Thus, we investigated
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Figure 5.17: Number of self-training loops when varying τ for the natural ratio using
SVM.

the process taking place inside each loop. In the first experiment, the learning takes

place at a constant rate of unlabelled data being classified with a confidence greater

than the threshold regardless of the seed size. In this case, when the seed size is small,

only few instances are classified with a higher-than-τ confidence in each loop, thus res-

ulting in a large number of loops. When the seed size increases, the classifier becomes

more and more confident, and thus more and more instances are added to the labelled

group.

The threshold τ again does not affect the resulting performance, similar to the ex-

periment on BioCause. Varying τ from 0.6 to 0.9 confidence yields similar F-scores

for all three classifiers, as can be noticed in Figures 5.18 - 5.20.

5.6 Effect of features

We have also studied the usefulness of the numerous features that we have engineered.

Whilst in the previous section we showed the effect of some combinations of different
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Figure 5.18: Self training results when varying τ for the natural ratio using CRF.
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Figure 5.19: Self training results when varying τ for the natural ratio using RF.

feature types on CRFs, RFs, SVMs and NB, we will now look at how helpful are the

features for the best performing algorithm, CRF. The following subsections discuss

the behaviour of each feature type and its interaction with the other features types.

The tables show the percentage of feature combinations where by adding that specific
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Figure 5.20: Self training results when varying τ for the natural ratio using SVM.

feature the performance is improved in terms of F-score. Not included in the table

are the individual values for precision and recall; these will be commented in the text.

Furthermore, both the increase and decrease in performance by adding a feature are

statistically significant for an a = 0.05 with a p-value of almost 0, unless otherwise

stated in the text, using Student’s t-test.

5.6.1 Lexical features

Lexical features are by far the most helpful in determining whether a token is part of

a trigger or not. Table 5.14 shows that the lemma of a token (feature L2) improves

the classification in almost 94% of the feature combinations, whilst the lemmata of the

neighbouring tokens (feature L4) improve it in more than 88% of the cases. Slightly

less helpful, but still around 80%, are the actual tokens in the text, of both the token un-

der classification and the context tokens. This is to be expected, as the use of lemmata

is a simple way to obtain generalisation.

Furthermore, the average increase in F-score for lemmata is more than 3.2%, whilst
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ID Usefulness Av. increase Av. decrease
L1 78.37% 2.75% 0.73%
L2 93.73% 3.47% 0.54%
L3 82.68% 2.98% 0.68%
L4 88.42% 3.23% 0.59%

Table 5.14: Usefulness of lexical features in identifying causal connectives.

for tokens is just under 3%. The average decrease varies between 0.5% and 0.75%.

Both precision and recall are much higher in the case of lemmata than in the case

of tokens. The precision increase revolves around 4%, whilst the average increase in

recall is about 2.5%.

5.6.2 Syntactic features

The usefulness of syntactic features is included in Table 5.15. As can be noticed,

the percentage of combinations which are improved by syntactic features lies mostly

between 60% and 70%, with the exception of X5, the syntactic category path from

the token to the root with position information, which is just over 51%. The average

increase is also rather low, varying between 0.75% and 1.75%.

The large difference between features X5/X6 and X7 is due to data sparsity. By

encoding the position in the subtree besides the path from the root, feature X7 be-

comes too information rich and its values occur rarely. X5 and X6, in contrast, encode

less information, thus they have a lower number of possible values which occur more

frequently.

Precision-wise, all features improve classification in less than 50% of the cases.

The PoS and syntactic category (X1 and X2) are actually quite detrimental to most

cases, increasing performance in less than 30% of the combinations. The average

increase is also much lower than the average decrease.
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ID Usefulness Av. increase Av. decrease
X1 67.74% 1.74% 0.77%
X2 64.00% 1.35% 0.79%
X3 65.26% 1.45% 0.74%
X4 61.32% 1.23% 0.58%
X5 58.65% 1.17% 0.74%
X6 59.23% 1.21% 0.75%
X7 51.29% 0.75% 0.60%
X82 65.98% 1.23% 0.58%
X9 52.33% 0.78% 0.61%
X10 53.71% 0.54% 0.62%

Table 5.15: Usefulness of syntactic features in identifying causal connectives.

Regarding the ancestors of the token in the parse tree, the usefulness differs ac-

cording to the level of the ancestor. In the case of the second ancestor, the performance

increases in 65.98% of the cases where this is added. However, the first and third

ancestors only improve almost 36% of the cases each. This is mainly related to the

structure of the tree and that of the causal triggers. Regardless of the level, all three

ancestors increase mostly precision (75% in case of level two and 50% in case of levels

one and three), as it selects as triggers only those nodes that have the appropriate an-

cestry.

Features X9 and X10, the lowest common parent and the distance to it, increase

recall slightly more than precision, resulting in an overall improvement of around 53%.

However, recall benefits the most from syntactic features. All features result in

recall improvement of around 1.50% in more than 70% of feature combinations. If not

improved, the combination performance is decreased with less than 0.50% on average.

5.6.3 Dependency features

Table 5.16 includes the usefulness of all dependency features employed in this study.

Feature D1, the surface expression of the arguments which are dependent on the current

token, is rather helpful, increasing both precision and recall in around 71% of the cases.
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ID Usefulness Av. increase Av. decrease
D1 71.58% 0.43% 0.48%
D2 65.23% 0.14% 0.15%
D3 72.67% 0.44% 0.47%
D4 67.28% 0.39% 0.51%

Table 5.16: Usefulness of dependency features in identifying causal connectives.

ID Usefulness Av. increase Av. decrease
C1 71.02% 1.01% 0.61%
C2 81.56% 1.15% 0.60%
C3 75.23% 1.03% 0.51%
C4 62.23% 0.85% 0.41%
C5 65.10% 0.74% 0.49%
C6 66.62% 0.97% 0.62%
C7 75.58% 0.95% 0.48%
C8 79.75% 1.28% 0.63%
C9 77.49% 1.08% 0.59%

Table 5.17: Usefulness of command features in identifying causal connectives.

Similar values are obtained for the PoS of these arguments. In contrast, the distance

between the arguments and the token is not that helpful. It increases the performance

in about a third of the cases, but the average decrease is much higher than the increase.

5.6.4 Command features

The nine command features provide significant information to the classifier, according

to the data in Table 5.17. As can be observed, the most useful features are c-command

and VP-command, where the commanded constituent has the syntactic category VP or

NP. These help in more than 70% of the feature combinations, and have high average

increase and low average decrease values.

The S-command features (C4-C6) also help in the classification task, but not as

much as the rest. They improve only 62-66% of cases by about 0.85%. This can be

explained by the fact that, although a high proportion of triggers S-commands SBARs,

VPs or NPs, there are also many non-triggers which S-command the same syntactic
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ID Usefulness Av. increase Av. decrease
S1 65.77% 0.31% 0.64%
S2 41.36% 0.48% 0.78%
S3 64.56% 0.75% 0.60%
S4 52.50% 0.45% 0.74%
S5 72.15% 2.13% 0.90%
S6 57.64% 0.48% 0.64%
S7 33.87% 0.60% 0.76%

Table 5.18: Usefulness of semantic features in identifying causal connectives.

categories. Thus, the S-command feature does not provide as much information to the

classifier as the other command features.

5.6.5 Semantic features

A list of the usefulness of semantic features is included in Table 5.18. WordNet hy-

pernyms (feature S5) seem to be the most helpful feature – it improves classification

in more than 72% of the cases. The average increase is also high, reaching more than

2%, whilst the average decrease is only 0.90%. This feature is a very good method of

improving recall, which increases in more than 78% of the cases by 2.13%. Precision,

however, is increased in only 37% of feature combinations, with average increase and

decrease of almost 2%.

The other semantic features do not help as much as S5. One thing to consider is

that the features referring to whether or not a token is part of a named entity or an event

(S1, S3, S6) and those which give the specific entity/event type (S2, S4, S7) are not

independent. Since S1, S3 and S6 are binary features, it is only when they have the

value of 1 that features S2, S4 and S7 have a value too. This value further specifies

the type of the event, but it will be missing in case S1, S3 and S6 are 0. That said, the

binary features improve classification in about 60% of the cases, whereas the multi-

valued features in only 30-40%. In all cases, recall is improved much more by binary
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ID Usefulness Av. increase Av. decrease
P1 64.92% 0.21% 0.14%
P2 68.86% 0.23% 0.15%
P3 65.48% 0.20% 0.14%
P4 54.26% 0.15% 0.11%

Table 5.19: Usefulness of position features in identifying causal connectives.

features, whereas it is precision which increases in the case of the multi-valued ones.

5.6.6 Position features

The effect of the two position features is listed in Table 5.19. Feature P1, the index

of the token in the sentence, is rather useful, as it tells a classifier that the further a

token is located in the sentence, the less chances it had of being a trigger. It improves

classification in about a third of the feature combinations, but its effect is limited: both

average increase and decrease are very small, of 0.21% and 0.14%, respectively.

When the index is relative to the sentence length (feature P2), the usefulness in-

creases to almost 69%, showing that there might be a data sparseness issue. The three-

valued position in the sentence, P3, obtained similar scores to the previous two: over

65% usefulness, around 20% increase and 14% decrease averages.

Using the length of the sentence, P4, has an even smaller impact, improving classi-

fication in just over 54% of the cases. Its average increase and decrease are 0.15% and

0.11%, respectively, showing the low overall effect.

5.7 BioCause v. BioDRB

We have also evaluated our optimal feature set using the BioDRB corpus. This corpus

differs from the BioCause corpus in one important aspect: it does not contain any se-

mantic annotation related to named entities or events. This means that, for the purpose
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Type Europe PMC NeMine OSCAR
Gene X X
Protein X X
Gene—Protein X
Disease X X
Drug X X
Metabolite X X
Bacteria X
Diagnostic process X
General phenomenon X
Indicator X
Natural phenomenon X
Organ X
Pathologic function X
Symptom X
Therapeutic process X
Chemical molecule X
Chemical adjective X
Enzyme X
Reaction X

Table 5.20: Named entity types and their source.

of conducting experiments on the BioDRB in a similar manner, we need to include a

pre-processing step that recognises named entities.

For this, we used a simple method that augments the annotation with the named

entities present in the output of three named entity recognition tools, i.e., MetaMap,

NeMine and OSCAR. The types of entities in the output by each of the three tools,

together with the NE types present in Europe PMC, are summarised in Table 5.20.

After augmenting the existing NEs by running the three NER tools on the corpus,

the outputs were combined to give a single “silver” annotation list. This operation was

performed by computing the mathematical union of the three individual annotation

sets, as shown in Eq. 5.1.

ASilver = AMetaMap∪AOscar∪ANeMine∪AUKPMC (5.1)
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Train Test P R F1

BioCause 10X 84.64% 67.30% 74.98%
BioDRB 10X 85.52% 65.18% 73.97%
BioCause BioDRB 69.58% 60.65% 64.80%
BioDRB BioCause 75.50% 56.34% 64.52%
BioCause+BioDRB 10X 79.23% 66.21% 72.13%

Table 5.21: Results of the evaluation with BioDRB.

For reasons of fairness, the gold standard semantic annotation in the BioCause

corpus has been removed and replaced with automatic NER results.

For the evaluation, we used the best performing algorithm and its parameter set-

tings, i.e., CRF with all six types of features. We created different models and evaluated

them in various ways, and the results of these tests are given in Table 5.21. The first

two columns of the table show the training corpus and the test corpus, respectively, for

that respective test. In the case of 10-fold cross validation, 10X is used.

As can be observed, the model trained on the BioDRB corpus obtains a slightly

higher precision than the one trained on BioCause. This is mainly due to the smal-

ler set of unique connectives present in BioDRB. The recall is, however, 2% lower,

and, overall, the F-score for the BioDRB model is 1% lower than the F-score for the

BioCause model. The results obtained from BioCause are different from those given

in Table 5.9 due to the fact that the semantic annotation is different. Instead of gold

standard annotations, we employed automatic NE labels and the performance dropped

significantly.

The second type of evaluation is a cross validation between the two corpora: train-

ing is carried out on one and testing on the other. In the first case, we trained a model

on BioCause and tested it on BioDRB. The second case is the opposite, training on

BioDRB and testing on BioCause. There are significant differences in precision and

recall between the two tests, but the resulting F-scores are approximately equal. The

precision is lower in the first case by 6%, whilst the recall is 4% lower in the second
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because of the wider variety of causal triggers that are present in BioCause and do not

occur in BioDRB.

Finally, we trained CRF on the combination of the BioCause and BioDRB corpora.

The results of the 10-fold cross-validation are slightly worse than those achieved for

each of the individual corpora, but much better than for the cross evaluation between

the two corpora. It can also be noticed that both precision and recall are moderately

lower than those obtained for each of the two corpora.

5.8 Effect of corpus size

We also hypothesised that an increase in the size of the training data increases the

performance. To this end, we extracted random subsets of the combined corpus at

various percentages. For each of the six corpus sizes, varying from 50% to 100% in

intervals of 10%, we created five random subsets. These subsets have been 10-fold

cross-validated using the best performing algorithm and its parameter settings, CRF

with all six types of features.
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Figure 5.21: Distribution of F-scores for each evaluated subset of the combined Bio-
Cause and BioDRB corpus.
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Figure 5.21 shows the F-score achieved for each of the 30 evaluated subsets with

circles. As can be noticed, the results tend to have higher values as the amount of

data increases. These results are also similar to those obtained in Section 5.5.3, where

supervised classification is applied to subsets of a corpus containing BioCause and

BioDRB.

Also depicted in the figure is a thick black line that shows the second-degree poly-

nomial increase of the F-score trend. This is based on the averages obtained for each

subset percentage. The co-efficient of determination, R2, whose formula is given in

Equation 5.2, and which shows how closely the trendline fits with the data points, has

the value of 0.9761, indicating that the trend line is very reliable.

R2 ≡ 1− ∑i(yi− ŷ)2

∑i(yi− ȳ)2 (5.2)

where ŷi is the estimated value for a subset, whilst ȳ is the average value for that subset.

Furthermore, we tested the statistical significance of this increase by using the An-

ova Single Factor test. At an α of 0.05, we obtained an Fstatistic = 15.12, much larger

than the corresponding Fcrit = 2.62, a fact which rejects the null hypothesis that all the

F-scores are equal in favour of the alternate hypothesis that at least two of the means

are different. The resulting p-value is 9.53E-7, which again allows us to reject the null

hypothesis. Taken together, these results strengthen our hypothesis that the more data

there is, the better the system performs.

Figure 5.21, corroborated by Figures 4.8 and 5.18, shows that there exists an urgent

need for more gold standard data.
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5.9 Discussion

The learning models presented in this chapter come as a result of the objectives pro-

posed in Chapter 1. The most important results are listed in Tables 5.7, 5.8 and 5.9, and

Figures 5.12 and 5.18. They prove that causal triggers can be successfully recognised

in biomedical scientific literature, with over 80% F-score.

There are three major factors to be considered when automatically recognising

triggers: the chosen algorithm, the selection of features, and the corpus for training.

They are all discussed in the following sections.

5.9.1 Comparison of algorithms

The experiments performed and discussed in the previous sections show that a semi-

supervised approach yields the best F-score. More specifically, employing a supervised

Conditional Random Fields reaches an F-score of 81.53%, whilst Random Forests

and Support Vector Machines perform worse by almost 10%. In contrast, a semi-

supervised approach produces slightly higher results. In our case, employing the self-

training method on BioCause using CRFs results in a top F-score of 79.26%, whilst

RFs and SVMs reach values of over 72%. If the learning is performed on unlabelled

data, the performance increases to 83.47% in the case of CRFs, and to almost 74% in

the case of RFs and SVMs.

These results are much lower than those that are obtained in the open domain. Pitler

and Nenkova (2009), for instance, achieve results as high as 91% F-score using Naı̈ve

Bayes on automatic parses when identifying discourse triggers in general, whilst Lin

et al. (2012) obtain 93.62% F-score. Ibn Faiz and Mercer (2013) further improve the

results to 96.22% F-score.

However, assigning senses to the relations seems to be more difficult. The F-score

of Lin et al. (2012) reaches only 80%, whilst Pitler and Nenkova (2009) perform a



5.9. DISCUSSION 189

level 1 type sense assignment and obtain 94% F-score. In the level 1 type classi-

fication, Causality is part of the Contingency class, together with Pragmatic Cause,

Condition and Pragmatic Condition. Thus, if we consider these two steps as leading

to the same goal as our task, then by multiplying the two results (93.62% and 80%)

we get a performance of around 75%, less than the one described in this chapter. Nev-

ertheless, when applying a model trained on BioDRB on the PDTB corpus, similarly

worse results are obtained (Ramesh et al., 2012). This shows that in-domain classifiers

outperform cross-domain classifiers and that biomedical scientific discourse is truly

different and more difficult to capture automatically.

Both CRFs and SVMs have been used before in detecting biomedical discourse

triggers, although they have not been trained on causality specifically. Ramesh et al.

(2012) experimented with these two algorithms on BioDRB, and concluded that the

CRF model outperformed the SVM model by 10%, producing a final F-score of 75.70%.

This result is similar to the 73.97% F-score obtained by our CRF model cross-validated

on BioDRB, considering that we focussed only on causal relations, which are more dif-

ficult to identify than general discourse relations. More recently, the same corpus has

been used by Ibn Faiz and Mercer (2013), who applied their extended feature set with

ME classifiers and achieved a performance of 82.36% F-score. Again, they make no

distinction between the various discourse relations and treat them as a whole.

However, the Random Forest algorithm has not been used before for this task.

As regards semi-supervised approaches, the literature is not very vast, and does

not contain any work on biomedical data. Our self-training method is, to the best of

our knowledge, the first semi-supervised approach of this type applied to discourse

connective recognition. A different approach is that of Hernault et al. (2010), who

prove that feature vector extension is a promising method to improve classification

accuracy for infrequent discourse relation types. Evaluating it on RSTDT and PDTB,

the method increases the baseline F-score by more than three times in some cases for
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discourse causality, to 18.7%. However, as the authors themselves admit, this method

cannot be used by itself in discourse analysis due to its low performance.

Do et al. (2011) develop a minimally supervised event causality identification meth-

odology, which employs a measure of cause-effect association between two given

events and their arguments. They obtain an F-score of 38.60% on PDTB, but this

increases to 41.70% when joint inference is performed with discourse relation predic-

tions from ILP.

Having compared our results to the current state-of-the-art, we consider our super-

vised and semi-supervised Conditional Random Fields to improve on it in biomedical

discourse causal trigger recognition.

5.9.2 Comparison of features

As concerns features, we noticed through our experiments that the best performance is

obtained when using all types of features. This includes domain independent features,

such as syntactic, dependency and command features, but also domain specific fea-

tures, such as biomedical semantics. In fact, semantics plays a very significant role in

the task of recognising causal triggers. They improve the classification in most feature

combinations, and increase the performance by 2.13% on average.

Subba and Di Eugenio (2009) reach the same conclusion when experimenting

on instructional texts. By adding semantics on top of their existing feature set, the

performance of recognising cause:effect relations increases by 8.52%, to 19.05% F-

score. Their semantic resources are VerbNet, for verbs, and CoreLex, for nouns. Al-

though there are a couple of relations whose classification accuracy drops (act:reason,

step1:step2), discourse relations generally benefit, to some extent, from this addition.

On biomedical text, Ramesh et al. (2012) employ mostly orthographic features

and just a few syntactic features. They also include named entity information obtained
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from UMLS and ABNER, but conclude that it damages the overall performance. More

specifically, the F-score drops by between 1% and 7.5%, depending on the semantic

feature source. In their case, recall is most affected, with variations of even 10%,

whilst precision is relatively constant, but still falling with up to 3%. Ibn Faiz and

Mercer (2013) suggest that the reason behind semantics damaging the performance of

Ramesh et al. (2012) is the fact that ABNER already uses orthographic features, which

thus get duplicated in the feature vector.

As Ibn Faiz and Mercer (2013) also suggest in their error analysis, there are cases of

discourse triggers which cannot be captured by using only surface level and syntactic

features, and instead need some sort of semantic understanding of the context. By

checking the children of the dominant SBAR of the trigger for temporal senses, they

manage to slightly increase the performance with 0.18%. Our richer semantic features

add much more than that.

In conclusion, all feature types are needed and complement each other. Whilst

lexical features are the most indicative of causal triggers, syntax and semantics permit

generalisation over the grammatical flexibility and sense variability of language.

5.9.3 Comparison of corpus size

The size of the corpus is always a real problem for machine learning methods. As has

been noticed in Section 5.8, the learning curve on a combined corpus of 43 full-text

journal articles, containing more than 1300 causal relations, is increasing even when

all data is given as input. This correlates with the results obtained by employing a

self-learning algorithm.

Since most existing work has focussed on the general domain, the PDTB corpus has

been the main resource for gold standard data. PDTB has 18459 manual annotations

of discourse relations, which are triggered by only 100 unique trigger types. Unlike
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it, BioCause contains only 800 explicit causal relations, whilst the unique trigger set

comprises 381 phrases. These large differences pose significant issues when creating

discourse parsers for a specialised domain such as biomedicine.

As Ramesh et al. (2012) mention, most errors arise from the fact that a large part of

trigger phrases occur only a small number of times. The low frequency is not enough

in order for the machine learner to create accurate models, especially in the case of

10-fold cross validation. For those triggers which occur only once, the trigger will be

either in the training set, or in the test set, case which will result in low performance.

The main result of this experiment is the fact that more data is needed for such

specialised domains.

5.10 Summary

The chapter presented our proposed framework in the area of identifying discourse

causal triggers. We conducted the first detailed analysis of the problem of identifying

discourse causality triggers in biomedical text given gold standard annotations.

Our analysis showed that the ability of a word or phrase to act as a causal trigger

depends not only on the context and domain of text, but also on the annotation and

information perspective (e.g., linguistic v. biological perspective).

In terms of feature selection, our results showed that lexical, syntactic and depend-

ency features are more important, while command, semantic and position features are

less significant. Nonetheless, the best results were achieved by a combination of all six

types of features.

We have applied an array of algorithms, including rules, supervised machine learn-

ing and self-training. We discovered that, for this task, the Conditional Random Fields

algorithm consistently outperforms the other learning algorithms. By combining the

best solutions for each of the above aspects, we created a novel framework for the



5.10. SUMMARY 193

identification of causal triggers.

We evaluated our system on the two open access corpora of discourse causality

mentioned above. Our 10-fold cross-validated results on the BioDRB corpus were

similar to those obtained on the BioCause corpus. The performance drops by approx-

imately 10% when training a model on one corpus and testing it on the other. Further-

more, we trained a model on the combination of the two corpora, whose performance

is slightly lower than that of the models trained on BioCause and BioDRB separately.

This is mainly because of the lack of gold standard semantic annotations.

Finally, we proved the need for more annotated data by running a series of learn-

ing procedures using different sizes for training data. As we increase the amount of

available data, the performance increases too.
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Chapter 6

Argument detection

This chapter focusses on analysing and automatically identifying the spans of the two

arguments of the previously recognised causal triggers.

First, we motivate our research by explaining the usefulness of capturing the causal

arguments and demonstrating the difficulty of the task because of the numerous pos-

sibilities of expressing them.

Second, we describe the process of identifying the two arguments of the causal

trigger, which is divided into three steps. In the first step, a classifier is built in order

to determine whether the two arguments are located in the same sentence or not, based

on the trigger. In the second step, based on the result of the previous step, two spans

representing the arguments are located around the trigger, either in the same sentence

or neighbouring sentences. The last step deals with giving a sense to the newly found

causal relation by assigning roles to the two arguments: cause and effect.

In our approach, we employ multiple types of features, namely lexical, syntactic,

dependency, command, semantic and positional. We describe each feature individually

and justify its selection for our specific task. We then test these features for relevancy

using automatic feature evaluators and retain only a subset of these for learning pur-

poses.

195
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Our experiment structure is similar to that used in Chapter 5. We employ rules,

supervised machine learning, and semi-supervised machine learning. The perform-

ance of these three paradigms are analysed and compared to decide which is the best

approach for this task.

We also investigated the effectiveness of the features that we created. We analyse,

feature by feature, how useful they are in the classifications that the machine learners

perform.

6.1 Motivation

The arguments of causal relations, cause and effect, are more difficult to recognise

than causal triggers. This is due to multiple reasons, most of which are detailed in

Section 4.9. We will briefly reiterate and exemplify them here, in order to explain the

decisions we made.

First, the spans of text that make up the arguments are of arbitrary length, varying

significantly from one case to another, as previously depicted in Figure 4.10. Argu-

ments can go up to 100 tokens in length in the case of Cause, and up to 70 in the case

of Effect.

Second, the position of the two arguments around the trigger can change, as shown

in Table 4.11. Although most of the relations follow a Cause-Trigger-Effect pattern,

there is an important percentage of relations, 20%, which do not obey this rule. Fur-

thermore, Table 4.12 shows that almost half of all relations have one argument in a

different sentence than that of the trigger. Thus, the search space increases signific-

antly and, as a consequence, the difficulty of a correct recognition increases too.

This leads to the third reason, which concerns the distance between the trigger and

the arguments. Figure 4.11 illustrates the number of sentences between that of the

trigger and that of the independent argument, when it is located in a different sentence.
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Require: trigger set T
Ensure: arguments for each trigger in T

1: for all trigger t ∈ T do
2: Label t as SS or DS
3: if t is SS then {arguments in same sentence}
4: Split sentence in clauses
5: Label the immediate right clause of t as DepArg
6: Label the rest of the sentence as IndArg
7: else {arguments in different sentences}
8: Label sentence of t as DepArg
9: Identify IndArg around the sentence of t

10: end if
11: Identify argument roles
12: end for

Figure 6.1: Pseudocode for identifying causal arguments.

About half of the cases have the argument located in the previous sentence, but the rest

spread up to the tenth previous sentence.

Because of these three reasons, we divide our process into three steps. Thus, we

deal with only one of these problems at a given point of time. We are aware that if one

of these steps produces noisy models, the erroneous classifications will be propagated

further down in the pipeline. This can lead to lower final performance. However, in a

real-life situation, this is the process that would occur.

6.2 Experimental setup

Figure 6.1 depicts the pseudocode for identifying the arguments of the previously

recognised causal triggers. There are three steps, each based on the output of the

previous. The first step is to determine the position of the arguments (AP). We are

interested to know whether the two arguments are located in the same sentence or in

different sentences. This is due to the fact that syntax plays an important role in the

former case, but no role in the latter. This classification is based mainly on the causal

trigger itself.
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The second step then locates the actual spans of the two arguments (AS). Including

the causal trigger as a feature for the system, the system first locates the syntactically

dependent argument. This is the easier argument to detect, since it is bound syntactic-

ally to the trigger. The more elusive independent argument is then located by including

both the trigger and dependent argument as features.

Finally, after both the spans of arguments are found, a role is given to each of

them (AR). This is again done mostly having the trigger as a feature, but also semantic

features based on the arguments.

Each of the three steps is tackled with various rule-based and machine learning

algorithms and different settings. Similar to the trigger detection in Chapter 5, we have

modelled each step of the argument recognition in three ways.

The first method is rule-based. Three different types of rules, based on lexical,

dependency and syntactic features, are combined into five systems. These systems are

evaluated on the whole of BioCause.

The second method approaches the problem as a supervised machine learning

paradigm. For finding the argument spans, we experimented with CRF, considering

the task a sequence labelling problem. We also employed SVM, RF and NB, when

modelling the task as a classification problem. As in the previous chapter, we use the

CRF-Suite implementation of CRF, LibSVM for SVM, and Weka for RF and NB.

For deciding on the position and roles of the two arguments, we employ six classifiers

belonging to different categories of learners. They are all implemented in the Weka

framework.

Finally, semi-supervised learning is used to overcome the low amount of gold

standard data. We evaluate the same classifiers for each of the three steps, using the

best-performing classifiers to tag the unlabelled data after each step.
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ID Short desription Values AP AS AR
L1 t 8509 X X X
L2 lemma(t) 5795 X X X
L3 isCapitalised(t) 2 X X X
L4 neighbour(t,[left,right],1..5) 8509 X X X
L5 lemma(L4) 5795 X X X

Table 6.1: Lexical features in identifying causal arguments.

6.3 Feature engineering

Based on our analysis of causal triggers, we engineered six types of features for the

development of this causality model, i.e., lexical, syntactic, dependency, command,

semantic and position in sentence. A more detailed description is given in subsequent

sections. However, we describe only features that have not been introduced in the

previous chapter, or for which we have a different motivation. All tables summarising

the features in each category also show in which of the three steps the feature is used.

In the case of the first and third steps (i.e. AP and AR), the features are constructed

based on the trigger, whilst for the second step, AS, the features are constructed at the

token level.

6.3.1 Lexical features

Several lexical features have been engineered for this classification task, and they are

listed in Table 6.1.

One of the best features is the token or causal trigger itself, L1. For instance, when

the trigger is the token Thus (i.e., thus with a capital first letter), it is highly probable

that the current sentence is an effect of a previous sentence. Thus, the causal relation

is marked as DS. For generalisation purposes, we also include the lemmatised form of

the trigger, L2. Thus, these results suggest that is represented as these result suggest

that.
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ID Short desription Values AP AS AR
X1 partOfSpeech(token) 47 X
X2 syntCat(token) 11 X
X3 posString(trigger) 228 X X
X4 syntCatString(trigger) 165 X X
X5 posStringDupl(trigger) 226 X X
X6 syntCatStringDupl(trigger) 141 X X
X7 containsMainVerb(trigger) 2 X X
X8 mainVerb(sent) 896 X
X9 voiceOfVerb(trigger) 2 X
X10 pos(L4) 47 X
X11 syntCat(L4) 11 X

Table 6.2: Syntactic features in identifying causal arguments.

Furthermore, a useful feature is a flag saying whether the trigger starts with a cap-

ital letter or not, L3. This again helps in the decision for the position of the trigger

in the sentence. Finally, the neighbours of the triggers and their lemmata also count

towards this decision, and are coded as L4 and L5, respectively.

6.3.2 Syntactic features

As for syntax, we include PoS and syntactic category strings representations of the

causal triggers (X3 and X4, respectively). For instance, a trigger such as These results

show that is represented as a PoS string DT-NN-V-DT. This adds a level of generalisa-

tion, where (usually) nouns and verbs can be replaced by their numerous synonyms.

These two features are then extended by creating other strings which do not contain

duplicate consecutive PoS or syntactic category values, marked as X5 and X6. In

other words, DT-NN-V-V-DT is reduced to DT-NN-V-DT. This simplifies the string

representation and reduces the data sparsity. A sequence of adjectives or compound

verb tenses should not affect the causal relation.

We also add a feature, X7, indicating whether the trigger contains the sentence’s

main verb. If it does, this is a good indicator that the arguments are located in different
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ID Short description Values AP AS AR
D1 pas(token) 3241 X
D2 pas-role(token) 2 X
D3 pos(D1) 28 X
D4 distanceBetween(token,D1) 11 X

Table 6.3: Dependency features used in identifying causal connectives.

sentences. Furthermore, feature X8 contains the main verb of the sentence. We are

also interested in the voice of the verb, which is included as feature X9. This is helpful

in determining the direction of the relation: which predicate affects which?

Finally, we extract the first two features for the neighbouring tokens as well. These

are coded as X10-X11.

6.3.3 Dependency features

These features are constructed based on the dependency relations found by Enju in the

sentence. Table 6.3 includes all dependency features employed in this study.

First, for each token, we extracted the predicate-argument structure and included

the arguments as surface expression forms. We also included the PoS of these argu-

ments, as well as the distance from the token.

6.3.4 Command features

Command features, built on the definition provided in the previous chapter, are in-

cluded in Table 6.4.

Features C1-C3 indicate whether the current token c-commands a SBAR, VP or

NP constituent, respectively. Features C4-C6 are similar, with the exception that the

dominant node must be an S (sentence). In the case of features C7-C9, the dominant

node must be a VP.

All mentioned features rely on the observation that a trigger c-commands at least
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ID Short description Values AP AS AR
C1 c-commands(token, SBAR) 2 X
C2 c-commands(token, VP) 2 X
C3 c-commands(token, NP) 2 X
C4 S-commands(token, SBAR) 2 X
C5 S-commands(token, VP) 2 X
C6 S-commands(token, NP) 2 X
C7 VP-commands(token, SBAR) 2 X
C8 VP-commands(token, VP) 2 X
C9 VP-commands(token, NP) 2 X

Table 6.4: Command features used in identifying causal connectives.
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Figure 6.2: Procentual location of triggers in sentences showing the location of its two
arguments.

one of its arguments (more specifically, the dependent argument). In most cases, trigger

tokens S-command or VP-command argument tokens, whose superparent is usually an

SBAR, VP, or NP.

6.3.5 Positional features

The position of the trigger in the sentence is also of great importance. As can be noticed

in Figure 6.2, an initial trigger suggests that the arguments are located in different
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ID Short desription Values AP AS AR
P1 indexInSent(trigger) 56 X X X
P2 percentageInSent(trigger) 295 X X X
P3 positionInSent(trigger) 3 X X X
P4 length(sentence(trigger)) 72 X X X

Table 6.5: Positional features in identifying causal arguments.

sentences, whilst a trigger in mid-sentence tends to have both arguments around it in

the same sentence.

Thus, the position of the trigger in the sentence is a good indicator of the location

of the arguments. Therefore, we include the position of the trigger in the sentence,

P1. Furthermore, we added a feature which indicates, percentually, the position of the

trigger in the sentence, P2, and one which discretises it into three values, Beginning,

Middle, and End (P3). In order to relativise the position in the sentence, we included

another feature containing the length of the sentence, P4.

6.3.6 Semantic features

The semantic features employed in detecting the arguments of a causal trigger are

similar to those discussed in Chapter 5.

We exploit the same sources of semantic knowledge, namely the pre-existing gold

standard annotation in BioCause, automatic named entity and event information from

OSCAR, NeMine, and UKPMC, UMLS semantic types and WordNet hypernyms. In

addition to these, we introduce another four semantic features, S8-S11.

The other two new features, S8 and S9, record the decisions made by the systems

in previous steps. For instance, feature S8 is used in the second and third step of our

pipeline, and shows whether or not a token has been marked as a trigger. Similarly,

S9 is used only in the last step and shows whether or not a token has been marked as

being part of the dependent argument.
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ID Short desription Values AP AS AR
S1 isNamedEntity(token) 2 X
S2 namedEntityType(token) 9 X
S3 isEvent(token) 2 X
S4 eventType(token) 8 X
S5 wordnetHypernym(token) 1158 X
S6 isUMLSEntity(token) 2 X
S7 UMLSEntityType(token) 126 X
S8 isTrigger(token) 2 X
S9 isDA(token) 2 X
S10 type(DA) 143 X
S11 type(IA) 143 X

Table 6.6: Semantic features in identifying causal arguments.

Finally, features S10 and S11 characterise the semantic properties of the dependent

and independent argument, respectively. The semantics contained in the two arguments

can help in determining which is the cause and which is the effect.

6.4 Feature analysis

To this end, we automatically analysed all binary features to decide which are relevant

to our task. We have evaluated the entire feature space using two attribute evaluators,

InfoGain and ChiSquare, which are implemented in Weka. The tables show the scores

of InfoGain. Nevertheless, ChiSquare offers a similar set of top features, with slight

order changes.

Table 6.7 shows the top features from an optimal set, for the task of determining

the position of the arguments. As can be noticed, the most discriminant features are

the trigger and its lemma. These are followed by the PoS string and its duplicateless

version, as well as the syntactic category string and its duplicateless version. The in-

formation about the position of the trigger in the sentence is also of great relevance,

both the absolute and percentual positions being present in the top ten. The flag cor-

responding to the capitalisation of the trigger also plays a significant role, as well as
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Feature InfoGain score
L1 0.90591
L2 0.84038
X1 0.76788
X5 0.76382
X2 0.68507
X6 0.64695
P2 0.63723
P1 0.62523
L3 0.58323
X1 DT 0.3258

Table 6.7: Top ten predictive features in identifying the position of arguments.

Feature InfoGain score
X8 suggest 0.02020
P2 0.01897
P4 0.01719
P1 0.01570
X8 indicate 0.00909
X2 PN 0.00869
X6 PN 0.00869
X11 l,PN 0.00620
X11 r,-EOS- 0.00518
S8 0.00518

Table 6.8: Top ten predictive features in identifying the span of arguments.

whether the trigger contains a determiner.

In what regards the task of determining the span of the arguments, Table 6.8 shows

the top ten features. It can be noticed that the top does not contain any lexical fea-

ture. The amount and diversity of tokens make it very difficult for these features to be

discriminative. One of the best features is the main verb of the sentence, X8, when it

is suggest or indicate. Positional features are also very important, as the absolute and

percentual index of the token in the sentence, as well as the length of the sentence oc-

cupy the second, third and fourth places. Other important features are the presence of

punctuation (PN) in the syntactic category string and its duplicateless version, and the

presence of punctuation and end of sentence markers in the immediate left and right,
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Feature InfoGain score
X2 P 0.0836
X9 active 0.08212
L1 by 0.0602
L1 due 0.04742
L1 suggest 0.04307
X1 IN 0.04284
X5 IN 0.04284
X1 V 0.04199
L2 be 0.04199
L2 that 0.04124

Table 6.9: Top ten predictive features in identifying the role of arguments.

respectively, context. The tenth best feature is the flag which marks a token as part of

a trigger.

For the task of determining the role of the arguments, Table 6.9 shows the top

features. The features are spread across the lexical and syntactic types. The most im-

portant feature is the syntactic category P included in the trigger, immediately followed

by the active voice of the verb in the trigger. The next three best features are lexical,

and each flags the presence of by, due and suggest, respectively, in the trigger. These

features can easily distinguish between the roles of arguments, since due will usually

introduce the cause, whilst an active voice and suggest are specific to a following effect

argument. The other features in this top refer to containing an IN or V in the part-of-

speech string and its duplicateless version, as well as the lemmata be and that in the

trigger.

6.5 Experimental results

We ran a series of experiments in order to systematically evaluate the effect of the

numerous learning algorithms and features for all three steps. This section describes

the results of our experiments.



6.5. EXPERIMENTAL RESULTS 207

Rule P R F1

Position 91.80% 90.59% 91.19%

Table 6.10: Performance of rules in classifying triggers as SS or DS.

6.5.1 Argument location identification

As we observed in the causal argument analysis section in Chapter 4, the relative pos-

ition of the two arguments is roughly balanced. Table 4.12 showed that almost 56% of

the causal relations in BioCause are intra-sentential, whilst the rest of 44% are inter-

sentential. This means that syntactic dependency is an advantage in only half of the

cases, where both arguments are located in the same sentence. In case the two ar-

guments are located in different sentences, other types of features are needed, since

syntax does not influence the position anymore. For instance, one could use semantics

and position features to establish possible causal links. Therefore, it is necessary to

decide whether the two arguments are located in the same sentence or not, as different

methodologies would be applied afterwards. The following three subsections describe

the three approaches to this task, i.e. rules, supervised learning and semi-supervised

learning.

Rule-based

We have engineered a rule-based system to address the task of locating the two argu-

ments. Table 6.10 lists its performance, which is detailed in what follows.

The position of the trigger in the sentence is a very good estimator of whether the

two arguments are located in the same sentence of in different sentences. This is due

to the fact that the trigger tends to be placed in between the two arguments. Thus, the

first rule-based system decides that the arguments are located in different sentences

if the trigger is at the beginning of the sentence, and in the same sentence otherwise.

This approach leads to a very high F-score value of 91.19%. The main errors arise
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Classifier P R F1

Naı̈ve Bayes 91.85% 91.90% 91.87%
SVM 92.75% 92.55% 92.65%
JRip 93.20% 92.95% 93.07%
J48 93.00% 92.80% 92.90%
RandFor 92.70% 92.80% 92.75%
Vote 94.95% 94.65% 94.80%

Table 6.11: Performance of various algorithms in classifying triggers as SS or DS.

from the cases where the sentence begins with a trigger, and both arguments follow it

in the same sentence. For instance, example (6.1) shows one case in which the trigger

is followed by both arguments. This will result in a misclassification by our rule.

(6.1) SinceT [Brucella is an intracellular facultative pathogen]DA, [the bacteria

could use these denitrification reactions to grow under low-oxygen condition by

respiration of nitrate]IA.

Supervised learning

To classify the trigger arguments into SS or DS, we have experimented with different

types of algorithms implemented in Weka, ranging from simple probabilistic classifi-

ers (Naı̈ve Bayes) to decision trees (J48 and RF), rules (JRip) and Support Vector Ma-

chines (SMO). We have also employed the Vote meta-classifier, which is configured

to consider the five previous classifiers, using an Average of Probabilities combination

rule.

Table 6.11 shows the macro-averaged performance of the employed classifiers. As

can be seen, the performances are very similar between all classifiers, their F-score

ranging within just under 2% of 93%. Furthermore, the Vote meta-classifier improves

the results only slightly, by 1.73% over JRip, which leads us to the conclusion that all
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Features P R F1

L 93.45% 93.35% 93.40%
X 89.05% 89.50% 89.27%
P 92.85% 92.65% 92.75%
LX 94.05% 93.95% 94.00%
LP 94.40% 94.15% 94.27%
LXP 94.95% 94.65% 94.80%

Table 6.12: Performance of the Vote meta-classifier in classifying triggers as SS or DS.

classifiers make relatively the same decisions. Both precision and recall are balanced

in the classification.

Table 6.12 shows the performance of the Vote meta-classifier when varying the

feature set. The best performance is obtained when all feature types are employed,

reaching an F-score value of 94.80%. This is closely followed by both LP and LX,

which also reach values of over 94%. In fact, most combinations give F-score of

over 92%. The worst performing feature set is when syntactic features are used by

themselves, resulting in just over 89% F-score. This is because the variety of patterns

leads to a sparse feature space, which results in the lower performance. For example,

there are 228 different PoS patterns for the triggers, and 128 of these occur only once.

Thus, there will be a significant amount of unseen data in the test fold in each of the

ten folds.

The precision and recall are balanced, with precision being slightly (under 0.25%)

higher than recall in all cases with the exception of syntactic features. Again, this is

due to data sparseness, as it is difficult for the classifier to generalise when rare patterns

occur.

JRip is the second best performing classifier for this task, obtaining an F-score

of 1.73% less than Vote. As can be noticed from Table 6.13, the combination of all

features again provides the best performance of 93.07%, but it is very closely followed

by the lexical feature set, at 93.00%.
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Features P R F1

L 93.10% 92.90% 93.00%
X 87.75% 88.15% 87.94%
P 92.85% 92.65% 92.75%
LX 92.85% 92.65% 92.75%
LP 93.05% 92.95% 92.99%
LXP 93.20% 92.95% 93.07%

Table 6.13: Performance of the JRip classifier in classifying triggers as SS or DS.

(P1 <= 4) and (X1_DT == 1) => DS (221/0)
(P2 <= 0.1) and (P4 <= 31) => DS (71/3)
(P2 <= 0.114286) and (P4 <= 42) => DS (35/8)
(X1_VBP == 1) and (L1_indicate == 1) => DS (8/2)
(P2 <= 0.25) and (X1_RB == 1) and (P4 >= 48) => DS (5/0)
(L1_is == 1) and (P4 <= 17) => DS (4/0)
(P2 <= 0.483871) and (P2 >= 0.481481) => DS (7/1)
=> SS (447/17)

Figure 6.3: Rules induced by the JRip classifier for argument location identification.

We investigated the output of this classifier to better understand how the features

are used in the classification. Figure 6.3 shows the rules induced by JRip in the case of

LXP feature set. The numbers in the parantheses at the end of each line stand for cov-

erage / errors in the training data, which follows the standard convention of tree/rule in-

duction. For instance, (P2 <= 0.114286) and (P4 <= 42) => DS (35/8) means

that the rule (P2 <= 0.114286) and (P4 <= 42) => DS covers instances with total

weights of 35, out of which there are instances with weights of 8 misclassified. In our

case, each instance has a weight of 1, thus the rule applies to 35 instances, out of

which 8 are misclassified. This shows the discriminant power of the employed feature

set, which relies mostly on positional information. Special attention needs to be given

to the first rule, which, by using only positional and PoS information (does the trigger

contain a DT?), manages to correctly classify 221 instances with no misclassifications.
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Classifier P R F1

Naı̈ve Bayes 93.56% 96.42% 94.97%
SVM 93.50% 94.44% 93.97%
JRip 91.99% 91.57% 91.78%
J48 93.94% 93.00% 93.47%
RandFor 92.65% 90.04% 91.32%
Vote 93.97% 93.97% 93.97%

Table 6.14: Performance of various semi-supervised algorithms in classifying triggers
as SS or DS.

Semi-supervised learning

In a semi-supervised framework, we have used the self-learning approach detailed in

Section 5.5.3. This provides us with a means to overcome the data sparseness espe-

cially as regards the syntactic features.

We make use of the same process and unlabelled data for the learning process.

Thus, we split BioCause into two equally sized sets, one used as seed data and one for

final model evaluation. The unlabelled set is used for the self-learning step. For the

purpose of feature extraction, the causal triggers in the unlabelled data set are auto-

matically annotated using the best performing model created in Chapter 5, which is

semi-supervised CRFs. Thus, the errors arising from automatic causal trigger recogni-

tion are propagated in the present step.

In case the system gets into the blocked state, we use the Position rule that was

previously described. The rule is applied on the top 5% confident classifications.

Table 6.14 shows the best performance achieved by each of the classifiers used

in the supervised setting. As can be observed, some F-scores achieved are slightly

lower than those obtained in the supervised classification. This happens for the JRip,

Random Forest and Vote classifiers and is due to two main reasons. First, the noisy

data occurring in the unlabelled set confuses classifiers in their decisions. For instance,
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one erroneously identified causal trigger is the word DNA in sentence (6.2) below.

(6.2) The Cre-mediated inverted band ( 6.5 kb) is evident in thymus DNA (thymoma).

Another reason is the low recall in recognising triggers. Whilst the precision is

high, only a limited set of causal triggers is identified, due to data sparseness.

However, the Naı̈ve Bayes, SVM, and J48 classifiers manage to improve both their

precision and recall, which leads to an increased F-score for each of them. In fact,

the recall of Naı̈ve Bayes increases considerably, by almost 5%, whilst the precision is

almost 2% higher. In the case of SVM, the increase is more moderate, of just 1% in

the case of precision and 2% in the case of recall. The improvement of J48 is slightly

less than that, with just under 1% for precision and 0.2% for recall.

We have experimented with various values for the τ parameter and the size of the

seed data. As before, the τ parameter takes values from 0.6 to 0.9, in increments of

0.1, whilst the size of the seed data can vary between 12.5% and 100% in steps of

12.5%. The ratio between positive and negative instances in the seed data has not been

included as a parameter, as the data set is roughly balanced. Since the seed data is

selected randomly from the labelled set, we repeat each experiment ten times. The

average of the obtained results is given for each of the six classifiers in Figures 6.4 -

6.9.

As can be noticed from Figure 6.4, the performance of the Naı̈ve Bayes classifier

remains relatively insensitive to the variance of τ and seed size. The amplitude of its F-

score is just 1.50%, which is not seen in any of the other classifiers. This is partly due

to the fact that this specific classifier offers probabilities for each of the two classes that

are several orders of magnitude apart. When normalising them, this results in having a

binary output, with 0 and 1 as the final probabilities.
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Figure 6.4: Self-training results for the argument location NB classifier when varying
τ and the seed size.
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Figure 6.5: Self-training results for the argument location SVM classifier when varying
τ and the seed size.
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The SVM, RF and Vote classifiers suffer significantly when the size of the seed

data is 12.50%. All three start at very low values, 61% in the case of RF and 72% in

the case of SVM and Vote. The performance quickly increases to over 80% once more

data joins the labelled set.
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Figure 6.6: Self-training results for the argument location JRip classifier when varying
τ and the seed size.

A similar trend is observed on JRip and J48, but to a much lesser degree. In fact,

J48 behaves strangely at the other end of the seed size as well. The graph shows a

decrease in F-score when 100% of the seed data is available for initial training, which

is due to a decrease in precision, whilst the recall remains constant. This happens

because of the high variability of low frequency triggers occurring many times non-

causally, which allows for the production of many false positives.

The value of the τ parameter again does not seem to influence the performance of

the classification, especially when more labelled data is available. The only classifier

with a visibly separate line for the 60% confidence value for τ is Vote. In this case, the

performance of the model at 60% confidence threshold is 1-2% lower than the other
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Figure 6.7: Self-training results for the argument location J48 classifier when varying
τ and the seed size.
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Figure 6.8: Self-training results for the argument location RF classifier when varying
τ and the seed size.
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Figure 6.9: Self-training results for the argument location Vote meta-classifier when
varying τ and the seed size.

confidence levels throughout all seed sizes.

6.5.2 Argument span identification

In the previous section we focussed on determining the position of the two arguments

relative to the trigger. Whilst the syntactically dependent argument is always adjacent

to the trigger, the independent argument can be located either in the same sentence with

the causal trigger, or in a different one. This latter case is the most difficult to solve,

as the search space becomes very large and syntactic dependency and constituency do

not provide any help. Instead, we rely on semantics and positional features to provide

discriminating information.

Rule-based

Our rule-based approach to determining the spans of the two arguments relies on the

parse tree of sentences in the case of same-sentence arguments. For different-sentence
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Argument-Case P R F1

DA-SS 74.36% 100% 85.29%
IA-SS 82.75% 96.53% 89.11%
DA-DS 83.79% 100% 91.18%
IA-DS 54.98% 60.58% 57.64%

Table 6.15: Performance of rules in identifying dependent (DA) and independent (IA)
argument spans.

arguments, the decision is simpler and based on statistics. All engineered rules are

described below.

In the case of same-sentence arguments, we employ a naı̈ve rule which splits the

sentence into two segments, each on either side of the trigger. The shortest segment

that is contained within an S or S-REL constituent and immediately follows the trig-

ger is marked as the dependent argument, whilst the segment preceding the trigger

is marked as the independent argument. The performance of this simple rule is im-

pressive, reaching values between 85% and 90%, as can be noticed from Table 6.15.

More specifically, the evaluation result for dependent argument identification in the

case of SS is F-score 85.29%. The recall reaches 100%, as all words after the token

are marked as part of this argument. However, the precision only gets to almost 75%,

showing that a better selection needs to be implemented to identify tokens that are not

part of the argument. In contrast, the independent argument identification in the case

of SS reaches a higher F-score of 89.11%. The recall is less than 100% because there

is a handful of cases where the independent argument is located after both the trigger

and the dependent argument, as mentioned in Table 4.11.

In case the two arguments of the causal trigger are classified as being in distinct

sentences, we mark the entire sentence containing the trigger as the dependent argu-

ment. Thus, the dependent argument is marked as starting from the end of trigger to

the end of the sentence. This leads to an F-score of 91.18%, with 100% recall and

almost 84% precision.
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Classifier P R F1

CRF 85.98% 79.98% 82.87%
SVM 80.48% 74.49% 77.37%
Random Forest 79.42% 75.14% 77.22%
Naı̈ve Bayes 63.42% 66.11% 64.73%

Table 6.16: Overall performance of various classifiers in identifying dependent (DA)
and independent (IA) argument spans.

The independent argument is marked as the preceding sentence to that containing

the trigger. This results in an F-score of 57.64%, much lower than those of other argu-

ments. The two main reasons for a lower score are the syntactic independency and the

large search space. Practically any sentence preceding or following the trigger sentence

can play the role of the independent argument. The only possibility to improve the ac-

curacy of identifying it is by employing deep semantics and other discourse features,

which are used by machine learning approaches.

Supervised learning

We have experimented with four different classifiers, namely Support Vector Ma-

chines, Random Forests, Naı̈ve Bayes and Conditional Random Fields, in a supervised

setting. Table 6.16 shows the overall performance of the four classifiers that we have

employed. The following four tables, 6.17 - 6.20, contain the results specific to each

of the four cases of arguments.

As can be noticed, the overall best performing classifier is CRF. It overperforms

both SVM and RF by almost 10% in terms of F-score. Naı̈ve Bayes is even further

away, at over 15% distance.

Although the performance of SVM and RF is similar, the better precision is ob-

tained by SVM, whilst the better recall by RF. In fact, the precision of SVM is very

close to that of the CRF-based model, with only 3% difference. Naı̈ve Bayes, although

producing a very high recall, manages to recognise correctly only just over 55% of its
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Classifier P R F1

CRF 91.79% 88.22% 89.97%
SVM 88.82% 81.04% 84.75%
Random Forest 85.78% 82.20% 83.95%
Naı̈ve Bayes 67.12% 73.40% 70.12%

Table 6.17: Performance of various classifiers in identifying DA-SS argument spans.

Classifier P R F1

CRF 93.11% 83.48% 88.03%
SVM 87.95% 81.25% 84.47%
Random Forest 87.75% 81.75% 84.18%
Naı̈ve Bayes 69.95% 68.66% 69.30%

Table 6.18: Performance of various classifiers in identifying IA-SS argument spans.

output. We discuss in what follows each of the four cases, and then the best features of

each individual algorithm.

The same-sentence dependent argument (DA-SS) obtains the best results amongst

all four cases. These are listed in Table 6.17. This is due to the syntactic dependency

that exists between itself and the trigger. As such, CRF reaches an impressive F-score

value of 90%, whilst SVM and RF immediately follow at almost 85% F-score. Naı̈ve

Bayes again performs the worst, with an F-score of 70%.

The second best case is that of the same-sentence independent argument (IA-SS),

whose results are given in Table 6.18. In fact, the performance of CRF is not much

lower than that of the DA-SS case. The difference between these two cases is just

under 2% in terms of F-score. However, the precision of the IA-SS is higher than

that of DA-SS, whilst the recall is lower. This is due to the fact that the classifiers

tend to mark extra tokens as part of the DA-SS argument, which results in many false

positives. SVM, RF, and NB maintain their relative distance to CRF as previously.

The third case is that of the different-sentence dependent argument, presented in

Table 6.19. The results are similar to the previous case of dependent argument, but
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Classifier P R F1

CRF 86.45% 82.25% 84.30%
SVM 80.55% 76.30% 78.37%
Random Forest 80.05% 76.45% 78.21%
Naı̈ve Bayes 63.45% 68.25% 65.76%

Table 6.19: Performance of various classifiers in identifying DA-DS argument spans.

Classifier P R F1

CRF 72.58% 65.95% 69.11%
SVM 64.58% 59.36% 61.86%
Random Forest 64.08% 60.15% 62.05%
Naı̈ve Bayes 53.15% 54.12% 53.63%

Table 6.20: Performance of various classifiers in identifying IA-DS argument spans.

slightly lower for all algorithms. In the case of CRF, the F-score drops by approxim-

ately 5%, whilst in the case of SVM and RF the decrease is of almost 7%.

Finally, the case of independent arguments in different sentences obtains the worst

results. This is due to the complete syntactic independence between this argument and

the trigger. The only real support for the identification of this argument comes from

the lexical and semantic features. CRF again obtains the best precision and recall,

reaching to 69% F-score. SVM and RF perform slightly worse, reaching almost 62%

F-score. Even lower results are obtained by Naı̈ve Bayes, which gets to almost 54%

F-score.

Tables 6.21 - 6.24 show the best results for each of the four classifiers with various

combinations of feature types. As can be noticed, the CRF and SVM classifiers ob-

tain their best scores when all types of features are used, whilst RF and Naı̈ve Bayes

perform best when excluding syntactic features.

In the case of Random Forest, shown in Table 6.23, the addition of syntactic fea-

tures to the model increases the recall slightly, by 0.13%, but decreases the precision

by 0.23%, thus resulting in an F-score lower by 0.04%. For Naı̈ve Bayes (Table 6.24),

the addition of syntactic features boosts the recall by 0.44%, but seriously affects the
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Features P R F1

L 83.65% 77.14% 80.26%
LX 83.94% 77.78% 80.74%
LP 86.22% 78.02% 81.92%
LXS 84.33% 78.67% 81.40%
LXDCP 86.05% 78.85% 82.29%
LXDCPS 85.98% 79.98% 82.87%

Table 6.21: Performance of the CRF classifier in identifying dependent (DA) and in-
dependent (IA) argument spans.

Features P R F1

L 78.28% 72.75% 75.41%
LX 78.65% 73.04% 75.74%
LP 81.05% 73.35% 77.01%
LXS 79.80% 74.00% 76.79%
LXDCP 80.98% 74.04% 77.35%
LXDCPS 80.48% 74.49% 77.37%

Table 6.22: Performance of the SVM classifier in identifying dependent (DA) and
independent (IA) argument spans.

Features P R F1

L 78.23% 72.33% 75.16%
LX 79.02% 72.85% 75.81%
LP 80.12% 74.42% 77.16%
LXS 79.25% 74.90% 77.01%
LDCPS 79.65% 75.01% 77.26%
LXDCPS 79.42% 75.14% 77.22%

Table 6.23: Performance of the Random Forest classifier in identifying dependent (DA)
and independent (IA) argument spans.

precision, which drops by 1.1%, thus resulting in an F-score lower by 0.36%.

Furthermore, it can be observed that semantic features improve the F-score in all

combinations they are added. They work by increasing the recall in most cases, al-

though a drop in precision occurs as a consequence of that. Nevertheless, there are

cases where both precision and recall increase by adding semantic information to the

feature set. This is to be expected, as semantics generalises knowledge very well.
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Features P R F1

L 62.05% 64.25% 63.13%
LX 62.58% 65.04% 63.79%
LP 63.98% 65.97% 64.96%
LXS 63.02% 65.88% 64.42%
LDCPS 64.52% 65.67% 65.09%
LXDCPS 63.42% 66.11% 64.73%

Table 6.24: Performance of the Naı̈ve Bayes classifier in identifying dependent (DA)
and independent (IA) argument spans.

Classifier P R F1

CRF 84.52% 79.58% 81.98%
SVM 75.85% 77.95% 76.89%
Random Forest 76.95% 76.50% 76.72%
Naı̈ve Bayes 63.30% 67.35% 65.26%

Table 6.25: Performance of semi-supervised various classifiers in identifying depend-
ent (DA) and independent (IA) argument spans.

Semi-supervised learning

Similar to the previous experiments, we use half of the BioCause corpus as seed data,

24 full text articles as learning data, and the other half of BioCause for final model eval-

uation. The two halves are then swapped and the experiments repeated. The automatic

annotations of triggers over the learning data are enhanced with new information re-

garding the location of the two arguments, obtained from the best performing classifier

detailed in the previous section.

Table 6.25 shows the results that were obtained with the same classifiers in a semi-

supervised setting. As can be noticed, CRF leads the performance results, with almost

82% of the arguments identified correctly. SVM and RF are situated at around 5%

lower than CRF, whilst NB manages to obtain just 65% F-score.

The results of the first three classifiers are slightly lower than in the case of the

supervised method. Whilst the F-score of CRF drops by 1%, the scores of SVM and
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RF decrease by only 0.5%. In contrast, the NB classifier manages to improve its per-

formance by almost 0.5%, due to an 1.2% increase in recall.

The slight decrease is due to the errors arising from the automatic annotation of the

unlabelled data by using the models from previous steps. There are several cases in

which a same-sentence trigger is erroneously classified as different-sentence, such as

the one in example (6.3). This type of errors is due to the order of the causal constitu-

ents, T-E-C in this case (order occurring in only 1.29% of all relations in BioCause).

Since the trigger is the first token in the sentence, the algorithm decides that the argu-

ments are located in distinct sentences.

(6.3) Since [Brucella is an intracellular facultative pathogen]DA, [the bacteria could

use these denitrification reactions to grow under low-oxygen condition by respira-

tion of nitrate]IA.

The reverse occurs as well: there are several cases where different-sentence triggers

are classified as being same-sentence, as shown in example (6.4). This happens when

the trigger is located mid-sentence and the majority of its occurrences are in fact same-

sentence.

(6.4) [The fact that PmrB is likely to sense changes in pH directly]DA is supported

by multiple findings.

First, [the mild acid pH-dependent activation of the PmrA-regulated gene pbgP was

dramatically reduced in a strain lacking pmrB]IA.

Figures 6.10 - 6.13 depict the change in the obtained F-score when varying the seed

size and confidence threshold for each of the four classifiers.
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Figure 6.10: Self-training results for the argument span CRF classifier when varying τ

and the seed size.
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Figure 6.11: Self-training results for the argument span SVM classifier when varying
τ and the seed size.
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Figure 6.12: Self-training results for the argument span RF classifier when varying τ

and the seed size.
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Figure 6.13: Self-training results for the argument span NB classifier when varying τ

and the seed size.
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As noticed before, Figure 6.13 shows that the Naı̈ve Bayes classifier has a very

small amplitude in the F-score curve, of just over 2%. In contrast, the other three

algorithms increase their performance by approximately 5% when changing the size

of the seed data from 12.5% to 100%. All classifiers are, however, insensitive to the

modification of the confidence threshold, especially when higher amounts of seed data

are available.

6.5.3 Relation direction identification

The final step in the causality recognition pipeline is to detect which argument plays

which semantic role. Each of the previously identified arguments must be assigned one

of the two possible roles, Cause and Effect. For this task, we have explored different

possibilities to detect whether a causal relation is of the form C-T-E or E-T-C. The other

three possibilities existing in BioCause have been excluded from the classification, as

their number is insufficient for training purposes.

One aspect that has to be taken into consideration is the skewed data. The E-T-C to

C-T-E ratio is 1:7.54.

Rule-based

Table 6.26 lists the results of all the rules that we have created for this third step of

assigning roles to the arguments.

The most obvious and simplest rule that can be developed is the majority class rule,

especially under the circumstances of such a high skew. All instances are marked with

the majority class label (C-T-E), which, for that class, will produce a complete recall,

and a slightly lower precision. However, the zero precision and recall for the minority

class will halve those numbers for the macro F-score. In this case, the macro-average

precision is 44.15%, whilst the recall is 50%. Thus, the macro-average F-score reaches
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Rule P R F1

Majority 44.15% 50% 46.89%

Table 6.26: Performance of rules in identifying causal direction.

Classifier P R F1

Naı̈ve Bayes 69.85% 83.80% 73.40%
SVM 81.70% 79.90% 80.80%
JRip 81.60% 80.35% 80.95%
J48 83.40% 79.15% 81.10%
RandFor 83.70% 72.55% 76.60%
Vote 85.25% 83.55% 84.35%

Table 6.27: Performance of various classifiers in identifying causal direction.

only 46.89%.

Supervised learning

Similar to the previous steps, we have experimented with multiple algorithms, ranging

from simple probabilistic classifiers (e.g., Naı̈ve Bayes) to trees (e.g., J48 and Random

Forests), rules (JRip) and support vector machines (SVM). We have also used the Vote

meta-classifier, which considers the five previous classifiers, and decides using an Av-

erage of Probabilities combination rule. All of the mentioned algorithms are used as

implemented in Weka.

The macro-averaged results are provided in Table 6.27. Under the circumstances of

the skewed data set, the best classifier, Vote, reaches an F-score of 96.40% in the case

of C-T-E and of 72.30% in the case of E-T-C, resulting in a macro-average F-score of

84.35%.

This improves significantly over J48, the decision tree-based classifier, which is

second best in terms of F-score, at more than 3% distance. In fact, the precision of

Vote is increased with almost 2% over that of J48 and Random Forest, whilst the recall

is similar to that of Naı̈ve Bayes and much higher than that of the other classifiers. This
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Features P R F1

L 85.85% 79.05% 82.30%
X 79.50% 76.75% 78.10%
LP 83.10% 80.75% 81.90%
LXS 84.45% 82.75% 83.59%
LPS 85.65% 81.55% 83.55%
LXPS 85.25% 83.55% 84.35%

Table 6.28: Performance of the Vote meta-classifier in identifying causal direction.

Features P R F1

L 81.75% 74.80% 78.12%
X 74.15% 72.05% 73.08%
LP 81.60% 75.85% 78.62%
LXS 81.70% 77.35% 79.46%
LPS 82.75% 76.65% 79.58%
LXPS 81.60% 80.35% 80.95%

Table 6.29: Performance of the JRip classifier in identifying causal direction.

shows that Vote exploits the individual strengths of each of the five classifiers. Repeat-

ing the experiment with a Majority Voting combination rule instead of the Average of

Probabilities results in a similar output.

The most useful features in this classification, according to InfoGain and ChiSquare

attribute evaluators, have proven to be the actual trigger, its lemmatised form, part-

of-speech, syntactic category, its neighbours, the presence of the words by, due and

pronouns, and the voice of the verb.

Table 6.28 shows the performance of combinations of features for the Vote meta-

classifier. As can be noticed, combining all feature types leads to the best overall

F-score, and also the best recall. However, the best precision is obtained by using only

lexical features (85.85%).

Table 6.29 includes various combinations of feature types and their performance

against the data. It is again noticeable that all feature types lead to the best recall and

F-score. The best precision, however, excludes syntactic features. This is because
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(X2 P >= 1) and (L1 by >= 1) => ETC (23/4)
(X2 V <= 0) and (X2 P >= 1) => ETC (33/10)
(L2 be >= 1) and (X7 = NN) and (L1 it <= 0) => ETC (14/4)
(X2 = SC) => ETC (11/1)
(L1 due >= 1) => ETC (8/2)
(X2 = ADV) and (P1 >= 20) => ETC (3/0)
(L2 report >= 1) => ETC (4/1)
=> CTE (682/17)

Figure 6.14: Rules induced by the JRip classifier for relation direction identification.

Classifier P R F1

Naı̈ve Bayes 70.45% 80.05% 74.94%
SVM 82.50% 80.05% 81.25%
JRip 84.65% 80.90% 82.73%
J48 83.10% 79.20% 81.10%
RandFor 79.85% 74.20% 76.92%
Vote 84.55% 83.05% 83.79%

Table 6.30: Performance of various semi-supervised classifiers in identifying causal
direction.

the syntactic patterns that we engineered help generalise and increase recall, with the

downside of lowering the obtained precision.

Figure 6.14 shows the rules that are produced by the JRip classifier in determining

the direction of the relation. As can be noticed, the most prominent feature is X2, the

syntactic category of the trigger. More specifically, many rules contain a test whether

the syntactic category of the trigger contains certain categories, such as P, V, SC or

ADV. Other rules refer to lexical features, be it as surface expression or lemmatised

forms, and positional information.

Semi-supervised learning

For the semi-supervised learning approach, the data is split similar to the previously

described semi-supervised experiments. In addition, the argument spans are automat-

ically detected using the best performing classifier described in the previous step.
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Figure 6.15: Self-training results for the argument role Vote meta-classifier when vary-
ing τ and the seed size.

Table 6.30 lists the results obtained by the six classifiers used as learning algorithms.

The Vote meta-classifier has obtained the best performance, an F-score of 83.79%.

However, it is still slightly lower than that obtained in a supervised setting. This is due

to the propagation of errors from the previous two steps.

Besides the errors regarding the classification of the trigger into SS or DS, ex-

emplified in the previous section, the current step inherited inaccurate spans for the

arguments. Most common is the case of selecting the wrong span for the arguments

located in a different sentence by choosing a completely wrong sentence. Another pos-

sibility is only the partial match for an argument, where the classifier also selects false

positives and leaves out false negatives.

Figures 6.15 - 6.20 show the variation in F-score when changing the seed size and

confidence threshold. As can be noticed, most classifiers have a generally increasing

trend, with a high slope for small amounts of seed data. As this size increases, the

slope of the F-score curve decreases and almost plateaus towards 100% of the seed



6.5. EXPERIMENTAL RESULTS 231

0.125 0.25 0.375 0.50 0.625 0.75 0.875 1
0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

Seed size

F
−

sc
or

e

SVM

τ = 0.6
τ = 0.7
τ = 0.8
τ = 0.9

Figure 6.16: Self-training results for the argument role SVM classifier when varying τ

and the seed size.
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Figure 6.17: Self-training results for the argument role RF classifier when varying τ

and the seed size.
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Figure 6.18: Self-training results for the argument role NB classifier when varying τ

and the seed size.
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Figure 6.19: Self-training results for the argument role J48 classifier when varying τ

and the seed size.
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Figure 6.20: Self-training results for the argument role JRip classifier when varying τ

and the seed size.

data. Naı̈ve Bayes is, in contrast to all other classifiers, fairly constant throughout

different seed sizes. However, its performance is the worst, at almost 10% distance

from Vote.

The confidence threshold τ does not generally influence the performance of the

algorithms. Notable cases are the value of 60% confidence, which obtains a low F-

score for the Vote classifier at seed size 12.5% and for SVM at high seed sizes.

6.6 Effect of features

We have also investigated the usefulness of the numerous features that we have engin-

eered. Whilst in the previous section we showed the effect of some combinations of

different feature types on the various classifiers, we will now analyse how helpful are

the features for all three steps and for the overall best performing algorithm. The fol-

lowing subsections discuss the behaviour of each feature type and its interaction with

the other features types. The tables show the percentage of feature combinations where
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ID Usefulness Av. increase Av. decrease
L1 73.58% 0.77% 0.39%
L2 73.16% 0.73% 0.35%
L3 65.66% 0.54% 0.22%
L4 75.36% 0.79% 0.41%

Table 6.31: Usefulness of lexical features in identifying causal arguments.

by adding that specific feature the performance is improved in terms of F-score. Not

included in the table are the individual values for precision and recall; these will be

commented in the text. Furthermore, both the average increase and average decrease

in performance by adding a feature are statistically significant for an a = 0.05 with a

p-value of less than 0.001, unless otherwise stated in the text, using Student’s t-test.

6.6.1 Lexical features

Lexical features are of great use in the task of recognising causal arguments. Table 6.31

shows the usefulness of each lexical feature, together with its average increase and

decrease of F-score in feature combinations.

Feature L3, the capitalisation flag, is the least useful feature in this set. This is

because there are many instances of tokens which are part of triggers, but they are

not necessarily capitalised. The only such case occurs when a sentence starts with a

trigger, and then only the first token of the trigger will be capitalised.

The number of cases where an increase in precision is observed when using these

features is very high, exceeding 90%. However, an increase in recall occurs in around

50% of the cases. Also, the average increase in precision is 1.25%, whilst the decrease

is only 0.19%. Recall is more balanced, with 0.51% average increase and 0.48% aver-

age decrease.
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ID Usefulness Av. increase Av. decrease
X1 59.68% 0.41% 0.37%
X2 58.57% 0.37% 0.33%
X3 75.54% 1.35% 0.38%
X4 71.87% 1.28% 0.35%
X5 78.64% 1.72% 0.36%
X6 78.35% 1.70% 0.39%
X7 68.92% 0.30% 0.19%
X8 4.28% 0.29% 1.91%
X9 73.68% 1.18% 0.58%
X10 56.33% 0.25% 0.11%
X11 55.67% 0.21% 0.09%

Table 6.32: Usefulness of syntactic features in identifying causal arguments.

6.6.2 Syntactic features

Syntactic features are listed in Table 6.32 together with the percentage of feature com-

binations they improve. As can be noticed, about half of the created features improve

the classification significantly, whilst the other half just slightly. The only exception

is feature X8, the main verb of the sentence, which does not generalise very well over

the data.

Both the part of speech and syntactic category features are moderately useful in re-

cognising argument spans. Their addition improves the F-score in around 59% of fea-

ture combinations, with low increase and decrease averages. The difference between

the two features lies in the fact that X1 increase mostly recall, in more than 66% of

cases, to the disadvantage of precision (less than 40% of cases), whereas X2 is roughly

balanced between precision and recall, at around 57% of feature combinations.

Features X3 and X4, string representations of the part-of-speech and syntactic cat-

egory of triggers, are used in the first and third steps. These two features provide a

significant amount of discriminative information to the classifiers such that they im-

prove the F-score in more than 71% of cases. Furthermore, the average increase is of

around 1.30%, whilst the decrease is of only 0.35%.
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Even more informative are features X5 and X6, which remove contiguous duplicate

PoSs or syntactic categories from the string representations. This is due to the fact

that the removal of duplicates reduces the number of possible values and therefore

data sparsity. At 78% of cases with an F-score increased by 1.70% on average, these

features are amongst the most helpful for the first and last steps.

Regarding the main verb of the sentence, checking whether the trigger contains it

(X7) proves to be a good feature, increasing the F-score in more than two thirds of

cases, although the average improvement is very small – 0.3%. The recall is the one

that is boosted by this feature, in more than 67% of cases, whilst precision benefits in

just 60% of cases.

In contrast, the actual main verb of the sentence (X8) mostly affects the perform-

ance. It improves only 4% of feature combinations, by 0.29% on average. The de-

crease, however, reaches an impressive value of 1.91%.

Feature X9, the voice of the verb in the trigger, if there is any, has proven its

efficiency by increasing the F-score in almost 74% of feature combinations for the

third step of our pipeline. It increases the F-score by more than 1% on average, and

recall benefits the most from this feature, increasing in more than 80% of cases.

Finally, the last two features, X10 and X11, include the PoS and syntactic category

of the neighbouring tokens for the span detection. They are slightly less useful than

the first two features, X1 and X2. The F-score is increased in around 56% of feature

combinations, and the impact of these features is very small. The increase and decrease

averages are of only 0.20% and 0.10%, respectively.

6.6.3 Dependency features

Table 6.33 includes the usefulness of all dependency features employed in this study.

Feature D1, the surface expression of the arguments which are dependent on the current
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ID Usefulness Av. increase Av. decrease
D1 69.24% 0.33% 0.38%
D2 62.69% 0.13% 0.15%
D3 69.95% 0.35% 0.37%
D4 61.45% 0.07% 0.15%

Table 6.33: Usefulness of dependency features in identifying causal arguments.

ID Usefulness Av. increase Av. decrease
C1 70.52% 0.95% 0.57%
C2 79.96% 0.99% 0.50%
C3 72.29% 0.96% 0.45%
C4 59.85% 0.84% 0.45%
C5 61.25% 0.78% 0.41%
C6 62.03% 0.87% 0.53%
C7 72.48% 0.85% 0.42%
C8 76.67% 1.05% 0.56%
C9 75.87% 0.98% 0.52%

Table 6.34: Usefulness of command features in identifying causal arguments.

token, is rather helpful, increasing both precision and recall in around 69% of the cases.

Similar values are obtained for the PoS of these arguments. In contrast, the distance

between the arguments and the token is not that helpful. It increases the performance

in about 61% of the cases, but the average decrease is much higher than the increase.

6.6.4 Command features

The nine command features provide significant information to the classifier, according

to the data in Table 6.34. As can be observed, the most useful features are c-command

and VP-command, where the commanded constituent has the syntactic category VP or

NP. These help in more than 70% of the feature combinations, and have high average

increase and low average decrease values, similar to what has been observed in the

trigger recognition.

The S-command features (C4-C6) also help in the classification task, but not as

much as the rest. It improves only 59-62% of cases by about 0.82%. This can be
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ID Usefulness Av. increase Av. decrease
P1 74.85% 1.53% 0.52%
P2 78.25% 1.72% 0.54%
P3 76.95% 1.45% 0.38%
P4 69.54% 0.74% 0.29%

Table 6.35: Usefulness of positional features in identifying causal arguments.

explained by the fact that, although a high proportion of triggers S-commands SBARs,

VPs or NPs, there are also many non-triggers which S-command the same syntactic

categories. Thus, the S-command feature does not provide as much information to the

classifier as the other command features.

6.6.5 Positional features

Table 6.35 lists the effect of position features. These features are useful especially in

the first and third steps, where the classifications are made based on the trigger. The

second step considers all tokens in the text, and the position is not as relevant for this

argument span task.

The index of the token in the sentence, feature P1, is useful in almost 75% of cases.

The precision benefits most from this feature, with an average increase of 1.42% in

almost 95% of cases. The recall, however, is increased much less, 0.34%, and in only

45% of cases.

Even more useful than P1 is feature P2, the percentual position in the sentence.

The F-score is increased in 78.25% of the feature combinations. Precision is improved

in almost all cases by around 1.80%, whilst recall improves in about 50% of cases by

0.40%.

The third feature, which discretises the position in three values, sits in between

the first two with respect to its usefulness. The length of the sentence, P4, is the

least informative amongst positional features, increasing the F-score in only 69.54%
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ID Usefulness Av. increase Av. decrease
S1 89.90% 2.94% 0.17%
S2 89.50% 2.78% 0.23%
S3 75.82% 1.68% 0.54%
S4 68.24% 1.13% 0.45%
S5 69.30% 1.85% 0.73%
S6 60.71% 0.25% 0.19%
S7 29.04% 0.28% 0.43%
S8 84.89% 2.56% 0.08%
S9 82.59% 2.38% 0.11%
S10 75.42% 2.10% 0.25%
S11 77.23% 2.15% 0.24%

Table 6.36: Usefulness of semantic features in identifying causal arguments.

of cases. Even in these cases, the average increase is of only 0.74%, which is about

half of the other features.

6.6.6 Semantic features

Table 6.36 summarises the effect of semantics across the various combinations with

other features.

The features that concern the named entity information are the most informative for

the entire task. They increase the F-score in almost 90% of the feature combinations,

with the average increase of around 2.80%. Additionally, the decrease is very small,

of around 0.20%. Recall is the one that benefits from these features, in more than 90%

of cases, whilst precision suffers by decreasing in about 70% of cases.

Event information is less useful than named entity information, mostly due to the

fact there is less of it present in the corpus. The binary feature S3 increases the F-score

in almost 76% of cases, with an average of 1.68%. The explicit event type feature, S4,

is less helpful, because of the sparsity of the data, improving the performance in 68%

of feature combinations.

WordNet hypernyms, feature S5, helps slightly less than in the case of triggers.
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For arguments, the feature combinations are improved in 69% of cases, by an average

of 1.85%. The decrease is quite high as well, though, reaching an average of 0.73%.

Recall is improved most, by 2.1% in more than 75% of cases, whilst precision is mostly

affected, as 74% of cases decrease by an average of 1.5%.

Features S6 and S7, related to the mapping to UMLS types, behave differently

from the previous ones. Whilst the binary S6 improves classification in more than

60% of cases, the multi-valued feature S7 manages to do so in only 30% of the cases.

Furthermore, whilst the average increase is similar, the decrease of S7 is more than

double that of S6.

The trigger annotation that is used for detecting both dependent and independent

arguments, feature S8, is very helpful for two reasons. First, it excludes a number of

tokens from being wrongly marked as arguments, thus reducing the number of false

positives. Second, it indicates the approximate position of the dependent arguments

due to the adjacency relation with the trigger. Thus, this feature increases the F-score

in almost 85% of cases by an average of 2.56%, whilst the decrease is minimal, at

0.08% on average.

Feature S9, which flags tokens marked as dependent arguments, is also very helpful

in determining the span of independent arguments. It improves the F-score in 82.59%

of cases, by almost 2.40%, whilst the decrease is just 0.11%.

Finally, features S10 and S11, which determine whether and what type of semantic

information the two arguments contain, prove very important. Whilst the recall is

relatively insensitive to these two features, the precision is improved by around 4%

when they are added in about 80% of cases.
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6.7 Discussion

We have presented in this chapter several experiments that complete and show the

viability of the task of recognising causal relations in biomedical scientific discourse.

We proved that causal arguments can be extracted successfully, in a cascaded pipeline.

The two major factors influencing the automatic identification of causal arguments,

the algorithms and features, are discussed in the following subsections.

6.7.1 Comparison of algorithms

Our experiments have shown that causal arguments are best detected in a semi-supervised

setting for the argument position and span, whilst the argument role is better identified

in a supervised manner. This is due to the fact that the errors occurring in previous

steps are propagated and affect the performance of semi-supervised systems. Never-

theless, the performance between the supervised and semi-supervised is comparable at

this last stage, even with error propagation.

For the first and third steps, we employed six different classifiers, one of them

making its decisions based on the result of the other five. The wide spectrum of al-

gorithms, ranging from Naı̈ve Bayes to decision rules, decision trees and Support Vec-

tor Machines, provide complementary results which lead the Vote meta-classifier to

outperform them by 2% for the first step and 3% for the third step.

For the second step, we modelled the task as a sequence labelling task using CRFs,

and as a classification task using SVMs, RFs and NB. CRF performed best in this case,

surpassing SVM and RF by approximately 5%, and NB by 16%.

The literature is very restricted from this point of view: most research is either

based on CRFs, when researchers perform a token-level identification (Ghosh et al.,

2011a; Stepanov and Riccardi, 2013), or on ME classifiers when they wish to obtain

syntactic constituents that span the arguments (Lin et al., 2012; Xu et al., 2012).
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6.7.2 Comparison of features

With respect to features, in all the experiments that we described, using features from

all types produced the best results. This includes both domain-independent features,

such as lexical, syntactic, dependency and command and positional features, and fea-

tures specific to the biomedical domain, such as biomedical semantics. Semantics has

proven to play a major role especially in the argument span and role recognition, where

they improve the F-score by 3% on average.

The task of detecting the arguments of causal relations, and, more generally, dis-

course relations, has not been as studied as recognising triggers. Thus, the variety of

features that have been employed until now is fairly limited. Do et al. (2011) use a

complex semantic feature, measuring the similarity between two predicates, including

their arguments, in the general domain, for the task of deciding whether or not the

pair of predicates are in a causal relation. Their method takes into consideration just

co-occurrence and various distances between the two predicates, but it manages to im-

prove the F-score by 15% over that obtained by classical PMI, to 38%. It is recall that

is increased significantly in this case, from 26% to 62%, when tested on PDTB.

Other methods restrict themselves to lexical and syntactic features. Ghosh et al.

(2011b), Lin et al. (2012) and Xu et al. (2012) engineer a similar feature set to each

other in their own approaches. Whilst Ghosh et al. (2011b) use a feature set composed

of lexical features (surface expression and lemmata of tokens) and morpho-syntactic

features (PoS, inflection, main verb of sentence, path from root to token in parse tree),

Lin et al. (2012) extend it by adding information about the neighbouring tokens. Xu

et al. (2012) enrich the set even more, considering the position of the token relative to

the trigger (left or right), and its position in the sentence as a binary class (before the

middle or after the middle of the sentence). Thus, they manage to reach 46% F-score in

recognising both arguments when they employ automatic parses for feature extraction.
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On biomedical text, the relevant literature is extremely limited. To the best of

our knowledge, Ibn Faiz and Mercer (2013) describe the only method that identifies

argument head words in the style of Wellner and Pustejovsky (2007). However, no

decision is made on argument spans. Of note is the fact that their system has been

built having the general domain in mind, and just applied on biomedical data. Thus,

the framework does not use biomedically specific processing or features specific to the

biomedical domain.

In conclusion, all feature types are needed for a better performance in discourse

argument identification, as they complement each other. Whilst lexical and positional

features increase precision, semantic and syntactic information boost recall.

6.8 Summary

In this chapter, we have presented our approach towards the automatic recognition

of the arguments of discourse causal triggers. This is, to the best of our knowledge,

the first detailed study of the problem of identifying the argument of discourse causal

triggers in biomedical text, given a corpus of gold standard annotations.

As regards features, our experiments have shown that it is very important to employ

features from various levels, i.e. lexical, syntactic, dependency, command, semantic

and positional. These complement each other, with lexical and positional features

ensuring high precision, and syntactic and semantic features providing generalisation

and boosting recall.

We have split this task into three cascading steps, and applied an array of rules

and machine learning algorithms for each of them. The first step, which tackles the

position of the arguments, is cast as a binary classification problem, where classifiers

decide whether or not the arguments are located in the same sentence. The Vote meta-

classifier, which considers the output of other five classifiers, performs best, at almost
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95% F-score. The second step regards the marking of the span of text which constitute

the arguments. In this case, CRF outperforms the other classifiers, reaching 82.87%

F-score. Finally, after the two argument spans are extracted, a decision is made with

respect to the role they play in the causal relation. The roles of cause and effect are

best assigned again by the Vote meta-classifier, with an F-score of 84.35%.

The numerous models that we have created have been evaluated on the BioCause

corpus, in both a 10-fold cross validation supervised setting, and a self-learning semi-

supervised setting. Due to the errors being propagated in the cascaded pipeline, the

semi-supervised models for argument role recognition achieve slightly lower results

than the supervised ones. However, the difference between the two approaches is of

only around 1%.



Chapter 7

Metaknowledge of causality

Statements regarding causal associations have been long studied in general language,

mostly as part of more complex tasks, such as question answering (Girju, 2003; Blanco

et al., 2008) and textual entailment (Rı́os Gaona et al., 2010). In spite of the more fo-

cussed and powerful analysis methods available today, typical discourse annotation

efforts only focus on identifying the causal trigger and the two arguments that play the

roles of Cause and Effect, and do not take into consideration the information regarding

the context of discourse relations, although this is essential for their correct interpret-

ation. However, more information is needed for the correct interpretation of these

relations, and this is often present in discourse. For instance, negation plays an im-

portant role in contradiction detection, whilst determining the certainty level provides

information about the confidence of authors. Additionally, it is necessary to auto-

matically discover the novel parts of articles, as well as whether they are hypotheses,

experiments, evaluations or results. The goal of capturing this type of interpretative

information, explicitly or implicitly available in text, termed meta-knowledge (MK)

(Thompson et al., 2011b), is to extract as much useful information as possible about

causal associations in their textual context. This will further support the development

245
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of information retrieval and extraction systems, the automatic discovery of new know-

ledge and the detection of contradictions.

In this chapter, we adapt an existing meta-knowledge annotation scheme (Thompson

et al., 2011b) from biomolecular events to biomedical discourse relations, apply it

to the causal associations existing in the BioCause corpus and analyse the result-

ing annotations. Furthermore, we train classifiers to automatically recognise meta-

knowledge information and evaluate their performance based on the human annota-

tions. To our best knowledge, our method is the first that is able to automatically

identify and classify meta-knowledge information about causality in biomedical sci-

entific discourse.

7.1 Related work

There exist several distinct efforts to capture various meta-knowledge dimensions in

biomedical text, such as certainty (Kilicoglu and Bergler, 2008; Vincze et al., 2008),

negation (Vincze et al., 2008; Nawaz et al., 2013a) or source (Liakata et al., 2010;

Sándor and de Waard, 2012; Nawaz et al., 2013b), most of them related to biomedical

events.

Regarding discourse, researchers have looked at articles as networks of hypotheses

and evidence, and tried to identify the argumentation contained within a paper and

the relationships between hypotheses, claims and evidence expressed in the article

(de Waard et al., 2009). Others classified the discourse into discourse zones specific

to scientific articles (e.g., background, methods, results) (Sándor, 2007). Another an-

notation scheme considers more than one aspect of meta-knowledge. For example, the

ART corpus and its CoreSC annotation scheme Liakata and Soldatova (2009); Liakata

et al. (2010) augment general information content categories with additional attributes,

such as New and Old, to denote current or previous work.
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Considering the mentioned work, we decided to create a resource of biomedical

discourse causality enriched with relevant meta-knowledge information.

7.2 Annotation scheme

The original meta-knowledge annotation scheme is depicted in Figure 7.1. As can

be noticed, it contains six dimensions, depicted in dark grey, which are centred on a

biomedical event. These are Knowledge type, Certainty, Polarity, Source, and Manner.

Bio-event
(centred on an
event trigger)

Participants
theme(s)
actor(s)

Class/Type
event ontology

Knowledge Type
Investigation
Observation

Analysis
General

Manner
High Neutral Low

Certainty
L1 L2 L3

Source
other

current

Polarity
positive
negative

Hyper-dimensions
new knowledge

hypotheses

Figure 7.1: Meta-knowledge dimensions (from Thompson et al. (2011b)).

We adapted this meta-knowledge annotation scheme to the characteristics of dis-

course relations. All dimensions have been kept, with the exception of Manner, which

is used to describe the change in intensity or speed of a biological process and does not

have a correspondent in discourse. In what follows, we describe the adapted dimen-

sions and categories.

7.2.1 Knowledge type

The Knowledge Type (KT) captures the general information about the content of the

causal association, classifying it into five categories:

• analysis: inferences, interpretations, speculations or other types of cognitive

analysis, always accompanied by lexical clues, typical examples of which in-

clude suggest, indicate, therefore and conclude.
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• fact: events that describe general facts and well-established knowledge, and

sometimes accompanied by lexical clues such as known.

• investigation: enquiries or investigations, which have either already been con-

ducted or are planned for the future, typically accompanied by lexical clues like

examined, investigated and studied.

• observation: direct observations, sometimes represented by lexical clues like

found, observed and report, etc.

• other: the default category, assigned to associations that either do not fit into one

of the above categories, do not express complete information, or whose KT is

unclear or is unassignable from the context.

The original meta-knowledge KT dimension also includes a Method category, that

is used to describe experimental methods, with clue words such as stimulate and inac-

tivate. This category is not suitable for discourse, as intensity or speed does not apply

to causality or other discourse relations.

7.2.2 Certainty

This dimension encodes the confidence or certainty level ascribed to the association in

the given text. The epistemic scale is partitioned into three distinct levels:

• L1: explicit indication of either low confidence or considerable speculation to-

wards the association or the association occurs infrequently or only some of the

time.

• L2: explicit indication of either high (but not complete) confidence or slight

speculation towards the association or the association occurs frequently, but not

all of the time.
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• L3: the default category. No explicit expression that either there is uncertainty

or speculation towards the associations or that the association does not occur all

of the time.

7.2.3 Source

The source of the knowledge expressed by the causal association is encoded as:

• current: the association makes an assertion that can be attributed to the current

study. This is the default category, and is assigned in the absence of explicit

lexical or contextual clues, although explicit clues such as the present study may

be encountered.

• other: the association is attributed to a previous study. Explicit clues are usu-

ally present either as citations, or by using words such as previously and recent

studies.

7.2.4 Polarity

This dimension identifies the truth value of the asserted causal association. A negated

causal association is defined as one describing the non-existence or absence of a causal

link between two spans of text. The recognition of such associations is vital, as it can

lead to the correct interpretation of a causal association, completely opposite to that of

a non-negated one.

• positive: no explicit negation of the causality. This is the default category, as

most causal associations are expected to be positive.

• negative: the association has been negated according to the description above.

The negation may be indicated through lexical clues such as no, not or fail.
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MK subdim. Kappa
Knowledge type 0.88
Certainty 0.89
Polarity 0.95
Source 0.94

Table 7.1: Inter-annotator agreement per MK dimensions.

7.3 Annotation process

We have applied the adapted meta-knowledge annotation scheme to all 19 full papers

in the BioCause corpus, previously annotated with discourse causality associations.

Previous studies have shown that the annotator background does not affect the con-

sistency of the resulting annotations of meta-knowledge (Thompson et al., 2011b).

Therefore, two annotators with background in computational linguistics and experi-

ence in meta-knowledge annotation have undertaken the annotation task. All causal

associations have been annotated with meta-knowledge information. The two annotat-

ors have undergone a short training period, in which they have become accustomed to

the annotation tool and guidelines and improved the agreement between them.

High levels of inter-annotator agreement have been achieved, falling in the range of

0.88 - 0.95 Kappa, depending on the MK dimension. The Kappa scores for each MK

dimension are given in Table 7.1. The lowest Kappa occurs in the case of KT, as it is the

most complex dimension to annotate. The five possible values can be confusing with

specific relations which lie at the border between labels. The highest score is obtained

in the case of Polarity, as it is fairly easy to recognise whether a relation is negated or

not. The few problems that arose were in cases where the negation is implicit to the

trigger itself. All disagreements have been discussed after the annotation and a final

option has been agreed for each such disagreement by both annotators.
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KT subdim. Instances
Analysis 663
Fact 52
Investigation 2
Observation 62
Other 21

Table 7.2: Distribution of knowledge types in BioCause.

7.4 Manual analysis

Here we provide some key statistics regarding the causality annotation produced, to-

gether with a discussion of the characteristics of the corpus.

7.4.1 Knowledge type

Table 7.2 shows the number of causal relations of each category annotated with the

Knowledge Type dimension. The most frequent annotated value is by far Analysis,

constituting more than 82% of the total number of causal associations. This is not

surprising, since most causal associations are the result of inference or interpretation of

experimental results. Two other categories, Observation and Fact, are less frequently

annotated, occurring in just over 6.5% of all annotations. Investigation appears even

less, with only two instances in the entire corpus. The number of Other relations is 21

(2.63%)

There are several lexical clues that mark this MK category, as shown in Table 7.3.

The most common is suggest, which occurs in almost 39% of the Analysis cases. The

second most common is indicate, which occurs in almost 22% of the Analysis cases.

Other clues include demonstrate, thus and therefore.

7.4.2 Certainty

The distribution of Certainty annotations is listed in Table 7.4.
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KT subdim. Frequent clues
Analysis suggest (38.86%), indicate (21.68%)
Fact shown to (60%), known to (20%)
Investigation illuminate (100%)
Observation observe (45%), report (30%)

Table 7.3: Most frequent clues for each KT category with their respective relative
frequency (computed over the number of explicit clues) for that category.

Cert subdim. Instances
L1 78
L2 382
L3 340

Table 7.4: Distribution of certainty levels in BioCause.

More than half of the causal associations in the corpus are expressed with some

degree of uncertainty. That is, 50.63% of associations have been annotated with uncer-

tainty clues, whilst 49.37% are certain or lack any uncertainty clue.

Under the speculated category, almost 92.10% (46.62% per total) of associations

are reported with slight speculation (L2), whilst just under 8% (4% per total) are an-

notated as having a high level of speculation (L1). This is again an expected result,

since most authors express their analyses with a high level of confidence.

The most frequent clues that lead to uncertainty are verbs, such as suggest and in-

dicate, and modals, e.g., may and might. Nevertheless, there are several other types of

uncertainty clues, such as adverbs (likely, maybe and perhaps), as shown in Table 7.5.

An interesting observation is that most of the uncertain associations (96.30%) be-

long to the KT type Analysis. There are very few instances of uncertain relation per-

taining to other knowledge types. Fact has two relations (3.84%), whilst Observation

has 12 relations (19.35%). Thus, almost 67% of all associations annotated as Analysis

also have some degree of uncertainty.

Speculated relations are mostly part of the Current value of the Source dimension,

and there are four negated speculated relations (44% of all negations).
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Cert subdim. Frequent clues

L1 may (45%), might (30%), perhaps
(8%)

L2 suggest (51.8%), indicate (29.2%)
L3 definitely (40%), firmly (30%)

Table 7.5: Most frequent clues for each Certainty category with their respective relative
frequency (computed over the number of explicit clues) for that category.

Source subdim. Instances
Current 723
Other 77

Table 7.6: Distribution of source types in BioCause.

7.4.3 Source

Very few associations belong to the Other category, when compared to Current, as

can be seen in Table 7.6. Just over 15% of all associations have their source in other

articles, whilst 85% express knowledge created by the authors themselves.

Clues that are specific only to the Other category are citations to other articles, as

shown in Table 7.7. Other clues are phrases such as previously reported and X proposes

that, where X substitutes the names of researchers.

Source subdim. Frequent clues
Current in this study (67%), in this paper (17%)
Other citations (84%), previously (8%)

Table 7.7: Most frequent clues for each Source category with their respective relative
frequency (computed over the number of explicit clues) for that category.

Causal relations that have their source in other research are all positive from a

Polarity point of view. However, they are not all completely certain: there are four

instances which have L1 as their Certainty level, whilst another 16 are L2. The rest of

57 are marked as L3.

The knowledge type of the causal relations is almost evenly split between Analysis
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Pol subdim. Instances
Positive 791
Negative 9

Table 7.8: Distribution of polarity values in BioCause.

(42 relations) and Fact (33 relations). There are one Observation and one Other Know-

ledge type relations from other sources. This fact is quite intuitive – most work already

published tends to be treated as a fact or is analysed in connection with the research

described in the current work.

7.4.4 Polarity

Table 7.8 shows the distribution of positive and negative causal relations in the Bio-

Cause corpus. As can be noticed, a small number of associations have been annotated

with a Negative category in the Polarity dimension. Just over 1% of the annotations

are marked as expressing a negated causality. This is to be expected, since, in sci-

entific discourse, authors tend to present their positive results instead of negative ones.

Nevertheless, it is vital to detect such information, since a simple negation completely

changes the meaning of a causal relation.

Table 7.9 lists the most common cue expressions for negated relations. As can

be observed, clues for negations are varied, some belonging to closed-class parts-of-

speech, e.g. determiners (no), adverbs (not) or prepositions (against), whilst others be-

long to open-class parts-of-speech, such as verbs (rule out) and adjectives (impossible).

Nevertheless, the adverbial not is the most frequent, accounting for almost two thirds

of negated causal associations.

Negated causal relations always have the Source dimension set to Current. It is

very unlikely that authors of one study directly contradict causal relations described in

other research.
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Pol subdim. Frequent clues

Negative not (62.5%), no (15%), against (7%),
rule out (4%)

Table 7.9: Most frequent clues for each MK category with their respective relative
frequency (computed over the number of explicit clues) for that category.

Furthermore, five out of the nine negated relations have the Certainty level set to

L3. Two relation is set to L1, and another two to L2.

Looking at negated relations from a Knowledge Type perspective, seven relations

are of type Analysis, whilst two are marked as Observation. The lack of occurrence of

negative instances amongst the other types of Knowledge Type is to be expected, as it

is usual that researchers investigate why events occur, and not why they do not.

7.5 Automatic identification of meta-knowledge

We have experimented with several supervised machine learning algorithms in the task

of automatically classifying causal discourse relations from the point of view of each

MK dimension. The learners have been trained on a large feature set, including the

clues mentioned above. Lexical features are the most important, as they provide direct

information to classifiers. Having binary features that flag the presence of negation

particles or modal verbs helps ML algorithms make better decisions.

Furthermore, syntax provides good support for the generalisation of triggers and

their associated meta-knowledge. These are extracted from automatic parses created

by the Enju system (Miyao and Tsujii, 2008) trained on GENIA. Syntactic features

include PoS, syntactic category, dependency, constituency and c-command informa-

tion. They are similar to those used for trigger detection and previously described in

Section 5.3.2.

Besides lexical and syntactic features, the algorithms have learned using a semantic

layer of annotations. These come from the gold standard named entities and events in
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BioCause, as well as UMLS, OSCAR, NeMine, and Europe PMC. Furthermore, fea-

tures have been extracted from a context window spanning the full sentence in which

the trigger is located.

We built separate models for each MK dimension. We have used seven different

classifiers, from various categories: SVM, RF, NB, JRip and J48 as classifiers, Vote as

a meta-classifier based on the previous five, and a rule for the baseline. The baseline

for each MK dimension is the majority class rule, which tags all instances as belonging

to the class with most instances.

Algorithm KT Certainty Polarity Source
Majority 18.15% 21.53% 49.72% 47.51%
SVM 36.31% 87.40% 84.02% 68.25%
Random Forest 34.76% 83.53% 79.97% 73.77%
JRip 29.28% 77.92% 84.02% 71.52%
J48 25.45% 83.75% 49.72% 47.51%
Naı̈ve Bayes 32.96% 77.49% 61.17% 62.35%
Vote 41.69% 84.62% 79.97% 70.87%

Table 7.10: Macro-average F-scores achieved by various learners per each MK dimen-
sion.

The overall macro-average F-score results are given in Table 7.10. All results have

been 10-fold cross validated. Details on the performance and error analysis for each

dimension are given in the following subsections. Due to the highly skewed data, we

present both macro- and micro-average F-scores in the detailed tables.

7.5.1 Knowledge type

Table 7.11 lists the detailed performance of the employed classifiers in the task of

detecting the Knowledge Type of causal relations. It includes the macro-average pre-

cision, recall and F-score, as well as the micro-average F-score. The large difference

between the two scores comes from the fact that this is a five-way classification, cor-

responding to the five subdimensions of KT, and that the data is very skewed across
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Algorithm ma P ma R ma F1 mi F1

Majority 16.62% 20.00% 18.15% 75.40%
SVM 39.94% 33.38% 36.31% 82.60%
Random Forest 39.12% 31.28% 34.76% 82.20%
JRip 40.96% 22.78% 29.28% 77.60%
J48 27.50% 23.68% 25.45% 77.90%
Naı̈ve Bayes 30.52% 35.82% 32.96% 74.50%
Vote 54.64% 33.70% 41.69% 83.80%

Table 7.11: Performance of various classifiers in identifying the Knowledge Type of
causal relations.

these five subdimensions.

As can be noticed, all classifiers perform better than the baseline in a macro-average

setting. However, in a micro-average context, Naı̈ve Bayes is confused by the data im-

balance and is outperformed by the Majority rule by almost 1%. The best performing

classifier is the Vote meta-classifier, which reaches 83.80% micro-average F-score and

41.69% macro-average F-score. It also obtains the best precision and recall amongst

all classifiers, in both macro- and micro-average settings.

Most errors arise because of the skewed distribution of the labels. For instance, for

Vote, there are only eight false negatives for the Analysis label, but 82 false positives

are generated. The two instances in the Investigation label are erroneously assigned

to Analysis. This proves the tendency of the classifiers to assign most instances from

minority classes to the majority class.

7.5.2 Certainty

A detailed account of the performance of the classifiers is given in Table 7.12. Unlike

in the case of Knowledge type, the difference between macro- and micro-average is

much smaller. This is due to the fact that there are only three possible labels that a

classifier can assign.

The best results are obtained by the SVM classifier, which reaches 90.90% micro
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Algorithm ma P ma R ma F1 mi F1

Majority 15.90% 33.33% 21.53% 47.70%
SVM 89.20% 85.67% 87.40% 90.90%
Random Forest 88.00% 79.50% 83.53% 87.70%
JRip 91.40% 67.90% 77.92% 87.70%
J48 87.27% 80.50% 83.75% 81.30%
Naı̈ve Bayes 76.03% 79.00% 77.49% 83.70%
Vote 87.33% 82.07% 84.62% 88.60%

Table 7.12: Performance of various classifiers in identifying the Certainty of causal
relations.

F-score and 87.40% macro F-score. Class L1 is recognised with the lowest precision

and recall amongst the three classes, due to its low number of instances. The low scores

of Naı̈ve Bayes and J48 damages the performance of the Vote meta-classifier, which is

the second best amongst all algorithms.

The most important features for this dimension are, as expected, the certainty clues

previously described. The fact that triggers contain words such as may, probably,

suggest or can is a good indicator for the correct certainty level.

Many of the error cases happen between the two uncertain classes, L1 and L2. It

is usually the case that L1 relations are wrongly classified as L2. Furthermore, there

are several instances of mostly L2, but also L1, classified as L3 and vice-versa. For

instance, in example (7.1), the causal relation is speculated, but the model decided that

it is certain and belongs to L3.

(7.1) [32] has shown that mutation of phosphotransferase system (PST) in ex-

traintestinal pathogenic E. coli (ExPEC) can cause the loss of its colonization abil-

ity in extraintestinal organs, and bacteria are cleared rapidly from the bloodstream.
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Algorithm ma P ma R ma F1 mi F1

Majority 49.45% 50.00% 49.72% 98.30%
SVM 91.40% 77.75% 84.02% 99.30%
Random Forest 89.70% 72.15% 79.97% 99.10%
JRip 91.40% 77.75% 84.02% 99.30%
J48 49.45% 50.00% 49.72% 98.30%
Naı̈ve Bayes 58.90% 81.65% 61.17% 97.30%
Vote 89.70% 72.15% 79.97% 99.10%

Table 7.13: Performance of various classifiers in identifying the Polarity of causal
relations.

7.5.3 Polarity

The Polarity of causal relations is the most correctly recognised MK dimension amongst

all four in terms of micro-average F-score, and the results for it are shown in Table 7.13.

This is due to the fact that this dimension has the most skewed label distribution of all:

9 negative to 791 positive instances. As a consequence, the baseline is very high as

well, reaching 98.30% micro F-score, but just under 50% macro F-score.

The best overall results are obtained by SVM and JRip, in both macro- and micro-

average settings. However, amongst all classifiers, Naı̈ve Bayes manages to identify

correctly most of the minority class instances, reaching a recall of 66.67%. In contrast,

its recall for positive instances and precision for negative instances are the lowest, a

fact which affects the final micro-F-score, making it perform worse than the baseline

rule in a micro setting. In addition, the low performance of Naı̈ve Bayes, as well as

that of J48, influence negatively the result of the Vote meta-classifier, which gets the

second best result.

The most salient features are the placement of negation particles in the vicinity of

triggers. This leads to some error cases arising from those triggers which are negated

not by the use of negating particles (e.g., not), but by using inherently negative triggers,

such as in example (7.2). The verb rule out implicitly suggests a negative polarity.

However, the sparse data regarding relations negated by such means affects its correct
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recognition.

(7.2) Therefore, the DNA-induced resistance of biofilms requires both the cultiva-

tion and challenge under cation-limiting conditions.

These latter two observations rule out the possibility that negatively charged DNA

simply interacts with cationic antimicrobial peptides and prevents their access to

bacterial cells.

7.5.4 Source

The results of the classifiers in the case of the Source of causal relations are shown in

Table 7.14. The best micro performance is achieved by the JRip classifier, at 90.20%

F-score, whilst the best macro result is obtained by Random Forest, at 73.77%. The

difference between these two classifiers is not that large, being less than 2% for macro

and just 0.40% for the micro F-score. The main problem of these two classifiers is

the low recall for the Other label, which is under-represented when compared to the

Current label. The best recall for this class is achieved by Naı̈ve Bayes, which captures

47.40% of its instances. However, the precision drops significantly to only 24%, whilst

JRip and Random Forest reach up to 80%.

Most errors occur when instances of Other are classified as Current.

7.6 Summary

This chapter has described our approach to the enrichment of the BioCause corpus,

which contains discourse causality associations, with meta-knowledge information.
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Algorithm ma P ma R ma F1 mi F1

Majority 45.25% 50.00% 47.51% 86.00%
SVM 77.30% 61.10% 68.25% 89.60%
Random Forest 86.15% 64.50% 73.77% 89.80%
JRip 84.30% 62.10% 71.52% 90.20%
J48 45.25% 50.00% 47.51% 86.00%
Naı̈ve Bayes 59.00% 66.11% 62.35% 83.40%
Vote 84.85% 60.85% 70.87% 89.90%

Table 7.14: Performance of various classifiers in identifying the Source of causal rela-
tions.

This type of contextual information regarding causal relations is crucial for their cor-

rect interpretation. Modifiers such as not and might completely alter the meaning and

certainty of a relation, especially when placed in the context of a network of causal

relations. Furthermore, it is important to recognise what type of knowledge the causal

relations refer to and whether it is new or old knowledge. This helps the creation of

new, testable hypotheses and the assignment of literature support to those relations

which contain references.

We have adapted an existing meta-knowledge annotation scheme designed for bio-

medical events to the needs of discourse analysis. The annotation has been performed

by two humans, and the inter-annotator agreement between them is high, ranging

between 0.89 and 0.95 Kappa.

A manual analysis of how causality associations are expressed in the biomedical

domain has been performed. This shed light into what phrases are used to convey

negation, uncertainty, various knowledge types and source of statements.

Additionally, machine learners have been trained to automatically identify the value

of each MK dimension for each causal relation. The algorithms base their decisions

on a mixture of lexical, syntactic and semantic features, most of which are produced

from automatic parses by off-the-shelf systems. Considering the skewness of the data,

the classifiers perform reasonably well. SVM obtains the best scores in the case of
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Certainty and Polarity, whilst Random Forest is the best at recognising the Source di-

mension. The best model for Knowledge Type considers all five algorithms combined

by the Vote meta-classifier. Since the data is so sparse for some dimensions, more

would be welcomed in order to be able to create more accurate models.



Chapter 8

Question generation using discourse

causality

The previous chapters have dealt with the recognition of causal relations from biomed-

ical scientific discourse. These relations, however, are of limited use if they are not

leveraged in other real-world tasks and applications, where they can reduce the effort

of users such as biomedical researchers.

We now focus our attention on the generation of questions based on discourse re-

lations. The applications of questions generated in this manner are numerous. For

instance, it is a novel way of allowing users to query large collections of scientific

papers, looking for facts rather than documents. By putting together ordinary search

terms (e.g., proteins, genes or drugs), queries are generated and evaluated and only the

facts that match the query terms within individual document sentences are returned to

the user. However, many submitted queries are incomplete, especially when the de-

sired response is not well defined in the mind of the users. Thus, by creating a query

suggestion mechanism in the form of questions proves to be of great help in the search-

ing process, since this shows, in natural language, the most common associations of

the already input terms. Other uses for question generation are the automatic creation

263
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of multiple-choice tests and experimental hypothesis production.

Since BioCause contains causal relations, the obvious questions that can be gener-

ated are Why-questions. This type of question is one of the more complex that can be

asked (Graesser et al., 2009), as they require more logical thinking in both creating the

question, but also in finding the answer to them.

There have been numerous attempts at developing methodologies for automatically

generating questions, either independent or as part of shared tasks (Rus and Graesser,

2009; Rus et al., 2010). Most research focusses on the general domain, although effort

has been invested in domain-specific applications too. The approaches in the literature

can be split into three main approaches: template-based, syntax-based and semantics-

based. Template-based methods, such as those described by Mostow and Chen (2009)

and Chen et al. (2009), have been developed to produce questions from children stories

and informational text. This method has been chosen due to the restricted variability of

the desired questions and the closed-domain in which they were applied. Approaches

based on syntax (Wyse and Piwek, 2009; Heilman and Smith, 2009) are based on

the manipulation of parse trees, using transformation rules manually designed by lin-

guists. Semantics has been less explored compared to the previous two approaches.

The method of Schwartz et al. (2004) represents semantic relationships in a logical

form and uses these for generating Wh-questions, whilst Yao et al. (2012) decompose

and simplify complex sentences and rank multiple question candidates.

Since our work focusses specifically on biomedicine and the question types are

based on causal discourse relations, a combination of rules and syntactic transforma-

tions is suitable to generate natural language questions.
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8.1 Automatic question generation

The process of question generation is a two-step process. The first task refers to select-

ing the content that will form the actual question. Following this, the second step deals

with formulating the question, ensuring its grammaticality. Both steps are individually

discussed in the following subsections.

8.1.1 Content selection

Content selection is a major problem in the task of natural language generation, includ-

ing question generation. In the specific case of question generation, the content is the

section of text over which the question has to be asked. The size of the content ranges

significantly depending on the type of question to be asked, from a single phrase or

clause for very specific questions to entire paragraphs for more general questions.

As this work deals with recognising discourse causal relations, this is the basis for

the process of content selection. The causal relations in BioCause are used to identify

the possible target content for questions. The targets are select from the two arguments

of each relation. Either the cause or the effect can become a question, thus resulting in

two question types: causal antecedent and causal consequence questions.

After the content has been selected, it is passed to the question formulation mod-

ule, which identifies the appropriate question type and transforms the statement into a

question.

8.1.2 Question formulation

Formulating the question correctly depends largely on the type of causal relation. Al-

though the BioCause corpus contains only causal relations, two types of questions can

be created: Why-questions and What-questions. After the question type is established,

the content needs to be transformed from its statement format into a question format.



266 CHAPTER 8. QUESTION GENERATION USING DISCOURSE CAUSALITY

Question type identification

The trigger of the causal relation influences the type of question that is to be asked.

Based on lexical and syntactic patterns, we develop a simple heuristic which decides

on what question type will be used.

For instance, triggers of the type X suggests Y can easily produce what-questions:

What suggests Y?. Many questions can be in fact What-questions, and they are formu-

lated from triggers that contain a VP. They are usually centred around keywords such

as suggest, indicate and demonstrate.

In contrast, causal triggers like because and since are suitable to be transformed

only into Why-questions. These triggers cannot be used to formulate any other question

type so that the final question reads naturally and sounds idiomatic.

An important aspect to note is that the questions produced in the first case can

have their type changed for the same causal relation. Instead of creating a What-

question based on the causal trigger, it is possible to create a Why-question based on

the argument of the trigger that has been selected, in a similar manner to the second

case. However, What-questions do not require a main verb transformation, since the

triggers already contain a VPs to serve as the main verb of the question. Thus, for

such available triggers, it is preferable to create a What-question, as the main verb

transformation can introduce errors into the pipeline.

Main verb transformation

This stage deals with identifying the verb complex of the argument that will become

the question, and transforming it in order to make it suitable for a question.

There are several transformation steps for adapting the verb of a statement into that

of a question. First, the verb complex must be identified from the dependency parse

of the argument. Such verb complexes can consist of the main verb, along with any
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modals and auxiliaries that accompany it. Extracting the entire verb complex is an

important step, as an incomplete extraction will result in an ungrammatical structure

of the sentence.

An argument containing a modal is shown in example (8.1). In the second sentence,

which contains both the causal trigger and the Effect argument, the verb complex may

involve needs to be separated in order to ensure a correct syntactic structure. Other

modal verbs are might, would, could, should, will and can.

(8.1) That PmrB is likely to sense changes in pH directly is supported by three

findings: (i) the mild acid pH-dependent activation of the PmrA-regulated gene

pbgP was dramatically reduced in a strain lacking pmrB.

Therefore, regulation of PmrB activity may involve protonation of one or more of

these amino acids.

Any auxiliaries, such as is in the sentence given in example (8.2), need to be sep-

arated in a similar manner to modals. Other lemmatised auxiliary verbs are have and

do, but their possible inflections also occur in text.

(8.2) Upregulation of the actP and acs genes in the flea, which direct the uptake of

acetate and its conversion to acetyl-CoA, also suggests that insufficient acetyl-CoA

is produced by glycolysis to potentiate the TCA cycle.

Finally, the presence of other particles affecting the verb, such as negation particles,

illustrated in example (8.3), should not influence the verb transformation of the ques-

tion.
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PoS Aux
VBD did
VBZ does
VBP do

Table 8.1: Addition of the support verb do in questions.

(8.3) This acid pH-promoted increase appears to be specific to a subset of PhoP-

activated genes (our unpublished results) that includes pmrD because expression

of the PhoP-regulated slyA gene and the PhoP-independent corA gene was not

affected by the pH of the medium.

If the verb complex that has been extracted contains modals or auxiliaries, these

need to be separated and pre-pended to the argument. These will form the main verb

of the question to be generated. If both modals and auxiliaries are present, only the

modals get extracted from the verb complex, whilst the auxiliaries remain in the com-

plex. Regardless of whether it is a modal or auxiliary that is extracted, the token must

be completely removed from inside the argument.

Otherwise, if the verb complex does not include auxiliaries or modals, a support

verb needs to be added instead. However, this verb needs to agree syntactically with

the subject of the verb complex, whilst the verb complex needs to be changed to its

lemmatised form. Thus, the PoS of the verb complex is analysed and a set of rules rely

on this to decide on the tense and number of the support verb. Table 8.1 lists the rules

for the addition of the support verb. A past tense complex will result in the addition of

did, whilst a present tense singular third person verb complex will pre-pend does. The

default rule is the addition of do, which is added in all other cases.

Finally, there are two more additions that need to be performed in order to complete

the question. First, the question type needs to be pre-pended in front of the transformed

text. Second, a question mark needs to be appended to the question, thus finalising the
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process of question generation.

8.2 Question evaluation

The evaluation of automatically generated natural language text is a very difficult task.

Thus, we employ two human evaluators for scoring the questions output by the system.

The two humans have nearly native English proficiency.

The grading system uses a scale of 1 to 4, with 1 being the lowest and 4 being the

highest grade. The evaluators assign a grade to check the correctness of the syntactic

structure and another one for the semantic content. Although the causal relations are

manually annotated by domain experts, the semantics can suffer after going through

the steps of question transformation. Thus, each question is marked out of eight points.

The syntactic correctness is evaluated to ensure the grammaticality of the output, as

well as the fluency of the question. The syntactic correctness and fluency are evaluated

as follows:

• 4: the question is grammatically correct and reads naturally. For instance, the

question Why is the rv3612c-rv3616c gene cluster regulated by PhoP? would be

marked with this score.

• 3: the question is grammatically correct, but does not read naturally. An ex-

ample of such a question is Why is, like GAS M1 Mac [7,8], SeMac a cysteine

endopeptidase?.

• 2: there are some grammatical problems. The following sentence has a miss-

ing determiner for the noun group: Why did application of the CLR algorithm

identify very interesting group of genes that are co-regulated with SPI-2 and

were horizontally transferred to Salmonella?.
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• 1: the quality of the grammar is unacceptable. For example, the sentence Why

can use multiple carbon sources and terminal electron acceptors? does not have

a subject.

The quality of the semantics is evaluated in a similar manner, using the following

criteria:

• 4: the question is semantically correct and reads naturally. For instance, Why

does the DeltavicK mutant retain the ability of S. equi to resist to phagocytosis

by PMNs?.

• 3: the question is semantically correct and close to the text or other questions.

One such case is What confirms that salKR had been deleted from the bacterial

chromosome?, where the identity of the bacterium under study is mentioned

previously in discourse.

• 2: there are some semantic issues. An example of such as question is Why has

SeMac other unknown function?, where some information for complete under-

standing is missing.

• 1: the semantics of the question is unacceptable. For example, the following

sentence includes an unresolved anaphor: Why is chelation a general property

of this negatively charged polymer?

A total of 555 questions have been scored independently by the two human evalu-

ators. The agreement between the two annotators has been measured using Cohen’s κ.

The value of κ is 0.92, indicating a high level of agreement.

Figures 8.1 and 8.2 show the distribution of scores for the two evaluators for the

syntactic and semantic dimensions, respectively. As can be noticed, the evaluators

have similar distributions across the two dimensions.
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Figure 8.1: Syntactic evaluation of the generated questions by the two evaluators.
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Figure 8.2: Semantic evaluation of the generated questions by the two evaluators.
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Dimension Syntax Semantics
Eval1 3.48 3.19
Eval2 3.46 3.08
Final 3.47 3.13

Table 8.2: Average scores as assigned by the two evaluators and final scores after
adjudication for each dimension.

Table 8.2 shows the average scores assigned by the two evaluators for each dimen-

sion. It can be noticed that syntax obtained higher scores than semantics. This can be

explained by the high degree of specialisation of our task. Generating questions from

discourse relations by using simple rules which only change the main verb should res-

ult in a correct syntax in most cases. Semantics, however, reaches a lower average

score, mostly due to the fact that the discourse relations contain a large number of

coreferential links, which are not tackled in our proposed method. Additionally, the

difference between the two annotators is larger in the case of semantics, as this dimen-

sion is more subjective. After adjudication, the average score for syntax is 3.47, whilst

the quality of semantics is graded as 3.13.

Looking at the disagreements between the two annotators, the largest proportion

of differences occurs between the second and third categories of each of the scoring

dimensions. This is to be expected, since these are the most subjective categories.

Although it is easy to decide whether a question is fully correct or completely wrong

syntactically and semantically, deciding on the gravity of the error in intermediate

cases is more difficult and depends on each person’s interpretation.

Example (8.4) shows one question in the case of which the two evaluators did

not agree on the score. One evaluator assigned the maximum score, whilst the other

penalised the inclusion of the subordinate clause, as it overloads the question.

(8.4) Why may horse IgG3 be also cleavable by SeMac, while the other five horse
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IgG subgroups may not be cleaved?

In the case of disagreement on semantics, example (8.5) includes such a question.

One annotator assigned a score of 2, whilst the other marked it as 3.

(8.5) What demonstrates that an ATP-saturated form of dimeric Rv2623 (composed

of 2 bound ATP molecules per monomer) constitutes at least half of the purified

sample?

8.3 Error analysis

There are several types of errors that have occurred in the question generation process.

These are either related to poor syntax or to poor semantics. However, an incorrect

syntactic structure is the predominant production error.

The use of coreferences is a common property of natural language, ensuring dis-

course cohesion and coherence. However, extracting pieces of text containing core-

ferential expressions without properly resolving these coreferences as an initial step

to extraction will result in an incorrect semantic structure. The unresolved anaphors

thus lead to a lower semantic rating for the questions. Take, for instance, the text in

example (8.6).

(8.6) Interestingly, [both glutamate and GABA are important neurotransmitters at

the neuromuscular junction of insects, and the concentration of glutamate is very

low in insect hemolymph]Cause, suggesting that [it is converted to glutamine before
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it is absorbed]E f f ect .

The question generated from this text is included in example (8.7).

(8.7) What suggests that it is converted to glutamine before it is absorbed?

Although syntactically correct, the question cannot be understood and interpreted

correctly since the included context is not sufficient.

Another source of errors is the fact that humans produce errors when writing the

text. Although this problem could be tackled automatically, it is beyond the scope of

this application. One of the most common human mistakes is the lack of determiners

for nouns. Take, for instance, the text in example (8.8), where a determiner is necessary

for the bolded noun property.

(8.8) Thus, [the ability of extracellular DNA to chelate magnesium is independent

of origin and molecular weight]Cause, indicating that [chelation is general property

of this negatively charged polymer]E f f ect .

The question generated from this text is included in example (8.9).

(8.9) What indicates that chelation is general property of this negatively charged

polymer?

The problem of lacking idiomaticity and naturalism for the produced questions

also occurs, but is again not tackled by our methodology. The removal of predicate
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adjuncts, which overload a question, can be performed by pruning the parse tree of

the argument prior to the main verb transformation. Take, for instance, the text in

example (8.10).

(8.10) [S. equi DeltavicK mutant does not grow as well as the wild-type strain in

both THY and blood, suggesting that the vicK deletion causes defect in growth, a

plausible reason that likely contributes to the attenuation of S. equi virulence in the

mouse infection models]E f f ect .

This suggestion is further supported by the observations that [both the wild-type

and DeltavicK mutant strains are resistant to phagocytosis by PMNs]Cause, which

suggest that VicRK is not required for the evasion of S. equi to the innate immunity.

The question generated from this text is included in example (8.11).

(8.11) Why does S. equi DeltavicK mutant not grow as well as the wild-type strain

in both THY and blood, suggesting that the vicK deletion causes defect in growth,

a plausible reason that likely contributes to the attenuation of S. equi virulence in

the mouse infection models?

8.4 Summary

This chapter has focussed on proving the viability of an application of recognising

discourse causality from biomedical scientific text. The chosen application, question

generation, can be used in numerous tasks and fields, ranging from improving the user

experience in searching to test question creation and hypothesis production.
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The process of generating natural language questions from natural language state-

ments has been split into two main steps, both of which are based on rules. The first

step deals with deciding, based on the trigger of the causal relation, on the type of

question to be asked, i.e. What or Why-questions. Second, we have engineered sev-

eral heuristic rules to transform the text from its statement format to the appropriate

question format.

The automatically generated questions have been manually evaluated by two English-

speaking humans, who scored their correctness from both syntactic and semantic points

of view. The inter-annotator agreement between the two evaluators reaches a κ score

of 0.92, suggesting a high degree of agreement. The 555 questions that have been

evaluated obtained, on average, a score of 3.47 for syntactic correctness and 3.13 for

semantic correctness. Most syntactic errors arise from including too many predicate

adjuncts in the question, whilst semantics is affected mainly by unresolved anaphora.

Both these issues can be addressed automatically by improving the processing in the

second step.



Chapter 9

Concluding remarks

This chapter summarises this study and provides an outline of further research dir-

ections. First, we evaluate the progress against research objectives and hypotheses

established in the beginning of the project. We review the contributions of this study

and summarise the main findings described in the preceding chapters. The chapter

concludes with a discussion on the main areas of future work. We provide an insight

into how our contributions can be applied to the further development of biomedical

discourse causality recognition and other related fields.

9.1 Review of the contributions

The main goal of the research described in this thesis has been to investigate the use

of NLP techniques with the purpose of automatically recognising causal relations in

biomedical scientific discourse. To achieve this goal, five objectives were established

at the beginning of the project, each corresponding to a research question. Their ac-

complishment is evaluated individually in what follows.

277
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9.1.1 Objective 1

O1 to develop a manually annotated corpus of biomedical scientific literature with

relevant discourse causality information.

This objective has been achieved by developing a manually annotated corpus of

discourse causal relations in biomedical scientific articles, i.e. the BioCause corpus.

We trained two independent annotators with high levels of education and experience

in biomedical sciences, as well as extensive annotation experience, to perform causal

relation annotations. The BioCause corpus was created by adding the new layer of

annotations on top of existing biomedical named entity and event information in the

BioNLP Shared Task on Infectious Diseases. The corpus contains 19 full-text open-

access journal articles, and has been enriched with 850 causal relations, of which 800

are explicit and 50 are implicit.

The results of the annotation process, including the annotation scheme and evalu-

ation, as well as a thorough characterisation of causality in biomedical text, have been

published in the journal BMC Bioinformatics (Mihăilă et al., 2013).

9.1.2 Objective 2

O2 to develop a methodology that can recognise discourse causality in biomedical

literature.

The problem of recognising discourse causality has been split into two steps, namely

identifying causal triggers and extracting their arguments. Whilst trigger detection is a

fairly straightforward task, recognising the arguments has been further split into three

cascaded sub-steps: finding their position, their spans and, finally, their role.

All four low-level tasks have been tackled by multiple approaches. Firstly, we

engineered rules and heuristics to establish baselines for each task. Secondly, we de-

veloped supervised models using an extensive array of classifiers, modelling the tasks
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as sequence labelling or supervised classification. These models obtain superior res-

ults to those in the case of rules. Finally, to overcome the small and sparse dataset, we

enriched the labelled data with a large amount of unlabelled data. Thus, the perform-

ance of these latter models increases even more, by several percentage points over the

supervised ones.

All approaches have been published in various conference and journal articles:

trigger detection and comparison to BioDRB (Mihăilă and Ananiadou, 2013a,b), a

hybrid approach for trigger and argument detection (Mihăilă and Ananiadou, 2013c),

and the semi-supervised approach (Mihăilă and Ananiadou, In press).

9.1.3 Objective 3

O3 to identify useful features for recognising biomedical discourse causality.

Following the numerous experiments performed to accomplish objective O2, we

performed an extensive analysis to identify the most useful features for recognising

biomedical discourse causality. Each feature that has been created in this research has

been evaluated individually to assess its contribution to the task in which it has been

used. We analysed the interaction with other feature sets, and measured the average

increase and decrease in precision, recall and F-score.

An evaluation of features used at various steps in the process of recognising caus-

ality has been published at various conferences and in various journal articles, as they

have been introduced (Mihăilă and Ananiadou, 2013a,b,c, In press).

9.1.4 Objective 4

O4 to develop a manually annotated corpus of biomedical discourse causality with

meta-knowledge information.
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This objective has been achieved by enriching the previously created BioCause

corpus with manual annotations regarding meta-knowledge information for all existing

causal relations. We trained two independent annotators with extensive annotation

experience to perform meta-knowledge annotations. The inter-annotator agreement is

high for all four dimensions, i.e. polarity, certainty, knowledge type and source.

The results of the annotation process, including the annotation scheme and eval-

uation, of meta-knowledge for causal relations in biomedical discourse, have been

published at the 9th Conference on Language Resources and Evaluation (Mihăilă and

Ananiadou, 2014).

9.1.5 Objective 5

O5 to investigate the automatic recognition of the meta-knowledge information of

biomedical causal relations.

Based on the annotations from objective O4, we trained four machine learning

models, one for each meta-knowledge dimension. The various learners employed have

been trained on a large feature set, including lexical, syntactic and semantic features.

The high performance, reaching over 88% F-score, proves the feasibility of identifying

such types of information.

The methodology for and results of the automatic recognition of meta-knowledge

of causal relations in biomedical discourse have been published at the 9th Conference

on Language Resources and Evaluation (Mihăilă and Ananiadou, 2014).

9.2 Review of hypothesis

H0 Discourse causality in biomedical scientific literature exhibits significant and

measurable differences, which can be captured through statistical and linguistic



9.3. FUTURE DIRECTIONS 281

indicators.

Having accomplished all objectives that were initially proposed, it can be stated

that the hypothesis is proven. Discourse causality does exhibit significant and meas-

urable differences at various levels of analysis, i.e., lexical, syntactic, dependency,

command, semantic and positional. These differences can be successfully leveraged

by machine learners to satisfactorily identify causal relations in text.

9.3 Future directions

The work presented in this thesis leaves unexplored certain aspects of discourse causal

relations. Investigating these aspects could lead to an improvement in performance.

Furthermore, multiple threads of research can be created based on this work.

One obvious extension is resolving the anaphora that occurs in the discourse. There

are two main types of anaphoric expressions whose resolving could have a positive im-

pact on the detection of causal relations. Firstly, there is the issue of anaphoric shell

nouns, which frequently occur in causal triggers. These anaphors usually point to the

independent argument, so the low performance in recognising these arguments could

be significantly improved. Nevertheless, this topic is still emerging and scientists are

still discussing on the definition of and annotation schemata for anaphoric shell nouns

(Kolhatkar et al., 2013). Secondly, resolving nominal anaphors could increase the per-

formance in multiple places in the processing pipeline. For instance, the semantic type

of their antecedents will provide more information to machine learners, which can

then better recognise argument spans and classify the argument roles. Furthermore,

this will significantly improve both the syntactic and semantic quality of the generated

questions. By recognising its antecedent, an anaphoric expression can then be easily

replaced in the argument that forms the base for the question, thus removing semantic
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ambiguity. Resolving zero anaphora will ameliorate both syntactic and semantic am-

biguities.

Another idea is to extract multiple argument candidates for each trigger and then

submit them to a ranking algorithm. Such an algorithm can select the best candidate

based on various criteria and filters, that can be suited to user needs or specified by

users themselves. A good starting point is the work of Wellner (2009), which can be

extended by integrating one or more causal measures into the ranking mechanism.

An interesting extension would be the annotation of such discourse causal rela-

tions in other biomedical sublanguages. Whilst BioCause contains only articles on

infectious diseases, a different subdomain, such as Neurology or Neoplasms, might

shed some light onto whether causality is expressed differently between subdomains.

Although it is now known for a fact that there are significant differences at lexical,

syntactic and semantic levels, discourse has not been investigated from this point of

view.

Besides the research in recognising discourse causality, other biomedical and NLP

fields can benefit from this work. As a fundamental discourse relation, causality plays

an important role in many daily life applications.

For instance, in the biomedical domain, epidemiologists study the patterns, as well

as the causes and effects of health and disease conditions in specific populations. Epi-

demiology is thus the centrepiece of public health, being pivotal to health policy de-

cision making and evidence-based practice by identifying targets for preventive health-

care and risk factors for diseases. Being able to quickly analyse large amounts of doc-

uments and correctly recognise causal relations between relevant facts can improve

significantly both the speed and quality of making decisions affecting the public. In

order to achieve this, it is necessary to be able to recognise, extract and analyse, in an

automatic manner, the patterns that occur in defined populations. For this mechanism

to function in a realistic manner, several sources of information need to be brought
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Figure 9.1: Media consumption share in the United States (from Danova (2014)).

together and combined. It is insufficient to consider studying only scientific articles, as

these are published with several months’ delay since the first observations were made

and usually describe laboratory experiments performed under controlled conditions to

test only specific aspects of larger problems. An integration with social media, such as

Facebook and Twitter, is mandatory, since these environments are able to provide the

most up-to-date situation in the real world. Users can supply first-hand information

regarding their health status, primary or adverse effects of medication they are taking,

public loci of infection etc. This step is important especially in the context of the re-

cent steep increase in the mobile share of media consumption, as shown in Figure 9.1,

which is likely to continue in the following years (Danova, 2014). More than 30% of

the current usage is dedicated to social media, and this has doubled over the past two

years (Danova, 2014). Analysing social media provides the most current view on the

state of affairs of larger populations, having the capability of showing their health and

disease situation. Nevertheless, one needs to bear in mind that reliability becomes an

important issue that needs to be taken into account.

However, most effects, whether they are diseases or even death, are not caused by
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a single cause, but by a chain or, in most cases, a web of many causal components.

Take, for example, still incurable diseases such as cancer, for which a single cause

does not exist. More specifically, in the case of pulmonary cancer, although smoking

plays an important role, the disease cannot be attributed just to this factor. Thus, the

interlinking of the various sources to analyse causal relations will eventually lead to

the automatic creation of complex causal networks with various degrees of granularity.

These networks can explain, to a certain degree or granularity, the aspects of everyday

life. At a high, abstract level, the networks are addressed mostly to the general public,

to advocate for both personal measures, like diet changing, and corporate measures,

such as the of taxation of junk food and banning its advertising. At a low, molecular

level, causal networks are mostly useful for research performed in biochemistry, mo-

lecular biology, epigenetics etc. Molecular and signalling pathways can be created and

curated automatically, and linked to supporting evidence in the literature.

The vast amount of literature that is available proves to be a major impediment

in the advancement of knowledge. One possible mitigating solution is the automatic

production of summaries from documents, containing only the causal relations most

relevant to a certain query. Although automatic summarisation is a well-studied field

in NLP, focussing on specific discourse relations, including causality, has not been

studied to the same extent. The causality extraction framework that has been described

in this work can be easily integrated into a method for creating automatic summaries

from journal articles. This can be further extended to create multi-document sum-

maries too on the basis of causal networks, enhanced with the source dimension of

meta-knowledge. The addition of other meta-knowledge information, such as polar-

ity and certainty, can lead to an easier identification of contradictions and creation of

hypotheses.
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Appendix A

BioCause annotation guidelines

These guidelines have been developed to define the scope of annotation with regard to

causal relationships that exist in biomedical scientific discourse. The task is described

in the following sections.

A.1 Pre-annotated named entities and events

The articles that are subject to our task have been previously used for biomedical text

mining purposes. Thus, they already contain some annotations which are manually ad-

ded by domain experts. These include biomedical named entity and event information.

Figure A.1 shows an example of such annotations.

A.2 Recognising causal relations

This section will define the concept of causality, as well as exemplifying the annotation

process.
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Figure A.1: Annotations already included in the BioCause corpus.

A.2.1 Definition of causality

Causality is a vague term whose definition varies depending on the domain and some-

times within domains. Thus, we cannot provide a strict formulation of what causality

is. Instead, we offer several guidelines or tests that can help in your decisions.

One essential condition of causality is the temporal asymmetry between the cause

and the effect. More specifically, the cause must always precede the effect.

Furthermore, it is important to understand whether the effect would still have

happened had the cause not occurred in the first place. If such is the case, then it

is possible that the relation that exists between these two statements is not causality.

If necessary, please try rewording the sentences and performing linguistic tests

(e.g., placing an explicit causal marker and deciding whether the resulting text is an

accurate rephrasing of the original).

A.2.2 Annotating causal triggers

The first step towards annotating causal relation is to identify the causal triggers. When

a new causal relation is found, identify what expression in the text leads to you the

conclusion that the two predicates are in a causal relation.
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For instance, example (A.1) contains an instance of an annotated causal trigger.

(A.1) Here it is demonstrated that FimR binds directly to the promoter region of

the mfa1 gene, suggesting a direct role of FimR in activation of mfa1 expression.

Causal trigger can be expressed in numerous ways in text, ranging from single

words, such as conjunctions and adverbials (e.g., because, thus) to full verb phrases

(e.g., these results suggest that).

There will be cases where a causal trigger is not explicitly given in text, but sug-

gested by authors. In this case, please annotate the trigger as an empty span of text in

the location where you consider that it should be placed. Example (A.2) shows how an

implicit trigger should be annotated.

(A.2) Mlc repressed hilE in a direct manner {} by binding to two distinct sites in

the hilE P3 promoter region.

A.2.3 Annotating causal arguments

After annotating the causal triggers, it is necessary to mark up its two arguments. The

arguments can be located at any place in the text. Either they are both in the same

sentence with the trigger, or one of them is in a different sentence. One argument must

always be placed in the same sentence with the trigger.

An example of same sentence arguments is provided below, in sentence (A.3),

whilst separate triggers are provided in example (A.4).
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(A.3) Here it is demonstrated that [FimR binds directly to the promoter region

of the mfa1 gene]Cause, suggesting [a direct role of FimR in activation of mfa1

expression]E f ect .

(A.4) [Y. pseudotuberculosis, in contrast to Y. pestis, has been shown to be orally

toxic to flea]Cause.

This suggests that loss of one or more insect gut toxins is a critical step in the

change of the Y. pestis lifestyle compared with the Y. pseudotuberculosis and thus

in evolution of flea-borne transmission]E f ect .

A.3 Other items

This section provides further directions that are not entirely relevant to the annotation

procedure, such as actions to be taken in case of mistyped words, grammatical errors,

and concerns.

A.3.1 Spelling or grammatical errors

Ignore any spelling mistakes or grammatical errors that you encounter whilst reading

the texts. Take, for instance, example (A.5), where the word through has been mistyped

as throug. As these are published articles, they must be taken as is, and must not

suffer any alteration. Editing the text is forbidden and has been disabled for your

convenience.
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(A.5) It is hypothesized that the FimS/FimR system regulates expression of each

fimbrial gene throug a unique mechanism.

A.3.2 Points for discussion

If at any point during your annotation you come across something that you wish to dis-

cuss with other annotators or task creator, please mark-up the relevant part of text and

use the NOTES area of your annotation dialogue to describe your concern. Figure A.2

shows the location of the NOTES area in the annotation dialogue.

Figure A.2: NOTES area in the annotation dialogue
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Appendix B

BioCause+MK annotation guidelines

These guidelines have been developed to define the scope of annotation with regard

to the meta-knowledge of causal relationships that exist in biomedical scientific dis-

course. The task is described in the following sections.

B.1 Pre-annotated named entities, events, and causal

relations

The documents to undergo annotation in this task have already been annotated with

biomedical named entities, events and discourse causal relations. Figure B.1 shows an

example of such annotations.

Even if mistakes are discovered during the annotation of meta-knowledge inform-

ation, they are to be ignored. These are out of scope for the present task.

B.2 Meta-knowledge

The meta-knowledge of discourse causal relations that we are interested in has four di-

mensions: polarity, certainty, source and knowledge type. All four dimensions must be
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Figure B.1: Annotations already included in the BioCause corpus.

annotated for each causal relation that exists in the BioCause corpus. For the comfort

of annotators, each dimension has a default value assigned to it, which is the majority

value that we expect. Thus, annotators must change the values of only some dimen-

sions for only a subset of causal relations. All four dimensions are defined in what

follows, and examples are given for each value.

Polarity

This dimension identifies the truth value of the asserted causal association. A negated

causal association is defined as one describing the non-existence or absence of a causal

link between two spans of text. The recognition of such associations is vital, as it can

lead to the correct interpretation of a causal association, completely opposite to that of

a non-negated one.

• positive: no explicit negation of the causality. This is the default category, as

most causal associations are expected to be positive.

• negative: the association has been negated according to the description above.

The negation may be indicated through lexical clues such as no, not or fail.
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Certainty

This dimension encodes the confidence or certainty level ascribed to the association in

the given text. The epistemic scale is partitioned into three distinct levels:

• L1: explicit indication of either low confidence or considerable speculation to-

wards the association or the association occurs infrequently or only some of the

time.

• L2: explicit indication of either high (but not complete) confidence or slight

speculation towards the association or the association occurs frequently, but not

all of the time.

• L3: the default category. No explicit expression that either there is uncertainty

or speculation towards the associations or that the association does not occur all

of the time.

Source

The source of the knowledge expressed by the causal association is encoded as:

• current: the association makes an assertion that can be attributed to the current

study. This is the default category, and is assigned in the absence of explicit

lexical or contextual clues, although explicit clues such as the present study may

be encountered.

• other: the association is attributed to a previous study. Explicit clues are usu-

ally present either as citations, or by using words such as previously and recent

studies.
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Knowledge type

The Knowledge Type (KT) captures the general information about the content of the

causal association, classifying it into five categories:

• analysis: inferences, interpretations, speculations or other types of cognitive

analysis, always accompanied by lexical clues, typical examples of which in-

clude suggest, indicate, therefore and conclude.

• fact: events that describe general facts and well-established knowledge, and

sometimes accompanied by lexical clues such as known.

• investigation: enquiries or investigations, which have either already been con-

ducted or are planned for the future, typically accompanied by lexical clues like

examined, investigated and studied.

• observation: direct observations, sometimes represented by lexical clues like

found, observed and report, etc.

• other: the default category, assigned to associations that either do not fit into one

of the above categories, do not express complete information, or whose KT is

unclear or is unassignable from the context.

B.3 Other items

This section provides further directions that are not entirely relevant to the annotation

procedure, such as actions to be taken in case of mistyped words, grammatical errors,

and concerns.
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B.3.1 Spelling or grammatical errors

Ignore any spelling mistakes or grammatical errors that you encounter whilst reading

the texts. Take, for instance, example (B.1), where the word through has been mistyped

as throug. As these are published articles, they must be taken as is, and must not

suffer any alteration. Editing the text is forbidden and has been disabled for your

convenience.

(B.1) It is hypothesized that the FimS/FimR system regulates expression of each

fimbrial gene throug a unique mechanism.

B.3.2 Points for discussion

If at any point during your annotation you come across something that you wish to dis-

cuss with other annotators or task creator, please mark-up the relevant part of text and

use the NOTES area of your annotation dialogue to describe your concern. Figure B.2

shows the location of the NOTES area in the annotation dialogue.
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Figure B.2: NOTES area in the annotation dialogue



Appendix C

List of part-of-speech and syntactic

category tags

The items included in Table C.1 represent the base forms to create syntactic categor-

ies. This is performed by adding a suffix which indicates whether a constituent is a

saturated phrase (expressed by “P”) or an unsaturated constituent (“X”).

Tag Description
ADJ Adjective
ADV Adverb
CONJ Coordination conjunction
COOD Part of coordination
C Complementiser
D Determiner
N Noun
P Preposition
PN Punctuation
PRT Particle
S Sentence
SC Subordination conjunction
V Verb

Table C.1: Syntactic category tags.
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Tag Description
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Table C.2: Penn Treebank part-of-speech tags.
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